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Abstract. We model a biological invasion with separate mobile and stationary states for
dispersal and reproduction. Transfer terms permit organisms to switch states. Formulating
the problem as a nonlinear parabolic system, we analyse traveling wave solutions and
calculate the invasion speed. Results show that even when transfer rates are infinitesimally
small, a rapid invasion can occur.

1. Biological Background

Whereas classical partial differential equation models for biological invasions
assume that populations grow and disperse continually (MURRAY, 1989), biological re-
ality may be far different. For example, many populations, ranging from plants to birds,
reproduce and disperse at separate distinct times in the year, and thus are understood far
better using models such as integro-difference equations (KoT, 1992; VEIT and LEWIS,
1995). Even when populations do not have distinct reproductive and dispersive seasons,
it is rare that these two events actually occur simultaneously. It is far more likely that
individuals switch between a sessile reproductive state and a mobile state with no
reproduction. In this paper we investigate the effect that this life history dynamic has on
the spread rate for biological invasion.

Our original impetus for studying this problem came from modeling microbes
spreading into a new environment (LEWIS et al., 1995). In their stationary state microbes
are bound to plants, and in their mobile state they move in the air or in the ground water.
While stationary microbes are able to reproduce, they cannot spread into the new
environment. On the other hand, mobile microbes are able to spread into uncolonized
regions and access new resources, yet they typically do not reproduce until they switch
back to the stationary state. Individuals in the mobile state have the added cost of a high
mortality rate. It became clear to us that this life history dynamic is found in a wide variety
of organisms, being typical for species not meeting the stringent modeling requirement
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found in the classical partial differential equation models of simultaneous reproduction
and movement.

In this paper we formulate our model under the following assumptions about the
organism’s life history:

1. Individuals switch from mobile to stationary state according to a Poisson
process with rate A,;.

2. Individuals switch from stationary to mobile state according to a Poisson
process with rate Ay,

3. Individuals in the stationary state undergo logistic growth.

4. Individuals inthe mobile state undergo density-independent mortality according
to a Poisson process with rate p.

5. Individuals in the mobile state move according to a simple random walk
process.
Our purpose in this paper is to calculate analytically the rate at which an organism, newly
introduced into a region, will spread spatially. This model can be considered a natural
extension of the classic Fisher equation (FISHER, 1937) accounting for mobile and sta-
tionary states in an individual’s life.

2. The Model

The relevant equations, incorporating the assumptions given in the previous section,
are:
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where s(x,?) is the density of organisms in the stationary state and m(x,?) is the density of
organisms in the mobile state, x being space and t being time; Ay is the rate of switching
from stationary to mobile state and A, is the rate of switching from a mobile to stationary
state; r is the intrinsic rate of reproduction in the stationary class and & is the carrying
capacity; u is the density-independent mortality rate in the mobile state and D is the
diffusion coefficient describing the random motion. It is assumed, unless otherwise
indicated, that the parameters A, A, and uare positive and that the rate of reproduction
in the stationary class exceeds the transfer rate from stationary to mobile classes, so that
r> Asm.

To focus on hey parameters and to facilitate analysis we nondimensionalize the
model (1) by defining the new variables
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Dropping the asterisks for notational simplicity, we have
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Null clines for the spatially homogeneous version of (2), satisfying f=0and g =0,
respectively, are:

m= —;;(lms -s(1-5s)) | (3)
s=k ; A m. (4)

Solving (3) and (4) simultaneously yields the trivial equilibrium and a positive
equilibrium, (5 ,m’), where

E:l—lm(l———l—”"—J (5)

sm__ = (6)

3. A Wave of Invasion

A wave of invasion by organisms from both the mobile and stationary pools is shown
by a traveling wave solution moving at a constant speed, ¢, and with a constant profile.
Mathematically, these requirements are captured in a change of variables:
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S=1-Am

Fig. 1. Nullclines of the spatially independent version of Eq. (4).

(s,m)(x,1) = (8, M)(x ~cr) = (S, M)(2), (7)

where z=x-ct. This describes a solution moving with velocity c in the positive x direction.
In the new coordinate, the system of partial differential Eq. (2) becomes

~c8'= =8 +S(1- A, ) + A M = £(5, M) } (8)

—eM'= —pM — A M+ A, S+ M" = g(S, M)+ M"

where prime denotes differentiation with respect to z. Because s and m represent popu-
lation densities, we seek traveling wave solutions S(z) > 0 and M(z) > 0 for all z.
Defining © = M’, a wave of invasion is given by the boundary conditions:

S(-) =75, M(-o)=m, O(-w)= 0,} ©)

§() =0, M(») =0, O(x)=0.

These boundary conditions imply that ¢ must be positive. To see this, it is helpful to
look at the null clines of the spatially independent version of (8), shown in Fig. 1. If M is
non-negative then ¢ # 0, because ¢ = 0 would imply f{S,M) = 0, and the solution for (8)
satisfying (9) would thus have a trajectory lying exactly on the null cline f= 0. However,
on this null cline M < 0 for § < 1 — A,,, a contradiction.

Not only must ¢ # 0, but ¢ > 0, as we show here. A trajectory satisfying the boundary
conditions (9) must cross the line = 1 — A, at least once with S’ < 0. First we eliminate
the case where S =1 — A,,, and S’ = 0. Here the trajectory is again on /=0 and so M = (),
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and either (i) M" # 0 or (ii) M’ = 0 and M" <0 by (8). In either of these cases M <0 in some
neighborhood of (S,M) = (1 — Asm,0), contradicting our assumption of non-negativity. This
means that a trajectory must cross S= 1 — As, with §' strictly less than zero. Then. for some
z,S=1-Agmand §' <0, and we have in the first equation of system (8)

—cS'=~(1=Agn) + (1= Ay ) +ApeM
=ApsM 20, (10)

which implies that ¢ > 0. We excluded the case ¢ = 0 in the previous paragraph and thus
¢ must be positive. :

4. Local Stability

The eigenvalues associated with linearization about the trivial equilibrium are given
by the roots of

Py(0)=0" + Aj0* + 4,0 + 4, © (1)
where
1-A4,, +c?
e (12)
c
Ay =1=2Agy —(p+2A,) (13)

4 - ~(Amshem +(1 —c Agm )1 +Am))_ (14)

According to Descartes’ rule of signs, Po(o) has one positive root. The other two
roots have negative real parts, thus indicating that (0,0,0) is hyperbolic, with a stable two-
dimensional subspace and an unstable one-dimensional subspace; these are tangent
respectively to the corresponding linear stable and unstable subspaces at the origin
(GUCKENHEIMER and HOLMES, 1983; AMANN, 1990).

The characteristic equation associated with the nontrivial steady state is

B(c)=0c’+B,c* +B,oc + By, (15)

where
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3 - (—2§+1~Am)+c2

= (16)
Bz=(-—2§+l—zlmJ—(p+lm) (17)
B - Amshom + (1 +,1:,)(-2§+ 1 —;.,,,,). (18)
Noting that
~25+1- 2, = -5 - Zmshom <0 (19)

A4} - 18424, 4, + 274045 + 44,43 - 442 =0 (20)

and the application of ( 12)(14), gives (20) as:



(AR LR L

o Ygand g BTV ek e R ettt e i <.
ST T ) e ......“-i.Ln'.‘_-.'.‘.s:?.‘.-.‘..-"-u‘;x:l.',-.-...-..-;u'_t*’::in..'.-\.;.\?-fq.:"rv.r.\'_!vn- e e

Invasion with Mobile and Stationary States 7

(a) Po(o)

o ag_ 0} 04 o3

®) Py(o)
+ + g
2 g3

(©) By(o)

/

Fig. 2. Roots for the polynomial Py(o) in Eq. (17). Each graph has the single positive real root 3. In addition
there are: (a) two distinct negative roots; (b) two repeated negative roots; (c) two complex roots with
negative real part.
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k, +c?
i—z-s——)-(D3c6+D2c“ +Dic* +Dy) =0 (21)
c
where

Dy = ~4( A gy + iy ) = (ky ~ k)
Dy = 6(Agn s + iy )by = 3k,) + 2(ky = by )7 (I - 2k;)

Dy = 6ky (A mAims + ik J(ky =3K) = K3 (ky = K3 )* +27(A Ay + bk, )?

smms
Dy =—4(A A + ki )k3

and
kl =(“+lm) (22)

ky =(1=Agy)- (23)

When Eq. (21) holds, the graph of Py(o) will qualitatively be like Fig. 2(b). The essential
roots of (21) are contained in the following cubic in ¢2:

R(cz) =Dyc® + Dyc* + Dic? + D, = 0. (24)

It can be shown numerically that two distinct positive roots for ¢2 in (24), occur over
the biologically reasonable range:

0<u<100
0<A4,, <100¢. (25)
0<A4,, <l

Here A;m was chosen to satisfy our assumption that the intrinsic rate of reproduction in the

stationary state exceeds the transfer rate from stationary to mobile classes.
Accordingly, we take square roots of the two positive solutions to (24) in 2, giving

us two critical, positive values of c. These values. 0 < ¢; <c; resultina graph of Py(o) that
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Fig. 3. Ranges of valid values for ¢, with ¢;2 and ¢,? given as the positive roots to (33).
g

looks qualitatively like Fig. 2(b). For the remainder of the paper, we will assume that we
have exactly two real positive roots of (24). These two positive roots introduce two ranges
of valid values for ¢, (0,c;] and [c2,), as in Fig. 3.

The local maximum of Py(o) for a wave speed c is given by:

F(c)= Py(00(c)) = g + 404 + 4,00 + 43, (26)

where oy solves

0=P'(0)=30" +24,0+ 4,. (27)

A combination of analytical and numerical arguments can be used to show that F(c) is
positive on (0,c;) and (c2,%0), is negative on (cj,c2) and satisfies a transversality condition
dF/dc # 0 for ¢ = ¢}, c2 (SCHMITZ, 1993). In other words, whereas orbits do spiral towards
the origin for ¢ € (¢1,¢2), they do not spiral towards the origin for the two ranges of valid
values of c: (0,c1] and [c2,0).

These results are confirmed by solving (8) numerically, using the method described
at the end of Section 4. Figure 4 depicts a solution, shown in the S-M plane, with ¢ > c;.
Notice that the solution stays positive. For ¢ € (c1,c2), the solution spirals to the origin,
going negative in S and M as depicted in Fig. 5.

Though there are two ranges of wave speeds for which waves do not spiral to the

- origin, the approach of solutions can be examined more carefully to exclude the lower
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Fig. 4. Heteroclinic orbit to traveling wave problem (12), (14) with ¢ € (¢3,). The numerical solution, used
a shooting method with a variable length of integration (see end of Section 4).
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Fig. 5. Heteroclinic orbit to traveling wave problem (12), (14) with ¢ e (c1,¢2). The numerical solution, used
a shooting method with a variable length of integration (see end of Section 4).

range. Orbits for the nonlinear system approach a stable node along the subspace spanned
by the eigenvectors associated with negative eigenvalues of the system linearized about
the node (BRAUN, 1983; GUCKENHEIMER and HOLMES, 1983). In Appendix A we show
that for the lower range of possible wave speeds, (0,c], both eigenvectors associated with
negative eigenvalues of the node (0,0,0) have either a negative S or a negative M
component, and thus trajectories violate our non-negativity assumption. Consequently,
only wave speeds in the upper range [c,) are possible for this model.

We calculated the minimum wave speed ¢ numerically by fixing the value of Mand
solving for the largest root of (24) as Ay, and A,,; were varied (Fig. 6). The surfaces in F ig.
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Fig. 6. Minimum wave speed c;, calculated as the square root of the larger positive root of (32), and given
as a function of transfer rates Ay and Ap,. (2) Mortality rate u=0. (b) Mortality rate u=0.5. (c) Mortality

rate u=1.0.
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6 illustrate a trade-off between benefits of growth plus no dispersal in the stationary class
and mortality but dispersal in the mobile class. The balance required for the most rapid
invasion is given by the high points on the surfaces in Fig. 6. Whereas the case u=0, shown
in Fig. 6(a), indicates that invasion is fastest for equal transfer rates, the case >0, shown
in Figs. 6(b) and (c), indicates that invasion is fastest when Ams exceeds Aqy,.

We numerically investigated traveling wave solutions by solving the full system (1)
via the method of lines and Gear’s method for integration using a variety of different initial
conditions. A domain size was chosen that was many times longer than the width of the
wave. Boundary conditions were specified as being zero-flux. The wave speeds observed
in the simulations are approximately equal to the minimum wave speed, c3, calculated
numerically from Eq. (24). Thus the numerical evidence indicates convergence of the
initial data to a solution moving at the minimum wave speed. The convergence of related
traveling waves has been analysed in depth for Fishers equation (BRAMSON, 1988).

6. Analysis of a Simplified Case

We consider here the case where there is no mortality in the mobile class and the
transfer rates between mobile and stationary classes are identical

u=0, A, =24,=41 (28)
(see Fig. 6). In this case, substitution into (24) yields the minimum wave speed as
c=1.

It is interesting to note that this is precisely half of the minimum wave speed for Fisher’s
equation, which describes simultaneous logistic growth and diffusive dispersal of a single
population (MURRAY, 1989). We observe that the case with no mortality in the mobile
class (u = 0), and equal transfer rates A between mobile and stationary classes should
equally distribute the fraction of time that an individual spends in the mobile and
stationary classes and thus render an effective growth rate of » = 1/2 and diffusion co-
efficient D = 1/2. In this case our minimum wave speed of ¢; = | is consistent with the
minimum wave speed for Fishers equation 27D .

Perturbing the identical transfer rates by defining Aps = Agm + ve, v=+1 ,0<e< Agm,
yields

R(1)=-&*(4ve+1+24,, +42,) (29)

<-6*(1-1,0)", (30)

(see (24)) thus indicating that R(1) < 0 for £ 0. This, in turn, implies that ¢; < | for ¢ =
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0 (Fig. 3) and thus the identical transfer rates yield the largest minimum wave speed. In
the case where ¢ is a small parameter, the minimum wave speed c; can be calculated as
a regularly perturbed series about ¢; = 1:

=1+ 7. (31)

Substitution of A,s = A;m + £and ¢ = ¢3, as given above (31), into the cubic R(c?) (24), and
grouping by successive orders of ¢ yields the coefficients ¥, the first five of which are
given in Appendix B. Note the fact that coefficients of the even powers of ¢ are negative
is consistent with the above results regarding the maximum wave speed when &= 0.

It is interesting to note that in the simplified case with no mortality and identical
transfer rates (28) the minimum wave speed is independent of A and is thus valid even as
A — 0and the two equations become uncoupled. The reason for this behavior can be found
in the construction of an approximate solution.

Equation (8) is rewritten as

S +S(1-8)-AS+AM =0 - (32)
M'=AS+ M+ M" =0, (33)

and the boundary conditions remain as given by (9). Because the solution to the traveling
wave problem is only unique modulo translation in the independent variable, we add the
additional constraint S(0) = 1/2. This also centers the wave about the origin.

The system (32)—(33), (9) is singular for M; as A — 0, bounded solutions to (33) are
constant and thus do not satisfy the boundary conditions (9). Using the compressed
variable & = Az we rewrite (32)—(33) as

AS, +5(1-8)-AS+AM =0 (34)

AM; = AS+AM + A*M,; = 0. (35)

Thus viewed on a large space scale of order &, (32)—(33) defines an “inner” transition layer
for S, which can be matched with the “outer” solution defined by (34)—(35).
Thus to O(A) we have the solution as

§=(1+exp(z))”, - (39)

e {1 —exp(Az), z<0

. 37
0, z20 (37)
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Fig. 7. Comparison of numerical solution of (4) and asymptotic solution (89)~(90) for u =0 and A, =
Asm = A=0.05. Initial conditions for s are given by the light dashed line and initial conditions for m were
identically zero. The solution for ¢ > 0 is given by the solid line and is shown every 34 time units. The
asymptotic solution, centered about z = 0, is given by the heavy dashed line. Boundary conditions are
Neumann. The numerical solution method uses the Method of Lines and Gear’s Method.

Figure 7 compares this approximate solution for the traveling wave to the numerically
calculated solution. Notice that as A — 0 the first order approximate solution for S (36)
remains unchanged. This describes a “kinematic” wave driven solely by the logistic
reaction dynamics. The apparent movement of the wave is solely a function of the fact that
each point in space lags slightly behind its neighbor to the left, and the shape of the wave
is chosen precisely so as to give a constant speed. Whereas 1> 0 gives a minimum wave
speed of ¢ = 1, the A = 0 case has no minimum wave speed associated with it. In other
words, the O(1) equation associated with (32), ¢S’ + S(1 - 8) = 0, has a non-negative
solution for all c.

7. Discussion

Our model is a first attempt to analyse invasion rates in the presence of individuals
switching between distinct mobile and stationary classes. How fast the organisms invade
is governed by a trade-off between reproduction in the stationary class and dispersal but
mortality in the mobile class. This can be seen in Fig. 6, where the proportion of organisms
in each of these two classes is governed by the switching rates A, and A,,,. Here the in-
vasion is fastest if there is no mortality in the mobile class =0 and transfer rates between
stationary and mobile classes are equal Agm = Ans. For this case the minimum speed of
invasion, given in dimensional terms as +/Dr, is exactly half that of Fisher’s model
2 \Dr ), which describes a single population growing and dispersing (FISHER, 1937). Thus,
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for populations switching between mobile and stationary states, Fisher’s formula applied
blindly to field measurements of the intrinsic growth rate and the mean squared displace-
ment (2D¢) will overestimate spread rates to be more than twice their true value.

Our results also contrast with those of Cook (COOK, 1995) where it is assumed that
individuals are born into either mobile or stationary subpopulations and remain there for
life. For Cook’s model,

%—: D%’i’-+p¢(m+s)
2~ (1-p)8(m+s),

where ¢ is the growth function, the minimum wave speed is calculated as ¢ = (1 +

\/E )4/¢’(0)D . Here 0 < p<1 describes the proportion of individuals born into the mobile
population. This minimum wave speed for Cook’s model is bounded above by that of
Fisher’s equation, and is bounded below by that of our model presented in this paper. The
case pt =0 and Ams = Agm = A = 0 in our model has an analogy with the case p — 0 with
Cook’s model. In both cases the mobile and stationary phases are only weakly coupled and
the minimum wave speed approaches ,/ D¢’ (0) . This warns ecologists that, even in the
presence of an infinitesimally weak link between mobile and stationary classes, a
population can invade at a significant rate.

In our analysis we consider only the case of motion by diffusion. The mobile class
could possibly move by a mixture of diffusion and convection. While our analysis could
be simply extended to cover this case, numerical simulations show the addition of a
convective term corresponding to bulk flow in the mobile class can serve to slow down
or even reverse an invasion.

Many thanks to Julian Cook, Peter Kareiva and Jim Murray for valuable discussions. This
work was supported in part from a grant from the Environmental Protection Agency, by NSF grant
DMS-9457816 and by an Alfred P. Sloan research fellowship.

APPENDIX A

Excluding the Lower Range

To show orbits are negative for the range of wave speeds (0,c1), we find an expression
#(c,oi(c)) relating the S and M components of the eigenvectors and derive a differential
equation involving this expression. Solving this differential equation yields an expression
that allows us to evaluate the sign of ¢(c,0i(c)). For wave speedsin (0,ci) the signis negative
and for wave speeds in (c2,0) the sign is positive. That is, given eigenvalues for J (41)
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evaluated at (0,0,0) o1 < 0> < 0 and associated eigenvectors v; = i,via,va), i= 1,2, we
will show that ¢ € (0,c;) implies

sgn(v; ) = sgn(v;,), i=1.2, (38)
and that ¢ € (c¢3,00) implies
sgn(v; ) =sgn(v;,), i=12. (39)
By definition, oj, and v, i = 1, 2, satisfy
(J-ol)v, =0, (40)

where the linearized matrix associated with (8) is:

——(-2S+(1-,1,,,,)) 0
c c
J= 0 0 1| (41)
~Agm H+A, -c
Solving this system of equations we find that
k, J A
-2 _5. _Ims ., =0 42
( . O; Vi p Via ( )
or
Via = ¢(Cs O'i(c))"n (43)
where
1
¢(c, crf(c)) = _A_(kz + ca,-(c)). (44)

ms

Notice that ¢ depends both on ¢ and o}, and that the eigenvalue o; also depends on c. The
sign of ¢(c,oi(c)) depends on the relative sizes of the eigenvalue, o; and k,. As written,
evaluation of sgn(¢(c,0i(c))) is inconclusive. In order to determine the sign, we derive a
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differential equation. We do so by first differentiating ¢(c,0i(c)):

dg(c,0:(c)) _ 1 (cdd,-(C) ot Ui_(c)} (45)

dc A de

ms

To evaluate this derivative, we need doi(c)/dc. To calculate doi(c)/dc, we consider Py
evaluated at the eigenvalue o; and differentiate implicitly:

%(Po(a,.))=-§c—(af + A% + 4,0, +A3). (46)

Because Py(oi(c)) is identically zero for all ¢, so is dPo(0oi(c))/dc. Thus,

Py(0i(¢)) do;(c) + Py (ai(c)) dd, ~ 6&(0}((:)) ddy _

0. 47
do; dc 04, dc 0A, dc (47)
Solving fo_r doi(c)/dc we have
dd, dA
2 44, 3
o — +—
dO‘:‘(C) = : _ic‘_ dc . (48)
dc 307 +24,0,+ 4,
Using the fact that
dc
and
a4-cB.0h (50)
dc c
we have
3 k
dé(c, () y |39 +(Al+2 . ]a,? + 4,0, + 4,

=- . 51
de Ao 30} +24,0; + 4, (51)
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Adding —Py(o;), which is identically zero, we have

dg(c,0i(c)) _ 1 20} (ky +co;) (52)
dc Ams | c(307 +24,0,+4;) |
This is a first order linear differential equation; namely,
dé(c,o;(c
%—(—)—) = h(c, 0:(c))¢(c,0;(c)) (53)

where

20}
o307 +24,0,+ 4,)

h(c,0;(c)) = (54)

The solution of this equation is an expression for ¢(c,oi(c)) of which we can evaluate the
sign.

Notice that the denominator of k(c,o;(c)) is precisely the derivative of Py with respect
to oevaluated at o;. Thus for c in the intervals (0,c;) and (c2,%0) the denominator is positive
at oy and negative at o, (see Fig. 2(a)) so that

h(c,0,(c))>0 (55)

h(c,0,(c))<0. (56)

Note that A(c,oi(c)) is undefined when ¢ = ¢, or ¢ = c; (see Fig. 2(b)). We now consider
twocases: 0<c<cjandc; <c<oo.

Case I: ¢ € (0,¢1]
By solving the differential Eq. (53) with two different initial conditions, we show that
in this range, v;; and v;; have opposite signs, or in other words

#(c,0:(c))<0 (57)

see (43).
To find an initial condition, we investigate how the two negative roots of Py, (11),
o1 and o, behave as ¢ — 0. An asymptotic expansion in powers of ¢ yields
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ky  Aggh )
o) =.-?+-—';‘c-22—’"‘-c+0(c ) (58)

and

0y =- ’&m&_n:_zﬂz. +0(c). (59)

Using (53) and i = 1 we have a differential equation for ¢(c,o1 (c)), the expression
relating the first and second components of v, (see (43)). Choosing 0 < ¢, << 1 and
substituting in (44) we have

AL CRACY)

<0, (60)

which serves as an initial condition for the differential equation

D _ (e, 01(6))o(c. 1<) (6)

The unique solution to the equation with initial condition (60) is

¢’(C» C’l(");cs) = ¢11(Cs)°xPU:‘ fl(]', 0'1()’))41’], (62)
for ¢ € (cec1). Thus, because ¢11(ce) <0 we have

$(c,01(c))<0 (63)

for all ¢ € (ce,c1). Furthermore, this result holds for ¢, arbitrarily small, so (63) is true for
c € (0,c1).

The same conclusion holds for 2. Choosing ce sufficiently small we have the fol-
lowing initial condition:
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$12 (Cs) = ¢(~’-'s 02 (cc))

i _T"‘:: +0(c). (64)
Solving
@-(-"%@Lh(c, 03(¢))¢(c, 52(c)) (65)
for (64), we have
¢(c, o2 (ckice ) = da(es )exp[]: h(y, oz(y))dy) (66)

for ¢ € (ce,c1)- Thus, because ¢i2(ce) <0, we have

é(c, o,(c))<0 (67)

forall ¢ € (ce,c1). Furthermore, this result holds for c. arbitrarily small, so (67) is true for
c € (0,c1).
It is interesting to look at d¢(c,0i(c))/dc as well. Using (55) and (63) we observe that

dé(c,o,(c)
—Ld—c‘(——) = h(c,0y(c))$(c, a1(c)) < 0. (68)
That is, the slope of the v, eigenvector in the S-M plane gets more negative as ¢ increases.
Using (56) and (67) we observe that

"'i(i;_z(“)_) = h(c)¢(c, 33(c)) > 0. (69)

That is, the slope of the v, eigenvector in the S-M plane is getting less negative as ¢
increases. As ¢ — c1, the eigenvectors approach one another, as in Fig. 8. This result can
also be verified numerically for test parameters. Numerically, as ¢ = cj, both the eig-
envalues and the eigenvectors approach each other.

By solving Eq. (53) for different initial conditions, we have shown that ¢(c,0i(c)) <
0 for ¢ € (0,cy). Thus, the S and M components of eigenvectors v| and v; have opposite
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Fig. 8. Behavior of the eigenvectors (40)~(41) as ¢ increases 10 Cy.

signs, and as an orbit approaches along either eigenvector, one of § and M will be negative.
Because these quantities must both be non-negative by assumption, we exclude the range
of wave speeds (0,c¢1). Continuous dependence of the eigenvectors to (41) on the wave
speed ¢ means that this interval of exclusion can be extended to (0,c1].

Case II: c € [c2,%)

Having shown that #(c,0i(c)) <0inthe interval (0,c1), and thus having excluded this
interval as not satisfying the non-negativity assumption, we now to show that non-
negativity can be obeyed for wave speeds in [c2,0). We start by showing that for ¢ € (c2,%)

¢[c,o‘,-(c)] >0, (70)

and thus substitution into (43) shows that (39) is satisfied.
Again, we expand o; asymptotically. For ¢ >> 0,

o, =—-c+0(1) (71)

and

o, = El;[(k, - kz)-\/(?z +k) +4lmﬁ.m]+0(1fc2). (72)

We find a differential equation for ¢(c,02(c)). We choose large ¢, such that 0 <
1/cs << 1. The initial condition is found by substituting ¢ in (44):
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?2 (Cs) = ¢(Ce- 0'2("3))

- ———I—(kl +k —\/(kl +ky)? +41,,,,A,,,,J
24,

>0. )
Solving
d¢(c,;:2 (c)) - k(C, o, (C))¢(C, a'z(c)) (74)

with condition (73), we have

CEAGTAE ¢22(c8)exp“:‘ h(y,o, (y))dy)
= ¢y (cs)exp(f' _.h(y, o (y))dy) (75)

for ¢ € (c2,¢4). Thus, because #22(ce) > 0 we have

#(c.0,(c))>0 | (76)

forall ¢ € (c,¢). F urthermore, this result holds for 1/c, arbitrarily small, so (76) is true
forc e (c2,).

Finally we consider o for ¢ in (c2,). We use the same procedure as previously, but
in order to avoid problems in taking limits, we solve a slightly different differential
equation. We find a differential in the inverse function of #(c,01(c)), and solve, given an
initial condition. We use the inverse so that our initial condition approaches 0 rather than
% as ¢ — . Consider instead the function (¢(c,o, (c)))!. Differentiating we have

d(¢(c, o (-’:)))-1 _ 1 d(b(c, ay(c))

de (¢(C »0) (")))2 de

1 207 c
) _(¢(c, o (C)))z {0(30'12 +24,0, +A2)J¢(C’ o1(c))
—-He o ) #eor(@)) -
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Choosing c; >> 0 and then substituting, we have the initial condition

(¢21 (ce ))—! - (¢(CS o (ce )))_l
A ms
ky, — c;‘:

>0. (78)

Solving (77) with condition (78), we have

(e.n(ehee)) ™ = (8a(ee) exe([[ ~(r.n())ar ) (19

for ¢ € (c2,¢¢). Thus, because (¢21(ce))! > 0 we have

(#(c.01(c))” >0, (80)

which implies that

$(c,01(c))> 0. (81)

Initial condition (78) is bounded for ¢, arbitrarily large, so the result holds for ¢, arbitrarily
large, and we conclude that (81) is valid on (c2,%).

Again itis interesting to examine how the eigenvectors change with c. Using (55) and
(81) we observe that

ﬁ(f—(nf*( a1(c))¢(c,01(c)) > . (82)

That is, the slope of the v, eigenvector in the S-M plane decreases as ¢ decreases from co.
Using (56) and (81) we observe that

L’;Z(ED = h(c,05(c))¢(c, o2 (c)) <. (83)

That is, the slope of the v, eigenvector in the S-M plane increases as ¢ decreases from co.
As ¢ — c;", the eigenvectors approach each another as shown in Fig. 9. Continuous
dependence of the eigenvectors to (41) on the wave speed ¢ means that non-negativity of
solutions can be extended from the interval (c;,%0) to [c2,%0).
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Fig. 9. Behavior of the eigenvectors (40)—(41) as ¢ decreases to c3.

We thus summarize the results proven above as follows: If o) < 0, <0 are eigenvalues
for the Jacobian matrix J (41), with associated eigenvectors v; = (v;1, vi2, vi3)7, then for
¥c,0i(c)) =—(1/Ams) (ka2 + o), viz = ¢(c,04c))vi. Further, if ¢, and c; exist, then for ¢
(0,¢1), ¢(c,01(c)) <0, and for ¢ € (c2,%), ¢(c,0i(c)) > 0. Therefore orbits associated with
solutions having wave speeds in the range (0,c;) must be negative in S or M as they ap-
proach the origin because the Sand M components of the eigenvectors v and v, have opposite
signs. These solutions are not meaningful biologically and violate our requirement of non-
negativity. Orbits with wave speeds in (c2,%0) are allowed, as they approach the origin
along eigenvectors whose S and M components can have the same sign. Continuity
arguments can be used to extend the above intervals so that solutions must be negative for
¢ € (0,¢1] and can be non-negative for ¢ € [c2,0). Thus, only waves with speeds in [¢2,%)
are biologically plausible and can be non-negative.

APPENDIX B

Asymptotic Expansion for c;

Substitution of (31) into (24), and evaluation of the a;s for successive orders of &
yields:
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B 222, +2Ap +1
842, (A2 + 34, +14+345,)

Y3

1223, 42043, +3245, +204,, +5
6443, (A3,s + 5Ais + 1043, +10A7, +5Ap + 1)’

Ya=

1628, +3243, +1162%, +14445 +10647, +424, +7
1281:,3(11“ +72A8 + 2145, +354% +35A3, + 2140, + TA +1)'

Ys
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