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ABSTRACT. Population persistence in isolated habi-
tat fragments is investigated using integrodifference equa-
tions. The propensity of individual dispersers encountering
the boundary of the patch to emigrate is defined by edge per-
meability. A dispersal model incorporating movement, settle-
ment and edge permeability defines dispersal success as a func-
tion. of a disperser’s starting location. This dispersal model is
used to generate dispersal kernels for integrodifference equa-
tion models, analysis of which gives a condition for population
persistence in terms of edge permeability, patch size and aver-
age dispersal distance. An approximation reduces the spatial
problem to a simple nonspatial model that can be easily ana-

lyzed.
KEY WORDS. Permeability, integrodifference equations,
dispersal, perimeter-to-area ratio, habitat fragmentation.

1. Introduction. Habitat fragmentation affects populations in
three ways: 1) by reducing the amount of suitable habitat available,
2) by creating artificially heterogeneous environments and 3) by iso-
lating small populations in remnant habitat patches. Because natu-
ral resource managers often have little control over reduction in the
amount of suitable habitat available for a particular species, success-
ful management of populations inhabiting fragmented habitats requires
an understanding of the effects of heterogeneity and isolation on pop-
ulation persistence. The heterogeneity of a fragmented environment

_creates an artificial metapopulation situation for species that may not
have evolved dispersal strategies appropriate for persistence in such en-
vironments (Saunders et al. [1991], Lamberson et al. [1992]). Isolation
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subjects small populations to the risks of demographic and environmen-
tal stochasticity, genetic deterioration and catastrophic events (Shaf-
fer [1981], Simberloff [1986], Goodman [1987]). Populations in small
remnant habitat patches are also negatively impacted by edge effects,
which include both alteration of ecological processes within the remnant
patch (Lynch and Whigham [1984], Harris [1984], Wilcove (1985], Har-
ris (1988], Brothers and Spingorn [1992], Malcolm [1994]) and negative
impacts of interactions with humans at jurisdictional boundaries of des-
ignated reserves (Newmark [1985], Shonewald-Cox and Bayless [1986],
Wilcove and May [1986], Buechner [1987]). Habitat patch boundaries
can directly affect the movement and survival of individual dispersers
originating in the interior of the patch, particularly when the boundary
delineates changes in human activity or jurisdiction (Oxley et al. [1974],
Wegner and Merriam [1979], Lynch and Whigham [1984], Stamps et al.
[1987], Duelli et al. [1990], Mader et al. [1990], Reh and Seitz [1990],
Newmark [1991]). For example, in an extensive study of grizzly bears,
Ursus actos horribilus, inhabiting Yellowstone National Park, Craig-
head [1979] reported that nearly every radio-collared bear that left the
protective jurisdiction of the park was killed by humans within a very
short amount of time.

The propensity of individual dispersers to cross the boundary of an
isolated habitat patch and be removed from the population by hostile
conditions outside the patch has been defined as “edge permeability” by
Stamps et al. [1987], who utilized simulation modeling to investigate
the effects of edge permeability on emigration from isolated habitat
patches. The size of the habitat patch at which emigration loss is ex-
actly balanced by reproduction is termed the minimum domain size nec-
essary for population persistence. Minimum domain size problems have
often been formulated with reaction-diffusion equations, which assume
that reproduction and dispersal occur simultaneously and continuously
(Kierstad and Slobodkin [1953], Okubo [1980], Murray (1989], Cantrell
and Cosner [1994]). Recently, spatial problems in population ecology
and conservation biology have been addressed using integrodifference
equations which are discrete-time models capable of separating growth
and dispersal phases (Kot and Schaffer [1986], Hardin et al. (1988a),
Hardin et al. [1988b], Kot [1989], Hardin et al. [1990], Kot [1992], Neu-
bert et al. [1995], Kot et al. [1996], Veit and Lewis [1996], Van Kirk

~and Lewis [1997]). The general scalar integrodifference equation has
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the form
(1) Nﬁm0=LmeﬂM@%w@,

where N;(x) is the population density at a point x in the habitat patch
) at the end of the dispersal period in year j, k(x,y) is a nonnegative
density function governing the probability of successful dispersal from
a point y in € to the point x, f(N) = g(N)N is a nonnegative function,
and g(N) is the per capita growth rate. Kot and Schaffer [1986], Hardin
et al. [1990] and Van Kirk and Lewis [1997] utilized integrodifference
models to investigate population persistence in isolated habitat patches
and in heterogeneous environments. However, the models used in
these studies assumed passive dispersal, seeds blowing in the wind,
for example, and no interaction between individual dispersers and the
boundary of the domain.

In this paper we extend the edge permeability concept of Stamps
et al. [1987] to an analytical dispersal model that allows conditions
at the boundary of an isolated habitat patch to influence emigration
and survival of dispersers. We then incorporate this dispersal model
into integrodifference models of population growth and dispersal in
order to investigate relationships among edge permeability, domain size,
emigration loss and population persistence in isolated habitat patches.
Section 2 develops a model of active dispersal incorporating movement,
settlement and edge permeability and presents results pertaining to
edge permeability, patch dimension and emigration. In Section 3 we use
integrodifference models constructed around dispersal kernels derived
in Section 2 to illustrate how these factors, in turn, affect population
persistence.

2. Dispersal, edge permeability and emigration. In general,
the dispersal kernel k(x, y) of the integrodifference equation can be de-
rived from a model incorporating movement, mortality, settlement and
emigration of individuals during the dispersal period. The probability
that an individual starting dispersal at y survives the dispersal period
and settles somewhere in € is given by the dispersal success function

@) 4w=Lmem,
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which is always less than or equal to one. If s(y) is strictly less than
one, at least some individuals beginning dispersal at the point y either
die during the dispersal period or settle at a point outside the domain
§2. Since we are interested in the case where Q is an isolated fragment
of habitat, it is assumed that no individuals immigrate into Q from
outside but that dispersers may emigrate from . Average dispersal
success is defined by

1
3) = [n s(y) dy,

where Vg is the size of the patch Q and s(y) is the dispersal success
function defined by Equation (2). The average dispersal rate satisfies
the inequality 0 < § < 1. We assume throughout this paper that
dispersal mortality within 2 is zero so that the only loss of individuals
that occurs during the dispersal process is due to emigration from .
Under this assumption, emigration is given by 1 — S.

We now derive a dispersal model that translates assumptions about
the movement of individuals into a formulation for the dispersal kernel
k(x,y). These models are discussed in more detail in Neubert et
al. [1995] and Van Kirk [1995]. Here we focus on how interactions
between the disperser and the edge of the habitat patch determine the
shape of the kernel and the emigration rate. Let the dispersal period
begin at time ¢ = 0 and end at time ¢ = 7', and consider first a one-
dimensional habitat patch given by the interval [-L/2, £/2]. Suppose
that dispersers move according to a simple random walk and cease
movement to settle at a new location in the domain with rate a per time
unit. Then the probability density u(z,t) that an organism beginning
dispersal at a point y is still moving at time ¢ is governed by

(4) — =D— - au,

with initial condition u(z,0) = §(z — y).

Now suppose that during the random walk the organism takes steps
of length Az during each time interval of duration At and that the
organism reaches a point on the boundary of the one-dimensional
habitat patch at time ¢. If the random walk were not biased by the
boundary, during the subsequent time interval (¢, ¢+ At], the organism
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would step back into the interior of the patch with probability 1/2 and
would step outside of the patch with probability 1/2. Suppose now
that the probability of stepping back inside the interval is still 1/2 but
that with the remaining probability 1/2 the disperser either stays at
the boundary point or exits the domain, depending on conditions at
the boundary. Let the parameter 0 < ¢ < oo represent the rate, per
length unit, at which the disperser is enticed to leave the patch. Then
the probabilities of stepping back into the patch, remaining stationary
at the boundary, and stepping outside of the patch are given by 1 /2,
(1 — cAz)/2 and cAz/2, respectively. If it is assumed that conditions
outside the boundary are such that dispersers leaving the patch never
return, then at the right boundary point L/2, u(z,t) satisfies

5) u(l/2,t+At) = %u(ﬁﬂ — Az,t) + %(1 _ cAz)u(L/2,1).

Expanding each term in a Taylor series and taking the diffusion limit

; . Az?
6) axl,g?qo 20t b

yields the boundary condition
(7 cu(L/2,t) + uz(L/2,t) = 0.

A similar derivation at the left boundary yields the condition cu(—L/2,1)
—ug(—L/2,t) = 0. The general form of these conditions along the
smooth boundary 89 of a bounded region in R" is given by Robin’s
boundary condition

du

8 — =0
@) cut én
for all x € 89, where n is the unit outward normal vector to the
boundary. As ¢ — 0, dispersers tend to remain inside the patch, and
as ¢ — 00, they tend to leave.

The probability density that the organism is settled at a point z by
the end of the dispersal period at time T is given by fUT au(z,t)dt. If
the duration T of the dispersal period is much longer than the average
movement time 1/a, then to a close approximation, the dispersal period
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may be assumed to be infinite in duration, that is, T' — co. This reflects
the biological assumption that, for organisms that have evolved to
disperse during a specific season, the inherent movement and settlement
rates are such that most dispersers have either settled or emigrated by
the end of the dispersal period. Under this assumption, the probability
density that a disperser originating at y is settled at z at the end of
the dispersal period is given by

(9) k(z,y) = /om au(z, t) dt,

where the y dependence is conveyed through the initial condition
u(z,0) = é(z — y). :

We now define the dimensionless variables & = 2/, = at, ¢ = f/c,
@=Luand L = v/a/DL. Because the quantity /D/a is the average
distance traveled by dispersers before settling in the absence of any
boundary effects, the effective domain length L represents the size of
the domain relative to the organism’s inherent dispersal ability. We
also define the dimensionless quantity p = ¢/(1 + &), which is the edge
permeability of the patch (see Buechner [1987], Stamps et al. [1987]).
When p = 0, all dispersers that reach the boundary remain in the
domain, while at the other extreme, when p = 1, all individuals that
reach the boundary leave and are removed from the population. Upon
dropping the tilde notation on z, t and u for notational simplicity and
adopting the subscript notation for partial differentiation, the dispersal
process is governed by the dimensionless initial value problem

we(z, t) = z%un —u(z,t), ze€(-1/2,1/2),
u(z,0) =d(z—y), zel-1/2 1/2],

(10)

with boundary conditions

pu(=1/2,8) = (1 = plug(~1/2,¢) = 0
pu(1/2,t) + (1 - p)us(1/2,t) = 0. _

The dimensionless dispersal kernel is given by

(11)

(12) k(z,y) = /000 u(z, t) dt,
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FIGURE 1. Dispersal kernels for effective domain length L = 1, disperser
point of origin y = 0, and various values of the edge permeability p.

which can be derived by solving the initial-boundary value problem
directly and integrating. The solution method and resulting Fourier
series expressions for k(z,y) are given in Appendix A. Figures 1 and 2
show kernels for different values of p calculated with L = 1.

Because dispersers originating in thé center of the interval are equally
likely to encounter either boundary, all kernels are symmetric around
their point of origin when y = 0. However, Figure 2 shows that the
kernels are not necessarily symmetric around the point of origin when it
is moved away from the center of the domain. When edge permeability
is high, the kernel has less density on the side of y closest to the
- boundary. For low edge permeabilities, the boundary acts as a reflector,
and there is a correspondingly higher probability that individuals settle
between their point of origin and the nearest boundary. Figure 2 also

shows that, when p = 0.5, the kernel is symmetric around y, even when
"y is not in the center of the domain. Indeed, when p = L/(1+ L), in
this case p = 1/2 and L = 1, solution of (10) with boundary conditions
(11) yields the Laplace kernel

(13) k)= Sexp(-Lle—3l), 2y e [-1/21/2),

in which k(z,y) is a function of distance from the disperser’s point
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FIGURE 2. Dispersal kernels for effective domain length L = 1, disperser
point of origin y = 0.25, and various values of the edge permeability p.

of origin, regardless of how close to the boundary that point is. The
Laplace kernel can be derived from a dispersal process in which individ-
uals move randomly over the infinite real line and settle at a constant
rate, Neubert et al. [1995], Van Kirk [1995]. This implies that, when
p= L/(1+L), the kernel is identical to the one that would result if the
boundary were not there. In this situation, the active dispersal model
developed above is equivalent to the passive models considered in Van
Kirk and Lewis [1997).

The dispersal success function s(y) = s(y;p, L) = ffﬁz k(z,y) dy
gives the probability that a disperser originating at the point y in the
patch is successfully settled at a new location in the patch at the end
of the dispersal period. Figure 3 shows dispersal success functions for
L =5 and various values of edge permeability p. The probability that
a disperser does not emigrate from the interval is given by the average

dispersal success S = S(p, L) = ffﬁz s(y) dy/L, which is plotted as a
funetion of edge permeability in Figure 4. Not surprisingly, this figure
shows that edge permeability has a greater impact on dispersal success
in small domains than in large ones, where dispersal success remains

fairly high for all but the most permeable edges. Dispersal success is
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FIGURE 3. Dispersal success functions for effective domain length L = 5 and
various values of edge permeability p.

given as a function of effective domain length in Figure 5, which shows
that increase in dispersal success with domain length is quite abrupt for
small permeabilities but is relatively small for highly permeable edges.

- To investigate the effects of patch shape on emigration, it is necessary
to formulate the dispersal process in two spatial dimensions. Stamps
et al. [1987] studied these effects with a simulation model in which or-
ganisms moved randomly on a rectangular grid with a constant proba-
bility of settling at each step. Two-dimensional diffusive movement on
a rectangular domain with a constant settlement rate is the analytical
equivalent of their simulation model and the two-dimensional analog to
the model developed above. To formulate the two-dimensional model,
let (z1,22) be a point in a rectangular domain of dimension L; X Lo,
and suppose that Robin’s boundary conditions given by Equation (8)
apply along the boundary of the rectangle. The dimensionless variables
are defined by %, = z1/vI1La, &2 = z2/VL1Ls, t = at, ¢ = /L1 Lae,
@ = LiLou, L = \/L1/L and A = L1Ly(a/D). Edge permeability is
again defined as p = &/(1 + &). The effective area A is the patch area
divided by the square of the average dispersal distance. The perimeter-
to-area ratio for the rectangle [—(L/2), (L/2)] x [-(1/(2L)), (1/(2L))]
is given by R = 2(L + (1/L)). This nondimensionalization allows
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FIGURE 4. Average dispersal success versus edge permeability for various
effective domain lengths L.
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various values of the edge permeability p.
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FIGURE 6. Emigration from rectangular habitat patches as a function of -
edge permeability p and perimeter-to-area ratio R for three different values of
effective patch area A.

patch shape R to be varied independently of patch size A. Formu-
lation and solution of the initial-boundary value problem defining this
two-dimensional dispersal process is given in Appendix A. Plots of emi-
gration, 1-S(p, R, A), versus edge permeability, p, for different perime-
ter/area ratios, R, and effective areas, A, are shown in Figure 6.

For the smallest patches, the results shown in Figure 6 are nearly
identical to those of Stamps et al. [1987], who reported that emigration
is a strictly increasing, concave-down function of edge permeability,
with higher overall emigration rates when settlement probability is low,
perimeter-to-area ratio is high, and patch size is small. However, for
intermediate patch sizes, the relationship shown in Figure 6 is nearly
linear, and for the largest patches, the relationship is concave up. These
results were not reported by Stamps et al., apparently because their
simulations were performed only on very small grids. Dispersers in their
model moved exactly one grid space each time step, corresponding to
a diffusion coefficient D = 1. The smallest settlement probability they
reported was a = .05, which results in an average dispersal distance of
v/20. The largest grid they used had area 40, for an effective area of
40/20 = 2. Figure 6 suggests that the concave-up relationship between
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emigration and edge permeability is not realized until effective area
is near 10. Figure 6 also illustrates how the effect of patch shape on
emigration is dependent upon both patch size and edge permeability.
In very small patches, patch shape size exerts a small influence on
emigration rates unless edge permeability is very low. Conversely, in
very large patches, emigration is significantly affected by patch shape
only when edge permeability is high. In patches whose area is ten times
the square of the organism’s average dispersal distance, patch shape has
a significant influence on emigration rate for all edge permeabilities.
While it is intuitive to expect emigration rates to increase with an
increase in perimeter-to-area ratio, these results suggest that the rate
of this increase is determined to a considerable extent by both edge
permeability and patch size.

3. Emigration loss and population persistence. We now
utilize integrodifference equations to investigate the effects of edge
permeability and domain size on population persistence. Population
persistence in Equation (1) requires a balance between the intrinsic
growth rate of the population and loss of individuals due to dispersal
out of the habitat patch. When the characteristic dispersal distance of
the organism is large relative to the size of the isolated patch, dispersers
are more likely to settle outside the patch, allowing sink areas to exert
a larger negative impact on population persistence than they would
if organisms tended to disperse only short distances away from their
place of birth. Under the assumptions that (i) the habitat is finite,
(ii) during the dispersal period, it is possible for an individual to move
from any point in the interior of the habitat patch to any other point
in the patch as well as possibly to points outside of the habitat patch,
(iii) population growth is finite even at arbitrarily large population
densities, (vi) the per capita growth rate g(N) attains its maximum
at arbitrarily low densities and decreases with increasing population
density and (v) the maximum per capita growth rate is always strictly
positive, the persistence of a population modeled by Equation (1) is
determined by the magnitude of the largest solutlon, A1 > 0, of the
eigenvalue problem

(19 2= [ kx,) 5 0:3)6() dy

where ¢(y) is the eigenfunction corresponding to the eigenvalue \ (see
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Kot and Schaffer [1986], Hardin et al. [1990], Van Kirk and Lewis
[1997]). The parameter \; quantifies the balance between growth and
reproduction through the terms (8f/0N) and k(x, y), respectively. Us-
ing somewhat different approaches, Hardin et al. [1990] and Van Kirk
and Lewis [1997] have shown that when A; > 1, the population per-
sists, and Equation (1) has a positive equilibrium solution describing
the density of the population. Furthermore, this solution is unique and
globally stable if the growth function f(N;:) models simple, compen-
satory growth dynamics, i.e., f(IN;-) is nondecreasing. The expression
A1 = 1 thus implicitly defines the relationship between various biologi-
cal parameters at the bifurcation point. For one-dimensional domains,
solution of this equation in terms of the effective domain length param-
eter L defines the minimum domain size L,, necessary for persistence
of the population.

Consider a population modeled by Equation (1) on the one-dimensional
domain [—1/2,1/2], with dispersal process governed by the dimen-
sionless Equations (10)—(12). Suppose that the growth function f(N)
does not depend explicitly on y. For notational simplicity, let r =
(8f/8N)(0), see Equation (14), and let the assumptions (i)—(v) of Sec-
tion 2 hold. Then-A; is a solution to the eigenvalue problem

1/2
(15) M / z,9)ré(y) dy.

To find an explicit expression for Ay, it is useful to express Equation (15)
in an alternate form. Because the kernel is defined in terms of the
differential equation (10), it can be shown (see Van Kirk [1995]) that
Equation (15) is equivalent to the differential equation

(16) bex = =125 = 1)0(0)
with boundary conditions

(17) po(—1/2) — (1 - p)p=(~1/2) =0
| p6(1/2) + (1-p)$=(1/2) =
Solution of this equation yields the relationship

(18) poos(% %—1)—(1—p)L\/Fsin(% E-l)éo.
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FIGURE 7. Minimum domain size L, versus edge permeability for different
values of intrinsic growth rate r.

At the point where reproduction exactly balances emigration loss,
A =)\ =1 and Equation (18) can be rearranged to obtain

(19) (1 =p)LnVr—1=pcot Lm_r;l_

This relationship defines minimum domain size as a function of p and
r as shown in Figure 7. It is interesting to note that Equation (19) is
similar to expressions for minimum domain size that can be obtained
from reaction-diffusion equations describing continuous growth and
dispersal on finite domains with Robin’s boundary conditions (see
‘Okubo [1980], Murray [1989], Cantrell and Cosner [1994]).

Although an analogous two-dimensional model does not generally
yield a closed-form expression for minimum domain size, the two-
dimensional model of Section 3 on a square domain does allow a
convenient expression for the minimum domain size. Analysis similar
to that presented above yields a relationship identical to Equation (19)
with L replaced hy y/A/2, where A is the effective area defined m
Section 3.

Figure 7 shows how edge permeability has a large effect on mini-
mum domain size only for low intrinsic growth rates. While this model
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is somewhat idealized, these low intrinsic growth rates are typical of
those of large, long-lived organisms such as the grizzly bear (Knight and
Eberhard [1985]) and northern spotted owl, Striz occidentalis caurina
(Lamberson et al.[1992]), suggesting that these species are more sus-
ceptible to the effects of isolation than more fecund species. Because
domain length L has already been scaled relative to the organism’s
average dispersal distance, these results imply that large organisms re-
quire large habitat patches for persistence not only because they have
large characteristic dispersal distances but also because they have in-
herently low reproductive rates. More realistic models of reproduction
and dispersal in these types of organisms would incorporate age struc-
ture and account for the observation that not all individuals disperse
during every dispersal period.

We conclude with a more general result on the relationships among
dispersal success, intrinsic growth rate and population persistence in
isolated patches (see Van Kirk and Lewis [1997]). In applied manage-
ment situations, specific values for parameters such as edge permeabil-
ity and effective domain size are unlikely to be readily available. How-
ever, data collected from mark-recapture experiments and other census
activities may provide estimates of dispersal success and reproductive
rates. The following result provides a simplé method to evaluate per-
sistence of a population with knowledge of only these two parameters.

Let N,(x) denote the nonnegative equilibrium solution to Equa-
tion (1) in the case that f does not depend explicitly on y. Then

(20) Na(x) = [ﬂ k(% y) F(Na(y)) dy.
Now let
(21) N= VLQN,(x) dx

denote the spatial average of the equilibrium solution. The size of the
equilibrium population is thus given by VoN. If the derivative f'(N)
of the growth function is continuous, then, for each y € Q, f(N.(y))
has a Taylor expansion of the form

(22) FN.)) = FO) + F (R ))(Na(y) = )
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where N (y) lies between N and N,(y). Substituting this into Equa-
tion (20) yields

Nu(z) = £(W) / k(% y) dy
(23) i

+ [ k(x,y) f (N (y))(Na(y) - ) dy.
Q

Integrating Equation (20) with respect to x, dividing by Vi, using the
definition of V, and recalling that S = (1/Vq) [, [, k(x,y) dx dy yields

(24)  N=5iM)+ T}; fn s)f (N () (Na(y) - N) dy.

Thus a first-order approximation to N is the solution to the algebraic
equation

(25) NEPPT = Sf(NaDpr);

which defines an approximate relationship among dispersal success S,
population growth f(IN) and the size of the equilibrium population.
When dispersal success and fecundity are both sufficiently high that
the solution N,y exists and is positive, conditions necessary for per-
sistence are met. The quantity Vgﬁappr is an estimate of the equilib-
rium population size, which, in turn, determines the susceptibility of
the population to the effects of stochasticity and genetic deterioration.

To illustrate the utility of Equation (25), consider an integrodifference
equation utilizing the Beverton and Holt [1957] growth function

- rN
S TH - DN/E]’
which models compensatory growth. The parameter r is the per capita

intrinsic growth rate as defined above. After normalizing the carrying
capacity K to unity, Equation (25) for this problem becomes

(26) f(N)

— SrN
27 Noappr = PR,
(27) P14+ (r = 1)Noppr
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with solution

- Sr—1
(28) N appr = _'!'.‘_—T

In this case the population persists when S > 1/r, and equilibrium
population size increases linearly with dispersal success S at a rate
proportional to r/(r — 1). Figure 8 shows true and approximate equi-
librium population size as a function of dispersal success S and intrinsic
growth rate r. The true solution was calculated from the full integrodif-
ference model utilizing the Beverton-Holt growth function. The kernel
utilized in this example is one defined by Equations (10)—(12) with p
and L varied in such a way that dispersal success S changes, but the
relationship L = p/(1—p) holds throughout the range of parameter val-
ues. The approximate solution is given by Equation (28). The linear
relationship between population size and dispersal success predicted by
the approximation is immediately evident in the bifurcation diagram.
Discrepancy between the true and approximate solution at higher val-
ues of S may be due to numerical instability introduced by the large
effective domain size values L that must be used to obtain the higher
values of S. Because S = 1 is achieved in the true solution only as
L becomes infinitely large, the calculations were truncated at S = 0.9
(L = 10.0). Figure 8 also illustrates again the relatively high degree
of sensitivity of population persistence to changes in dispersal success
when the intrinsic population growth rate is low.

4. Discussion. Edge permeability provides a conceptual and
quantitative link between edge effects and dispersal success in isolated
habitat patches by allowing the movement behavior and survival of
dispersers originating inside an isolated habitat patch to be affected by
conditions at the boundary. The results of Section 3 show how loss of
dispersers due to emigration from the patch increases with increasing
edge permeability, decreasing patch size, and increasing perimeter-to-
edge ratio. The effects of edge permeability on emigration increase in
smaller patches and those with higher edge-to-area ratios, as predicted
by the model of Stamps et al. [1987]. However, our results emphasize
two additional observations. '

First, the influence of patch shape on emigration is affected by both
edge permeability and patch size. Figure 6 shows that emigration is
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mention grizzly dispersal at all, see Mattson and Reid [1991] for an
extensive bibliography, but Blanchard and Knight [1991] estimated an
average dispersal distance of 70 km. This results in an effective are of
A = 1.8 for the park. Figure 6 suggests that this effective area is rela-
tively small and falls within the parameter range for which emigration
rates are high for all but the most impermeable edges. These model
predictions are consistent with the observations of Craighead [1979)],
who reported that bears freely crossed park boundaries but were fre-
quently killed upon exiting the park, and of Mattson and Reid [1991],
who reported that 81 percent of all known Yellowstone grizzly mortali-
ties between 1975-1988 were caused by conflicts with humans, most of
these occurring outside of the park boundary.

Second, the impacts of patch size and edge permeability on popula-
tion persistence are proportionally greater to species with inherently
low fecundity. This result is particularly significant because large or-
ganisms such as grizzly bears, which generally have low fecundities, are
frequently the objects of natural resource management plans designed
to provide habitat patches large enough to maintain population viabil-
ity. Our results suggest that large organisms need large habitat patches
not only because they have large territory requirements and disperse
long distances, but perhaps just as importantly, because they have low
reproductive rates. On the time scale of the long life spans that typify
these large organisms, fecundity is not sufficient to outweigh the annual
loss of dispersers that occurs when populations are restricted to small,
isolated habitat fragments surrounded by inhospitable terrain.

Although edge permeability in our model is defined in terms of the
theoretical boundary condition parameter ¢, our dispersal model pro-
vides empirical researchers with a method for estimating edge perme-
ability and thus testing hypotheses about its effects on emigration from
isolated habitat patches. In one dimension, edge permeability can be
estimated from knowledge of effective domain length L and dispersal
success s(y) for disperser originated near the boundary of the domain.
Effective domain length is given by L = L /d d, where L is actual domain
length of the isolated habitat patch and d is the arithmetic mean of
dispersal distances in the absence of boundary effects (d = +/DJ/ain
the model derived in Section 3). Dispersal distance is the straight-line
distance between a disperser’s point of origin and its point of settlement
at the end of the dispersal period. This quantity can be measured by
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marking the location of individual dispersers at the beginning of the
dispersal period and recording their locations at the end of the disper-
sal period. These measurements should be made in a habitat patch
that is sufficiently large that observed dispersers do not encounter the
boundary of the patch. Once L is known, the Fourier series forms of
the dispersal kernel, Equation (35) (p = 0), Equation (36) (p = 1) and
Equation (38) (0 < p < 1), can be integrated with respect to z to obtain
expressions for the dispersal success function s(y) at various values of
edge permeability p. The integrals of Equations (35), (36) and (38) pre-
dict the probability of dispersal success as a function of disperser point
of origin and generate graphs such as those shown in Figure 3. Mea-
surement of dispersal success rates for dispersers originating at points
near the edge of the domain can then be used to estimate p from the
relationships described graphically in Figure 3. Once an estimate of pis
obtained, Equations (35), (36) and (38) can be integrated with respect
to both z and y to predict the spatially averaged dispersal success rate
S. Relationships among S, L and p are illustrated in Figures 4 and 5. If
the average dispersal success S can be readily measured, comparison of
the actual S with that predicted by the estimate of edge permeability
provide a test of the model’s applicability.

While this procedure provides a feasible method for estimating edge
permeability for small organisms where dispersal distances are small
and the fate of individual dispersers can be readily observed, empiri-
cists working with large organisms may not be able to observe disper-
sal distances and fates of individual dispersers. For example, Blan-
chard and Knight [1991] were able to quantify only two instances of
grizzly dispersal. Furthermore, Doak et al. [1992] reported that, even
among studies devoted specifically to dispersal in a variety of organ-
isms, very few reported the spatial scale of habitat patches relative to
characteristic dispersal distances. However, the approximation given
by Equation (25) provides a simple, algebraic method for quantifying
population persistence even when information on dispersal distance and
edge permeability is not available or easily obtained. The only spatial
information required by the approximation is average dispersal suc-
cess, S, which is much more easily measured using standard population
census procedures than dispersal distance, edge permeability, or other
dispersal-specific parameters. Conditions necessary for population per-
sistence are met when Equation (25) has a positive solution. Thus, the
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approximation provides a way to quantify the sensitivity of population
persistence to changes in dispersal success and intrinsic growth rates
regardless of the mechanisms by which edge permeability and patch
shape affect dispersal success.
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APPENDIX

A. To formulate the dispersal kernel defined by Equations (10)—(12),
we first note that the operator

1 8%

2 L=Dom

with boundary conditions (11) is a self-adjoint operator of Sturm-
Liouville type and has an orthogonal set of eigenfunctions {¢.(z)}5Z,
(Birkhoff and Rota [1978]), where

én(x) = Acos(bA,z) + Bsin(bA,z).

The solution u(z,t) to Equation (10) thus has the form

. 1
(30)_ u(z,t) = gun(t)mggb"(x},
where
1/2
(31) l#allz = ¢2(z) dz
-1/2
and
; 1/2
(32) L () = f_ i u(z, t)pn(z) dz.
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Applying the transform defined by Equation (32) and using the prop-
erties of ¢,(z), the solution is found to be

B ulmt) = Y o expl=(2 + Déa(=)a(o),
n=1 nii2

where the y dependence is derived from the initial condition u(z,0) =
d(z — y) of Equation (10). The kernel is given by [;*° u(z,t) dt, which
may be computed by integrating term-wise inside the summation, since
the series converges absolutely for 0 < t < o0o.

Application of the boundary conditions requires consideration of
three different cases according to the value of p.
Case 1. When p = 0, the boundary conditions reduce to
bn(£1/2) =0,
which yields the homogeneous system

ALz\nsin% + BLA,cos — =0

(34) L),

—ALM,, sin L;\" + BLA,, cos
Solution of this systein yields the kernel

oo ‘9 L2 ] 1
k(z,y) =1+ é m cos 2nwz cos 2nmy

35
(35) oL2

MECTES e e

2n — 1)wz sin(2n — 1)1ry

Case 2. When p = 1, the boundary conditions reduce to ¢n(£1/2) =
0, and computation similar to that of the first case yields

- 2L?
(36) k(z,y) = Z Gn 1T I cos(2n — 1)mrz cos(2n — 1)y
n=1

2L

+ m sin 2nmz sin 2ﬂ17y.
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Case 3. When 0 < p < 1, the boundary conditions give the system

L;ﬂ b (1 e p)AL’\n

pAcos% — pBsin.

xsm% - (1—p]BL/\,,cos£§3 =0,

(37) pAcos L;\" + pBsin /\—2“ - (1=p)AL),
X sin _L_;_,. + (1 — p)BLA, cos %

In this case the kernel is given by

o0
k(z,y) = Z [ 2LAn ] 2 ]:|_ 7 cos LAnz cos LAy

(38) e L, +.sin L\,
2LA,- ) .
[L’\n‘ s ] X1 sin LA,-z sin L/\n.y,
where A, is the positive solution to the equation
- _ P Ly _
(39) A"_(l—p)Lmt 5 n=12...

on the nth branch of the cotangent function and A,- is the positive
solution to the equation

P LAn-
A = — t ,
(40) =Pl an —
on the nth branch of the tangent function.

n=12,...

In two spatial dimensions, the nondimensionalized dispersai process
is given by

ut(z1,T9;t) = %Vgu(wl,xz;t] — u(z1, 225 1),

-L/2 <z, <L/2,-1/2L < z3 < 1/2L,
u(z1,22;0) = 8(x — y),
pu(—L/2,z3;t) — (1 — p)uz1(—L/2,z2;t) =0,
P’H(L/Z Ig;t} + (1 _p)uxl(L/Z m2;t) = 0;

pu(zy,—1/2L;t) — (1 = p)uga(z1,—1/2L;t) =0,

pu(z1,1/2L;t) + (1 = p)use(z1,1/2L;t) =0,

k(x,y) = fom u(x;t) dt,

(41)
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where x = (21, ;). Because the problem is formulated on a rectangular
domain with constant diffusion coefficient, the z; and =, variables may
be separated, and thus the two-dimensional eigenfunctions consist of
the product of the one-dimensional eigenfunctions that individually
satisfy the separated, one-dimensional subsystem in the z; and z,
directions. The kernel has the general form

o = B (X) P

n=1m=1
where

Pnm(x) = P1n(21)b2m(z2),
(43) Pin(21) = —Aa2 1 (z,),
Dom (T2) = — A2, $om(2),

$1n(21) satisfies the boundary conditions at z)=—L/2 and 2, = L/2
and ¢m(z3) satisfies the boundary conditions at z, = —1/2L and
z2 = 1/2L. Using the general form (42) and the specific results of the
one-dimensional analysis presented above, the kernel is found to have
the following forms:

p=0:

k(x,y)=L+1/L

= 4/AL

+
n=1,zm=1 4n?n2 + 4m2n2L2 + VAL

. (44) X cos(2nmz, /L) cos(2nmy, /L) cos(2mm Lza) cos(2mm Lys)

= 4/AL
+Z:‘4

n2x2 + dm2n2L2 + /AL sin[(2n - l)ﬂ'zlfL]

n,m=1

x sin[(2n — 1)my; /L] sin[(2m — 1)mLz] sin[(2m — 1)7 Lys).
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p= 1:
k(x,y)
3 i 4VAL
- ) 4n2n2? + d4m2n2L2 + VAL
(45) x cos|(2n — 1)mzy /L] cos[(2n — 1)7y; /L]
x cos[(2m — 1)mwLxz) cos[(2m — 1)m Lyo]
ol AL
+ 3 4A
4n2w2 4 4m2n2L2 + /AL

n,m=1

x sin(2n7z, /L) sin(2nmy, /L) sin(2mm L) sin(2mm Lyz).
O<p<1l:

k(x,y)

» f [ 2v/4ay, H ov/ALby, ]
e nm=1 Lv/Aa,, +sinvALa, | | V/Ab,, + Lsin VAb,/L

5 cos VAa,z cos \/Zanyl ¢08 v/ Aby, T3 c0s vV Abmyo
aZ+b2 +1

(46)

+ i [Lﬁcfﬁnc"\/m,,] [adm iﬁmﬁ%/ L]

n,m=

) sin VAc,z sin VAcnyi sin VAdmz2 sin VAdn,ye
_ ez +dZ +1 ’

where a,, is the positive solution to the equation

o p \/ZLG,;
(47) an = A= pVA cot —

on the nth branch of the cotangent function, by, is the positive solution
to the equation

VAby,

P
= t
(1-pvA " 2L

(48) bm
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on the mth branch of the cotangent function, ¢, is the positive solution
to the equation

4 tan \/ZLC“

(49) BT s v 2

on the nth branch of the tangent function, and d,, is the positive
solution to the equation

_ P VAd,
(50) dpm = AT

on the mth branch of the tangent function.
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