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Abstract. A mechanism for territorial pattern formation in wolves is analysed
using a spatially explicit mathematical model which incorporates wolf move-
ment and scent marking. Model results reflect field observations: buffer zones
where wolves are scarce arise between adjacent packs and near these buffer
zones there are increased levels of scent marking. It is shown how the precise
behavioral response of wolves to foreign scent-marks determines the qualita-
tive form of the spatial territories. Realistic territories in two spatial dimen-
sions require ‘switching’ of the movement and scent marking behavior in
response to foreign scent marks.

1 Introduction

Although territoriality has been the subject of numerous models, until recently
(Lewis and Murray 1993; White, Lewis, and Murray 1996) no mathematical
investigation has focused on group or pack territories and their dependence
on scent marking. We became intrigued by this issue after being made aware
of some striking spatial patterns evident in wolf territories (Mech 1973; Van
Ballenberghe, Erickson, and Byman 1975) and of how these provide a mecha-
nism for wolves and their prey to coexist in relatively close proximity (White,
Murray, and Lewis 1996). Our goal has thus been to develop a mechanistic,
spatially explicit model incorporating wolf movement, scent marking and wolf
interactions that produces the spatial patterns evident in a wolf ecosystem in
northeastern Minnesota.

In formulating the model we make no underlying assumptions about
the size and extent of the wolf territories themselves; we show that the
territorial patterns actually arise naturally as stable steady-state solutions
to the equations. These mathematically generated territorial patterns
share key features with field observations including buffer zones between



adjacent packs where wolves are scarce and increased levels of scent mark-
ing near territorial boundaries. A brief report of the model is given by
Lewis and Murray (1993) in a previous article. The current paper contains
an analysis of the model in detail and focuses on how behavioral responses
to foreign scent marks determines the qualitative form of resulting spatial
territories.

Models of animal territoriality have been used to determine the optimum
shape for territory (Barlow 1974; Covich 1976; Buckley and Buckley 1977), to
analyze the effect of resource allocation on group living (Macdonald 1983;
Carr and Macdonald 1986), to investigate the effect of a spatially distributed
predator upon a prey population (Taylor and Pekins 1991), and to evaluate
home range of animals in the absence of interspecific competition. The latter
typically employ a random walk with bias towards the ‘home base’ (Holgate
1971), previously visited areas (Siniff and Jessen 1969) or olfactory gradients
(Benhamou 1989). However, very few quantitative models have been derived
to explain the spatial dynamics of territories when competition for space is
a key factor (Shigesada, Kawasaki, and Teramoto 1979), and, as far as we are
aware, the model analysed here, and variations on it (Lewis and Murray 1993;
White, Lewis, and Murray 1996), comprise the only spatially explicit formula-
tion designed to show how pack territories form over time based on behav-
ioral interactions. By way of contrast, field studies of pack territoriality have
been extensive, and include observations of a variety of predatory mammals
such as wolves (Mech 1973; Van Ballenberghe, Erickson, and Byman 1975;
Fritts and Mech 1981), lions (Bertram 1978; Schaller 1972; Caraco and Wolf
1975; Rodman 1981), badgers (Kruuk 1989), hyenas (Mills 1990; Kruuk 1972),
African wild dogs (Frame, Malcolm, Frame, and Van Lawick 1979), and
canids (Moehlman 1983).

2 Biological background

Wide-ranging radio-marking studies of wolves (Canis lupus) in northeastern
Minnesota in the last 20 years have greatly facilitated the observation of wolf
territories. By following the movements of radio-marked individual members
from a pack, or cooperative extended family group, these studies have made it
possible to deduce distinct spatial patterns in wolf distribution. Wolves
typically remain within well-defined territories (Mech 1973; Van Ballen-
berghe, Erickson, and Byman 1975) that overlap only along their edges
(Fig. 1). These territories may effectively partition jurisdiction over spatially
distributed resources such as prey (Messier 1985).

The precise details of wolf behavior and ecology depend upon local
habitat conditions. Although we concentrate on northeastern Minnesota, the
key results should have applicability to other areas. The wolf activities which
we now briefly review occur over various time scales: yearly, seasonally and
daily. Thus a key element in modelling these wolf activities is the determina-
tion of an appropriate time scale.
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Fig. 1. Radiolocations and home range boundaries of 5 adult and yearling timber wolves
radiotracked via aircraft, 27 May—22 October 1971 in northeastern Minnesota. Redrawn
from Fig. 4 in Van Ballenberghe, Erickson, and Byman (1975) with permission from The
Wildlife Society (copyright holder)

Several important events mark each year. Wolves produce young in
the spring; pups arrive in April or May and activity centers around the
den until summer. The entire pack helps with feeding the pups (Mech
1970); adults make daily excursions and return with food. In late summer,
as the pups become stronger, the den may be abandoned in favor of
above-ground rendezvous sites. In the fall and winter, pups are able to move
and travel widely with the pack, rarely returning to the den or rendezvous
sites.

In northeastern Minnesota wolf packs basically remain in territories
ranging from 125 to 310 km2 (Peters and Mech 1975). Territorial boundaries
are usually avoided, primarily to limit confrontation with adjacent packs
(Mech 1977b). The resulting buffer zones or ‘no-mans-lands’ are about 2 km
wide and may comprise as much as 25—40% of the available area (Mech
1977b; Mech 1977a).

Based upon many years of field observations, Mech (1991) suggests that
wolf territories are formed and maintained by inter-pack aggression in con-
junction with two warning systems: scent marking and howling, and that the
result is a mosaic of territories covering the wolves’ range. While howling may
provide temporary information on a pack’s location, elaborate spatial pat-
terns of scent marks serve to advertise precise information about territorial
claims. It is these scent marks that we now consider.
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As with other carnivores, the primary sensory modality for wolves
is olfaction (or scent) (Macdonald 1985). As wolves travel, they typically
leave olfactory signs. Marks include (1) raised-leg urination (RLU), (2) squat
urination, (3) defecation, and (4) scratching. Behavioral studies indicate
that it is the RLU which plays the most important role in leaving informa-
tion for subsequent canine travellers (Peters and Mech 1975; Merti-
Millhollen, Goodman, and Klinghammer 1986). Thus, although wolves
typically use a spectrum of olfactory stimuli for territory maintenance,
we concentrate here upon the RLU as the dominant one. The informa-
tion available for subsequent travellers includes the identity of the pack
from which the RLU originated, the approximate time since the RLU
was made and the reproductive status of the pack (Rothman and Mech
1979). Out of a typical pack of 5—15 wolves (Mech 1970), only a few ma-
ture dominant members leave RLUs (Peters and Mech 1975). However,
these wolves leave RLUs quite regularly upon trails and a travelling wolf
may expect to encounter one RLU every two to three minutes (Peters
and Mech 1975). Observations indicate some aversion to the scent from
RLUs made by neighboring packs (Peters and Mech 1975). Marking
frequency approximately doubles near territorial borders, giving rise to
‘bowl-shaped’ distributions of RLUs across territories, with the raised edges of
the olfactory bowl located at the territorial boundaries (Peters and Mech
1975).

Wolves are capable of moving over 50 km in a 24-hour period (Mech 1966)
and thus could cover a large portion of their territory in a single day. The
maintenance of pack territory thus occur over a daily to weekly time scale,
while seasonal events such as the birth and maturation of pups occurs over
a yearly time scale. Our approach to modelling pack territory dynamics
neglects the yearly birth and death processes, but concentrates upon the
short-term behavioral and movement dynamics.

3 Models for territorial pattern formation

Because RLUs are made by a few mature dominant wolves in each pack, the
location of these wolves is key in determining the RLU marking patterns. For
the purposes of this model we can describe the location of such a dominant
wolf by a probability density function denoting the chance of finding the wolf
at point x and time t. For any given pack, we sum these probability density
functions over the number of RLU marking wolves. This provides a measure
of the expected density of RLU marking wolves in the pack at a point x and
time t. We henceforth refer to this quantity as the expected local density of
wolves in a pack.

For a model of two adjacent interacting wolf packs, the pertinent state
variables thus are the expected local densities of wolves in pack number 1,
u(x, t); wolves in pack number 2, v(x, t) ; RLUs from pack number 1, p(x, t);
and RLUs from pack number 2, q (x, t).
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3.1 Model for a single pack

In the simplest possible case, with only one wolf pack, we anticipate that two
types of movements will dominate:

1. movement back towards the den as the wolves return to the social organiz-
ing center, and

2. dispersal as the wolves search for food and other resources.

We model this situation by a diffusion-convection equation of the following
form:

Lu

Lt
"+ · [uc

u
(r
u
)qu]#+ · [d

u
+u] , (3.1)
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(x!x

u
)
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is a unit vector pointing away from the den located at x
u
. The movement speed

towards the den, c
u
, is given as a continuous function of the distance from the

den r
u
"Dx!x

u
D with c

u
(0)"0, and the magnitude of the random movement

away from the den is given by d
u
. A related equation was proposed by Okubo

to describe the swarming of insects (Okubo 1980; Murray 1989).

3.2 Territorial model

Inter-pack competition and subsequent territorial behavior is modelled by
changing equation (3.1) to include responses to foreign RLUs from other
packs, and by including equations for the RLU densities themselves. We
assume that when members of a pack encounter RLUs from an adjacent pack,
they move away from these foreign RLUs and back towards the den while also
increasing their rate of RLU marking. Although mortal strife may occur when
adjacent packs interact, for the purpose of modelling the populations we
assume that such fatal interactions are very rare and that the number of
wolves remains effectively constant over the time horizon for the model.

The equation for wolf pack 1 is thus a modification of (3.1)
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Here the rate of movement back to the den (which is situated at x
u
) depends on

the expected levels of competing RLUs (q) and on the distance from the den
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(r
u
). In the presence of competing RLUs, the wolves retreat towards the den

and thus dc
u
/dq70. Also, in the spring and summer, when pack movements

are focused upon nourishing the pups at the den or rendezvous site, there may
be an additional constant rate of movement towards x

u
(c

u
(0, r

u
)'0). The

diffusive flux (d
u
) is as described in the earlier simpler model (3.1).

The equation for movement of the second wolf pack mirrors that describ-
ing movement of wolf pack 1:
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Lastly, we require equations to describe the changes in RLU density (p or q)
with time. The equation for p is:

Rate of change in expected RLU density (pack 1)
"Low level of continual marking
#Increased marking in the presence of RLUs from pack 2
#First order decay of RLUs with time.

Thus
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and the equation for q mirrors that for p :
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Here l
p

and l
q

represent low level RLU marking throughout the wolves’
territory, m

p
and m

q
quantify the increase in RLU in the presence of competi-

tive RLUs and f
p

and f
q

quantify decay dynamics for the RLUs, which are
taken here to be first order.

To complete the mathematical formulation of our two-wolf pack model
we require boundary and initial conditions. Biologically realistic boundary
conditions may involve local migration dynamics. However, the simplest
possible boundary conditions result when we assume that wolves neither
immigrate to nor emigrate from the domain of interest X. This situation is
described by zero-flux boundary conditions for u and v, namely

MJ
cu
#J

du
N · n"0 on LX (3.6)

and

MJ
cv
#J

dv
N · n"0 on LX , (3.7)
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where n is the outwardly oriented unit normal to the boundary of the solution
domain, LX. Initial conditions, describing the expected spatial distributions of
wolves and markings at the beginning of a study period, are given by

u(x, 0)"u
0
(x) , v (x, 0)"v

0
(x) , p(x, 0)"p

0
(x) ,

q(x, 0)"q
0
(x) . (3.8)

At any given time, the total number of wolves from wolf pack 1 in the
domain X is

PX

u (x, t) dx .

For the wolf pack 1
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Thus the zero-flux boundary conditions (3.6)—(3.7) guarantee a constant
number of wolves for each pack within the domain X. An analogous argument
holds true for pack 2.

We calculate the average density of wolves from pack 1 throughout the
region X as
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where A is the area of X.
To simplify the analysis we nondimensionalize the model system (3.2)—(3.5)

with boundary conditions (3.6)—(3.7) and initial conditions (3.8). This permits
us to normalize the wolf density and domain size as well as reduce the number
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For the nondimensionalized quantities to be well defined, we implicitly
assume that wolves from both packs are present originally (º

0
'0, »

0
'0),

that the domain X has a size greater than zero (¸'0), that both wolf
packs have a non-zero low level of RLU marking (l

p
'0, l

q
'0) and that the

RLU intensity decays with time ( f
p
'0). Dropping the asterisks for nota-

tional simplicity, we write the nondimensionalized system as (3.2)—(3.3) to-
gether with
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The boundary conditions (3.6)—(3.7) remain unchanged, and an appropriate
nondimensionalization of the initial data,
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leaves the initial conditions (3.8) unchanged as well, once asterisks have been
dropped. Observe that our nondimensionalization of space has rendered X an
area or length equal to unity. Furthermore, with the nondimensionalization
given here,

PX

u(x, t) dx"PX

v (x, t) dx"1 (3.13)

and thus, at any given time, u(x, t) and v (x, t) are probability density functions
for the location of wolves.

4 Solutions corresponding to territories

We show that if m is a convex function the time-independent solutions of
(3.2)—(3.3), (3.6)—(3.7), (3.11)—(3.12) satisfy a system of ordinary differential
equations (ODEs). The integral conditions (3.13) are transformed into initial
conditions for the ODEs.

For simplicity we consider a one-dimensional system with dens at oppos-
ing ends of the domain (x

u
"0, x

v
"1). Thus time-independent solutions to

the model (3.2)—(3.3), (3.11)—(3.12) are given by
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0"u (1#m
p
(q))!p (4.3)

0"v (1#m
q
(p))!/q (4.4)

with boundary conditions (3.6)—(3.7)

J
v
, J

u
"0 at x"0, 1 (4.5)

and conservation conditions (3.13)
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0

v(x) dx"1 . (4.6)

For any fixed u and v the convexity assumption on m means that p
and q can be uniquely determined as functions of u and v (Fig. 2(a)). Further-
more, the construction of a series of contracting rectangles (Smoller 1982)
can be used to show that (p (u, v), q (u, v)) is a globally stable invariant mani-
fold for (3.2)—(3.3), (3.11)—(3.12). Note that the case where m has an inflection
point may yield two distinct locally stable equilibrium values for p and
q (Fig. 2(b)).

Integration of (4.1)—(4.2) and application of the boundary conditions (4.5)
thus yields the following ODEs:
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Considering the first of these equations we observe that 06c
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Fig. 2. a Scent mark densities p(u(x), v(x)) and q (u(x), v(x) ) are determined uniquely by
(4.3)—(4.4) if m

u
(q) and m

u
(q) are convex functions. b If m

u
(q) and m

u
(q) exhibit switching then

p(u(x), v(x)) and q(u(x), v(x)) may not be determined uniquely if u (x) and v (x) are sufficiently
small

This describes three regions where the solutions to (4.7) must lie (Fig. 3).
However the constraint :1

0
u (x) dx"1 implies that u (0)'0 and thus the first

of these cases (4.9) applies. Coupled with the constraints on m
p
(q) (3.4) this in

turn means that

0(p(x)"u(x) (1#m
p
(q(x) ))6u (0)(1#m

p=
) . (4.12)

A similar argument holds for v (x) and q (x).
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Fig. 3. a Three regions where solutions to equation for wolf pack 1 (4.7) must lie. These are
given by (4.9)—(4.11). b The maximum and minimum values for u (0). The area under each
curve integrates to unity and thus satisfies (4.6)

Our assumptions about c
u
(q, r

u
) (3.2) and c

v
(p, r

v
) (3.3) along with the fact

that u(x), v(x), q (x) and p (x) are strictly positive imply that the right hand sides
of (4.7) and (4.8) are nonzero. Thus neither u(x) nor v (x) can have a critical
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point; u (x) decreases monotonically with x and v(x) increases monotonically
with x.

The final part of the argument requires translation of the integral con-
straints (4.6) to initial values for (4.7)—(4.8). Figure 3(b) shows two curves from
Fig. 3(a) which yield the upper and lower bounds for u (0) that satisfy (4.6).
Defining

º (u(0), v(0))"P
1

0

u(x ; u (0), v(0)) dx (4.13)

we observe that º(u`(0), v (0))717º(u~(0), v(0)). A continuity argument
can be used to show that and º(u (0), v (0))"1 for some intermediate u (0).
Defining

» (u(0), v(0))"P
1

0

v(x ; u (0), v (0)) dx (4.14)

a similar argument can be made to show that v(0) lies between the correspond-
ing v~(0) and v` (0).

In summary we have shown that if m
p
(q) and m

q
(p) are convex functions

then territories are determined by a system of 2 ODEs with the initial values at
x"0 specified. The expected wolf density for pack 1 (u(x)) is bounded above
and below as described in (4.9) and a similar result holds true for pack 2 (v(x)).
In turn this means that the expected scent mark density for pack 1 (p (x)) is
positive and bounded above as described in (4.12) and that a similar result
holds for expected scent mark densities for pack 2. Note that the case
described previously by Lewis and Murray (1993) where m

p
and m

q
are linear

functions can result in ‘blow up’ for p and q, at least for certain parameter
ranges. This is not surprising biologically as linear m

p
and m

q
assume that

arbitrarily high scent-marking rates are possible. A simple case where m
p
and

m
q
exhibit ‘switching’ and thus are not convex is considered in Sect. 6.4. It is

shown there that, for this case, p and q are functions of u and v only for certain
parameter values.

5 Existence of a buffer zone

We now show that a buffer zone, or interior minimum for u#v, will arise
under fairly general assumptions on the movement response function. For the
sake of simplicity we consider two identical interacting packs, with dens at
opposing ends of the domain and assume no explicit spatial dependence in the
movement response function c. The equations (4.1)—(4.4) are thus given by
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1
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p"u (1#m(q)) (5.3)

q"v (1#m(p)) . (5.4)

subject to the integral constraints (4.6).
The solution to this system is invariant when xP1!x, u % v, p % q and

thus is symmetric about the midpoint x"1
2
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2
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A sufficient condition for the right hand side of the last line to be positive is
that c(p) is convex. In this case x"1

2
is a minimum for u#v corresponding to

a buffer zone for the interacting packs.

6 Dependence of territories on behavioral responses

In this section we consider the qualitative dependence of the wolf territories
on the form of the movement response function c and the scent-marking
response function m. Functional responses have been widely analysed in the
context of predator-prey dynamics (Holling 1966). The forms we use here for
the behavioral responses are analogous to the Holling type II and III func-
tional responses; the former is a convex monotonic function while the latter
exhibits switching.

We continue to focus on the model describing two identical interacting
pack, with dens at opposing ends of the domain and assume no explicit spatial
dependence in the movement response function c (5.1)—(5.4). Using piecewise
linear caricatures for the functions we ask how the wolf territories and
scent-marking densities depend on the behavioral response.
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6.1 Case I: no marking response to foreign RLUs

This case is characterized by no scent marking response of wolves to foreign
RLUs (m"0) and a linear increase in the directed movement rate in response
to foreign RLUs (c (q)"cq) (Fig. 4(a)). It is assumed that the function c is
none-the-less bounded, but that q, p6c

=
/c (Fig. 4(a)). Here (5.3) and (5.4)

simply yield p"u and q"v. Substitution into (5.1) and (5.2), and addition of
these equations subject to the constraint (4.6) yields u(x)#v(x)"2 pointwise
on 06x61. Thus the territories are given by solutions to two logistic
equations with space as the independent variable:

u
x
"

!c
d

u (2!u), v
x
"

c
d

v(2!v) (6.1)

(Fig. 5). The initial conditions u (0) and v(0) to this system are chosen to satisfy
the integral constraints (4.6). We can construct an energy function on the
globally stable invariant manifold p"u, q"v :

F"P
1

0

/2 dx, /"u#v!2 , (6.2)

LF

Lt
"!2P

1

0
A
L/

LxB
2

dx . (6.3)

Thus the territory corresponds to a state of lowest potential, where the
potential is measured as the squared deviation of away from a constant

Fig. 4a–d. Functional forms for the movement behavior function c(q) and the marking
behavior function m(q): a convex c (q), b convex m (q), c switching in c(q) and d switching in
m(q)
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Fig. 5. Time-independent solution to (3.2)—(3.3), (3.6)—(3.7), (3.11)—(3.12) with m
u
"

m
v
"0 and c

u
(q)"cq, c

v
(q)"cp, c"1, (Fig. 4(a)) and d

u
"d

v
"0.1. Shown is the

large-time numerical solution with the expected density of wolves from pack 1 (u(x))
and the expected density of wolves from pack 2 (v(x) ). This corresponds to the analytical
solution to the system of logistic equations (6.1). Note that u (x)#v (x)"2 pointwise
across the domain so there is no buffer zone. The expected scent mark densities are identical
to the expected wolf densities. Numerical solution used the Method of Lines and Gear’s
Method

cumulative wolf density u#v"2. The function F is not strictly a Lyapunov
function because it is semi-definite and is restricted to the stable subspace
p"u, q"v.

The territories calculated in this section (Fig. 5) differ qualitatively from
results observed in the field in that

1. The total expected wolf density (u#v) remains constant throughout and is
not reduced near the inter-pack boundary and

2. The expected density of RLU markings (p"u and q"v) is no higher near
territorial boundaries than near the den.

We now consider a modification of the above case which rectifies these two
discrepancies.
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6.2 Case II: marking response to foreign RLUs

Here we assume that m (q) and c (q) have similar functional forms (Figs. 4(a)
and 4(b)). The part of the functions of interest are given by m(q)"kq and
c(q)"cq. Although the functions m and c in Figs. 4(a) and 4(b) are bounded,
we assume that q, p6c

=
/c and q, p6m

=
/k (Figs. 4(a) and 4(b)). Here (5.3)

and (5.4) yield

p"
u (1#kv)

1!k2uv
(6.4)

q"
v (1#ku)

1!k2uv
(6.5)

and substitution into (5.1) and (5.2) yields

0"c
uv(1#ku)

1!k2uv
#du

x
(6.6)

0"!c
uv(1#kv)

1!k2uv
#dv

x
. (6.7)

Defining

C (w)"P
w

0

du
1#ku

"log(1#kw)/k

we observe from (6.6)—(6.7) that

C (u)#C(v)"C(u(0))#C (v(0))"k(u (0), v (0)) (constant). (6.8)

Thus

(1#ku)(1#kv)"exp (kk) (6.9)

describes u in terms of v and vice-versa.
Substitution of (6.9) into (6.7) yields

0"!c
v (%91(kk)

1`kv !1)/k
1!kv(%91(kk)

1`kv !1)
#

dv
x

1#kv
(6.10)

while substitution into (6.6) yields a similar equation for u. Equation (6.10) is
separable, and integration yields an implicit formula for v(x), namely

v(x)

(E!kv(x)) (1#kv(x))E
"

v(0)expMcEx
dk N

(E!kv (0)) (1#kv (0))E
, (6.11)

where we have written E"exp(kk(u(0), v (0)))!1, and the similar u equation
can be solved by the same method. For the special case E"1 the solution can
be calculated explicitly. Finally, the initial conditions u(0) and v (0) must be
chosen so as to satisfy the integral constraints (4.6).
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Profiles for the pack and scent mark densities are shown in Fig. 6(a) and
the cumulative expected densities for both wolf packs and for both scent
marks are shown in Fig. 6(b). Note that the cumulative wolf-pack density
drops near the territorial boundary at x"1

2
and the cumulative RLU density

is highest there. Thus this solution reflects the biological observations more
accurately than the m"0 case.

We use equation (6.9) to observe that

0"
v
x

1#kv
#

u
x

1#ku
.

This can be used to simplify expressions for p
x

derived from (6.4) and
q
x

derived from (6.5):

p
x
"

(1#ku) (ku!1)

(1!kuv)2
v
x

q
x
"

(1#kv) (kv!1)

(1!kuv)2
u
x

.

Because u (x) and v(x) have no critical points (Sect. 4) possible interior max-
imums for p(x) and q (x) are given when u(x)"1/k and v(x)"1/k, respective-
ly. Thus there is an interior maximum for p if and only if u (0)71/k7u (1) and
there is an interior maximum for q (x) if and only if v (0)61/k6v(1)
(Fig. 6(a)). In other words, if the behavioral response function m is sufficiently
steep then 1/k will lie in the above interval and bowl-shaped scent marking
densities will arise.

6.3 Case III: switching in movement response to foreign RLUs

We now include ‘switching’ in the movement response of wolves to foreign
scent marks. Specifically, we assume that there is no response at all until the
foreign scent mark has reached a critical value q

c
at the point x

c
, after which

there is a return to the den at speed c
=

. The marking response is chosen to be
the same as in Case II above. Hence we have m (q)"kq (Fig. 4(b)) and
c(q)"c

=
H(q!q

c
) where H ( · ) is the Heaviside function (Fig. 4(c)).

Using symmetry, equations (5.1) and (5.2) are solved to give

u"G
u(0)

u (0) exp (!c=
d
(x!x

c
) )

if 06x6x
c

if x
c
(x61

(6.12)

v"G
u(0)

u (0) exp (!c=
d
(1!x!x

c
))

if 1!x
c
6x61

if 06x(1!x
c

(6.13)

where u(0) is given in terms of x
c
by the integral constraint (4.6) as

u(0)Axc
#

d

c
=
A1!expA

c
=
d

(x
c
!1)BBB"1 . (6.14)
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The equations for p and q are given by (6.4) and (6.5). Using (6.5) and
(6.12)—(6.13) we calculate

q
c
"q (x

c
)"

v(x
c
) (1#ku (0))

1!k2u (0)v(x
c
)

(6.15)

v(x
c
)"u (0) expA!

c
=
d

(1!2x
c
)B .

Simultaneous solution of (6.14) and (6.15) yields the maximum expected
density of wolves from pack (u(0)) and the width of the buffer zone (1!2x

c
) in

terms of the parameters c
=

, d, q
c
and k. Whereas some buffer zone is evident

without switching (Fig. 6(b)), the switching function can greatly enhance the
magnitude of the buffer zone (Fig. 7). For any given width, the depth of the
buffer zone is an increasing function of the ratio of directed to random motion
in the presence of foreign scent marks c

=
/d.

6.4 Case IV: switching in marking response to foreign RLUs

Lastly we consider the case where there is switching in the scent marking
behavioral response. The movement response is chosen to be the same as in
Case II above. The functional forms are thus m(q)"m

=
H(q!q

m
) (Fig. 4(d))

and c(q)"cq (Fig. 4(a)). Figure 8 shows the stable time-independent equilib-
ria for (6.4)—(6.5) in terms of u and v. Note that if (u, v) lies within the shaded
region of Fig. 8 there is not a unique time-independent solution. However,
providing this region in u!v phase space is bypassed the solution can be
calculated in each sub-region in a manner similar to that used in Case II
above. At the transition from Region B to Region D the expected scent mark
density for pack 1 ( p(x

m
) ) jumps up from u(x

m
)) to (1#m

=
)u(x

m
) and at the

transition from Region D to Region C the expected scent mark density for
pack 2 (q(1!x

m
)) jumps down from (1#m

=
)v(1!x

m
) to v (1!x

m
) (Fig. 8).

Using symmetry, the relationship between u (x) and v(x) given in terms of

$&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Fig. 6a, b. Time-indepenent solution to (3.2)—(3.3), (3.6)—(3.7), (3.11)—(3.12) with c
u
(p)"cp,

c
v
(q)"cq (Fig. 4a) and m

u
(q)"kq, m

v
(p)"kp, (Fig. 4b) and c"1, d

u
"d

v
"0.333,

k"1.1. a Shown is the large-time numerical solution with the expected density of wolves
from pack 1 (u (x)), the expected density of wolves from pack 2 (v(x)), the expected scent
mark density from pack 1 (p (x)) and the expected scent mark density from pack 2 (q(x)).
This corresponds to the analytical solution to equation (6.11) and the similar equation for u.
Note the bowl shaped scent mark densities. Intersection of the line u"1/k with u (x) yields
the location of the maximum value for p (x) which corresponds to the edge of the bowl (6.12).
b The corresponding cumulative expected wolf density (u (x)#v(x) ) and cumulative scent
mark density (p (x)#q (x)). The function (1#ku)(1#kv) is constant across the domain as
predicted by (6.9). Note the elevated scent mark density and buffer zone at x"0.5.
Numerical solution used the Method of Lines and Gear’s Method
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Fig. 7. Analytical solution to the territoriality ODEs (5.1)—(5.4) subject to the integral
constraints (4.6) with c (q)"c

=
H (q!q

c
) (Fig. 4c) and m(q)"kq (Fig. 4b). The solution for

u(x) and v(x) is given by (6.12)—(6.13) with u(0) and x
c

determined by (6.14)—(6.15). The
corresponding solutions for p (x) an q (x) are given by (6.4)—(6.5). Note the width of the buffer
zone

k"u (0)#(1#m
=

)v (0)!m
=

q
m

is

u#v#m
=
v"k#m

=
q
m

if 06x6x
m

u#v"k if x
m
(x(1!x

m
(6.16)

u#v#m
=
u"k#m

=
q
m

if 1!x
m
6x61

The value of k is chosen so as to satisfy the integral constraints (4.6). A sample
trajectory is shown in Fig. 8 and the corresponding solution is shown in
Fig. 9. Here the step function form for m(q) yields a solution which is
discontinuous in p and q. In other words, an abrupt jump in p and q at the
edge of the buffer zone corresponding to a sharp lip on the bowl of scent
marking densities is direct consequence of switching in m.

In summary, our analysis of the piecewise linear system response functions
has demonstrated how the functions determine the qualitative nature of the
territories. Specifically

1. Territories can form with a convex movement response function and no
scent marking response function (m"0) but they typically do not exhibit
the bowl shaped scent mark densities and the buffer zones between
territories.

2. The addition of a convex scent marking response function can give rise
to the bowl shaped scent marking densities and buffer zones. A condition
for the bowl shaped scent marking densities is that the scent marking
response function (m) is sufficiently steep.
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Fig. 8. Stable time-independent equilibria for (5.4)—(5.4) with m (q)"m
=

H (q!q
m
).

Region A: (p, q)"(u, v), region B: (p, q)"(u, (1#m
=
)v), region C: (p, q)"( (1#m

=
)u, v)

and region D: (p, q)"((1#m
=
)u, (1#m

=
)v). Note that if q

m
/(1#m

=
)(u, v(q

m
then

the equilibrium cannot be determined uniquely, being either case A or B above. If para-
meters are chosen so that k"u(0)#(1#m

=
)v(0)!m

=
q
m
'q

m
(6.16) then the indetermi-

nate region can bypass in phase space. A sample trajectory is shown with three legs of the
trajectory as given in (6.16)

3. Inclusion of switching in the movement response function can give rise to
very distinct, wide buffer zones.

4. Inclusion of switching in the scent marking response function can give
rise to very distinct, sharp edges on the scent mark bowl.

7 Numerical solution in two spatial dimensions

The full nonlinear system (3.2)—(3.5) was solved numerically using finite
differences in two spatial dimensions. Computation was terminated when the
solution had effectively reached a stationary profile. This stationary profile
corresponds to territories, as described above. Shown are the two- and
three-pack interactions (Fig. 10). The numerical solution over a range of
smooth movement behavior functions (c) and scent marking behavior func-
tions (m) indicated that switching in c is needed for distinct territories and
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Fig. 9. An analytical solution to the territoriality ODEs (5.1)—(5.4) subject to the integral
constraints (4.6) with m (q)"c

=
H (q!q

m
) (Fig. 4d) and c(q)"cq (Fig. 4a). The correspond-

ing solution trajectory is given in Fig. 8. The solution method is the same as described in
Sect. 6.1 except with the relationship between u (x) and v (x) in each subregion given by
(6.16). Note the abrupt jumps in p (x) and q(x)

switching in m is needed for a lip on the bowl of scent marking densities. When
there was no switching in m the regions of high scent marking were not
localized to the edges of the ‘bowl’ but formed large two-dimensional hot-
spots in a ‘blotchy’ manner. The precise forms of the switching functions was
not crucial as long as they were given qualitatively by Holling type III. This
contrasts with the 1 dimensional results illustrated in Fig. 6; there the bowl-
shaped RLU densities arise with a convex m and switching in m only serves to
sharpen the lip.

8 Discussion

In this paper we have analysed a simple mechanistic mathematical model
which assumes that wolf movement and scent marking is mediated by the
presence or absence of foreign scent marks. Specifically, upon encountering
a foreign scent mark a wolf is assumed to increase its own scent marking and
move toward the organizational center of its pack. The steady states that
result correspond to territories. We have shown that, under a wide variety of
assumptions about the movement and scent marking response functions,
territories are determined uniquely and buffer zones exist between territories.
The presence or absence of bowl shaped scent mark densities observed in
nature specifically depends upon the shape and steepness of the scent marking
response function.
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Fig. 10. Two dimensional territories. Each surface describes a group of wolves and their
scent marks. The height of the surface describes the expected density of wolves and the color
of the surface describes the expected scent mark density. The shading follows colors of the
rainbow with red being low and violet being high. Solutions were generated by solving
(3.2)—(3.3), (3.6)—(3.7), (3.11)—(3.12) numerically using finite differences and an alternating
direction implicit method until a stationary solution was effectively reached. The domain
size is [0, 1]][0, 1] and the mesh size is 40]40. The movement function is given by

c(q, r)"
c
=
2

(1#tanh(c(q!q
c
) ))tanh(ar)

and the scent marking function is given by

m(q)"
m

=
2

(1#tanh(k(q!q
m
) )) .

In the case with three interacting packs, an additional wolf movement and scent marking
equation is added and the functions m and c are modified to depend on the cumulative
foreign scent mark density. a Two interacting packs with dens at opposite corners of the
domain (d"0.3, c"3, a"100, c"2, m

=
"1.5, c

=
"1, k"10, q

c
"1, q

m
"1 and the

color scale ranges from 0 to 4). b The cumulative expected wolf density and expected scent
mark density surface for a above. c Three interacting packs with dens in two adjacent
corners and at the midpoint of the opposite side (d"0.3, c"3, a"100, c"2, m

=
"1.5,

c
=
"1, k"7, q

c
"0.75, q

m
"1 and the color scale ranges from 0 to 5). d The cumulative

expected wolf density and expected scent mark density surface for c above
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Numerical experimentation in two spatial dimensions indicates that
switching in both the movement response function and in the scent marking
response function are needed to generate realistic territories with buffer zones
and bowl shaped scent mark densities. Although piecewise constant switching
functions were used for the mathematical analysis, the numerical solutions
with smooth switching functions indicate that it is the qualitative form of the
function (switching vs. no switching) that determines the kind of territorial
patterns.

While analysis was primarily restricted to the explicit calculation of
territories as time-independent solutions, all of our numerical results indicate
that the territories are stable configurations. We conjecture that the territories
are globally stable when unique, and have local stability properties when
switching in m causes loss of uniqueness (see Figs. 2(b) and 8). Analytical
approaches to stability would be a worthwhile topic for additional research.
These could possibly use an energy method similar to that in Sect. 6.1.

Although nonlinear partial differential equations have been applied suc-
cessfully to ecological problems (Holmes, Lewis, Banks, and Veit 1994; Okubo
1980) including the spatial segregation of interacting species (Shigesada,
Kawasaki, and Teramoto 1979; Mimura and Kawasaki 1980) and under-
standing social aggregations (Grünbaum and Okubo 1990) the modelling
given here represents a new approach to understanding behavioral aspects of
territory formation. A significant feature of our study is that the seemingly
complex formation of wolf territories can be reduced to a relatively simple set
of formulas involving scent marking.
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