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Abstract. In this paper we derive spatially explicit equations to describe a stochastic in-
vasion process. Parents are assumed to produce a random number of offspring which then
disperse according to a spatial redistribution kernel. Equations for population moments, such
as expected density and covariance averaged over an ensemble of identical stochastic pro-
cesses, take the form of deterministic integro-difference equations. These equations describe
the spatial spread of population moments as the invasion progresses. We use the second order
moments to analyse two basic properties of the invasion. The first property is ‘permanence
of form’ in the correlation structure of the wave. Analysis of the asymptotic form of the
invasion wave shows that either (i) the covariance in the leading edge of the wave of inva-
sion asymptotically achieves a permanence of form with a characteristic structure described
by an unchanging spatial correlation function, or (ii) the leading edge of the wave has no
asymptotic permanence of form with the length scales of spatial correlations continually
increasing over time. Which of these two outcomes pertains is governed by a single statistic,
φ which depends upon the shape of the dispersal kernel and the net reproductive number.
The second property of the invasion is its patchy structure. Patchiness, defined in terms of
spatial correlations on separate short (within patch) and long (between patch) spatial scales,
is linked to the dispersal kernel. Analysis shows how a leptokurtic dispersal kernel gives rise
to patchiness in spread of a population.

1. Introduction

The classical mathematical model for a single-species biological invasion is a trav-
eling wave of reproducing, dispersing organisms spreading into virgin territory
[17,12,33,26,23,1,35]. This wave describes the expected density of organisms
as a function of space and time. The analysis of such a model typically yields
a traveling wave speed which describes the rate of spread and a corresponding
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monotone traveling wave profile which describes variation in the expected density
of organisms.

Actual biological invasions are far more complex than these mathematical mod-
els indicate. Not only are there spatial and temporal variations in factors affecting
spread, but the observed density of organisms rarely can be described by a simple
expanding wave front (Figure 1a); rather, it is typical to observe a series of invad-
ed patches which spread, coalesce and spawn new patches [27]. This can be seen
clearly for species as diverse as cheat grass (Bromus tectorum), and house finch
(Carpodacus mexicanus) (Figure 1b and 1c).

Even though the classical invasion models have often been successful in predict-
ing spread rates, as measured by

√
area invaded/time [1], they give no indication

of the possibly patchy structure of the wave. Such structure can play an important
role in the ability to make field observations. For example, a single observer with
limited observation range would miss the ‘leading edge’ of the invasion entirely
unless one of the patches happened to be close by. Furthermore, not all attempts
to predict spread rates have been successful, with failure typically attributed to
difficult-to-measure very long-distance dispersal events [1].

Fig. 1a. (a) Invasion map for the Japanese beetle Popilla japonica in the eastern United
States. Contours show the location of the invasion front at successive dates. (b) Invasion
map for cheat grass (drooping brome) Bromus tectorum in North America. Black regions in-
dicate area invaded. (c) Invasion map for the house finch (Carpodacus mexicanus) in eastern
North America. Shaded regions indicate area invaded. (Based on [15].)
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Fig. 1b.

Stochastic factors play a key role here. In a spatially homogeneous environ-
ment, stochastic movements of individuals affect the location of the patches. This
can be seen by modeling the behavior of individuals by a branching process where
individuals have given probabilities of reproducing and dying per unit time and
redistribute spatially. Using Monte Carlo simulations of the branching process we
show in Figure 2 that long distance dispersal over multiple space scales yields
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Fig. 1c.
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Fig. 2a. When dispersal events occur on markedly different spatial scales, populations spread
in a patchy manner. Monte–Carlo simulation of reproducing dispersing individuals. Each
time step: (i) individuals have a Poisson number of offspring, with mean of 1.2, (ii) offspring
disperse with random distances drawn from the dispersal kernel. Angles are drawn from a
uniform distribution, and (iii) the parent individual then dies. Initially 10 individuals were
released at x = 0. The distribution of individuals is shown after 40 time steps. (a) Composite
Laplace kernel (113) with α1 = 10, α2 = 1 and p = 0.99 (solid line) and Normal kernel
(11) with D = 0.092. Notice that the Laplace kernel is leptokurtic: there are more very
short and very long dispersal distances than found in a comparable Normal kernel. (b) Two
Monte–Carlo simulation using the composite Laplace kernel. Here the two relevant spatial
scales are: mean dispersal distance given by a Laplace kernel with α1 = 10 (0.1 units),
and mean dispersal distance given by a Laplace kernel with α2 = 1 (1.0 units). The only
difference between the two simulations is the random number seed used. (c) Monte–Carlo
simulation using the Normal kernel. Here there is a single relevant spatial scale: mean
dispersal distance given by a Normal kernel with D = 0.092 (0.429 units). When dispersal
events occur on markedly different spatial scales, there is increased stochastic variation about
the theoretically predicted ARS. Using simulations as described above, but in one spatial
dimension, the location of the individual dispersing farthest in the positive x-direction is
plotted as a function of time. (d) Two simulations with parameters and kernel as described in
(b) above. (e) Two simulations with parameters and kernel as described in (c) above. In each
of (d) and (e) the dashed line has slope 0.2529, which is the theoretical ARS given by (107).
The large vertical jumps in the graphs in (d) indicate single individuals making long-distance
jumps thereby pushing forward the location of the farthest dispersing individual.

‘patchy’ spread, with locations of the patches varying from simulation to simula-
tion. Furthermore, the spatial extent of the spread, as measured by the distance from
the origin of the farthest dispersing individual, is not constant from simulation to
simulation. While it is clear that the underlying dispersal process, as described by a
dispersal kernel, plays a role in determining the average spread rate of individuals,
variability in the rate of spread is also governed by this kernel (Figures 2d and 2e).

Stochastic models of population spread have been widely studied in the context
of the spread of an infection. An introduction to the early work in this area can
be found in a review by Mollison [26]. We will not attempt comprehensive review
in this paper. The idea that equations for ‘second-order densities’, such as spatial
covariance, would yield information about the spread of an invading population
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Fig. 2b.

Fig. 2c.

was first pursued by Bartlett [3,4], and later by Daniels [9] and others [6]. Later
approaches to nonlinear spatial epidemic models include particles interacting on a
lattice [10] and coupling methods [2].

The simplest stochastic model involves only density-independent birth and dis-
persal. In this case equations for the successive moments can be written down
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Fig. 2d.

Fig. 2e.
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explicitly (see [9] for a linear integro-differential equation formulation). Using
transform methods and a saddle point approximation for inverting the transformed
solution, Daniels [9] analysed the asymptotic velocity of the moments and derived
approximate formulae for their asymptotic form.

Although population processes typically involve density-dependent interac-
tions, simulations show that the phenomena of ‘patchy’ spread is evident even
in the absence of such effects (Figure 2). In an attempt to quantitatively analyse
the patchiness of a spreading population we will revisit linear models, but in doing
so will derive a rather different system of equations than those studied by earlier
researchers. By analyzing the covariance wave structure we will show how the
shape of the dispersal kernel determines the asymptotic behavior of this wave and
also the patchy structure of the invasion. Finally we will formulate a model for the
spatial moments which includes density-dependence.

2. The dispersal kernel

Dispersal patterns have been measured for many organisms, either as seed shadows
[40], plant disease dispersal gradients [13] or mark-recapture data [34]. In spite of
variability in these patterns, there is an strong preponderance of leptokurtic data.
Here there are more very short and more very long dispersal distances than found
in a Normal kernel with comparable mean and variance.

To analyse the kurtosis of the dispersal data we define the spatial redistribution
kernel by

κ(z, x)�z�x = Probability of dispersing from (z, z + �z) to (x, x + �x). (1)

In the case where dispersal is simply a function of distance, so that κ(z, x) =
k(z − x), moments of the kernel on an infinite domain can be defined as

k(n) =
∫ ∞

−∞
xnk(x) dx, (2)

provided they exist. The kurtosis of the kernel,

B2 = k(4)

k(2)
2
, (3)

is a measure of the disparity of spatial scales for the dispersal process. Leptokurtic
kernels have B2 > 3.

To understand how leptokurtic kernels can arise naturally from biological dis-
persal, we observe that the assumption of random movement, modeled by diffusion,
a constant settling rate per unit time, and a sufficiently long time for dispersers to
settle gives rise to a leptokurtic kernel described by a Laplace (decaying exponen-
tial) dispersal function in one spatial dimension, or a modified Bessel function in
two spatial dimensions [8,39,21] The effect of other movement assumptions on the
shape of the dispersal kernel can be found in Neubert et al. [29] or Van Kirk [16].
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3. Derivation of equations

In this section we derive equations for the expected density of individuals and the
spatial covariance of individuals when the individuals undergo birth, death and dis-
persal. Basic definitions of these statistics and related density functions are given
in Appendix A.

The population of individuals is assumed to undergo discrete-time reproduc-
tion. Immediately after reproduction the parent dies (or is simply considered an
offspring) and the offspring redistribute according to the dispersal kernel (1). It is
assumed that the individuals survive the redistribution process and thus∫

�

κ(z, x) dx = 1, (4)

where � is the spatial domain of interest. The subscript t (t = 0, 1, 2, . . .) is now
used to denote the time step.

In Appendix B we show that if R is a random variable representing each in-
dividual’s reproductive output with expected value E [R] = R, then equations
governing the first two moments of the population are

pt+1(x) =
∫
�

R κ(z, x) pt (z) dz (5)

and

ct+1(x, y) =
∫
�

{R(R − 1) + Var [R]} pt (z) κ(z, x) κ(z, y) dz

+
∫

�
z2 	=z1

∫
�

R2 ct (z1, z2) κ(z1, x) κ(z2, y) dz1 dz2, (6)

where pt (x) is the expected density of individuals and ct (x, y) is the spatial co-
variance density.

The first term on the right hand side of (6) describes the spatial covariance due
to two individuals having an identical parent, and the second term describes the
spatial covariance due to two individuals from different but spatially correlated
parents. The spatial covariance density ct (x, y) is defined only for x 	= y and an
extension of the definition to cover the point x = y introduces a singularity de-
scribing self-interactions (see equation (92)). Thus we are careful to exclude such
points from domain of integration in the second term of equation (6).

The birth rate variance Var [R] causes a increase in the contribution to spatial
covariance that arises from individuals producing spatially correlated offspring.
The case with a Poisson number of offspring yields R(R − 1) + Var [R] = R2.

Note that R ≥ 0 means that the term R(R − 1) + Var [R] in (6) is always
non-negative. When R < 1 the smallest value arises when R is a Bernoulli random
variable with probabilityR of having a single offspring and probability 1−R of hav-
ing no offspring. In this case Var [R] = R(1−R) and thusR(R−1)+Var [R] = 0.
A consequence is that, for non-negative initial data, equations (5) and (6) remain
non-negative for all time (see also [14]).
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With (5) and (6) given as equations for the first two spatial moments, we in-
tegrate (5) and (6) with respect to space over the entire solution domain �. This
yields equations for the expected total number of individuals mt = E(nt (�)) and
the variance in this total vt ,

mt+1 = Rmt (7)

vt+1 = R2vt + Var [R]mt, (8)

with initial values

m0 =
∫
�

p0(x) dx (9)

v0 =
∫
�

∫
�

c̃0(x, y) dx dy. (10)

Here p0(x) and c0(x, y) describe the expected density and spatial covariance of
the initial individuals over the entire ensemble of stochastically identical processes,
and c̃0(x, y) is the spatial covariance according to the extended definition given in
Appendix A, equation (92). Using equation (92) from Appendix A and equations
(7)–(8) we observe that the case c0(x, y) ≡ 0 is consistent with a Poisson num-
ber of initial individuals (v0 = m0) which are randomly distributed over a spatial
interval.

In summary, the assumptions of no density-dependent interactions between
individuals, a random number of offspring per generation, and long-distance dis-
persal of individuals via a redistribution kernel lead to linear dynamical equations
for the moments of the spatial distribution of individuals. Equations for the first
two moments are given in (5) (expected density) and (6) (spatial covariance). Note
the solution to (5) is used in (6), but the lack of density-dependent interactions
between individuals leads to a closed system of equations—higher-order moments
do not appear in equations for the mean (5) or spatial covariance (6). This contrasts
with the situation shown in Section 9, where density-dependent interactions are
included.

4. Connection with continuous-time models

It is instructive to connect the discrete-time equations (5), (6) with Poisson birth
dynamics with perhaps more familiar continuous time models. Specifically, if we
choose the solution domain � to be the real line and the redistribution kernel (1) to
be the fundamental solution to the diffusion equation evaluated at unit time,

k(x) = 1√
4Dπ

exp

(
− x2

4D

)
= N(0, 2D), (11)

then (5), (6) are transformed to

pt+1(x) =
∫ ∞

−∞
R√
4Dπ

exp

(
− (x − z)2

4D

)
pt (z) dz (12)
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and

ct+1(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
R2

4Dπ
exp

(
− (x − z1)

2 + (y − z2)
2

4D

)
c̃t (z1, z2) dz1dz2,

(13)

where c̃t (z1, z2) is spatial covariance density, extended to cover the line x = y as
defined in Appendix A, equation (92). Defining ψ(x, t) and γ (x, y, t) to be contin-
uous-time analogs for the expected density and extended spatial covariance density,
we observe that for t = 0, 1, 2, . . . pt (x) = ψ(x, t) and c̃t (x, y) = γ̃ (x, y, t) if
ψ(x, t) satisfies the linearized Fisher equation

∂ψ

∂t
= D

∂2ψ

∂x2
+ rψ, (14)

ψ(x, 0) = p0(x) (15)

and γ (x, y, t) satisfies

∂γ̃

∂t
= D

(
∂2γ̃

∂x2
+ ∂2γ̃

∂y2

)
+ 2rγ̃ + δ(x − y)

∂ψ

∂t
, (16)

γ̃ (x, y, 0) = c0(x, y) + δ(x − y)p0(x), (17)

where r = log(R) is the continuous-time birth rate.
To derive a continuous time spatial contact process with long-distance jumps

we replace (11) with

k(x) = 1 − �tµ

R
δ(x) + R − 1 + �tµ

R
k1(x), (18)

and choose R in terms of the fecundity rate f and mortality rate µ by R =
exp(�t(f − µ)). As �t → 0, the first two moments are given by (5), (6) as

∂ψ

∂t
= −µψ +

∫
�

f k1(z − x)ψ(z, t) dz (19)

and

∂γ

∂t
= −2µγ + f (ψ(x, t)k1(x − y) + ψ(y, t)k1(y − x)

+
∫
�

z 	=y

f γ (z, y, t)k1(z − x) dz +
∫
�

z 	=x

f γ (z, x, t)k1(z − y) dz. (20)

Here it is assumed that parents do not move, but produce offspring at rate f and die
at rate µ. Immediately after birth, the offspring disperse instantaneously accord-
ing to the redistribution kernel k1. For the case µ = 0 (20) can be rewritten in a
form identical to equation (5.8) of [9], once the extended definition of the spatial
covariance (92) from Appendix A is used.
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Finally, the case with two very different dispersal length scales can be thought
of as a mixture of linear Fisher dynamics, describing local reproduction and neigh-
borhood diffusion (14), and of jumps describing the long-distance dispersal of
colonizing offspring (19). Here, as �t → 0, the kernel

k(x) = 1 − �tλ/R√
4D�tπ

exp

(
− x2

4D�t

)
+ λ�t

R
k1(x), (21)

yields

∂ψ

∂t
= D

∂2ψ

∂x2
+ rψ + λ

∫
�

k1(z − x)ψ(z, t) dz, (22)

and

∂γ̃

∂t
= D

(
∂2γ̃

∂x2
+ ∂2γ̃

∂y2

)
+ 2rγ̃ + λ

∫
�

γ̃ (z, y)k1(z − x) dz

+λ

∫
�

γ̃ (z, x)k1(z − y) dz + δ(x − y)
∂ψ

∂t
, (23)

where r+λ = log(R)/�t is the continuous-time birth rate and λ is the colonization
rate. Although the equations differ from those analysed in Shigesada et al. [32],
they model the same phenomenon, referred to in [32] as ‘stratified diffusion’.

5. How the redistribution kernel determines invasion speed

It is possible to analyse the speed of invasion by choosing a threshold value of
detection pc for the expected density in (5). The location of this threshold is xt and
the invasion speed is defined to be the speed at which xt moves. While a typical
invasion scenario with compact initial data would give rise to two such points xt ,
one moving to the right and the other to the left, without loss of generality we
simply concentrate on the rightward moving wave (Figure 3).

The rate of invasion of expected density in biological populations has been
well studied, for both linear models and the related nonlinear deterministic models.
Much of the early analysis for contact distributions with continuous time dynamics
can be found in Mollison’s paper on the subject [22], and later results for integrodif-
ference models can be found in the papers of Weinberger [37,38]. A recent review
of the subject is given in Kot et al. [18].

Kot et al. [18] describe how three different possible outcomes pertain, depending
upon the shape of the redistribution kernel k(x). (i) k(x) has a moment generating
function (i.e. has exponentially bounded tails). Such kernels include the Normal
distribution (11) and the leptokurtic Laplace kernel

k(x) = α

2
exp(−α|x|), α > 0. (24)

Here the invasion speed is asymptotically constant provided the initial data are
compact (Appendix C). (ii) k(x) has finite moments of all orders, but no moment
generating function. Such ‘fat-tailed’ kernels include, for example,

k(x) = α2

4
exp(−α

√
|x|), α > 0. (25)
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Fig. 3. Location of the threshold xt as a function of time.

Here the spatial extent of spread xt typically has polynomial growth in time and
thus the invasion speed is asymptotically unbounded. For example, (5) and (25) and
a point release with the expected number of individuals m0 yields a spatial extent

xt = 1

α2

[
t log(R) + log

(
α2m0

4pc

)]2

(26)

[18]. (iii) k(x) has moments that are infinite. These are extremely ‘fat-tailed’ ker-
nels, and include, for example, the Cauchy distribution

k(x) = 1

π

β

β2 + x2
, β > 0. (27)

Here the spatial extent of spread xt can have exponential growth. For example (5),
(27) yields a spatial extent

xt =
√
βtm0Rt

πpc

− β2t2 (28)

[18].
In summary, the rate of spread of expected density of individuals into the new

environment may be linear (exponentially bounded kernel), polynomial (kernel
with finite moments of all orders), or exponential (kernel without finite moments of
all orders) in time. However, this spread rate gives no information about the actual
spatial patterning arising from spatial correlations between individuals. We now
analyse these correlations by deducing the qualitative large-time behavior of the
covariance equation. It is most convenient to start this analysis in frequency space.
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6. Analysis in frequency space yields a condition for permanence of form

We consider the solution to (5) and (6) when the spatial redistribution kernel is
simply a function of distance, so that κ(x, y) = k(x − y). Defining the Fourier
transform and its inverse as

f̂ (ω) = 1

2π

∫ ∞

−∞
f (x) exp(iωx) dx, f (x) =

∫ ∞

−∞
f̂ (ω) exp(−iωx) dω,

(29)
the transformed versions of (5) and (6) are

p̂t+1(ω) = 2πRk̂(ω)p̂t (ω) (30)

and

ĉt+1(ω1, ω2) = 2π (R(R − 1) + Var [R]) k̂(ω1)k̂(ω2)p̂t (ω1 + ω2)

+4π2R2k̂(ω1)k̂(ω2)ĉt (ω1, ω2), (31)

with solutions

p̂t (ω) =
(

2πRk̂(ω)
)t

p̂0(ω) (32)

and

ĉt (ω1, ω2) =
(

4π2R2k̂(ω1)k̂(ω2)
)t

ĉ0(ω1, ω2)

+
t−1∑
s=0

(
4π2R2k̂(ω1)k̂(ω2)

)t−1−s

2π (R(R − 1)

+Var [R]) k̂(ω1)k̂(ω2)p̂s(ω1 + ω2) (33)

respectively. Each element summed in (33) gives the contribution to the transformed
spatial covariance from a time s units earlier.

If the initial spatial covariance is zero and the number of offspring is Poisson
distributed (33) simplifies to

ĉt (ω1, ω2) = 1

2π

t−1∑
s=0

(
4π2R2k̂(ω1)k̂(ω2)

)t−s

p̂s(ω1 + ω2) (34)

Using the results from the previous section, observe that these initial data constrain
pt (x) and ct (x, y) to be non-negative for all time.

To understand the contribution to the transformed spatial covariance from each
time step we consider the case where a Poisson number of individuals (n0) is
released from a point source at x = 0. Here

p̂t (ω) =
m0

(
2πRk̂(ω)

)t
2π

. (35)
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where m0 = E(n0). The transformed spatial covariance (34) can be expressed
solely in terms of the transformed expected densities at previous time steps

ĉt (ω1, ω2) = 2π

m2
0

t−1∑
s=0

p̂t−s(ω1)p̂t−s(ω2)p̂s(ω1 + ω2) (36)

and thus we calculate the spatial covariance directly in terms of expected densities
as

ct (x, y) = 1

m2
0

t−1∑
s=0

∫ ∞

−∞
pt−s(x − z)pt−s(y − z)ps(z) dz. (37)

The sth term in this sum is the contribution from time step s to the spatial covariance
at time t (Figure 4). For the case with a Normal kernel (11), (37) can be calculated
explicitly as

ct (x, y) = 1

m2
0

t−1∑
s=0

R(2t−s)

2

exp

(
−
(
x−y√

2

)2

4D(t−s)

)
√
π4D(t − s)

exp

(
−

(
x+y√

2

)2

4D(t−s)+2Ds

)
√
π(4D(t − s) + 2Ds)

. (38)

To analyse the form of the spatial covariance for large t we can rewrite (35)–(36)
in terms of a geometric sum

ĉt (ω1, ω2) = p̂t (ω1)p̂t (ω2)

m0

t−1∑
s=0

φs(ω1, ω2), (39)

provided k̂(ω1)k̂(ω2) 	= 0, or

ĉt (ω1, ω2) = p̂t (ω1 + ω2)

2π

t∑
s=1

1

φs(ω1, ω2)
, (40)

provided k̂(ω1 + ω2) 	= 0. Here for any pair of wave numbers (ω1, ω2)

φ(ω1, ω2) =
(

k̂(ω1 + ω2)

2πRk̂(ω1)k̂(ω2)

)
(41)

is determined uniquely by k̂(ω), the transform of the redistribution k(x), and R,
the basic reproductive number.

Thus from (39) we observe that for any pair of wave numbers, ω1 and ω2,
|φ(ω1, ω2)| < 1 implies that as t → ∞

ĉt (ω1, ω2) → p̂t (ω1)p̂t (ω2)

m0(1 − φ(ω1, ω2))
(42)

and so
ĉt+1(ω1, ω2) → 4π2R2k̂(ω1)k̂(ω2)ĉt (ω1, ω2). (43)
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Fig. 4a. Spread in expected density and covariance decomposition for the first three time
steps of an invasion. A single individual is released at x = 0 when t = 0. Thus the expected
density at t = 0 is p0(x) = δ(x). (a) The expected density is shown at each of the three
time steps t = 1 (inside) t = 2 (middle) and t = 3 (outside). Calculations solved (5) using
Fast Fourier Transforms on a size 256 grid. (b) The expected densities from (a) are used to
calculate the contribution to the spatial covariance (37) from each of the time steps for s = 0
(top left) s = 1 (top right) and s = 2 (bottom left) and finally the covariance at t = 3 as the
sum of the three terms (bottom right). Growth is Poisson, given by R = 1.2 and σ 2

R = 1.2,
and the dispersal kernel is Normal (11) with D = 0.1.

On the other hand when |φ(ω1, ω2)| > 1 we observe from (40) that as t → ∞

ĉt (ω1, ω2) → p̂t (ω1 + ω2)

2π(φ(ω1, ω2) − 1)
(44)

and so
ĉt+1(ω1, ω2) → k̂(ω1 + ω2)ĉt (ω1, ω2). (45)

The dependence of large-time asymptotic behavior of ĉt+1(ω1, ω2) on φ(ω1, ω2)
(41) suggests a decomposition for the Fourier transformed covariance:

ĉt (ω1, ω2) = ĉ−
t (ω1, ω2) + ĉ+

t (ω1, ω2), (46)

where
ĉ−
t (ω1, ω2) =

{
ĉt (ω1, ω2) if |φ(ω1, ω2)| < 1

0 otherwise
, (47)

and

ĉ+
t (ω1, ω2) =

{
ĉt (ω1, ω2) if |φ(ω1, ω2)| > 1

0 otherwise
. (48)
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Fig. 4b.

Using these definitions we observe that ĉ−
t (ω1, ω2) satisfies (43) for all pairs of

wave numbers (ω1, ω2), and ĉ+
t (ω1, ω2) satisfies (45) for all pairs of wave numbers

(ω1, ω2). Taking inverse transforms of ĉ−
t (ω1, ω2) and ĉ+

t (ω1, ω2) and using (46)
yields

ct (x, y) = c−
t (x, y) + c+

t (x, y), (49)

where

c−
t+1(x, y) →

∫ ∞

−∞
z2 	=z1

∫ ∞

−∞
R2 c−

t (z1, z2) k(z1 − x) k(z2 − y) dz1 dz2. (50)

and

c+
t+1(x, y) →

∫ ∞

−∞
Rc+

t (x − z, y − z) k(z) dz. (51)

The first term in the covariance decomposition (49) c−
t (x, y) has asymptotic

behavior governed by (50). Here the value at time t + 1 c−
t+1(x, y) is a scaled

weighted spatial average of the value at time t c−
t (x, y). Over time the c−

t (x, y)

term spreads symmetrically in both x- and y-directions according to the spatial
weighting function k(z1 − x)k(z2 − y) (Figure 5a).
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Fig. 5. (a) Covariance isoclines for c−
t (x, y) spread in both the x- and y-directions. (b)

Covariance isoclines for c+
t (x, y) spread only in both the (x + y)/2-direction.

The second term in the covariance decomposition (49) c+
t (x, y) has asymptotic

behavior governed by (51). Once again the value at time t +1 c+
t+1(x, y) is a scaled

weighted spatial average of the covariance at time t c+
t (x, y). However, over time

c+
t (x, y) now spreads only with respect to a single variable, (x+y)/2, representing

the mean location. To see this more clearly, one can rewrite equation (51) in a form
similar to (50):
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c+
t+1(x, y) →

∫ ∞

−∞

∫ ∞

−∞
Rc+

t (z1, z2) k ((x + y)/2 − (z1 + z2)/2) δ (z1 − z2)

dz1 dz2. (52)

If we shift to a local reference frame moving with the wave in the direction
x = y we observe no asymptotic spread of spatial covariance in the transverse
direction x = −y. In other words, level sets, defined by ct (x, y) = c0 > 0, simply
move in the direction x = y. While the speed with which the level set moves can
depend upon c0, the local shape of the set does not change as it moves (Figure 5b).
Symmetry of c+

t (x, y) about the x = y line means that this wave of permanent
form describes spatial covariance in terms of the spatial lag |x−y|. This permanent
form describes the characteristic spatial correlations between individuals that, after
a long time, remain unchanged in the leading edge of the wave. We refer to these
unchanging spatial correlations in the leading edge of the wave as permanence of
form. The permanence of form occurs for the range of wave numbers where |φ| > 1
and thus c+

t (ω1, ω2) is nonzero.
Looking back to equations (37), (39), (40), (41) we observe that this perma-

nence of form arises from the later terms in (37) dominating the summation when
analysed in Fourier space. In other words, the permanence of form is the result of
spatial covariances between relatives with a recent common ancestor dominating
the covariance structure of the wave.

By way of contrast the covariance wave has no permanence of form over the
range of wave numbers where |φ| < 1. This portion of the covariance is denoted
by c−

t (x, y). Although c−
t (x, y) does describe spatial correlations, these change

continually over time.
Appendix D shows that φ = 1/R for delta function and Cauchy kernels. Nor-

mal, composite Normal and composite Laplace kernels have their φ functions cal-
culated and shown graphically in Figure 9.

Examples of difference in the spread patterns in (50) and (52) are illustrated
with a Normal kernel with R = 1.2 (|φ| < 1 for all ω1, ω2) and an exponentially
declining kernel with R = 0.5 (|φ| > 1 for all ω1, ω2) (Appendix D) (Figure 6).
The covariance ct (x, y) can be explicitly calculated for a Normal kernel (38). Here
the early terms in the series dominate; the sth term in the series is the product of
two Normal distributions with standard deviations of 2D(t−s) and D(2t−s). Nu-
merical solution of covariance for the exponentially declining kernel with R = 0.5
(|φ| > 1) yields a wave moving in the direction x = y while retaining a constant
profile in the direction x = −y.

When permanence of form is seen only over a range of high wave numbers
the unchanging covariance structure is most relevant at the level of interactions
between individuals at short spatial scales (compare Figures 7a and 7b), but may
not be apparent from casual observation of the global spread of the invasion.

In Appendix E we derive an asymptotic relationship between φ (41) and kur-
tosis (3) for a symmetric kernel. We demonstrate that kernels that are sufficiently
leptokurtic (i.e., that have sufficiently large values of (3)) can give rise to |φ| > 1
for wavelengths that are long relative to the standard deviation of the kernel. In
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Fig. 6a. (a) Asymptotic form of the spatial covariance for a case where |φ(ω1, ω2)| < 1 for
all wave numbers. Here the dispersal kernel is Normal (11) with D = 0.1 (as in Figure 4),
growth is given by R = 1.2 and σ 2

R = 1.49, the initial data for the covariance is zero every-
where, and the initial data for the expected density is as described in Figure 8a. Isoclines,
shown at time t = 30, range from 5 to 65. (b) Asymptotic form of the spatial covariance
for a case where |φ(ω1, ω2)| > 1 for all wave numbers. As discussed in Appendix D, at
low wave numbers this inequality requires R < 1. Here the dispersal kernel is composite
Laplace, as described in Figure 2a, growth is given by R = 0.5 and σ 2

R = 0.375, and initial
data is as described above in (a). Isoclines, shown at time t = 30 range from 1 × 10−10 to
5 × 10−10. Calculations in parts (a) and (b) solved (5), (6) using Fast Fourier Transforms on
a size 256 by 256 grid.

other words, leptokurtic kernels can give rise to permanence of form on length
scales that are many times larger that the average dispersal distance.

In summary, the spatial covariance can be broken into two terms (49), the first of
which (c−

t (x, y)) spreads symmetrically in both x- and y-directions and describes
correlations arising from distant ancestors sharing spatial locations, and the second
of which (c+

t (x, y)) spreads only in the direction x = y, has permanence of form,
and describes spatial correlations from sharing close ancestors (Figure 7). The Fou-
rier spectrum of the first term is nonzero on the set where |φ(ω1, ω2)| < 1 and the
Fourier spectrum of the second term is nonzero on the set where |φ(ω1, ω2)| > 1.
In turn the function φ(ω1, ω2) (41), determining the qualitative behavior of modes
with given wave numbers (ω1, ω2), involves two ingredients (41): the shape of
the redistribution kernel k(x), as reflected by its Fourier transform k̂(ω), and the
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Fig. 6b.

basic reproductive number of the population R. We now take a closer look at the
relationship between covariance form of the wave and the function φ.

7. Approximations for the covariance wave form in terms of φ

While typical values for φ may vary above and below 1, depending upon wave
numbers, analyses of the limiting cases φ → 0 and φ → ∞ provide insight as
to the limiting behaviors of the spatial covariance. In practice, these limits would
require either a very large or very small value for the net reproductive number R
(41).

Observe that the limiting case φ → 0 in (43) yields

ct+1(x, y) → pt+1(x)pt+1(y)

n0
(53)

whereas the limiting case φ → ∞ in (45) yields

ct+1(x, y) →
∫ ∞

−∞
R2pt (z) k(z − x) k(z − y) dz. (54)

The former limiting case (53) has no permanent form whatsoever and spatial co-
variance determined solely by the spatial expansion of the expected density at time
s = 0 for t + 1 time steps (37). In other words, the spatial covariance at time t

simply arises from the initial correlations of individuals, which were distributed
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Fig. 7a. Monte–Carlo simulations show the locations of siblings at time step t = 5. Sim-
ulations are as described in Figure 2, except (i) one individual is released at the origin
at time t = 0, and (ii) each parent has precisely two offspring per generation (R = 2,
Var[R] = 0). Thus after five generations there are 32 individuals. Symbols show the loca-
tions of pairs of siblings. (a) The kernel is composite Laplace (113) with α1 = 10, α2 = 1
and p = 0.99, as in Figure 2a. The function φ(ω1, ω2), as shown in Figure 9c, but scaled
by a factor describing the ratios of the growth rates 1.2/2 = 0.6, indicates permanence of
form at high wave numbers, including ω1, ω2 ≥ 40 and thus at short wave lengths, including
λ1 = 2π/ω1, λ2 = 2π/ω2 ≤ 0.08. On these scales spatial covariance has permanence of
form. Thus asymptotically spatial correlations between closely related individuals predom-
inate as described by the later terms in (37). Note three close pairs of siblings separated by
such short distances (box, cross and times). (b) The kernel is a composite Normal kernel
(111) with D1 = 0.02, D2 = 2 and p = 0.99. The function φ(ω1, ω2) < 1 for all wave
numbers. The covariance thus has no permanence of form on any spatial scale and thus
asymptotically correlations between distantly related individuals predominate, as described
by the later terms in (37). Note that there are fewer closely paired siblings than shown in (a).

as a point source (35). The latter limiting case (54) has permanence of form and
spatial covariance determined solely by the spatial expansion of expected density
at time s = t for one time step (37). In other words, the spatial covariance simply
arises from siblings with the same parent. Cases for less extreme values of φ are
shown in Figure 8.
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Fig. 7b.

The correlation density function about the leading edge of the wave in pt (x)

is dramatically different for the cases φ → 0 and φ → ∞. The case φ → 0 (53)
yields a correlation density function (90) ρt (x, y) = √

pt (x)pt (y) → 0 at the
leading edge of the wave.

For exponentially bounded dispersal kernels k(x), it is possible to heuristically
analyse the case φ → ∞ (54). Substitution of (108) into (54), evaluation of the
integral and application of (90) and (107) yields the correlation density about the
leading edge of the wave as

ρt (x, y) = ρt (x−y) = R

M(s)

∫ ∞

−∞
k(ξ+(y−x)/2)k(ξ+(x−y)/2) exp(−sξ) dξ.

(55)

Thus the correlation density is a positive function that simply depends upon spatial
lag, and not upon the location in the wave front. This can be seen in some numerical
examples, even when |φ| < 1 for some wave numbers (Figure 8c). Note that the
correlation density function for short spatial scales is given in terms of moment
generating functions by limx→y ρt (x − y) = RMk2(s)/Mk(s).
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Fig. 8a. Spread governed by a composite Laplace kernel as described in Figure 2a with
growth given by R = 1.2 and σ 2

R = 1.49. (a) Expected density, shown from t = 0 (rect-
angular initial conditions) to t = 10 (outer) (b) Spatial covariance shown at t = 10 has
isoclines ranging from 2 × 101 to 24 × 101. (c) Spatial correlation function shown at time
t = 10 has isoclines ranging from 5 to 40. At time t = 10 the location x ′

0 with probability

q = 0.5 of having an individual to the right of it, given by
∫ 2.5
x′

0
p10(ξ) dξ is x ′

0 = 0.703

(see (a)). The corresponding integrated covariance is
∫ 2.5
x′

0

∫ 2.5
x′

0
c10(x, y) dx dy = 4.99 (see

(b)). Thus (92), (93) give the variance as 4.99 + 0.5 = 5.49, and a variance to mean ratio
of 5.49/0.5 = 10.98, indicating a high degree of variability in the location of individuals in
the leading edge of the wave. (See also Figure 2d.) At time t = 10 the expected number of
individuals between x0 = 0.625 and x1 = 1.25 is 0.593 (see (a)). The corresponding inte-
grated covariance is 5.30 (see (b)). Thus the mean crowding in the region 0.625 ≤ x ≤ 1.25
is C = 0.593 + 5.30/0.593 = 9.53 (61). In other words, given that there is an individual in
this region, the expected number of other individuals in this region is 9.53.
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Fig. 8b.

Fig. 8c.
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The variance over an interval in the leading edge of the wave can also be cal-
culated from (92)–(93) for the two limiting cases. As φ → 0 the variance over the
interval (x0, x1) is given by (53), (108) as

V (x0, x1) =
(
pt (x0) − pt (x1)

s

)(
1 + pt (x0) − pt (x1)

s

)
. (56)

As φ → ∞ the variance over the interval (x0, x1) is given by (54), (108) as

V (x0, x1) =
(
pt (x0) − pt (x1)

s

)(
1 + R

M(s)

∫ ∞

−∞
H 2(u) exp(−su) du

)
, (57)

where H is the cumulative density function for k

H(x) =
∫ x

−∞
k(ξ) dξ. (58)

Equations (56)–(58) can be used to understand variability in the location of the
farthest dispersing individual about the theoretically predicted value (Figure 2) as
a function of φ. If we choose x1 = ∞ and choose x0 so that there is probability
q < 1 of an individual to the right of x0 then∫ ∞

x0

pt (ξ) dξ = pt (x0)

s
= q. (59)

This means that the variance to mean ratio over the interval (x0,∞) is 1 + q for
the case φ → 0 (56) but is a quantity independent of q

1 + R

sM(s)

∫ ∞

−∞
H 2(u) exp(−su) du, (60)

for the case φ → ∞ (57). This indicates that, when the likelihood of an individual
dispersing past a given point x0 is low, the variability in the number dispersing past
that point is higher for φ → ∞ than for φ → 0. Another way of interpreting this
result is to say that the precision with which the location of the farthest dispersing
individual can be determined is lower for φ → ∞ than for φ → 0. Calculations for
mean and variance in the tails of the expectation and covariance waves are shown
for a numerical example in Figures 8a and 8b.

Alternatively, (56)–(58) can be used to calculate a ‘mean crowding index’ in
the leading edge of the wave. This is based on the idea of Lloyd [20] that the ap-
propriate index for mean crowding over a region is the expected number of other
individuals in the region seen by a given individual or, using the terminology of
this paper

C =

∫ x1

x0
y 	=x

∫ x1
x0

p
(2)
t (x, y) dxdy

∫ x1
x0

pt (x) dx
=
∫ x1

x0

pt (x) dx +

∫ x1

x0
y 	=x

∫ x1
x0

ct (x, y) dxdy

∫ x1
x0

pt (x) dx
(61)
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A sample calculation for C is made in the caption for Figure 8. As φ → 0 the mean
crowding index (61), calculated using (89), (92), (93) and (56) is

C = 2(pt (x0) − pt (x1))

s
. (62)

As φ → ∞ the mean crowding index (61), calculated using (89), (92), (93) and
(57) is

C = 2(pt (x0) − pt (x1))

s
+ R

sM(s)

∫ ∞

−∞
H 2(u) exp(−su) du. (63)

Note that near the front of the wave (x0 large) the mean crowding goes to zero for
the φ → 0 case (62), but remains a positive constant for the φ → ∞ case (63).
This means that, for the φ → ∞ case, even when the mean density goes to zero,
the mean crowding remains positive.

In summary, the cases φ → 0 and φ → ∞ allow us to analyse limiting behav-
iors of the spatial covariance equation. In the case φ → 0 (no permanence of form
and earliest term in (37) dominates) (i) the correlation density approaches zero in
the leading edge of the wave (ii) the mean to variance ratio in the leading edge of
the wave approaches 1 + q where q is the expected number of individuals in the
leading edge (56) (iii) the mean crowding index (62) is simply a function of the
expected density and approaches zero as the expected density approaches zero. In
the case φ → ∞ (permanence of form and latest term in (37) dominates) heuristic
arguments are used to show that (i) correlation density approaches a function which
is independent of spatial location and is simply a function of spatial lag (55) (ii)
the mean to variance ratio in the leading edge of the wave approaches a quantity
independent of the expected number of individuals in the leading edge q (60) (iii)
the mean crowding index (63) includes a term which is independent of the expected
density and thus does not approach zero as the expected density approaches zero.

We have analysed the form of the invasion in terms of the quantity φ which we
understand to be a statistic governing the permanence of form of the covariance
wave. We now address the issue of ‘patchiness’ directly by relating it to the kurtosis
of the redistribution kernel.

8. Patchiness and its relationship to the redistribution kernel

Patchiness in the invasion process is a qualitative phenomenon, but is typified by
disparity in the spatial scales for correlations between individual locations; short-
scale correlations describe relative locations of individuals within a patch, while
long-scale correlations describe the relative locations of patches. In this section we
restrict ourselves to kernels with finite integer moments, thus excluding, for exam-
ple, the Cauchy kernel (27) which has ‘very fat’ tails. Defining ξ = (x + y)/

√
2 as

the coordinate describing mean location and and η = (x−y)/
√

2 as the coordinate
describing spatial lag between locations, and using kurtosis (3) as a description of
disparity of spatial scales, a measure of patchiness about a point ξ = (x + y)/

√
2

can be defined as

Pt = c
(4)
t

c
(2)
t

2
(64)
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where

c
(n)
t =

∫∞
−∞

∫∞
−∞ ηnct (ξ, η) dξ dη∫∞

−∞
∫∞
−∞ ct (ξ, η) dξ dη

, (65)

is the nth moment of the normalized covariance density function (91). We say that
the overall spread is patchy if Pt is leptokurtic, in other words, if Pt > 3 (64).

We now show that leptokurtic kernels (3) yield overall patchy spread. Our ap-
proach is to use the explicit representation for covariance in terms of expected
density (37).

In preparation for calculating (64) we first calculate the moments of pt (x) in
terms of the kernel moments (2) for the case where there is initially a point release
of a single individual at time t = 0:

p
(n)
t+1 =

∫ ∞

−∞
xnpt+1(x) dx

= R

∫ ∞

−∞
pt (z)

(∫ ∞

−∞
(z − u)nk(u) du

)
dz (66)

Dependence of the dispersal kernel on distance, and thus its symmetry, lead to odd
moments of the kernel equaling zero. The case n = 0 yields

p
(0)
t+1 = Rp

(0)
t , (67)

n = 2 thus yields

p
(2)
t+1 = R

(
p
(2)
t + k(2)p

(0)
t

)
, (68)

and the case n = 4 yields

p
(4)
t+1 = R

(
p
(4)
t + 6k(2)p(2)

t + Rtk(4)
)
. (69)

The point release of a single individual implies that p(0)
0 = 1 and p

(n)
0 = 0 for

n > 0 and equation (67) implies that p(0)
t = Rt . Thus the second (68) and fourth

(69) moments are calculated to be

p
(2)
t = tRtk(2) (70)

and
p
(4)
t = Rt

(
3t (t − 1)k(2)

2 + tk(4)
)
, (71)

respectively. The kurtosis of the normalized expected density

p
(0)
t p

(4)
t

p
(2)
t

2
= 3 + 1

t
(B2 − 3) (72)

thus asymptotically approaches that of a Normal distribution.
Appendix F calculates a lower bound for the normalized kurtosis in the

η-direction of each term in (37) as

3 + 1

2(t − s)
(B2 − 3) , s = 0 . . . t − 1. (73)
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Thus a leptokurtic kernel gives leptokurtic contributions to the covariance for each
term in (37). Finally Appendix F concludes that a convex combination of leptokur-
tic terms leads to a leptokurtic sum. Thus when the kernel is leptokurtic, the kurtosis
of the normalized sum of terms in (65), (37) exceeds 3 and the overall spread is
patchy (64).

Note that the lower bound (73) suggests the most leptokurtic contribution comes
from the latest term in the sum (s = t − 1) and the least leptokurtic contribution
from the earliest term in the sum (s = 0). In other words later reproduction and
dispersal events appear to give the largest contribution to covariance kurtosis (64)
and thus to patchiness. Our earlier analysis of permanence of form (Section 6),
showing that later terms in (37) dominate when |φ| > 1, suggests that very patchy
spread requires both a leptokurtic kernel and |φ| > 1 for a substantial range of
wave numbers. (See also Appendix E.)

9. Density-dependent formulation of stochastic model

Finally, we formulate the density-dependent versions of (5) and (6). We assume
monotonic growth whose deterministic analog is given by the logistic growth func-
tion

ut+1 = Rut(1 − αut ), (74)

where ut is the density of individuals at time step t . To formulate the stochastic
model, we assume (i) density-dependent effects control fecundity before dispersal,
as opposed to survival after dispersal (ii) only individuals within radius r exert a
density-dependent effect.

Here the expected density of individuals at z1, conditional upon there being an
individual at z is given by

p
(2)
t (z, z1)

pt (z)
, (75)

For ease of notation we define the local expected joint density as

p
(2)
t (z, z) = lim

z1→z
p
(2)
t (z, z1). (76)

Averaging the expected density of neighbors over radius r yields

1

2r

∫ z+r

z−r

p
(2)
t (z, z1)

pt (z)
dz1 = p

(2)
t (z, z)

pt (z)
+ O(r). (77)

To simplify the derivation we assume that interactions occur over a sufficiently
small neighborhood that the O(r) terms are not significant.

The equation for expected density is

pt+1(x) =
∫ ∞

−∞
R κ(z, x)

(
pt (z) − αp

(2)
t (z, z)

)
dz, (78)
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and the equation for expected joint density is

p
(2)
t+1(x, y) =

∫ ∞

−∞
{R(R − 1) + Var [R]} κ(z, x)κ(z, y)

(
pt (z) − αp

(2)
t (z, z)

)
dz

+
∫ ∞

−∞
z2 	=z1

∫ ∞

−∞
R2 κ(z1, x) κ(z2, y)

(
p
(2)
t (z1, z2) − αp

(3)
t (z1, z2, z2)

−αp
(3)
t (z1, z1, z2)α

2p
(4)
t (z1, z1, z2, z2)

)
dz1 dz2. (79)

Here the local expected higher order densities p(3)
t (z1, z2, z2), p

(3)
t (z1, z2, z2) and

p
(4)
t (z1, z2, z2, z2), are defined in a manner similar to the local expected joint den-

sity (76). A more detailed derivation and analysis of this system is given in a recent
paper by one of the authors [19].

Notice that even though this system describes density-dependent interactions,
it remains linear. However, it is not closed — the equation for p(2)

t (x, y) depends
on higher order moments. The logistic form of this model means that strong densi-
ty-dependent terms could possibly drive the moments negative. Bolker and Pacala
[7] analyse this possibility and show that the density-dependent terms do not drive
the moments negative for a wide range of parameter values.

10. Conclusion

In this paper there are only three model ingredients: the expected number of off-
spring R, the variance in that number Var [R], and the shape of the spatial redis-
tribution kernel. When there are discrete, non-overlapping generations these three
ingredients lead to integro-difference equations for the spatial moments of the pop-
ulation of individuals (5), (6). Under varying assumptions about the reproduction
time steps and spatial scales of dispersal, these integro-difference models have
equivalent formulations as partial differential equations (14), (16), integro-differ-
ential equations (19), (20), or hybrid models (22), (23). The integro-difference
models can be modified to include density-dependent population regulation (Sec-
tion 9). However, the cost of including these terms is the inability to ‘close’ the
system of equations: lower order moments depend upon higher order moments,
and vice-versa. This system cannot be decoupled. Thus a full characterization of
the density-dependent interactions requires knowing all the moments of the popula-
tion. Approximate ‘moment closure’ methods to decouple equations for lower-order
moments from higher-order moments are given in [19].

A classical invasion problem is the asymptotic rate of spread of a population.
For the integro-difference formulation (5), the rate of spread of the expected den-
sity of individuals depends crucially upon the tails of the kernel, the fatter the tails
the faster the spread. Fat-tailed or very fat-tailed kernels give spread rates that are
infinite asymptotically in time. This is derived and discussed in detail by [18] for
both the linear case (such as (5)) and the case where there is nonlinear population
density regulation.

The spatial covariance is governed by equation (6). The growth rate of the co-
variance depends not only upon the expected number of offspring but also upon the
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variance in that number. The higher the variance, the higher the likelihood of the
formation of a patch arising from spatially correlated siblings.

The quantity φ determines asymptotic permanence of form in the covariance
wave. For wave numbers with |φ| > 1 the covariance is dominated by spatially
correlated individuals at points x and y with a more recent common ancestor. The
structure of the leading edge of the covariance wave approaches a characteristic
permanent form as the wave spreads in a single direction x = y (Figure 5b). If
|φ| < 1 the covariance is dominated by spatially correlated individuals at points x
and y with a more distant common ancestor. The average length scale of correla-
tions in the leading edge of the wave grow as the covariance wave expands in both
x- and y-directions (Figure 5a). The quantity φ (41) can be loosely related to the
kurtosis B2 of the dispersal kernel (3). This is done in Appendix E. The larger the
growth rate R, the smaller the magnitude of φ, and thus the lower the likelihood of
the covariance wave achieving permanence of form.

For a given fixed kernel and random variable describing reproduction, the quan-
tity φ is frequency dependent. In other words φ is a function of the wave numbers
ω1 and ω2 at locations x and y. This suggests a mathematically convenient splitting
of the covariance into a portion with wave numbers giving permanence of form, and
the remainder which has wave numbers not giving permanence of form. When the
permanence of form is seen only over high wave numbers (short spatial scales) the
unchanging covariance structure will impact the short-range interactions between
individuals, but may not be apparent from casual observation of the global spread
of the invasion.

Limiting cases for φ can be used to calculate variability in location of the far-
thest dispersing individual: when φ → 0 the variability is low and when φ → ∞
the variability is high. Ultimately this means that for large φ it is possible to have a
model that faithfully describes the underlying invasion process, but does not give a
precise estimate for spread. I.e., the variability in spread rates between realizations
within an ensemble is large.

Patchiness of the invasion can be understood as a disparity in length scales of
correlations: high correlation at short and long space scales, as opposed to inter-
mediate length scales. The patchiness can be analysed in terms of the profile of the
covariance wave as measured in the η = (x − y)/

√
2-direction. Here a relevant

statistic is the kurtosis of the covariance wave in the η-direction after averaging
in the perpendicular ξ = (x + y)/

√
2-direction. This kurtosis can be related to

kurtosis of the dispersal kernel, demonstrating that leptokurtic kernels give rise to
patchy spread. A more precise definition of patchiness would specify the location
in the wave front. I.e., averaging in the ξ -direction would be replaced by holding
ξ constant, and an argument could be made for using the spatial correlation func-
tion ρt instead of the spatial covariance function ct in the calculation. These are
directions for further work.

Even though the model analyzed here is linear, the possibility that for φ → ∞
crowding approaches a constant nonzero level, even when the expected density
approaches zero, means that for kernels with large φ covariance terms dominate
interactions at low densities. Such behavior would, for example, be expected in
focal plant epidemics [27] such as potato blight [21] , where very local patches of
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infestation or hot spots are separated spatially from other hot spots and are only
connected through rare dispersal events in which a spore escapes the canopy. Here
density dependent effects arising through the second order terms (see (78), (79))
may be evident even when the expected density (averaged over the ensemble) is
low. In this case the deterministic nonlinear formulation will fail to reflect the bi-
ology (but see [21] for an approximate way of dealing with such multiple dispersal
mechanisms).

What little is known about stochastic spatio-temporal models with population
regulation through density dependence suggests that this more realistic case may
be different from linear stochastic models in several respects. Spread rates are low-
er [19,22,24], the qualitative conditions for finite velocity may differ [22,24] and
the models can exhibit different types of spatial patchiness [11,30] Furthermore,
the exponential growth exhibited by linear models allows the variability in popu-
lation size to be higher and the variability of the position of the farthest dispersing
individual may be lower than expected for a density-dependent population [25].

This paper has focused upon the role of stochasticity in determining the corre-
lation structure and patchiness of an invasion process. In doing so we have assumed
that the environment is spatially homogeneous — an assumption which is likely to
be violated in most biological invasions. For example the westward spread of the
house finch population (Figure 1b) was faster up river valleys which provided abun-
dant resources [28]. Likewise our assumption of the absence of density-dependent
population regulation is unlikely to be defendable for most populations. While spa-
tial heterogeneity, density-dependence and other factors undoubtedly play a role in
invasion processes, we justify their exclusion on the grounds that we have chosen
the simplest possible model that incorporates the stochastic aspects which are the
focus of this paper.
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A. Spatially distributed probabilty densities

In this appendix we derive formulae relating the first two spatially distributed proba-
bility densities (expected density and expected joint density) to the expected number
of individuals in a region and the expected number of pairwise interactions between
individuals. Using these probability densities we define the spatial covariance and
the correlation density function.

Neighborhoods of area ε, 0 < ε � 1, about the points x and y are given by �ε
x

and �ε
y respectively. It is assumed that no more than one individual can occupy any

given point in space. Mathematically we assume that for ε sufficiently small there
is no more than a single individual in �ε

x for each x in the entire domain of interest
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�. Thus, at any point in time, for ε sufficiently small the number of individuals in
any �ε

x is a Bernoulli random variable with mean

P ε
x = E(n(�ε

x)) = Pr
{
n(�ε

x) = 1
}
, (80)

variance
σ ε
x

2 = P ε
x (1 − P ε

x ), (81)

mean product

P ε
xy = E(n(�ε

x)n(�
ε
y)) = Pr

{
n(�ε

x) = 1 ∩ n(�ε
y) = 1

}
, (82)

and spatial correlation

Rε
xy = P ε

xy − P ε
x P

ε
y

σ ε
x σ

ε
y

. (83)

For regions �1 and �2 contained in � we define n(�1) as the number of indi-
viduals in �1, and n(�2) as the number of individuals in �2. Taking expectations
over an ensemble of stochastically identical processes yields

E(n(�1)) =
∫
�1

p(x) dx (84)

E(n(�1)n(�2)) =
∫
�2
y 	=x

∫
�1

p(2)(x, y) dx dy +
∫
�1∩�2

p(x) dx, (85)

where p(x) is the expected density of individuals and p(2)(x, y) is the expected
joint density of individuals, defined for x 	= y [31]. The first term on the right
hand side of (85) describes the contribution from pairs of distinct individuals, one
individual lying in �1 and the other in �2 (valid for x 	= y), and the second term
describes the contribution from single individuals lying in the overlap between �1
and �2.

To relate our definitions of p(x) and p(2)(x, y) to the probabilities of finding
single individuals in arbitrarily small disks we observe that for ε sufficiently small
and disjoint �ε

x and �ε
y , equations (80) and (84) give us

P ε
x = E(n(�ε

x)) =
∫
�ε
x

p(ξ) dξ, (86)

and equations (82) and (85) give us

P ε
xy = E(n(�ε

x)n(�
ε
y)) =

∫
�ε
y

∫
�ε
x

p(2)(ξ, η) dξ dη (87)

and, as ε → 0, we have

p(x) = lim
ε→0

P ε
x

ε
, p(2)(x, y) = lim

ε→0

P ε
xy

ε2
, x 	= y. (88)
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We use definition (88) when deriving equations for the spatially distributed mo-
ments p(x) and p(2)(x, y) from first principles.

We define a spatial covariance density function as

c(x, y) = p(2)(x, y) − p(x)p(y), x 	= y (89)

[5]. The covariance can be considered as a scaled measure of the correlation be-
tween locations of individuals. To see this we use (81), (83) and (88) to define a
correlation density function

ρ(x, y) = lim
ε→0

Rε
xy

ε
= c(x, y)√

p(x)p(y)
. (90)

Note that, unlike a correlation coefficient, ρ is not constrained to lie between ±1.
If the locations of individuals are uncorrelated then the likelihood of observing an
individual in the neighborhood of x is independent of the likelihood of observing an
individual in the neighborhood of y and thus c(x, y) = p(2)(x, y)−p(x)p(y) ≡ 0.
Positive correlation yields c(x, y) > 0 and negative correlation yields c(x, y) < 0.

The expected number of individuals in a space interval �1 can be calculated
using (84), and the covariance in the numbers of individuals over two intervals �1
and �2 can be calculated from (84)–(85), (89) as

C(�1, �2) = E(n(�1)n(�2)) − E(n(�1))E(n(�2))

=
∫
�2
y 	=x

∫
�1

c(x, y) dx dy +
∫
�1∩�2

p(x) dx. (91)

If�1 = �2 then (91) yields the variance in the number of individuals. By extending
the definition of (89) to include the line x = y by

c̃(x, y) =
{

c(x, y) x 	= y

δ(x − y)p(x) x = y
, (92)

the variance in the number of individuals in �1 is given by

V (�1) =
∫
�1

∫
�1

c̃(x, y) dx dy. (93)

An intuitive reason can be given for the appearance of the delta function in the
extended definition of the spatial covariance density function (92): if the disks �ε

x

and �ε
y overlap as ε → 0 then P ε

xy = P ε
x and p(2)(x, y) → p(x)/ε in (88).

B. Stochastic integro-difference model

B.1. Deterministic demography

We start by assuming that each individual has precisely R (positive integer) off-
spring per unit time. We denote birth of an individual in � and dispersal to �ε

x in
time step t as bt (� → �ε

x). Thus

Pr{nt+1(�
ε
x) = 1} = Pr{bt (� → �ε

x) = 1} (94)
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is rewritten as ∫
�ε
x

pt+1(ξ) dξ =
∫
�ε
x

∫
�

R κ(z, ξ) pt (z) dz dξ (95)

As ε → 0,

pt+1(x) =
∫
�

R κ(z, x) pt (z) dz (96)

The joint probability function is governed by

Pr{nt+1(�
ε
x) = 1 ∩ nt+1(�

ε
y) = 1} =

Pr{bt (� → �ε
x) = 1 ∩ bt (� → �ε

y) = 1} (97)

An individual at point z which produces R ≥ 0 indistinguishable offspring has
R(R − 1) ways to distribute exactly one offspring to each of �ε

x and �ε
y , whereas

two individuals, one at point z1 and one at point z2 each of which produces R

offspring have R2 ways to distribute exactly one offspring from z1 to �ε
x and one

offspring from z2 to �ε
y . Thus

∫
�ε
x

∫
�ε
y

p
(2)
t+1(ξ, η) dη dξ

=
∫
�ε
x

∫
�ε
y

∫
�

R(R − 1) κ(z, ξ) κ(z, η) pt (z) dz dη dξ

+
∫
�ε
x

∫
�ε
y

∫
�

z2 	=z1

∫
�

R2 κ(z1, ξ) κ(z2, η) p
(2)
t (z1, z2) dz1 dz2 dη dξ (98)

So as ε → 0,

p
(2)
t+1(x, y) =

∫
�

R(R − 1) κ(z, x) κ(z, y) pt (z) dz

+
∫

�
z2 	=z1

∫
�

R2 κ(z1, x) κ(z2, y) p
(2)
t (z1, z2) dz1 dz2 (99)

Note that

pt+1(x)pt+1(y) =
∫
�

∫
�

R2 κ(z1, x) κ(z2, y) pt (z1) pt (z2) dz1 dz2 (100)

Using the definition of spatial covariance (89) we observe that

ct+1(x, y) =
∫
�

R(R − 1) κ(z, x) κ(z, y) pt (z) dz

+
∫

�
z2 	=z1

∫
�

R2 κ(z1, x) κ(z2, y) ct (z1, z2) dz1 dz2 (101)
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B.2. Stochastic demography

Now we assume that R is a random variable representing each individual’s repro-
ductive output. We assume that R has a given probability density function ζ , which
does not depend upon spatial location, such that

Pr{R = r} = ζ(r). (102)

Application of the equation describing the probability of having an individual in a
disk of radius ε (94) yields

∫
�ε
x

pt+1(ξ) dξ =
∫
�ε
x

∫
�

∞∑
r=0

rζ(r) κ(z, ξ) pt (z) dz dξ. (103)

Denoting the expected value of R as

E [R] = R ≥ 0, (104)

we again obtain equation (5) for the expected density of individuals. The joint
probability function, governed by (97) satisfies

∫
�ε
x

∫
�ε
y

p
(2)
t+1(ξ, η) dη dξ

=
∫
�ε
x

∫
�ε
y

∫
�

∞∑
r=0

r(r − 1) ζ(r)p(z)(t) κ(z, ξ) κ(z, η) dz dη dξ

+
∫
�ε
x

∫
�ε
y

∫
�

z2 	=z1

∫
�

[ ∞∑
r=0

rζ(r)

]2

pt (z1, z2)κ(z1, ξ) κ(z2, η) dz1 dz2 dη dξ

(105)

Rewriting the sums in (105) in terms of the mean and variance forR and employing
(100) shows stochastic demography modifies the covariance density equation (101)
by adding a variance term which simply increases the contribution that expected
density makes to the spatial covariance:

ct+1(x, y) =
∫
�

{R(R − 1) + Var [R]} pt (z) κ(z, x) κ(z, y) dz

+
∫

�
z2 	=z1

∫
�

R2 ct (z1, z2) κ(z1, x) κ(z2, y) dz1 dz2. (106)
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C. Invasion speed for exponentially bounded kernels

For an exponentially bounded dispersal kernel k(x), and compact initial data, the
invasion speed c at which xt moves is determined by the double root with respect
to s to

exp(sc) = R

∫ ∞

−∞
k(u) exp(su) du = RMk(s), (107)

where Mk(s) is the moment generating function for k. Weinberger [37,38], proved
that c is, in fact, the minimum traveling wave speed for versions of (5) with nonlin-
ear dynamics. A heuristic approach to understanding (107) comes from assuming
that the solution for the leading edge of the linear system (5) decays exponentially
in space [18,22],

pt (x) = A exp(−sx) (108)

and moves to the right with velocity c > 0 so that pt+1(x) = pt (x − c). Substitu-
tion into (5) yields a dispersion relation between the value of the speed c and the
steepness of the wave s (107). The minimum value of c yielding a non-negative
solution (108) is found when the value of s in (107) switches from complex to real
and thus (107) has a double root with respect to s.

D. Calculation of φ for certain kernels

In general |φ| may vary above and below 1, depending upon the relative contribu-
tions of higher wave numbers ω1 + ω2 and lower wave numbers ω1 and ω2 in the
kernel.

Cases where φ is independent of wave number are found when the kernel is a
Cauchy distribution (27) which has Fourier Transform

k̂(ω) = exp(−β|ω|)
2π

(109)

or a delta distribution, which has Fourier Transform k̂(ω) = 1/2π . For each of
these (41) yields φ = 1/R.

Equations (29) and (41) yield φ(0, ω2) = φ(ω1, 0) = 1/R and thus a growth
rate exceeding unity implies that |φ| < 1 for small wave numbers.

When the growth rate R exceeds unity, the Normal kernel (11) with transform

k̂(ω) = exp(−Dω2)

2π
(110)

yields |φ| < 1 for all ω1 and ω2 (Figure 9a), whereas a linear composition of
Normal kernels

k(x) = p√
4D1π

exp

(
− x2

4D1

)
+ 1 − p√

4D2π
exp

(
− x2

4D2

)
, D1,D2 > 0, 0 ≤ p ≤ 1

(111)
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Fig. 9a. Plots of φ(ω1, ω2) for (a) Normal kernel (11) with D = 0.01 and R = 1.2 (b)
composite Normal kernel (111) with D1 = 0.01, D2 = 0.002 and p = 0.99 and R = 1.2 (c)
composite Laplace kernel (113) with α1 = 10, α2 = 1 and p = 0.99 and R = 1.2. Shading
shows regions in wave number space where φ > 1.

can lead to |φ| > 1 for a bounded region in ω1 − ω2 space (Figure 9b). By way of
contrast, the Laplace kernel (24) with transform

k̂(ω) = α2

2π(α2 + ω2)
(112)

has largestφ for the highest wave numbers. A linear combination of Laplace kernels
leads to

k(x) = p
α1

2
exp(−α1|x|) + (1 − p)

α2

2
exp(−α2|x|), α1, α2 > 0, 0 ≤ p ≤ 1,

(113)
which lead |φ| > 1 for sufficiently large ω1 and ω2 (Figure 9c).

However, given a small enough R < 1 a kernel such as (113) will yield |φ| > 1
for all wave numbers (Figure 6).

E. Relating φ to kernel kurtosis

In this appendix we analyse the asymptotic relationship betweenφ (41) and kurtosis
(3) for a symmetric kernel. To simplify matters we consider φ(ω1, ω2) for R = 1
and ω1 = ω1 = ω. These simplifications imply that, on average, individuals sim-
ply replace themselves through reproduction and we restrict ourselves to studying
correlations with identical frequency components at different locations.
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Fig. 9b.

Fig. 9c.
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Under the assumption R = 1, the constraint φ(ω, ω) > 1 can be rewritten as

k̂(2ω)

2π
− k̂2(ω) > 0. (114)

We normalize the wavenumber ω by the standard deviation of the kernel, k(2) (2)
to give ω̃ = ω

√
k(2). Using a series expansion for the exponential in the Fourier

transform (29) equation (114) is rewritten as a polynomial inequality(
1

2π

)(
−ω̃2 + 1

4

(
7

12
B2 − 1

)
ω̃4 + 1

24

(
B2 − 31

15
B3

)
ω̃6

+ 1

720

(
254

56
B4 − B3 − 15

12
B2

2

)
ω̃8 + h.o.t.

)
> 0, (115)

where

Bn = k(2n)

k(2)
n . (116)

Coefficients of the higher order terms are polynomials in the Bns. When ω̃ is small
(i.e., when wavelengths are long relative to the standard deviation of the kernel
k(x)), the earlier terms in the polynomial dominate, provided the Bns are finite.
In particular, note that a kurtosis B2 > 12/7 will ensure that the second term in
the expansion is positive and a sufficiently large kurtosis and sufficiently small
wavenumber ω̃ will ensure that the inequality (115) is satisfied.

F. Calculation of patchiness as determined by kernel kurtosis

Defining ξ = (x + y)/
√

2 as the coordinate describing mean location and η =
(x−y)/

√
2 as the coordinate describing spatial lag between locations, we use (37)

and (72) to calculate the normalized kurtosis of the two-dimensional redistribution
kernel pt−s(x)pt−s(y) in the η-direction as

p
(0)
t−s

2 ∫∞
−∞

∫∞
−∞

(
x−y√

2

)4
pt−s(x)pt−s(y) dx dy(∫∞

−∞
∫∞
−∞

(
x−y√

2

)2
pt−s(x)pt−s(y) dx dy

)2
= 3+ 1

2(t − s)
(B2 − 3) . (117)

The inequality

(∫ ∞

−∞
a(z)b(z) dz

)2

≤
∫ ∞

−∞
a(z)b2(z) dz, (118)

where ∫ ∞

−∞
a(z) dz = 1, a(z) ≥ 0,

and a(z) and b(z) are square integrable can be derived directly from Schwartz’s
inequality for infinite integrals [36]. Using an inequality of this form with a(z) =
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ps(z)/p
(0)
s and integrating leads to a lower bound for the normalized kurtosis of

each term in (37)

p
(0)
t−s

2
p
(0)
s

∫∞
−∞

∫∞
−∞

(
x−y√

2

)4 ∫∞
−∞ ps(z)pt−s(x − z)pt−s(y − z) dz dx dy(∫∞

−∞
∫∞
−∞

(
x−y√

2

)2 ∫∞
−∞ ps(z)pt−s(x − z)pt−s(y − z) dz dx dy

)2

≥
p
(0)
t−s

2
p
(0)
s

∫∞
−∞ ps(z)

(∫∞
−∞

∫∞
−∞

(
x−y√

2

)4
pt−s(x − z)pt−s(y − z) dx dy

)
dz

∫∞
−∞ ps(z)

(∫∞
−∞

∫∞
−∞

(
x−y√

2

)2
pt−s(x − z)pt−s(y − z) dx dy

)2

dz

= 3 + 1

2(t − s)
(B2 − 3) . (119)

Finally, application of the discrete form of (118),(∑
i

aibi

)2

≤
∑
i

aib
2
i , (120)

where ∑
i

ai = 1, ai ≥ 0,

permits us to conclude that a convex combination of leptokurtic kernels gives a
leptokurtic sum and thus the kurtosis of the normalized sum of terms in (65), with
ct (x, y) given by (37) exceeds 3, and the overall spread is patchy.
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