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Integrodifference models of growth and dispersal are analyzed on finite domains to investi-
gate the effects of emigration, local growth dynamics and habitat heterogeneity on popula-
tion persistence. We derive the bifurcation structure for a range of population dynamics and
present an approximation that allows straightforward calculation of the equilibrium popula-
tions in terms of local growth dynamics and dispersal success rates. We show how population
persistence in a heterogeneous environment depends on the scale of the heterogeneity
relative to the organism’s characteristic dispersal distance. When organisms tend to disperse
only a short distance, population persistence is dominated by local conditions in high quality
patches, but when dispersal distance is relatively large, poor quality habitat exerts a greater
influence. © 1997 Society for Mathematical Biology

1. Introduction. This study is motivated by the need to understand the
role of dispersal and habitat quality on population dynamics and persis-
tence in fragmented environments for organisms which reproduce and
disperse during separate, discretely spaced time periods. Despite the ten-
dency of most organisms to reproduce and disperse during separate time
intervals, the most extensively developed and applied models of population
growth and dispersal are reaction—diffusion equations, which assume that
reproduction and dispersal occur simultaneously and continuously (see, e.g.
Skellam, 1951; Ludwig et al., 1979; Murray et al., 1986; Lubina and Levin,
1988; Freedman et al., 1989; Andow et al., 1990; Holmes et al., 1994).
However, many plants and invertebrates have sessile adult stages and
nonoverlapping generations; dispersal is undertaken by seeds or larvae
during a specific time period when environmental conditions are favorable
(see, e.g. Richter, 1970; Augspurger and Hogan, 1983; Berger, 1983; Hobbs
et al., 1992; Howe and Smallwood, 1982). The “year” of these organisms
can be divided into a growth period during which the primary population
processes are reproduction and growth and a dispersal period during which

the :primary population process is the permanent movement of individuals
from one location to another.
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Integrodifference equations are discrete-time models capable of separat-
ing growth and dispersal phases. Slatkin (1973, 1975, 1978) formulated
integrodifference equation models to study gene flow and selection and
spatial patterning of polygenic characters. Lui (1982a, b, 1983, 1985, 1986,
1989a, b) and Weinberger (1978, 1982) studied the traveling wave proper-
ties of integrodifference and other types of discrete-time models of gene
flow. The paper of Kot and Schaffer (1986) appears to be the first applica-
tion of integrodifference equations specifically to problems in population
ecology. Since then, integrodifference equations have been used to study
dispersal-driven instability in predator—prey systems (Kot, 1989; Neubert
et al., 1995), traveling waves (Kot, 1992; Kot et al., 1996), age-structured
populations (Veit and Lewis, 1996), the effects of different dispersal strate- -
gies in both spatially and temporally variable environments (Hardin et al.,
1988a, b, 1990), plant growth and dispersal (Andersen, 1991) and long-term
transient dynamics (Hastings and Higgins, 1994).

To use integrodifference equations in studying population persistence in
fragmented habitats, we utilize finite and patchy spatial domains to reflect
the observation that habitat fragmentation reduces expansive areas of
suitable habitat into small remnant patches in which the boundary strongly
influences population processes (Simberloff and Abele, 1982; Janzen, 1983,
1986; Harris, 1984, 1988; Wilcox and Murphy, 1985; Newmark, 1991;
Saunders et al., 1991). The following questions are addressed in this paper:
(1) How does the qualitative behavior of local growth dynamics affect
bifurcation and solution structure of integrodifference equations in the
presence of dispersal loss from isolated habitat patches? (2) Is there a
straightforward way to determine equilibrium population density and distri-
bution if local growth conditions and dispersal success are known? (3) How
does persistence in heterogeneous environments depend on spatial scales
of dispersal and fragmentation? Section 2 presents analysis of scalar inte-
grodifference equations on bounded domains using bifurcation theory and
classical results on positive operators. Section 3 investigates in more detail

how dispersal success and habitat quality affect population persistence in
fragmented environments.

2. The Model.

2.1. Formulation. The general scalar integrodifference equation has the
form

N, (x) = [ﬂ k(x,y) f(N,(y);y)dy, (1)

where N/(x) is the population density at a point x € Q at the end of the
dispersal period in year ¢, Q is a subset of ®” and k(x,y) is a density
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function governing the probability of successful dispersal from a point
Y€ Q to x. Population growth is modeled by the nonnegative growth
function f(N)=g(N)N, where 8(N) is the per capita growth rate. Three

commonly used growth maps are the Beverton—Holt (Beverton and Holt,
1957) model

(N) d @)
TN = ok
the Ricker (1954) equation
N
f(N)=Nexp{p(1-—-)] (3)
K
and the Allee growth model (Murray, 1989)
- (p?+ 1)N?
fIN) = L+ pN2 /K2 (4)

Growth rate parameters in these models are given by r and p, and the
carrying capacity of the environment is given by K.

The Beverton—Holt model is representative of compensatory growth; the
nontrivial steady state K is globally stable for all > 1. The Ricker model
Tepresents overcompensatory growth, which can occur in populations with
discrete generations if recruitment is severely limited at very high popula-
tion densities (see, ¢.g. Nicholson, 1954; Harcourt, 1971; Cushing, 1981).
The equilibrium K loses stability via a period-doubling bifurcation as p
exceeds 2. Further increases in p result in a series of period-doubling
bifurcations leading to chaos (see May, 1974, 1975, 1976; Li and Yorke,
1975; Stefan, 1977; Li et al., 1982). The third map exhibits an Allee effect or
depensatory growth, which models the net population decline experienced
by some organisms when population densities are very low (Dennis, 1989;
Murray, 1989). The Allee model has a stable equilibrium N, =K and an
unstable equilibrium N, , =K/p? for all p> 1. This unstable equilibrium
represents a threshold population density above which the population
persists and below which it goes extinct. The zero solution is stable for all
positive parameter values. A comparison of these three models in the
N,—N,,, plane representing the discrete dynamical system is given in
Fig. 1.

Dispersal is modeled by integration against the dispersal kernel k(x,y),
which is a nonnegative density function governing the probability that an
individual at the point y at the beginning of the dispersal period has
successfully dispersed and settled at the point x at the end of the dispersal
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Figure 1. Comparison of normalized (K = 1) Beverton—Holt, Ricker and Allee
growth functions.

period. It is assumed that no individuals can immigrate into  from
outside, but dispersers may emigrate from (). Dispersal kernels may be
constructed from either observational data or from a dispersal model
describing movement, settlement, mortality and emigration of individuals
during dispersal (Neubert ez al., 1995; Van Kirk, 1995). For example, the
commonly used Laplace kernel

k(x,y) = %exp(alx“ D (s)

can be derived from assumptions that dispersers move randomly and settle
at a constant rate during a sufficiently long dispersal period (Broadbent and
Kendall, 1953; Williams, 1961). In one spatial dimension, the mean disper-
sal distance, given in terms of the diffusion coefficient D and the settling
rate a, is simply a = \/a/D (Neubert et al., 1995). Alternative assumptions
about movement, settlement, mortality and emigration lead to a variety of
different kernels (Neubert ez al., 1995; Van Kirk, 1995). Emigration from
an isolated patch and inability to encounter another suitable patch may
cause loss of dispersers (Henderson et al., 1985; Lefkovitch and Fahrig,
1985; Forrest et al., 1988; Doak, 1987; Lamberson et al., 1992; Bennett
et al., 1994). When dispersal is passive and dispersers do not interact
strongly with habitat patch boundaries (for example, seeds blowing in the
wind) a kernel initially derived over an infinite domain can simply be
applied to those subsets suitable for settlement and subsequent reproduc-
tion. For example, the Laplace kernel (5) is truncated to a finite domain of
length £ if all dispersers settling outside of the interval die because of
unsuitable environmental conditions. The resulting dimensionless kerncl
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has the same form as equation (5) with the parameter a replaced by the
effective domain length L = La, which is a measure of the organism’s
characteristic dispersal distance relative to domain size.

We define the dispersal success function by

s(y) = 1k(x,y) dx, (6)
i

which gives the probability that an individual starting dispersal at y is

settled in Q at the end of the dispersal period. Average dispersal success is
defined by

S = : (y)d (7
_I/nj;!sy Y,

where V,, is the volume of €. In the absence of dispersal-specific mortality,
loss of dispersers from a finite habitat patch surrounded by unsuitable
habitat is due to emigration outside of the patch. Dispersal success then
becomes a function of effective domain size. For example, dispersal success
for the truncated Laplace kernel is given by

L 1
s(y;L)=1——exp(~——2—)cosh L(y—z) (8)
and average dispersal success by
1 —exp(—=L)
S(L)=1- E . 9)

Graphs of these functions are shown in Figs. 2 and 3. In general, as average
dispersal distance increases relative to domain size, dispersal success de-
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s(y; L)
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0 L=2232 (S =06)
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Figure 2. Dispersal success functions for the truncated Laplace kernel for
various values of effective domain length.
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Figure 3. Average dispersal success rate versus effective domain length for the
truncated Laplace kernel.

creases, since dispersers are more likely to emigrate from the domain. It is
also possible to construct kernels on bounded domains from active disper-
sal models that incorporate physical or psychological factors affecting a
disperser’s ability or willingness to cross habitat patch boundaries (see Van
Kirk, 1995, for this approach). Dispersal success for these kernels depends
on dispersers’ behavior at the boundary in addition to effective domain size.

To focus on the relationships between habitat quality and quantity,
dispersal success and population persistence and size, a number of biologi-
cal assumptions will be made unless otherwise stated. These are that (i) the
habitat is finite (Q is a closed, bounded subset of :"); (ii) it is possible for
an individual to move from any point (except possibly one on the boundary)
in the habitat to any other point in the habitat during the dispersal period
(for almost every x,y € Q, k(x,y) > 0); (iii) loss of individuals during the
dispersal process is due only to emigration; (iv) population growth is finite
even at arbitrarily large population densities (f(N;y) = Ng(N;y) is bounded
above for all N >0 and y € Q, implying that lim  _, . g(N) = 0); (v) the per
capita growth rate attains its maximum at arbitrarily low densities and
decreases with increasing population density (g'(N;y) <0 for all N >0 and
for all ye Q); and (vi) the maximum per capita growth rate may be a
function of location in the habitat but is always strictly positive at any given
location (g(0;y) is bounded away from zero). The Beverton—Holt and
Ricker growth functions satisfy these conditions; the Allee growth function
does not satisfy condition (v)).

It is convenient to work in the real Hilbert space L,({}) so that both the
linear dispersal operator

= fnk(x,y)qb(y) dy (10)
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and the nonlinear Hammerstein operator

Ap = fﬂ k(x,y) f((y);y) dy (11)

map L,(Q) into L,(Q). Because biologically meaningful solutions will be
nonnegative, it is useful to consider such solutions as elements of the cone
K, of nonnegative L,(Q) functions (see Krein and Rutman, 1950, or
Krasnoselskii, 1964). The foregoing assumptions imply the following prop-
erties, which follow from theorems of Krasnoselskii (1964) and Krasnosel-
skii and Zabreiko (1984).

Property 1. The nonlinear operator .« LA(Q) = L,(Q) as defined by (11)
is completely continuous.

Property 2. The nonlinear operator & is strongly Fréchet differentiable
with respect to the cone K + at N=0, and its Fréchet derivative is the
completely continuous linear operator

d
B EM(0)¢=Lk(x,y)5£(0;y)¢(ﬁ dy. - (12)

Property 3. The nonlinear operator & has a strong asymptotic derivative
with respect to the cone K +» Which is the completely continuous linear _
operator given by

_ 1
(@) g= [ lim k(x,y) = f(N(Y);y) $(y) dy = 0. (13)
See Van Kirk (1995) for details.

2.2. Linear analysis. We first briefly review the linear analysis of equi-
librium solutions to equation (1) as detailed in Kot and Schaffer (1986) and
Hardin ez al. (1990). Adopting the definition of .« given above, the inte-
» grodifference equation (1) may be expressed as the operator equation

N, 1(x) =N,. (14)

An equilibrium solution to (14) is a fixed point of the nonlinear operator <7,
that is, a solution N, (x) of the equation

N, (x) -=-fk(x,y)f(N*(y);y)dny*(x). ' (15)
Q
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An equilibrium solution is locally stable if the spectral radius p(Z'(Ny))
of the Fréchet derivative &'(N,,) is less than 1 and unstable if p,(2/'(N))
> 1. Because of the assumption that f(0;-) =0, the identically zero func-
tion is an equilibrium solution of equation (1). The zero solution is locally
stable when the spectral radius of the linear operator & (equation (12)) is
less than 1 and locally unstable when p (%) > 1.

Under assumptions nearly identical to those given above, Hardin et al.
(1988a, b, 1990) showed that not only is the zero solution unstable when
p. (&) > 1, but also that equation (1) has a nonnegative, nonzero equilib-
rium solution if and only if p,(#) > 1. They also showed that when f(N; )
is monotonically increasing and bounded above, as with Beverton—Holt
dynamics, the nontrivial equilibrium is globally stable when p,(#)>1,and
the zero solution is globally stable otherwise. Under other assumptions, the
nontrivial equilibrium is shown to be locally stable for some range of values
of p, (%) (Hardin et al., 1988a, b, 1990).

The main bifurcation result of this paper draws on the general theory of
bifurcation from the largest eigenvalue of the linear operator

af
B = f( 1k(x,y) —5 06 dy. (16)

To apply this theory, it must first be shown that this operator possesses a
simple eigenvalue of maximum modulus. Because of the positivity of f'(0;y)
and the dispersal kernel, the operator & leaves invariant the cone K, of
nonnegative L, functions. Thus by the classical theorem of Krein and
Rutman (1950), # has a positive eigenvalue corresponding to a nonnega-
tive eigenvector. Furthermore, this eigenvalue is simple, is strictly larger in
magnitude than all other eigenvalues and its eigenfunction is the only
nonnegative eigenfunction of . The results follow from theorems of
Krasnoselskii (1964), which require demonstration that for a fixed nonzero
u, € K, and any nonnegative u € K, there exist j, a> 0 and B> 0 such

that au, <®B’u < Bu,. This condition is satisfied because of the positivity
and continuity of %.

Property 4. Under the assumptions of this paper, the linear operator

of
Bp = f( lk_(x,y)m—(o;yw(y) dy. (17)

has a positive, simple eigenvalue A; corresponding to a nonnegative eigen-
function ¢,(x). This eigenvalue is strictly larger in modulus than any other
eigenvalue of &, and its eigenfunction is the only (up to a constant
multiple) nonnegative eigenfunction of %.
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It is now useful to investigate the relationship of this eigenvalue to
biological parameters. For notational convenience, (df/dN )0;y) = g(0;y)
will be denoted by the function g,(y). By definition, A, satisfies

A (x) = £lk(x,y)g(,(y)¢!(y)dy. (18)

For this analysis, it is useful to utilize the L, normalization [, ¢ (x)dx = 1
and integrate equation (18) to obtain

A= [ k(x,y)g0(y) b(y) dy dx. (19)
070

By the bounds on g,(y) and the integrability properties of k(x,y), the order
of integration on the right may be interchanged to obtain

M= [sgWedy. (20)
Q

Because dispersal success is a function of dispersal ability and domain size,
shape and boundary conditions, and because the intrinsic growth rate
function g depends on habitat quality, A, is a measure of the biological
parameters of interest in this problem.

As a simple example, consider the situation in which emigration occurs
by loss through the boundary of ) and where dispersal success is an
increasing function of the effective length scale parameter L, as discussed
above. In general, for each y, s(y; L) is an increasing function of L; as
domain length relative to dispersal ability increases, fewer organisms reach
the boundary before settling. Suppose further that g,(y; P) is a strictly
increasing function of the general growth parameter P (e.g. P=r in the
Beverton—Holt growth function). Then

AL, P) = fQS(y; L)g,(y; P)¢ (y)dy. (21)

- Thus A(L, P) is an increasing function of both L and P. Assuming that for
each y, g (y; P) has a bounded, strictly positive derivative with respect to P,
the derivative dA,/JdP may be computed by differentiation inside the
integral, and this derivative is strictly positive. Thus by the implicit function
theorem, the relationship

A(L,P)=1 (22)
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may be solved for P in terms of L, and at A, =1,

dL

dp ( I\, )“ oA (23)

~\eP) oL

Since both of the derivatives on the right are positive, P(L) is a decreasing
function at the stability exchange point. A similar analysis can be per-
formed for A, as a function of any relevant biological parameters, where
those measuring dispersal ability and habitat quantity appear in the disper-
sal success function and those measuring habitat quality appear in the
intrinsic growth rate function g,,.

2.3. Nonlinear analysis. The linear analysis suggests that instability of
the zero solution when A, > 1 should be accompanied by existence of a
stable nonzero solution; Hardin et al. (1990) verified this in the space of
continuous functions on €. It is not necessary to reproduce their work
here, but two similar results in L,(Q) follow directly from Krasnoselskii’s
.theorems, and these will be listed before presenting the bifurcation result.

The ideas behind the existence and uniqueness results which we now give
for integrodifference equations are nicely illustrated with a simple, nonspa-
tial model: consider a discrete map N,,, =f(N,) = N,g(N,) for which
f(0)=0 and f'(0)=g(0)> 1. If f is continuous and lim, _ . f(N)=0,
then the function f(N) must intersect the identity function I(N)=N at
some positive point N, that is, f(N,) = N,.. Thus the discrete map has a
positive equilibrium. Note that at this equilibrium, g(N) = 1. Suppose
further that f(N) is monotonically increasing and that g(N) = f(N) /N is a
strictly decreasing function of N. Since g(0) > 1, the restriction that g(N)
is strictly decreasing implies that g(N) =1 at one and only one point, that
is, the positive equilibrium is unique. Because f(N) is monotonically
increasing, this positive equilibrium must be globally stable in the sense
that for any N > 0, the sequence N,, , = f(N,) converges to the fixed point
N, =f(N,).

The existence and uniqueness theorems for equation (1) which are listed
here are based on these ideas. The uniqueness theorem requires that the
nonlinear operator & be continuous, that its Fréchet derivative 2/(0) exist
and have dominant eigenvalue greater than 1, and that its asymptotic
derivative () be the zero operator. These requirements are exactly
analogous to those in the preceding simple example.

Result 1 (Existence). Under the assumptions of this paper, the integrod-

ifference equation (1) has at least one nonzero, nonnegative equilibrium
solution for all A, > 1.
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For the uniqueness result, a monotonicity property analogous to that
imposed on f(N) in the foregoing example is required. Because the
dispersal kernel k(x,y) is strictly positive, the nonlinear operator % inherits
its monotonicity from the growth function f(N). Under the assumption
that f(N) is monotonic and that the function k(x,y)g(N;y) decreases
uniformly with N, & is a concave, monotonic operator which has exactly
one positive solution which is globally stable.

Result 2 (Uniqueness). Under the further assumption that f(N;-) is
nondecreasing, there exists a unique nonnegative equilibrium solution for
A, > 1, and this solution is globally stable.

The existence theorem applies to growth functions such as the Ricker or
Beverton—Holt models, in which the per capita growth rate decreases
strictly with population density and approaches zero at arbitrarily large
densities. For Allee growth dynamics, g(N;-) increases with N at low
densities, and the existence of solutions cannot be determined from knowl-
edge of the growth rate at zero. The uniqueness theorem applies to
monotonic growth functions such as the Beverton—Holt model, which is
analogous to the continuous-time logistic model. In this case, existence,
uniqueness and global stability of a nonnegative, nonzero population equi-
librium are dependent only on the single sufficient condition A, > 1.

It can now be shown that a continuous branch of positive solutions
bifurcates from the zero solution at A, = 1. Bifurcation will be considered
with respect to a general growth parameter P, which appears explicitly in
the per capita growth function g(N;y; P). It is assumed that g has a strictly
positive derivative with respect to P. As a secondary parameter, consider
the effective length scale L, which appears in the kernel. Let b denote the
value of P at which the bifurcation occurs. From equations (22) and (23),

— == —<o. 24
dL o) oL < s

db (aAl)“aA,

The bifurcation result follows from the standard Lyapunov-Schmidt
reduction technique described in Krasnoselskii and Zabreiko (1984). Near
the bifurcation point, the nonlinear operator &N can be expanded in a
* Taylor series in N around the zero solution and in the bifurcation parame-
ter P around the bifurcation point b. Because bifurcation is considered
from the zero solution, the constant term in the expansion is absent and
thus the leading order term in N is the Fréchet derivative #N. From
Property 4, it is known that % possesses a simple, positive dominant
eigenvalue A, with nonnegative eigenfunction ¢ (x). Furthermore, the
transpose operator %~ has an eigenfunction ¢,(x) corresponding to A;.
The linear term in (P — b) is given by the linear operator %, N. Because A,
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is simple, bifurcation occurs at P=»5b if the nondegeneracy condition
(B, ¢, ¥) # 0 is satisfied. The direction of the bifurcation is determined by
the higher-order terms in the Taylor expansion.

Result 3 ( Bifurcation result). The point P = b(L) is a bifurcation point for
the equation &N =N, and a continuous branch of nonzero solutions
intersects the zero solution at P = b(L). Furthermore, the nonzero solution
is positive in some neighborhood of b when P> b and negative in some
neighborhood of b when P <b.

Thus the positive equilibrium exists when population growth, measured
by P, exceeds a critical value b. Because b(L) is a decreasing function, this
critical value increases with decreasing effective domain size. As dispersal

loss from the domain increases, population growth must also increase to
ensure persistence.

24. An example. To illustrate the results of the preceding analysis,
consider an example on the homogeneous domain [0, L] in which dispersal
is modeled with the truncated Laplace kernel and growth is modeled with
the Beverton—Holt function (2). An appropriate dimensionless integrodif-

ference equation obtained by scaling the spatial variable by the domain
length L is given by

rN,(y)

’ 1
Noix) = [ [+ (r— DN(y)

0

L
Eexp(—l_,lx—yl) dy, (25)

where L =al is the effective domain length and N(x) is dimensionless
population density expressed as a fraction of the scaled carrying capacity

KL. The dispersal success function s(y; L) and the average dispersal
success rate S(L) are given by equations (8) and (9), respectively.
The eigenvalue equation for the operator & is given by

1 L
Ap(x) =f Eexp(—le —yDre(y)dy. (26)
0
[t can be shown by differentiation that this eigenvalue problem is equiva-
lent to the boundary value problem

¢"(x) = —L*(ur— 1) ¢(x),
L¢(0) — ¢'(0) =0,
Lo(1) +¢'(1) =0, 27
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Figure 4. Global stability regions for the positive equilibrium solution of
equation (25).

where p=1/A. Upon setting A, = 1, the boundary value problem yields
the function

2tan"[1/\/r—1] (28)
vr—1 ’

which describes the relationship between effective domain length and
intrinsic growth rate at the bifurcation point. Because the Beverton—Holt
function is strictly increasing, the positive solution is unique and globally
stable when A, > 1. Thus the linear analysis yields the global stability
diagram shown in Fig. 4. Bifurcation diagrams generated with the AUTO
software package (Doedel et al., 1994) showing the positive solution versus

the parameter r appear in Fig. 5, and equilibrium solutions are shown in
Fig. 6.

L(r) =

I T T T T T

[ Nodz L =10.00 (S = 0.9)
0.8} |
ed B L =2232 (S = 0.6)
0.4} T i
0.2 i

) L =0.7611 (S = 0.3)

0 P ; y ./-—T’/
1 1.5 2 2.5 3 3.5 4 4.5
intrinsic growth rate r

Figure 5. Bifurcation diagram for equation (25) showing the population size of
the stable solution versus the intrinsic growth rate r for various domain lengths.
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Figure 6. Stable equilibrium solutions of equation (25) for r = 4.

A more complete bifurcation diagram illustrating secondary bifurcations
is given in Fig. 7. This diagram plots the solution value N,(0) at the left
domain boundary instead of the integral, since some branches are indistin-
guishable from others in size and differ only in reflection around the x axis.
All unstable solutions are negative over at least some subset of the domain.
The first and third bifurcations are transcritical, and the second is a
- pitchfork.

Comparison of Figs. 2 and 6 shows that the equilibrium solutions are very
similar in shape to the dispersal success functions, suggesting that at least
in this simple case of a homogeneous habitat and truncated dispersal
kernel, dispersal success is a key biological parameter which is directly
related to the size and shape of the population equilibrium. To pursue this
relationship a step further, consider the nonspatial difference equation

04

N.(0) ol /‘” ----- e
0 -

-0.2

0.4 i

-0.6 . stable — -
0.8 unstable - --- i

AL

_1' 1 1 1 1 1 1 1 1
4

0 1 2 3 5 6 7 8 9
L

Figure 7. Bifurcation diagram for the integrodifference equation with Laplace
kernel and Beverton—Holt growth (r = 2.0) showing the first three bifurcations.
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_intrinsic growth rate r

Figure 8. Bifurcation diagram showing population size versus r for the integro-
difference equation (25) and the nonspatial model (29).

0

model

SrN,

1

N e
“T 1+ (G -1N’

(29)

where § is the average dispersal success rate for a given kernel. The
nonzero equilibrium solution to this equation is

Sr—1

r—1°~

(30)

*

which is stable and positive for all S > 1 /r. Figure 8 shows that the
bifurcation diagrams for the integrodifference equation model (25) and the
(1) nonspatial model considered for the same average dispersal success rate
have bifurcation structures which are very similar, suggesting that the
nonlinear analysis of the integrodifference equation can be reduced to
analysis of a simple difference equation if the average dispersal success rate
is known. Since this reduction is potentially a very useful tool for analyzing
biological problems it is pursued in more mathematical detail in the
following section.

3. Dispersal Success and Habitat Quality.

3.1. The dispersal success approximation. To further investigate the rela-
tionship between the dispersal success function and the equilibrium solu-
tion to the integrodifference equation, consider the general equation (1) in

»
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which the kernel is symmetric. Let
N= : N,(x)d (31)
= Ve fn £ (X) dx
denote the spatial average of the equilibrium solution, which is given by

N, (x) = fﬂ k(x,y) f(N,(y)) dy. (32)

If f(N) and N(y) are sufficiently smooth, then for each y € Q, f(N,(y))
has a Taylor polynomial

fIN(y)) =f(N) -!-f’(ﬁ(y))(N*(y)—!V) (33)
for some N(y) between N and N, (y). Substituting this into equation (32)
and using [k(x,y)dy = s(x),

N, (x) =f(N)s(x) + fnk(x,y)f’(!\?(y))(N=|= (y) — N) dy (34)

and thus

_ SR | : _
N=Sf(N) + Ffs(y)f’(N(y))(N* (y) —N)dy (35)

Q-0

Thus a first-order approximation to the equilibrium population size is the
solution to the algebraic equation

Noopr = Sf( Nogor ) (36)

as suggested by the previous example. The accompanying approximate
solution is

N, por
PP s(x)

S

N,y () = (37)

Approximate solutions computed by this method are compared with true
solutions for equation (25) in Fig. 9.

The dispersal success approximation is valid when the equilibrium solu-
tion N, (x) is close to the spatially averaged solution N for all x, so that the
mtegral terms in equations (34) and (35) are very small. However, numeri-
cal results suggest that the approximation may be good even when the
equilibrium solution is not approximately constant. An explanation is that
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Figure 9. True and approximate solutions for equation (25) with r = 4.0.

locations near the boundary that lose more dispersers to emigration have a
higher per capita growth rate due to lower population density. This can be
seen graphically from Fig. 1; lower population densities occur further to the
left of the nonspatial equilibrium, where f'(N) is greater. Conversely, in
higher density areas, dispersal success is greater, but local growth rate is
lower. Thus the products k(x,y)f'(N,(y)) and s(y)f'(N,(y)) are expected
to be approximately constant over the domain, and the integral term will be
small even when |N — N, (x)| is not.

The assumption that the kernel be symmetric is not critical to formulat-
ing the preceding approximation. In the case that the kernel is not symmet-
ric, the integral [k(x,y)dy is not the dispersal success function s(x), but
rather a closely related function representing the probability of a disperser
successfully settling at x. A generalized dispersal success approximation
that can account for nonsymmetric kernels and heterogeneous habitat
quality is developed at the end of this section.

3.2. Overcompensatory and depensatory growth dynamics. The effects of
dispersal success on population persistence and stability in the presence of
overcompensatory and depensatory growth are illustrated with numerical
examples. The nonspatial Ricker growth model (3) displays a sequence of
period-doubling bifurcations as p increases beyond 2. Integrodifference
models with the Ricker growth function also display this behavior. Many
numerical solutions to such models are found in Kot and Schaffer (1986),
Kot (1989), Andersen (1991) and Hastings and Higgins (1994), but here we
focus on bifurcation structure. While bifurcation diagrams of the nonspatial
Ricker equation have appeared in a variety of publications, (e.g. Peitgen
and Richter, 1986; Murray, 1989; Andersen, 1991), they have not been
analyzed for the spatial models (but see Andersen, 1991). A bifurcation
diagram generated by AUTO (Doedel et al., 1994) for a dimensionless
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integrodifference equation with Ricker dynamics, a Laplace kernel trun-
cated to [0, 1] and average dispersal success S = 0.5 is given in Fig. 10.

This diagram is qualitatively very similar to that of the nonspatial Ricker
model. The primary effect of dispersal loss on the Ricker dynamics is to
increase the growth rate at which bifurcations occur. For example, in the
nonspatial model with no dispersal loss, the equilibrium N, =1 is stable
for 0 < p <2, and the period-2 solution is stable for 2 < p <2.526. Chaos
and solutions of arbitrary period exist for p>2.692 (May, 1974). With
dispersal success rate S = 0.5, the positive equilibrium solution is stable for
0.682 < p < 2.694, and the period-2 solution is stable for 2.694 < p < 3.232.
Thus in a population which exhibits overcompensatory growth, net loss of
individuals due to emigration can maintain a stable equilibrium at high
intrinsic growth rates which would otherwise imply periodic or chaotic
behavior. This mathematical observation agrees with the experiments of
Krebs et al. (1969), who observed cyclic behavior in vole populations which
were enclosed by a dispersal barrier but not in a control population from
which emigration was possible.

To illustrate the effects of depensatory growth, consider an integrodif-
ference equation with truncated Laplace kernel (S =0.5) and the Allee
growth function (4), which does not satisfy the conditions of section 2
because g(0) = 0. The bifurcation diagram for this integrodifference equa-
tion is shown in Fig. 11.

In the nonspatial model (4), the unstable solution branch defines a
critical population size below which extinction is certain. A similar phe-
nomenon occurs in the spatial model, but it is not as easily determined how
the spatial distribution of the population relates to this threshold: if the
initial density is above the threshold in some parts of the domain and below
in others, does the population tend to the stable positive equilibrium or the

stable —
unstable - - -- UPTREEY ~

Z
b
£
[

T

Figure 10. Bifurcation diagram for the Laplace kernel with Ricker dynamics
(§ =0.5).
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Figure 11. Bifurcation diagram for the integrodifference equation with Laplace
kernel and Allee dynamics (S = 0.5).

stable zero equilibrium? This problem can be analyzed on infinite domains
using traveling wave methods, and, at least in some cases, conditions
sufficient for persistence have been shown (Kot ef al., 1996). Preliminary
numerical investigations on finite domains indicate that persistence is
dependent not only on initial population size, but also on distribution. A
population with total size greater than that of the unstable branch will
persist when its density is concentrated in the center of the domain, but will
go extinct if most of the density is near the edges. This observation
illustrates another mechanism by which habitat fragmentation can affect
population persistence through dispersal loss.

3.3. Heterogeneous habitats. To investigate population persistence in
heterogeneous habitats, we first consider the problem without dispersal loss
in order to isolate the effects of the heterogeneity per se. We then
incorporate the effects of dispersal loss through a generalization of the
dispersal success approximation to an environment consisting of an arbi-
trary number of habitat patches of different quality.

Suppose that heterogeneity of the habitat is modeled by variation in the
sgrowth function f(N;x); in particular, suppose that f has the form
g(N; x)N, where g(-; x) is periodic in x with period L. Though periodicity
in habitat quality is idealized, patterns of habitat fragmentation can resem-
ble those modeled by periodic functions (see, e.g. Forsman et al., 1984).
Assume further that g(N; x) is a strictly decreasing function of N and that
it is strictly positive for all x so that it satisfies the assumptions of section 2.

A specific example that can be analyzed utilizes the Laplace kernel. The
integrodifference model can be nondimensionalized by dividing the spatial
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variable by the period L to obtain the formulation
© L
Noil) = [ —exp(=Llx=yDF(N(»);y) dy, (38)
where L = al. The dimensionless parameter L is the period length divided
by the mean dispersal distance and is a measure of the effective spatial
scale of the habitat fragmentation. The scaling of the spatial variable by the

period results in the function g(-; x) having period 1. Differentiation of (38)

shows that the equilibrium equation is equivalent to the differential equa-
tion

1
—Z-fN:;(x)+N*(x) =f(N,(x);x) (39)
Because f(-; x) has period 1 the desired solution and its first derivative also

have period 1 so that the boundary conditions which accompany equation

(39) are given by N,(0) = N,(1) and N, (0) = N, (1). The eigenvalue prob-
lem is thus given by

1
= 77 b+ $(0) = g (05 1) p(x), (40)

where w = 1/A, with boundary conditions

¢(0) = (1),
¢'(0) = ¢'(1). (41)

The periodic differential equation (40) is a form of Hill’s equation and
thus possesses a countable set of real eigenvalues p (Eastham, 1973;
Magnus and Winkler, 1979). The equivalent integral formulation of this
“eigenvalue problem can be shown to satisfy the conditions of Property 4,
and thus the largest eigenvalue A, is positive and corresponds to a positive
eigenfunction ¢,(x). A sufficient condition for this eigenvalue may be
obtained directly from equation (40) without any further assumptions on
the periodic function g(0; x). For notational convenience, let r(x) = g(0; x).
Equation (40) for the dominant eigenvalue may be written in the form

1 ¢
’\1[1—1—2—'&;]—]=!’(«'€), (42)
which can now be integrated from x =0 to x = 1. Upon letting
L _d |
h=—=—Ilog ¢,, (43)

.  dx
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the integral of the second term on the right becomes

1 ¢ 1
—dx= [ K +h*dx. (44)
ha ),

Because ¢(x) is periodic in x, h(x) is also periodic in x and thus the
first integral term on the right side of (44) vanishes. Denote the second

term by I = [jh*dx, which is strictly positive. Thus the dominant eigen-
value can be expressed as

[or(x)dx 1
A (/D) >f0r(x)dx. (45)
Thus for I sufficiently large, the population can persist even when the
spatial average of the intrinsic growth rate is less than 1.

In order to solve the eigenvalue problem explicitly, a specific form for the
periodic function g(0; x) must be specified. Thus suppose that the environ-
ment consists of alternating patches of “bad” and “good” habitat with
intrinsic growth rates r; <1 and r, > 1, respectively. Because g(0;x) has
period 1, suppose that g(0;x)=r, for 0 <x<1—R and g(0;x) =r, for
1 — R <x <1 (see Shigesada and Kawasaki, 1986). The parameter R repre-
sents the total fraction of the environment that consists of “good” habitat.

The function g(0; x) is thus given by the periodic extension of the piece-
wise-constant function

©0: x) = r(x) r, 0<x<1-=R, (46)
X = =, 1-R<x<1.
The eigenvalue problem (40) is now given by
~L*(pur, —1)¢, bad patches,
¢x.:.‘ = 2 : p (47)
—L°(ur,—1)¢, good patches,

with boundary conditions (41). Because the kernel of the original integrod-
ifference model is continuous, the eigenfunction ¢(x) and its first deriva-
tive must be continuous at the discontinuity x =1 — R of r(x). As usual,
the desired result from the linear analysis is a relationship between disper-
sal ability and habitat quality at the bifurcation point u = 1. Upon letting
n =1, setting b*=(r, — 1)/(1 —r,) > 0 and making the substitution H?2 =
L/ (r,—1)(1 - r,) , the eigenvalue equations (47) become

HZ
¢xx = ?,
—H?b%, xe(1—-R,1].

x€[0,1-R), (48)
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The parameter H is the heterogeneity of the habitat relative to dispersal
ability. When the organisms are highly mobile and/or the difference in
quality between the good and the poor patches is small, H is close to zero.
On the other hand, when organisms are relatively sedentary and/or the
difference between the growth rates is large, H becomes large.

Finding the general solution to (48), applying the boundary conditions
(41) and enforcing the continuity conditions of ¢(x) and its derivative at
x =1 — R yields the relationship between H and b at the bifurcation point
as the first-branch solution to

1 _ HU1-R) H(1-R)
(bz )smh-—-—

— —b? sin Hrb + 2 cosh—«-b—-cos Hrb — 1| =0.

(49)

The two extreme cases H — 0 and H — o« can be treated analytically. As
H — 0, equation (49) reduces to

1
= 50
R 1+b* (50)
or, equivalently,
Rr,+(1-R)r,=1. (51)

Thus when the effective heterogeneity approaches zero, that is, when the
organisms are highly mobile relative to the patchiness and/or the differ-
ence between good and bad habitat patches is very small, the positive
equilibrium solution exists and is stable when the spatially averaged growth
rate exceeds 1. In this case the high mobility of the organisms effectively
averages habitat conditions over the entire domain.

At the other extreme, when the organisms disperse very little relative to
the scale of habitat periodicity (H — «), equation (49) has solution b =0.
In this case, the condition for existence of the nonzero solution is b > 0 or,
equivalently, r,> 1. When dispersal does not tend to shuffle organisms
among the patches, the condition for population persistence is simply that
the good patches have growth rate greater than 1. Solutions to equation
(49) and the resulting stability regions for values of H between these two
extremes are shown in Fig. 12.

To conclude this section, it is instructive to generalize the dispersal
success approximation to an environment which consists of an arbitrary
number of discrete habitat patches D, each with a constant internal
habitat quality. In this case, a spatially constant growth function f(N)
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Figure 12. Stability of the positive equilibrium for the periodic problem. The
graph for the extreme case H = is the vertical linc b = (.

models growth within patch i. Performing a derivation analogous to that
used previously to derive the dispersal success approximation yields the
generalized approximations

Noppe = LS Nogr) (52)
and
Nappe(¥) = L fi Ny ) 5:(x), (53)
where
5,(x) =f k(x,y) dy (54)
.,
and
1
Si=1- [ s:x) dx. (55)

a0

The quantity s,(x)/V,, defines a density function governing the probability
that an organism beginning dispersal in patch i settles at x, and S, is the
probability that an organism beginning dispersal in patch i successfully
settles somewhere in ().

4. Discussion. Conservation biologists realize the importance of connect-
ing population persistence with the scale of habitat fragmentation relative
to dispersal distances (Doak et al., 1992; Dunning ef al., 1992). Making this
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connection requires a simple way to relate parameters measuring dispersal
success and local growth conditions to population persistence. Using disper-
sal success rate as a precise measure of the effect of fragmentation on
successful dispersal, we have shown how dispersal success and population
growth interact to determine persistence. Not surprisingly, when local
growth dynamics are compensatory, a positive, stable equilibrium solution
relies upon intrinsic population growth being large enough to outweigh
dispersal loss due to emigration. However, when fragmentation of habitat
results in isolated patches that are much smaller than the average dispersal
distance of the organism, extinction results even when per capita growth
rates remain high.

The dispersal success approximation describes how both the size and
shape of equilibrium solutions are largely determined by the dispersal
success function. Our results are consistent with the observation of Sievert
and Keith (1985) that equilibrium density of snowshoe hares near the
southern limit of their range was lower than it was farther north due to
decreased dispersal survivorship near the boundary, suggesting that disper-
sal loss may be a reason why population density generally decreases near
the boundary of a specie’s geographic range (Hengeveld and Haeck, 1982;
Brown, 1984, 1995; Hengeveld, 1990; Maurer, 1994). When the environ-
ment consists of multiple patches of variable quality, equations (52)—(55)
provide a recipe for calculating the approximate population density N, (x)
and size NV, if the dispersal kernel and the growth functions are
known. Once s(x) and S; are computed from the kernel, the algebraic
equation (52) can be solved for N, . Substituting this value into each of
the functions f(N) provides the coefficients for the linear combination of
the dispersal success functions s(x) in equation (53), which yields the
approximate equilibrium population distribution.

The accuracy with which the dispersal success approximation predicts
population densities even when equilibrium solutions are not constant
suggests a close relationship between the bifurcation structures of the
integrodifference model (1) and the nonspatial model (36) utilizing the
average dispersal success rate (7). Our numerical bifurcation analyses
showed this to be true not only for compensatory (Beverton—Holt) dynam-
ics, but also for overcompensatory (Ricker) and depensatory (Allee) dynam-
ics. For sufficiently high dispersal success, integrodifference equations with
Allee dynamics possess two positive solution branches; the larger of these
two is stable, and the other is unstable. In the nonspatial Allee model, the
unstable solution provides a threshold population value below which the
population goes extinct. However, in the spatial model, a total population
size exceeding that of the unstable branch can go extinct if too much of the
population density is located in areas with poor dispersal success. Overcom-
pensatory growth, modeled with the Ricker dynamics, was shown to be
stabilized by dispersal loss, which increased the intrinsic growth rates at
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which the various bifurcations occur (but see Hastings and Higgins, 1994,
for evidence that these models can exhibit long-term transient dynamics not
reflected by the bifurcation structure).

Construction of an integrodifference model on an infinite domain of
periodically varying quality allowed investigation of the effects of habitat
heterogeneity on population persistence. The minimum fraction R of the
habitat consisting of good patches that is necessary for persistence is a
decreasing function of habitat quality. The rate at which R decreases with
habitat quality depends on the effective heterogeneity H, which measures
the organism’s dispersal ability relative to the scale of the fragmentation
and the difference in quality between good and poor patches. Figure 12
shows that for a population of highly mobile organisms ( H small) to persist,
either the good patches must be relatively close together (R ~ 1) or must
support very high fecundities (b large) in order to mediate losses incurred
by settlement of dispersers in the poor habitat. On the other hand, if the
organisms are fairly sedentary or patch size is large (H large), the good
patches may be separated by larger distances. The effect of increased
dispersal ability in this case is to average environmental conditions, allow-
ing the poor quality patches to affect overall persistence of the population
o a greater degree than they would if the organisms tended to disperse
less. Doak et al. (1992) have theorized that spatial scale of habitat fragmen-
tation relative to dispersal distance is an important determinant of pop-
ulation persistence, but their extensive review of published field data
discovered such vague reporting of the relative spatial scales of dispersal
and fragmentation that they were unable to determine any empirical
relationships between spatial scale and population persistence.

In both the cases of heterogeneous habitats and single isolated patches,
increased  dispersal ability is detrimental to the population. Increased
mobility leads to increased settlement in poor quality habitat (“sinks”) and
to larger dispersal loss from isolated patches of good quality habitat
(“sources”). Although dispersal from source areas can maintain local popu-
lations in sink areas and thus increase the probability of overall population
persistence (Roughgarden and Iwasa, 1986; Pulliam, 1988; Kadmon and
Shmida, 1990; Pulliam and Danielson, 1991; Amarasekare, 1994), if the sink
habitats are too large or the intrinsic growth rate in the source habitats is
too small, dispersal from the source areas can result in extinction (Howe
et al., 1991; Davis and Howe, 1992). These results are consistent with those
of Hardin er al. (1990) for similar types of integrodifference equations on
finite domains. They proved that in a time-invariant environment, the
optimal dispersal strategy is to not disperse at all. As long as at least some
of the habitat is of high enough quality to ensure existence of a positive
equilibrium solution to the appropriate nonspatial growth map, the popula-
tion is certain to persist if no individuals leave the high quality patches.
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However, most organisms have evolved dispersal strategies over a long
period of time in environmental conditions that do not change rapidly. A
significant body of literature devoted to the evolutionary aspects of disper-
sal generally supports theories that dispersal is advantageous to population
persistence in the long term because it serves to promote genetic fitness
(Lidicker, 1962; Dobson, 1979; Greenwood, 1980; Greenwood and Harvey,
1982; Hoogland, 1982; Moore and Ali, 1984; Cockburn et al., 1985; Flow-
erdew, 1987; Wolff et al., 1988; Johnson and Gaines, 1990), colonize
depopulated areas (Howard, 1960; Smith, 1974, 1980; Wiens, 1976; Gaines
and McClenaghan, 1980; Howe and Smallwood, 1982; Hansson, 1991),
regulate population density (Krebs et al., 1969; Gurney and Nisbet, 1975;
Bownan and Robel, 1977; Namba, 1980; Flowerdew, 1987; Krebs, 1992),
reduce competition for mates and other resources (Dobson, 1979; Waser,
1985; Shields, 1987; Anderson, 1989; Ribble, 1992) and connect spatially
separated subpopulations (Forrest et al., 1988; Pulliam, 1988; Howe et al.,
1991; Pulliam and Danielson, 1991; Davis and Howe, 1992). These advan-
tages generally outweigh the costs of dispersal, which include increased
mortality during dispersal due to predation and unfamiliarity with the
terrain (Jenkins et al., 1964; Metzgar, 1967, Bownan and Robel, 1977,
Keppie, 1979; Sievert and Keith, 1985; Barash, 1989; Small et al., 1993),
establishment of dispersers in habitat of poorer quality than that which
they emigrated from (Carl, 1971; Fleming, 1979), reduction in the fecundity
of dispersing individuals (Shields, 1987) and net population losses in areas
- which receive few immigrants (Hanski and Zhang, 1993). It is the rapid
fragmentation of habitat that has occurred because of human activity that
has greatly increased the risk of dispersal to populations occupying artifi-
cially created heterogeneous environments (Howe et al., 1991; Davis and
Howe, 1992). These observations suggest that organisms such as the north-
ern spotted owl Strix occidentalis caurina (Foreman et al., 1984; Doak, 1987,
Lamberson ez al., 1992) and the black-footed ferret Mustela nigripes (For-
rest et al., 1988) that possess inherently low intrinsic growth rates, tend to
undertake long dispersal movements and evolved in large areas of contigu-
ous habitat that are particularly susceptible to the effects of habitat
fragmentation. Organisms with high fecundities and smaller characteristic
dispersal distances may be better able to withstand habitat fragmentation.

In some cases there may be a correlation between dispersal success and
growth conditions: dispersers originating in high quality habitat may have
greater dispersal success than those originating in poor quality habitat if
the organism’s characteristic dispersal distance is small enough relative to
the size of the patch that most dispersers settle in their patch of origin. This
is the case in which little spatial averaging of habitat quality occurs, and
population persistence is generally determined by conditions in the good
quality patches. On the other hand, if characteristic dispersal distance is
large relative to patch size, dispersal success is more likely to be deter-
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mined by the proximity of the patch to poor quality habitat or the edge of
the domain. In this case, not only are habitat conditions averaged over the
domain, but dispersers originating in good patches surrounded by poor or
unsuitable habitat may experience high mortality. The risks associated with
settlement of dispersers in low quality patches become even greater in
organisms susceptible to Allee effects. These results show quantitatively
how habitat fragmentation decreases population persistence when the
organism’s characteristic dispersal distance is large compared to the scale
of the fragmentation, when the poor quality patches are of much lower
quality than the good patches and when the good patches are surrounded
by poor quality or unsuitable habitat.
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