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Biological invasions are increasingly frequent and have dramatic ecological and economic consequences.
A key to coping with invasive species is our ability to predict their rates of spread. Traditional models of
biological invasions assume that the environment is temporally constant. We examine the consequences
for invasion speed of periodic and stochastic £uctuations in population growth rates and in dispersal
distributions.
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1. INTRODUCTION

Forty-two years ago, Charles Elton (1958) warned of the
accelerating rate of introduction of foreign species and of
the biological dislocations that follow. A recent spate of
volumes on biological invasions suggests that Elton’s dire
predictions are coming to pass and that ecologists are
having to spend more and more of their time dealing
with invasions. The problem is monumental. In one
recent year, 456 million exotic plants were imported into
the United States (Center et al. 1995). These plants
represent a huge pool of potential invaders, directly,
through their own escape and naturalization, and indir-
ectly, through the insects and other pathogens that they
harbour. Comparable examples involving other taxa
abound.

A key to coping with invasive species is the ability to
predict their rates of spread (Sharov & Liebhold 1998).
Improving our ability to do so, in the face of environ-
mental £uctuations, is the goal of this article.

We model invasions with discrete-time, continuous-
space, integrodi¡erence equation (IDE) models. These
models have a surprisingly long history, ¢nding applica-
tion in physics (Marko¡ 1912; Chandrasekhar 1943),
population genetics (Slatkin 1973; Weinberger 1978),
ecology (Skellam 1951; Kot & Scha¡er 1986) and, as
continuous-time models, in epidemiology (Mollison 1977).
IDE models have become more popular recently, in part
because they can incorporate a range of dispersal
mechanisms (Neubert et al. 1995), including those that
lead to the leptokurtic distributions of propagules that are
common in empirical data (Okubo 1980; Kot et al. 1996).
This is the principal advantage of IDEs over reaction^
di¡usion equations, which implicitly assume normal
distributions.

In ½ 2 we brie£y review the simplest IDE model for
invasions in a constant environment (Kot et al. 1996).
This model has solutions called travelling wavesösolutions
with constant shape that move with a constant speed
(¢gure 1). The speed depends on the shape of the dispersal
kernel (the component of the model that describes the
movement of propagules) and on the population’s growth
rate.

These results assume that the environment is
temporally and spatially homogeneous. In fact, invading
organisms regularly encounter £uctuations in environ-
mental conditions and these translate into variation in the
vital rates and/or dispersal rates (Shigesada & Kawasaki
1997). We describe the e¡ect of temporal £uctuations in
both the population growth rate and the dispersal kernel
on the speed of invasion in single-species IDE models. We
consider two kinds of variability: periodic (representing,
for example, seasonality) and stochastic.

2. CONSTANT ENVIRONMENTS

The simplest nonlinear IDE model prescribes the
population density nt‡ 1(x) in the (t ‡ 1)st generation
given the density in the previous generation. It takes the
form

nt‡ 1(x) ˆ
Z ‡1

¡1
k(x ¡ y) f ‰nt( y)Š dy, (1)

and can be understood as the composition of two tempo-
rally distinct processes: growth and dispersal.

Growth occurs during a sedentary stage, modelled
using a nonlinear map such as the compensatory model

f ‰nt(x)Š ˆ
lnt(x)

1 ‡ lnt(x)
, l4 0: (2)

In the second stage, progeny disperse. The dispersal
kernel k(x) is the probability density function for the
distance that propagules move. The convolution operator
in equation (1) tallies the movement of progeny from all y
to x. We will focus our attention on thin-tailed dispersal
kernels (i.e. kernels with exponentially bounded tails)
such as the Gaussian, or the leptokurtic Laplace prob-
ability density function

k(x) ˆ
¬

2
e¡¬jxj. (3)

We touch on the e¡ects of fat-tailed kernels (Kot et al.
1996) in the discussion. Neubert et al. (1995) describe how
dispersal kernels can be derived from mechanistic models
of the dispersal process.

A typical solution of the IDE (1), with an initial condi-
tion that is restricted to a ¢nite portion of space, grows
and spreads, eventually converging to a travelling wave
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with constant speed c (¢gure 1). Weinberger (1978, 1982;
also see Kot et al. 1996; Kot 1992; Neubert & Caswell
2000) showed that for such initial conditions the eventual
invasion speed is

c ˆ min
s2S

1
s

ln l m(s) , (4)

where l ² f 0(0) is the population growth rate at low
population density, m(s)²

R ‡ 1
¡1 k(x)esx dx is the moment

generating function of the kernel, and S is the set of all
s4 0 for which this integral converges (typically ‰0, smax)).

Formula (4) is correct as long as l4 1 and the function
f does not exhibit any Allee e¡ect, i.e. as long as

04 f (n)4ln, (5)

for n50. We will assume that inequalities (5) hold for all
environmental conditions. Courchamp et al. (1999) and
Stephens & Sutherland (1999) review the ecological
causes and consequences of Allee e¡ects.

Formula (4) also gives the speed of the slowest non-
negative travelling wave solution, nt(x) / exp‰¡s(x ¡ ct)Š,
to the linearization of equation (1) around n ˆ 0:

nt‡ 1(x) ˆ l

Z 1

¡1
k(x ¡ y) nt( y) dy. (6)

There is compelling evidence that the asymptotic speed of
invasion of a nonlinear model is always the same as that
of its linearization as long as there are no Allee e¡ects,
and as long as an individual only a¡ects its environment
locally (i.e. there is no long-distance density dependence).
This principle has come to be known as the linear
conjecture (Van den Bosch et al. 1990; Mollison 1991).
(Although Allee e¡ects are easy to detect in single-species
models, see Hosono (1995) for their insidious appearance
in a competition model.)

Because the linear equation (6) is easier to analyse
than its nonlinear progenitor (1), we use the linear
conjecture to derive speeds of invasion in £uctuating
environments. Numerical simulations suggest that this at
least provides a good approximation to the actual
asymptotic speed. In any case, inequality (5) guarantees

us that the speeds we derive will be upper bounds on the
actual asymptotic speed.

In simulations, we measure the speed of invasion by
¢nding the location farthest from the origin with a popu-
lation density larger than a critical density (ncr) and
determining how this location (xt) changes with time. In
a constant environment the shape of the invasion wave
does not change, so this operational de¢nition works as
long as ncr is less than the carrying capacity. In the
£uctuating environments we consider next, the shape of
the wave at high population densities changes between
generations. We therefore require that ncr55 1.

3. FLUCTUATING ENVIRONMENTS

Environmental £uctuations can be incorporated into
model (1) by making the population growth rate l and
the dispersal kernel k(x) functions of time (Hardin et al.
1988):

nt‡ 1(x) ˆ
Z ‡ 1

¡1
kt(x ¡ y) f ‰nt( y); ltŠ dy: (7)

Using the linear conjecture, we will assume that the velo-
city of an invasion described by (7) is governed by its line-
arization around n ˆ 0:

nt‡ 1(x) ˆ l t

Z ‡1

¡1
kt(x ¡ y) nt( y) dy: (8)

(a) Periodic environments
To mimic the e¡ect of a seasonal environment, we

assume a periodic variation in the population growth rate
(l t), or in the parameters of the dispersal kernel, or in
both. In ¢gure 2, we show a typical solution to model (7)
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Figure 1. Travelling wave of invasion. Iterations 1^10 of the
IDE model de¢ned by equations (1)^(3). l ˆ 10, ¬ ˆ 4.
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Figure 2. (a) Simulated iterations 140^150 of the periodically
forced IDE de¢ned by equations (7), (2) and (3). l t alternated
between 6 and 0.25; ¬t alternated between 4 and 6. The
shape of the front in each generation (b, solid lines) and the
population’s spatial extent (c, solid lines) match with
predictions based on equations (9) and (10) (dashed lines).



in an environment of period two. A population initially
concentrated at the origin evolves into a spreading wave
which alternately advances and retreats a ¢xed distance
each generation. Every other generation, the solution
looks like a travelling wave in a constant environment,
having constant shape and moving with constant speed.
We call such a solution a travelling two-cycle. We have found
travelling p-cycles in this model whenever the environ-
ment £uctuates with period p.

To predict the speed of these travelling p-cycles, we
have adapted a standard method for ¢nding invasion
speeds in constant environments (see Appendix A). The
results are formulae for the average speed, cp :

cp ˆ min
s2S

1
s

ln
Yp¡1

iˆ0

l i mi(s)
1=p

, (9)

and for the instantaneous speed between generations ci :

ci ˆ
1

smin
ln l i mi(smin) , (10)

(¢gure 2). Here mi(s) is the moment generating function
for ki(x), S ˆ

T p¡1
iˆ0 S i, and S i is the set of all s4 0 for

which mi(s) exists. smin, the value of s that produces the
minimum in equation (9), predicts the shape of the wave;
for large values of x and t, where the population density is
low, nt(x) is proportional to e¡sminx (¢gure 2).

Comparing formula (9) with its constant environment
analogue (4), we see that the average speed is obtained
by replacing lm(s) in equation (4) with the geometric
mean

Qp¡1
iˆ0 l imi(s)

1=p
. Geometric means will appear

again when we discuss stochastic £uctuations and have
important implications for predicting invasion success. In
particular, if the geometric mean of the growth rates—Qp¡1

iˆ0 l i
1=p

is less than unity, then nt ! 0 as t ! 1, the
invasion fails, and formula (9) no longer applies.

Imagine environmental conditions alternating between
two states as in ¢gure 2: a good state with growth rate l0

and a bad state with growth rate l15l0. Using equation
(10) we can calculate the instantaneous invasion speed
just after a good state (c0) and just after a bad state (c1).
Using equation (4) we can also calculate the invasion
speed if the environment were always good (ĉ0) or always
bad (ĉ1). Because

ci ˆ
1

smin
ln‰li mi(smin)Š4 min

s2Si

1
s

ln‰l i mi(s)Š ˆ ĉi, (11)

the invasion is faster after a bad state in the £uctuating
environment than it would have been if conditions were
always bad. It is even possible for the wave to advance
after a very bad year when l151 (¢gure 3). Surprisingly,
the invasion is also faster after a good state in the £uctu-
ating environment than it would have been if conditions
were always good.

Inequality (11) holds whatever the periodicity of the
£uctuations; instantaneous speeds in £uctuating environ-
ments are always greater than the comparable speeds in
the component constant environments.

(b) Stochastic environments
Real environmental £uctuations include both stochastic

and periodic components. Environmental stochasticity
can be incorporated by choosing the growth rates and
dispersal kernels at random from a set of choices. Model
(7) then becomes

Nt‡ 1(x) ˆ
Z ‡1

¡1
Kt(x ¡ y) f ‰Nt( y); ¤tŠ dy, (12)

where Kt(x) are independent and identically distributed
(iid) random dispersal kernels, and the growth rates ¤t

are iid random variables independent of the kernels.
(More generally, we conjecture that the results of this
section will also hold if Kt(x) and ¤t are governed by
stationary ergodic stochastic processes.) The linearization
of equation (12) is

Nt‡ 1(x) ˆ ¤t

Z ‡ 1

¡1
Kt(x ¡ y) Nt( y) dy. (13)

We again assume that the linearization governs the speed
of the nonlinear model.
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The population densities Nt(x) are now random vari-
ables. Taking expectations in equation (13) we have

E ‰Nt‡ 1(x)Š ˆ E ‰¤tŠ
Z ‡1

¡1
E‰Kt(x ¡ y) Š E‰Nt( y)Š dy, (14)

a deterministic IDE for the expected population density.
Formula (4) applies and the velocity (~c) with which the
expected value of Nt(x) expands is

~c ˆ min
s2S

1
s

ln (E ‰¤0Š E‰M0(s)Š ) . (15)

Thus the average population asymptotically spreads at a
rate determined by the average environmental conditions,
i.e. the average growth rate and the average kernel. If
dispersal and growth are correlated, equation (15) becomes

~c ˆ min
s2S

1
s

ln (E ‰¤0M0(s)Š ) .

Positive correlations will increase ~c.
Consider, however, that at any time t the population

has a random extent Xt, de¢ned to be the location
farthest from the invasion’s origin with Nt(x)5ncr. The
average speed since the invasion began is therefore also a
random variable, given by Ct ² (Xt ¡ x0)=t. As we show
in Appendix A, C t is asymptotically normally distributed
with mean (·) and variance (¼2) given by

· ˆ min
s2S

E
ln (¤0M0(s))

s
, (16a)

¼2 ˆ
1
t

Var
ln (¤0M0(s¤))

s¤ , (16b)

where s¤ is the value of s that gives the minimum for ·.
As t ! 1, the variance decays to zero and C t ! c in
probability where

c ˆ min
s2S

1
s

E‰ln (¤0M0(s))Š . (17)

Since the expectation of the logarithm of a random
variable is equal to the logarithm of its geometric mean,
we have, as in the periodic case, replaced the product
lm(s) in formula (4) with the geometric mean of this
quantity. Note that cp ! c as the environmental period-
icity p ! 1, and that the formula for c reduces to the
formula for cp when the environment is periodic.

By equations (16), the probability of observing an
average speed other than c is asymptotically zero. Since
E ‰ln (l0M0(s))Š5 lnfE‰l0Š E‰M0(s)Šg, c5 ~c; as t ! 1, the
average population spreads faster than almost every
realization of the process. In particular, it is possible for ~c
to be positive and c to be negative, in which case the
invasion certainly fails, even though it would succeed in a
constant àverage’environment.

Figure 4 shows C t versus t for twenty realizations of
model (12). While each realization converges to the
predicted average asymptotic speed c, it should be noted
that the spatial extent of a realized invasion does not
converge to ct (¢gure 4). Assume, without loss of
generality, that x0 ˆ 0. Then, since Xt ˆ t C t, Var‰XtŠ
ˆ t2Var‰CtŠ ˆ t¼2 (cf. equations (16)). Thus the variance
in extent grows linearly with time (¢gure 4).
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4. DISCUSSION

(a) Predator invasions
One important source of environmental variablity is an

organism’s food supply. For example, consider a predator
(n) invading a population of its prey (v), which has been
established long enough to exhibit its asymptotic
dynamicsöa situation typical of biological invasions and
of many biological control scenarios. A simple IDE
model for this system is

vt‡ 1(x) ˆ
Z ‡ 1

¡1
h(x ¡ y) vt( y) expfr‰1¡ vt( y)¡ nt( y)Šgdy,

(18a)

nt‡ 1(x) ˆ
Z ‡ 1

¡1
k(x ¡ y) b vt( y) nt( y) dy, (18b)

(Neubert et al. 1995; Neubert & Kot 1992). We can use our
theory to predict the predator’s invasion speed.

We begin, in the absence of the predator, with the prey
uniformly distributed in space and either at equilibrium,

cycling periodically, or chaotic, depending on the value of
r (¢gure 5a). Call this solution vt(x) ˆ ¸t.

The predator is introduced at low density in a small
region of space. Its growth rate at time t is bvt(x);
£uctuations in prey population size translate into
£uctuations in the predator growth rate. Far in front
of the predator wave, predators have a negligible e¡ect
on the prey and vt(x) º ¸t. We therefore use formula (17)
for the predator’s invasion speed, using the moment
generating function of k(x) for M0(s) and replacing ¤0

with b¸t. Figure 5b shows the invasion speed based on
equation (17) for various values of the prey growth rate
r. Superimposed on the curve are the results of numer-
ical simulations.

Figure 5 shows that formula (17) is accurate not only
when environmental £uctuations are periodic or
stochastic, but also when they are chaotic. Small changes
in parameters can cause large changes in the geometric
mean growth rate, and hence in invasion speed. The
direction of such changes may not be obvious. In model
(18), as the growth rate of the prey is increased, the
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Figure 5. Predator invading a £uctuating prey population. (a) Asymptotic prey dynamics in the absence of the predator.
(b) Speeds of predator invasion based on simulations of model (18) with b ˆ 3:2 (dots) match the predictions based on
formula (17) (solid line). Prey do not disperse; predators have a Laplace dispersal kernel with ¬ ˆ 5:85. (c) Average predator
invasion speed as a function of r and b. A small predator invasion fails in the white region.



predator invasion tends to slow down, in some cases even
reversing direction.

In ¢gure 5c we extrapolate the predicted speed to other
values of b. For parameter values in the white region, a
locally stable, spatially homogeneous equilibrium with
positive predator and prey densities coexists with a
prey-only attractor (Neubert & Kot 1992). This e¡ectively
creates an Allee e¡ect, for the predator. In the white
region, a small predator inoculum will not invade the
prey, but a large enough inoculum will initiate an
invasion. Because of this Allee e¡ect the linear conjecture
no longer holds and formula (17) does not apply. The
invasion is no longer `pulled’ by the leading edge of the
wave, but is `pushed’ by individuals reproducing at high
densities and spilling outward (via dispersal) at densities
su¤cient to overcome the threshold for population
growth (Kot et al. 1996).

(b) Fat-tailed kernels
So far, we have discussed dispersal kernels with tails that

decay at least exponentially fast. Recently, interest has
developed in `fat-tailed kernels’, with tails that decay
slower than exponentially. These kernels capture the
prevalence of long-distance dispersal events and the
surprising rapidity of some invasions (Clark et al. 1998).
Minogue (1989), Shaw (1994) and Kot et al. (1996) discuss
the importance of long-distance dispersal to the popula-
tion dynamics of plant pathogens, and list many examples.

Fat-tailed kernels in constant environments are known
to convert constant speed travelling wave solutions into
accelerating waves (Kot et al. 1996). The same e¡ect occurs
in £uctuating environments. In ¢gure 6 we show the
extent of a typical solution to model (7) with a fat-tailed
kernel in an environment with period 2. The population
evolves into a spreading wave, but now the wave advances
(and retreats) a larger distance with each time-step.

Viewed every other generation, the solution looks like
the typical accelerating wave in a constant environment.
Building on this observation, we modi¢ed the method of
Kot et al. (1996) to predict the wave’s location (xtp) every
p-generations in p-periodic environments. Using the
notation ` ’̄ for the convolution operator and de¢ning

k( p)(x) ² k0(x) ¯ k1(x) ¯ : : : ¯ kp¡1(x), the result is given
(implicitly) by

ncr ˆ n0

Yp¡1

iˆ0

l i

t

k( p)(xtp): (19)

This result holds as long as k( p)(x) has moments of all
orders and tails that are su¤ciently £at (see Kot et al.
1996, equation (A.27)). The prediction based on equation
(19) agrees with numerical simulations (¢gure 6).

(c) Arithmetic versus geometric means
The formulae for invasion speeds in both periodic and

stochastic environments are similar to the constant envir-
onment formula: the product lm(s) in equation (4) is
replaced by its geometric mean. Because the geometric
mean is less than the arithmetic mean, with probability 1,
a realization of the stochastic invasion process (12)
eventually spreads more slowly than the expected popula-
tion. For the same reason, the speed of invasion in a
periodic environment is slower than if the invasion had
occurred in an average constant environment.

The importance of the distinction between geometric
and arithmetic means in population biology was ¢rst
pointed out by Lewontin & Cohen (1969). They showed
that in the non-spatial model, Nt‡ 1 ˆ ¤tNt, the expected
population grows faster (at the rate ln E‰¤0Š) than almost
every realization of the process (which grow at the rate
E‰ln ¤0Š). This di¡erence is to be expected in any multi-
plicative process such as population growth (Cohen 1979;
Tuljapurkar 1982). Lewontin & Cohen (1969) also showed
that the discrepancy between geometric and arithmetic
means disappears in continuous-time models. It is straight-
forward to show that, in contrast to IDEs, the speed of the
expectation is the same as the expectation of the speed in
single-species reaction^di¡usion models when the intrinsic
growth rate and the di¡usion coe¤cient are continuous
functions that vary randomly with time.

Supported by grants from the National Science Foundation
(DEB-9527400, DMS-9973212, DMS-9457816) and a Texaco
Research Award in Science, Technology, and Public Policy to
M.G.N. Discussions with H. Caswell, A. Solow, and P. van den
Driessche improved the manuscript.Woods Hole Oceanographic
Institution contribution no. 10227.

APPENDIX A

We begin by ¢nding the average speed of invasion
for model (7) for any deterministic sequence of growth
rates and dispersal kernels. Using the linear conjecture,
we look for exponential solutions to equation (8). Given
that

n0(x) ˆ a exp(¡sx), (A1)

the solution to equation (8) is

nt(x) ˆ a
Yt¡1

iˆ0

l i mi(s) exp(¡sx): (A2)

From equation (A1),

ncr ˆ a exp(¡sx0); (A3)
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and from equation (A2)

ncr ˆ a
Yt¡1

iˆ0

l i mi(s) exp(¡sxt): (A4)

Dividing equation (A4) by equation (A3), we can solve
for the average speed between the initial time and
time t:

ct(s) ² xt ¡ x0

t
ˆ

1
s

ln
Yt¡1

iˆ0

l i mi(s)
1=t

. (A5)

Condition (5) ensures that the linearization (8) gives
an upper bound on the invasion speed of (7). For initial
conditions with compact support we can assume that
n0(x)4 a exp(¡sx).

Then by equation (8),

n1(x)4 l0m0(s)a exp(¡sx) ˆ a expf¡s‰x ¡ c1(s)Šg. (A6)

Plugging (A6) into (8) gives

n2(x)4 l1m1(s)a expf¡s‰x ¡ c1(s)Š gˆ a expf¡s‰x¡ 2c2(s)Šg.
(A7)

Continuing in this fashion we ¢nd nt(x)
4 a expf¡s‰x ¡ t ct(s)Š g. Thus ct(s) is an upper bound on
the average rate of spread to time t. Because we are free
to adjust the constant a, we can use any s > 0 for which
all the mi(s) exist (i. e. s 2 S). Minimizing ct(s) with
respect to s gives

ct ˆ min
s2S

1
s

ln
Yt¡1

iˆ0

l imi(s)
1=t

.

"

(A8)

(a) Periodic £uctuations
In the case of periodic £uctuations the average speed,

as t ! 1, is found by replacing t in equation (A8) by the
period p. The result is equation (9).

(b) Stochastic £uctuations
Assume that each of the growth rates l t is a realization

of a random variable ¤t, and that the ¤t are independent
and identically distributed (iid). Similarly, assume that
the kt(x) are realizations of the iid random variables
Kt(x), and that Mt(s) and mt(s) are the moment gener-
ating functions of Kt(x) and kt(x) respectively.

The population density Nt(x) and the population
extent Xt are random variables. In this case

C t(s) ² Xt ¡ x0

t
, (A9a)

ˆ
1
s

ln
Yt¡1

iˆ0

¤iMi(s)
1=t

, (A9b)

ˆ
1
t

Xt¡1

iˆ0

1
s

ln‰¤i Mi(s)Š. (A9c)

For any s, equation (A9c) states that C t(s) is the
sample mean of fln‰¤iMi(s)Š g/s up to time t. If the
¤iMi(s) terms are iid with ¢nite expectation and
variance, then the fln‰¤iMi(s)Šg/s terms also have
¢nite expectation ·(s) ˆ Ef(ln‰¤0M0(s)Š)/sg and ¢nite

variance ¼2(s) ˆ Varf(ln‰¤0M0(s)Š)/sg. By the central
limit theorem, C t(s) is approximately normally distri-
buted with mean ·(s) and variance ‰¼2(s)Š/t.

Because our initial conditions have compact support,
we can use any s 2 S, including the value of s that
minimizes ·(s). Call this value s¤. Thus, C t ² C t(s¤), is
approximately normally distributed with mean and
variance given by equation (16).
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