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Abstract

Genetically engineered microbes (GEMs) have the potential to revolutionize agricultural
techniques by facilitating crop protection and increased productivity. However, there has
been widespread concern regarding the potential impact these microbes may have on the
environment. Here we mathematically model the dynamics of GEMs in an agricultural
setting, focusing on parameters that can be used to summarize the potential of modified
microbes for persistence and spread. First developing a comprehensive model for the
dynamics of GEMs which includes mobile and stationary classes of GEMs as well as com-
petition from indigenous microflora, we then analyse a sequence of simplified math-
ematical models with a view to answering two fundamental questions: (1) will the GEMs
spread (or.invade), and if so how quickly? and (2) what are the best strategies for con-
taining the spread of GEMs in a spatially varying environment?

Keywords: agriculture, competition, GEM, invasion, model, spread

Received 7 October 1994; revision received 14 March 1995; accepted 22 May 1995

Introduction

Field trials of genetically engineered microbes (GEMs), are
likely to be"increasingly commonplace in ‘the future
because' these ‘organisms can provide useful services to
farmers (Lindow et ‘al. 1989). However, the enthusiasm
regarding this new technology has been dampened by the
legitimate warnings and admonishments of environmen-
tal groups and some professional societies (Tiedje et al.
1989). The question of environmental risk concerns both
proliferation and spread of released organisms and the
potential ‘they have for 'disrupting the ecosystem and
transferring ‘genes to indigenous microbes. In this paper
we focus on the microbial population growth and spread,
rather ‘than the actual introduced ‘genetic element. Our
logic is that if the microbe host does not spread and prolif-
erate, the gene, as present in the GEM host,; will be con-
tained in space and time and the risk of gene transfer and
ecosystem disruption will be lessened. Conversely, by
exploring the prospects for rapid invasion by the microbe
hostwe can identify scenarios that are most likely to yield
substantial gene transfer and ecosystem impact.
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Previous models of microbial population dynamics
have tended to fall into two categories: (i) simplified phe-
nomenological models which poorly represent the detail
of microbial ecology but yield clearly understood results,
and (ii) complex simulations that attend to numerous
details, but do not lend themselves to predictions about
general rates of invasion in terms of a few essential bio-
logical parameters. In this paper we introduce models tai-
lored to reflect key details of microbe ecology and then
analyse them with a view to understanding the role of
measurable parameters on invasion rates.

-The innovations we introduce to the standard theory
are: subdividing GEMs into mobile and non-mobile class-
es and examining the consequences of heterogeneity in the
environment. Using these models we determine the rate of
spread and strategies that might contain GEMs.
Quantitative answers will prove invaluable for assessing
risks associated with release. Specifically, we want to
determine biological parameters that exert the greatest
influence on invasion of GEMS, and whether we can iden-
tify strategies for containment that are consistently better
(or worse) than alternative strategies. )

GEMs are typically different from wild-type microbes
with respect to only one or more genes, which means that
prior studies of natural microbes are pertinent to model
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building for GEMs. Any dispersal/invasion model for a
GEM has to include competition as this is an important
aspect of microbial ecology. Two key attributes of micro-
organisms are (i) sensitivity to the physical environment
such that commonplace heterogeneity switches a popula-
tion from a multiplying and growing phase to an expo-
nential die-off phase, and (ii) compartmentalization of
populations depending on whether microbes are suspend-
ed in groundwater, on plant surfaces, or in the rhizo-
sphere.

Whereas a traditional ecological approach to modelling
an invasion would simply emphasize the details of local
competition (Okubo et al. 1990), the key to GEM invasions
is also the environmental heterogeneity and division of
populations into different compartments If one is interest-
ed in either predicting or containing the spread of GEMs,
this compartmentalization is especially important because
it governs microbe movement. For example, microbes
released in an agricultural setting may end up in at least
eight distinct compartments, each with different transport
or movement attributes (see Fig 1). These compartments

are: aerosols, dust, plant surfaces, soil surface, subsurface

soil, surface water, groundwater and the rhizosphere.
Microbes on leaf surfaces, soil surface, rhizosphere, or
subsurface soil tend to be more sessile, whereas microbes
in ground water or aerosol compartments may more easily
disperse. Moreover, micro-organisms do not stay in these
compartments but transfer between them at varying rates
depending on rain (Constantinidou et al. 1990), dust
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Fig. 1 Detailed model for microbes in an agricultural setting. The
five main compartments are shown here in boxes: Aerosols and
Dust, Plant Surfaces and Soil Surface, Surface Water, Ground
Water, and ' Subsurface 'soil -and Rhizosphere. Note that the
Aerosols and Dust, Surface Water, and Ground Water compart-
ments have movement within the compartment (mobile compart-
men?), while the Plant Surfaces and Soil Surface, and Subsurface
Soil and Rhizosphere compartments have no movement within
the compartment (stationary compartments). Arrows between the
boxes indicate the transfers between the compartments. The labels
on the arrows indicate the transfer mechanisms.

clouds arising from wind and agricultural practices
(Knudsen 1989), vertical temperature-dependent atmos-
pheric fluxes (Lindemann et al. 1982; Lindemann & Upper
1985), removal from roots (Trevors et al. 1990; van Elsas et
al. 1992), surface runoff, leaf splash (Walker & Patel 1964)
flooding (van Elsas & Trevors 1991), and irrigation (Fig 1).
Secondary transfer mechanisms may include lateral trans-
fer along the leaf surface or soil by chewing insects and
movement through the soil by roots (Trevors et al. 1990).
While chemotactic migration probably occurs in soil, trav-
el distances are likely limited to several centimeters
(Bashan 1986). Typically, transport in these aerosol and
groundwater mobile classes will have random and direct-
ed components, the random component arising from local
mixing patterns in the air or water, and the directed com-
ponent arising from a prevailing flow direction.

Some experimental data on the population biology of
GEMs in soil is available (Trevors 1991a,b, 1992; van Elsas
et al. 1988, 1991, 1992; Kareiva et al. 1995). Microcosm and
green house studies provide some information on the rel-
ative competitive abilities of GEMs versus wild-type
microbes, and help guide parameterization of the compe-
tition component of a model (England et al. 1993). For
example, by using a maximum likelihood approach we
have found that competition between wild-type
Pseudomonas syringas, and. ice-minus P. syringae is well
described by simple Lotka-Volterra equation (Kareiva et al.
1995; cf. Pascual & Kareiva 1995). Field experiments have
also been performed using GEMs (Lindow & Panopoulos
1988; Lindow et al. 1988; Buttner & Amy 1989), and these
experiments may allow statistical parameterization of
invasion models just as the greenhouse experiments do for
competition models. The ability to translate field and
greenhouse experiments using GEMs to. risk assessment
models hinges on obtaining a simple model (with fewer
parameters to estimate) that captures key biological fea-
tures of the system.

Modelling GEM growth and spread

Our model includes two key processes: local population
growth and transport via random motion and bulk con-
vection. For local population growth we adopted simple
Lotka-Volterra competition equations. Although these are
not as mechanistic as resource uptake equations, they
involve fewer parameters to estimate, exhibit similar qual-
itative behaviour, and can be shown to describe popula-
tion growth data for the microbes often targeted for gen-
etic engineering (e.g. Pseudomonas syringae; Kareiva et al.
1995).

Denoting N,, (x, t) to be the density of the wild strain
and Ne (x, t) to be the density of the GEM strain, the equa-
tions are:
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Where x is the explicit spatial location, ¢ is time, the six
growth and competition parameters are given by:

= intrinsic growth rate for wild strain;

intrinsic growth rate for GEM strain;

catrying capacity for wild strain;

carrying capacity for GEM strain;

competition effect of GEM strain on wild strain;
we = competition effect of wild strain on GEM
strain;
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and the movement parameters are given by:

F = avector describing the magnitude and direc-
tion of the bulk flow;
D, = diffusion coefficient for the mobile wild strain;
D, = diffusion coefficient for the mobile GEM

strain.

With F and D constant, the flow and dlffusmn terms are
given in one spatial dimension by:
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and in two spatial dimensions by:
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Here the wild strain is the parental strain from which
the GEM was engineered. Typically the competition is not
limited merely to the two related strains of micro-organ-
isms; in reality the micro-organisms will be competing for
space and nutrients with other microflora, including fungi,
even if these microflora do not share an identical ecological
niche. In the model described in eqns 1-2, the effect of such
competition can be incorporated into the intrinsic growth
rates ,, and .. Similarly, the effect of predation by protozoa
is missing from the model. Assuming a fairly constant den-
sity of protozoan grazers and a Holling type I functional
response of the microbes to predation, we can incorporate
the predation term into the intrinsic growth rate. The
intrinsic growth rate for a strain is thus defined as the
growth rate of that strain in the presence of predation and
of comipetition from other microflora, but in the absence of
density-dependent regulation by the strain itself or by the
related strain. Our definition of intrinsic growth rate is as
measured in the field, rather than the laboratory.
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We include a third process in the model: transitions
between sedentary and mobile ‘pools’ of microbes. Here
microbes in the mobile pool do not actively disperse, but
are spread passively via movement of wind and water.
Because we consider transitions between mobile versus
sedentary classes of microbes, we note that our state vari-
ables are: S, (x, t) for density of sedentary wild-type
microbes, M, (x, t) for density of mobile wild-type
microbes, S, (x, t) for density of sedentary engineered
microbes and M, (x, t) for density of engineered mobile
microbes. Thus N,, in 1-2 is replaced by S,, and M,, and N,
is replaced by S, and M,

We assume that microbes in the stationary class do not
move, but are subject to growth dynamics. Lastly, there is
transfer between mobile and stationery classes. Putting
standard Lotka-Volterra equations together with this with-
in-strain transition between dispersal classes, we obtain:
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Where the four positive transfer and mortality parameters
are given by:

U, = density independent mortality rate for the
mobile wild strain;

U, = density independent mortality rate for the
mobile GEM strain;

A, = transfer rate from mobile to stationary classes;

A, = transfer rate from stationary to mobile classes.

There are many ways of incorporating spatial hetero-
geneity into the model. One ‘way of representing spatial
heterogeneity is to imagine a field or patch inside which
population growth rates are high (i.e. ‘good’ patches), and
outside which population growth is reduced. To explore
this complexity we consider an extension of eqns 1-2 that
specifies variation of population growth and diffusion in
space (i.e. as a function of position or x), but neglects the
detail ‘of separate mobile and sedentary categories of
micro-organisms:
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We therefore have three models: eqns 1-2, 3-6 and 7-8,
the first describing the simultaneous growth and dispersal
of the microbe strains, the second including separate sta-
tionary and mobile classes, and the third describing
growth and movement with spatially varying coefficients.

Mathematical results and biological implications

The models described in the previous section assume that
the wild and engineered strains grow and compete contin-
uously. The models do not include temporal variations in
weather and field conditions, demographic or environ-
mental stochasticity and age or stage-structuring of the
microbe population. Thus they do not have the level of
detail to accurately predict microbe densities long into the
future. Rather, the purpose is to use the models to investi-
gate how the chance of spread or the rate of spread can be
understood in terms of environmental spatial variations
and mobile-stationary transfer rates as well in terms of as
more traditionally studied parameters such as growth
rates, competitive differences between strains, and disper-
sal rates.

We ask the following specific questions:
1 Under what conditions can the GEM strain invade the
environment, and under what conditions will there be a
spatial wave of GEM spread that sweeps through a habitat
driving the wild-type competitor to extinction?
2 How does the presence of separate stationary and
mobile classes of each microbe strain change the spatial
dynamics?
3 What effect does a spatially varying environment have
on the spatial dynamics? /

Mathematicians have investigated invasions using
models such as eqns 1-2 by seeking what they call travel-
ling wave solutions, and then quantifying the velocity of
these waves. The idea is that the density of the invading
strain will eventually achieve a characteristic wave-like

profile that' moves with some corresponding constant
velocity. It is these spatial profiles and corresponding
velocities that are mathematically referred to as travelling
wave solutions and travelling wave velocities, respective-
ly. By definition, the travelling wave solution moves with
both a constant velocity and a constant profile as it sweeps
across a given region. One nice feature of these travelling
wave solutions is that their velocity provides a convenient
summary of an organism’s invasiveness - the higher its
velocity the more invasive the organism.

Simple competition with advection and diffusion

Well established ‘results already exist from analysis of
invasion rates via travelling wave solutions to partial dif-
ferential equation models. For example, in the absence of a
competing strain (N,, = 0) and bulk flow (F = 0), travelling
wave solutions to eqn 2 exists with a characteristic inva-
sion velocity of 2@ (see, for example, Murray 1989).
When both competing strains are present, we consider
first ‘the simplest model describing the interactions
between the strains eqns 1-2. As expected, in one dimen-

sion the bulk flow (convection) term Fon/dx to the right-
hand sides of eqns 1-2 merely shifts the entire solution at
a velocity F. Employing the change of variables: t* = t and
x* = x - Ft, and dropping asterisks for notational simplici-
ty, we regain eqns 1-2 without the convection term.

The question arises whether GEMs introduced to a field
can invade spatially into a population of wild microbes
that are initially at their carrying capacity. It turns out that
the answer to this question is intimately tied to the relative
strengths of the interstrain vs. intrastrain competitive
effects on the GEM strain,

Ye = Cwe KW /Ke ’ (11)

and the ratio of interstrain vs. intrastrain competitive
effects on the wild strain

Yo = Cew K/K,, (12)

Consequently three possible outcomes pertain:
1 Competitive coexistence (Y. < 1, ¥, < 1). In this case an
invasion by the GEM will always occur. It can be shown
the speed that this invasion eventually achieves (denoted
by c) lies in the following interval:

2 Di-7.) <es2rD, (13)

(Bramson 1988). The upper bound is the speed the inva-
sion would achieve if the wild strain N,, were completely
absent and thus no interstrain competition, and the lower -
bound is the speed the invasion would achieve if the
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density of the competing wild strain were held fixed at its
carrying capacity N,, = K,, and not allowed to vary.

2 Competitive exclusion, dependent upon initial condi-
tions (Y. > 1, y,, > 1). See, for example, Murray (1989) for
analysis of this situation in the absence of any spatial
transport terms. It has been proven that travelling wave
solutions, describing the invasion of one strain and corre-
sponding extinction of the other, do exist (Conley &
Gardner 1989). Two questions remain unanswered, how-
ever: (i) which of the two strains (GEM or wild) will
invade? (ii) if the GEM has the potential to invade, pre-
cisely how large an area need be inoculated and at what
GEM density in order to initiate the invasion? All other
things being equal, the competitor with the highest growth
rate (r, or r,) and / or strongest competition coefficient (C,,
or C,.) will likely be the successful invader. In this case, a
necessary condition for invasion by the GEM would be
that it is introduced at a high enough cell density to be in
the region of stability where the GEM strain dominates
and the wild strain becomes extinct or approaches extinc-
tion.

3 In competitive exclusion, a given strain always wins,
regardless of initial densities (y, >1and y, < 1)or (1, <1
and v, > 1). Numerical simulations indicate travelling
waves correspond to an invasion by the superior competi-
tor (Okubo et al. 1990). In a special case, where the com-
peting strains are closely related, the invasion speed can be
calculated (Okubo et al. 1990). This case is

r=t=1, D=0Q=D, %+ %=2 (14)

The last constraint (y, + Y. = 2) is satisfied approximately
when one strain is a slightly better competitor. We consid-
er the case where it is the GEM that is slightly competi-
tively superior (see Appendix for further discussion of
this). Then if eqn 14 is satisfied the spread rate for GEMs
is

2\/(1-%)D. (15)

The case where the parent strain is the superior competitor
is analogous except that the parent strain now invades,
driving the GEM strain extinct. Note that as the two strains
become identical competitors the invasion stalls.

Simple competition with mobile and sedentary classes

The results we have discussed so far are in keeping with
our biological intuition and do not shed new light on the
invasion process. However, the addition of mobile and
sederitary classes leads to less transparent results. The
general formula for calculating invasion rates for eqns 3-6
is quite complex (see Appendix). When the GEM is the
superior competitor but the strains are otherwise identical
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the invasion rate is given in nondimensional terms in the
Appendix by eqn 40. Even so, if we focus on the case with
the mortality rate in the dispersing class equal to zero, and
transfer rates A, and A,, equal, the speed of invasion is
much simplified eqn 41 and is given in dimensional terms
as precisely half that of eqn 15.

However the calculation in expression 15 assumed that
reproduction and dispersal occur in the same class. The
result of dividing the population into equally balanced
mobile and sedentary classes is the effective halving the
growth rate r and diffusion coefficient D; any individual
microbe will spend about half of its time in each of the
mobile and sedentary classes. Thus having r and D in 15
we effectively halve the resulting speed.

Using methods similar to those previously used by
Lewis & Schmitz (unpublished data) it can be proved that
when A, and A, are not balanced the invasion rate slows
significantly. In other words, whenever the transfer rates
differ markedly, one or the other categories can become a
bottleneck to invasion. For example, if A,, > A,, in eqns
3-6, then micro-organisms will accumulate in the mobile
class which may disperse readily, but does not multiply.
Conversely, when A, > A, micro-organisms will accu-
mulate in the sedentary class which will multiply but not
disperse readily. For an invasion to succeed both growth
and dispersal are necessary. This trade-off between disper-
sal and mortality is shown in Fig. 2, which also indicates
the interesting feature that even the tiniest transfer
between sedentary to mobile classes accelerates invasion
velocity.

Surprisingly, whereas decoupling of mobile and sta-
tionary classes will prevent an invasion, an infinitesimal
coupling (A, and A,,, very small) results in invasion at a
significant rate.

Since the case with strong balanced links between
mobile and sedentary classes represents the situation with
the greatest invasion velocities, we can develop a “worst-
case scenario’ model. Specifically, if we assume Asm — o,
Ay~ ®© and p = A,/ A, and that the strains are identical
except for their abilities to compete, we obtain the follow-
ing model:

d 2
(1+p)a—3t"i=r5w[1——e:is—w—c—”"§"-]+pD% (16)

K K
as, v S, CuS 9%
(1+p)7=rse[1-%—1<—-—mkl]+po o~ (17)

Using eqn 15 we see that analysis of the case where the
GEM is the slightly better competitor gives the spread rate
for the GEMs as

2[D(1-C, )(r - p)p] as)
1+p

While analysis of the case where the wild population is the
slightly better competitor gives an identical formula for
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Fig. 2 Speed of invasion for eqns. 3-6 as a function of transfer
rates. the wave speed shown here is valid for the following class
of problems: r,=r,=r,D.=D,=D, % =09, ¥%,11, F=0, A, =
Agm/ 7 and Ay = A,/ 7. The mortality rates are given by (a) p,,/7 =
UJr =pu=3.0and (b) u,/r = p./r = p = 3.0. The nondimensional-
ization process given in the Appendix shows that, because the dif-
fusion coefficient D-and the intrinsic growth rate r are not speci-
fied, the wave speed is scaled by 1/V Dr and is thus a dimension-
less function of D and r. The values given for % and % indicate
that the engineered microbe is a slightly better competitor than
the wild-type. The microbes are otherwise indistinguishable. The
values given for y indicate that in (a) microbes in the mobile class
die at 30% of the rate that they grow in the stationary class and in
(b) microbes in the mobile class die at three times the rate that
they grow in the stationary class. For these mortality and compe-
tition rates, and for any r and D, we can then choose scaled trans-
fer rates A, and A, and read off the dimensionless speed as the

height of the surface. We then multiply this speed by ¥ Dr to get °

the invasion speed in dimensional units. The method of calculat-
ing surface depicting wave speed is given in detail in the
Appendix.

the spread rate of the wild population, but with C,.
repldced by C,,. This formula also indicates that, for a
strongly linked system, a necessary condition for spread is
r > up; in other words the growth rate in the stationary
class must dominate the mortality rate in the mobile class.

The worst or speediest.invasion occurs when p is given by
the A and Aws that satisfy

A
Ay =—"21—. 19
sm 1+ zu/r ( )
In this case the invasion speed eqn 18 is
1/2
rD(1-Cy) (20)
1+£

Note that as the mortality in the mobile class u also
approaches zero, the above speed eqn 20 approaches
exactly half the speed given in eqn 15 with K, = K,, = K.

Simple competition and a heterogeneous
environment

Finally our spatially heterogenous model comprising
alternating ‘good’ and ‘bad’ patches is used to examine
containment strategies. This model was analysed in detail
by Cruywagen et al. (1995). Here we simply apply the
results of the analysis. For example, we can ask whether
surrounding an agricultural field that has been inoculated
by GEMs with a hostile environment is likely to contain
the spread of the released GEMs. In this case it can be
shown that the final result depends does not depend on
the diffusion coefficients D, and D,, but depends critically
upon the following dimensionless parameters: the ratio of
interstrain vs. intrastrain competitive effects on the GEM
strain vy, (eqn 11), the ratio of interstrain vs. intrastrain
competitive effects on the wild strain, ¥, (eqn 12), the pro-
portional change in the growth rate of the GEM strain in
the bad patch g, (eqn 10), the proportional change in
growth rate on the wild strain in the bad patch g, (eqn 9),
and the ratio of lengths of good and bad patches 1,/1,.

In each of the patches considered separately we have
the cases of (i) coexistence, (ii) GEM strain wins, (iii) wild
strain wins, and (iv) winner determined by the initial con-
ditions. As described in the previous section, these out-
comes depend on the sizes of vy, and v, compared to unity
(good patch) or compared to g, g. or its inverse (bad
patch).

However, when patches are juxtapositioned, with the
possibility of fluxes of microbes between the patches, the
case is complicated considerably because it is possible that
microbes in one patch can invade adjacent patches and
consequently the relative sizes of the good and bad patch-
es are now involved. In this case the absolute values of g,,
and g, are important. In cases (i) to (iii) above the approx-
imate for the wild type to invade from one patch to the aja-
cent patch where GEMs would otherwise dominate is

(1=70)h +(80 — 8w )2 >0, 1)
and the approximate condition for the GEM to invade
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from one patch to the adjacent patch where the wild type
would otherwise dominate is

(1_)'6)11 +(ge _gw}’e)12>01 (22)

where the good patch has length /, and the bad patch
has length I, (Cruywagen et al. 1995) In the case where is
competitive exclusion depending upon initial conditions
in either or both patches, spread depends sensitively on
the initial levels of microbes in each patch there is appar-
ently no simple formula for predicting the outcome.

Even in the face of such complex results as given above,
we can still propose strategies for the complete contain-
ment of GEMs so that they are eventually driven extinct
everywhere: (i) be certain that the wild strain is the
superior competitor in both patch types C,,. K,/K, < min {1,
8./8.} and C,. K/K,, < min {1, g,/¢.}, and (ii) if the GEM is
the superior competitor in the good patch, then make sure
that these good patches are sufficiently small and that the
GEM is at a competitive disadvantage in adjacent bad
patches of sufficient size, thereby satisfying eqn 21. Lastly,
if a field is surrounded by bad habitat designed to contain
the spread of the GEM, it is crucial to evaluate the affect of
this habitat on the wild strains; a drastic reduction in the
growth rates of these competing strains may render such a
containment strategy ineffective.

The extinction of GEMs everywhere may not be an
optimal strategy if the GEM is to be used effectively in the
good patch. The more interesting case where the GEM per-
sists in a good patch, but is driven extinct in surrounding
bad patches is addressed in the Discussion.

Discussion

Our approach has been to modify explicit spatial spread
models to reflect microbe biology. An alternative approach
would be to drop the explicit space dependence and use
metapopulation models (see, for example, Hanski &
Gyllenburg 1993; Nee & May 1992). Such models are
admirably suited to evaluate persistence questions. By
way of contrast, we have opted for explicitly spatial mod-
els s0 as to be able to evaluate the critical parameters con-
trolling the spatial spread of GEMs.

One result has arisen that we would have never pre-
dicted without the model: so long as there is any transfer
at all between mobile and stationary classes of microbes
the velocity of invasive speed can be substantial. Since the
majority of some microbial populations are closely associ-
ated with plant roots or possibly sedentary, one might
guess that extremely infrequent dispersal would have neg-
ligible effect. Our analyses show just the opposite.

We have also provided formulas for (i) estimating the
rate of spread of a competitively superior GEM, based on
its competitive edge over wild strains, transfer rates,
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growth rates and its diffusion coefficient (eqns 15, 18 and
40); and (ii) determining whether a ‘bad’ patch is suffi-
ciently large to stem the spread of GEMs from adjacent
‘good’ patches (inequalities 21 and 22). The simplicity of
our models precludes putting exact confidence intervals
about these formulas. With the best possible data, we
expect the formulas will do no more than predict orders of
magnitude for spread rates or required patch sizes. The
models nonetheless give a clear indication of how each of
the following parameters effect spread of GEMs: mobile
stationary and stationary-mobile transfer rates, the scales
of ‘good” and ‘bad’ patches, mean squared displacements
of individuals per unit time (diffusion coefficient), intrin-
sic growth rates and inter and intraspecific competition.
More complex future models may make improvements.

One way of evaluating the potential use of GEMs in an
agricultural setting is based on the ability to maintain
them at high densities in some regions while preventing
their spread into surrounding areas. In view of this, the
optimal arrangement is for the wild strain to win in the
bad patch and for the GEM to win or coexist with the wild
strain in the good patch. This would require that

>Y.> 8. /8w Yn<8w!8e (23)

(wild type wins in isolated bad patch, and GEM wins or
coexists in isolated good patch) and that inequality 22 is
violated so that

Lo 1. (4)
L 8wYe = 8e

Both the numerator and ‘denominator of the right hand
side are positive, so this would simply require that the size
of the bad patch 1, is sufficiently large. Inequality 23 would
be satisfied if the strains typically coexisted, but the
growth rate of the GEM g, was reduced in the bad patch.

The presence of a chemically controlled suicide gene in
the GEM (see, for example, Molin et al. 1993) could pre-
cisely facilitate the reduction in growth rate. The good
patch would then be the agricultural field with the suicide
gene inhibited, and the bad patch would be the a sur-
rounding area with the suicide gene turned on. Then if the
suicide gene caused a p per cent reduction in the growth
rate of the GEM in the bad patch, formula 24 with g, =1 -
pand g, =1 would give a simple estimate for the width of
the hostile zone I, needed to stem the GEM.

If GEMs do eventually spread out of the target area, the
key question then is the rate at which spread occurs. For
example, GEMs that take longer than a single season to
substantially spread from an agricultural field will then be
subjected to crop changes and yearly weather changes.
Our mathematical formula for spread rates indicates that
when the wild and GEM strains are almost equal competi-
tors, spread rates can be arbitrarily slow. In this case we
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should look to other variables to determine whether the
GEMs will spread substantially. In this manner the speed
calculated from eqn 40 can be used to predict whether
within-season spread is significant.

Acknowledgements

We thank Gerhard Cruywagen and Jim Murray for their valuable
discussion. Thanks to two anonymous referees for helpful com-
ments. This work was supported in part by a grant from the
Environmental Protection Agency (PK and MAL) and by a grant
from the National Science Foundation (DMS 9457816) (MAL).

References

Bashan'Y (1986) Migration of the rhizosphere bacteria Azospirillum
brasilense and Pseudomonas fluorescens toward wheat roots in
the soil. Journal of Genetics and Microbiology, 132, 3407.

Bramson M (1988) Convergence to travelling waves for systems of
Kolmogorov-like parabolic equations In: Nonlinear Diffusion
Equations and Their Equilibrium States I (eds Ni W-M, Peletier LA,
Serrin J), pp. 179-191. MSRI Publication, Springer-Verlag, Berlin.

Buttner MP, Amy PS (1989) Survival of ice nucleation-active and
genetically engineered non' ice-nucleating Pseudomonas
syringae strains after freezing. Applied Environmental
Microbiology, 57, 1268-1270.

Conley CC, Gardner R (1989) An application of the generalized
Morse index to travelling wave solution of a competitive reac-
tion diffusion model. Indiana University Mathematical Journal,
33, 319-343.

Constantinidou HA, Hirano SS, Baker LS, Upper CD (1990)
Atmospheric dispersal of ice nucleation-active bacteria: the
role of rain. Phytopathology, 80, 934-937.

Cruywagen G, Kareiva P, Lewis MA, Murray JD (1995) Modelling
the risk of spread of a genetically engineered population in a
spatially heterogeneous environment Theoretical Population
Biology, in press.

van Elsas JD, Trevors JT, Jain D, Wolter AC, Heijnen CE, van
Oberbeek LS (1992) Survival of, and root colonization by, algi-
nate-encapsulated Pseudomonas fluorescens cells following
introduction into soil. Biology and Fertility of Soils, 14, 14-22.

van Elsas JD, Trevors JT, Starodub ME (1988) Plasmid transfer in
soil and rhizosphere In: Risk Assessment for Deliberate Releases
(ed. Klingmuller W). pp. 89-99. Springer-Verlag, Berlin.

van Elsas JD, Trevors JT, van Oberbeek LS (1991) Influence of soil
properties on the vertical movement of genetically-marked
Pseudomonas fluorescens through large soil microcosms. Biology
and Fertility of soils, 10, 249-255.

van Elsas JD, Trevors JT (1991) Environmental risks and fate of
genetically engineered micro-organisms in soil. Environmental
Science Health, A26, 981-1001.

England LS, Lee H, Trevors JT (1993) Recombinant and wild-type
Pseudomonas aureofaciens strain in soil: survival, respiratory
activity and effects on nodulation of white bean Phaseolus vul-
garis L. by Rhizobium species. Molecular Ecology, 2, 303-313.

Hangki I, Gyllenberg M (1993) Two general metapopulation mod-
els and the core-satellite species hypothesis American
Naturalist, 142, 17-41.

Kareiva P, Parker I, Pascual M (1995) How useful are experiments
in predicting the invasiveness of genetically engineered organ-
isms? Ecology in press.

Knudsen GR (1989) Model to predict aerial dispersal of bacteria
during environmental release. Applied Environmental
Microbiology, 55, 2641. '

Lindemann ], Constantinidou HA, Barchet WR, Upper CD (1982)
Plants as sources of airborne bacteria including ice nucleation-
active bacteria. Applied Environmental Microbiology, 44, 1059-1063.

Lindemann J, Suslow TV (1987) Competition between ice nucle-
ation-active wild type and ice nucleation-deficient deletion
mutant strains of Pseudomonas syringae and P. fluorescens bio-
var I and biological control of frost injury on strawberry blos-
soms. Phytopathology, 77, 882-886.

Lindemann J, Upper CD (1985) Aerial dispersal of epiphytic bac-
teria over bean plants. Applied Environmental Microbiology, 50,
1229-1232.

Lindow SE, Knudsen GR, Seidler RJ, Walter MV, Lambou VW,
Amy PS, Schmedding D, Prince V, Hern S (1988) Aerial dis-
persal and epiphytic survival of Pseudomonas syringae during a
pretest for the release of genetically engineered strains into the
environment. Environmental Microbiology, 54, 1557-1563.

Lindow SE, Panopoulas N, McFarland B (1989) Genetic engineer-
ing of bacteria from managed and natural habitats. Science,
244, 1300-1307.

Lindow SE, Panopoulas N (1988) Field tests of recombinant ice -
Pseudomonas syringae for biological frost control in potato In:
The Release of Genetically-engineered Micro-organisms’ (eds
Sussman M, Collins CH, Skinner FA, Stewart-Tull DE), pp.
246-252. Academic Press, London.

Molin S, Boe SM, Jensen LB, Kristensen CS, Givskov M, Ramos JL,
Bej AK (1993) Suicidal genetic elements and their use in bio-
logical containment of bacteria. Annual Reviews of Microbiology,
47, 139-166. '

Murray JD (1989) Mathematical Biology. Springer-Verlag, Berlin.
Nee S, May RM (1992) Dynamics of metapopulations: habitat
destruction and competitive coexistence. Ecology, 61, 37-40.
Okubo A, Maini PK, Williamson MH, Murray JD (1990) On the
spatial spread of the grey squirrel in Britain. Proceedings of the

Royal Society (London), B238, 113-125.

Pascual MA, Kareiva P (1995) Predicting the outcome of competi-
tion using experimental data: maximum liklihood and
Bayesian approaches. Ecology, in press.

Schmitz G (1993) A model for the spread of genetically engineered microbes.
Master’s thesis, University of Utah, Department of Mathematics.

Shigesada N, Kawasaki K, Teramoto E (1986) Travelling periodic
waves in heterogeneous environments. Theoretical Population
Biology, 30, 143-160. :

Smoller ] (1982) Shock Waves and Reaction-Diffusion Equations.
Springer-Verlag, Berlin.

Tiedje JM, Colwel RK, Grossman YL et al. (1989) The planned
introduction of engineered organisms: ecological considera-
tions and recommendations. Ecology, 70, 298-315.

Trevors JT (1991a) Respiratory activity of a genetically engineered
Pseudomonas fluorescens strain in soil measured using gas chro-
matography. Journal of Microbiological Methods, 14, 11-20.

Trevors JT (1991b) Respiratory activity of alginate-encapsulated
Pseudomonas fluorescens cells introduced into soil. Applied
Microbiology and Biotechnology, 35, 416-419.

Trevors JT, van Elsas JD, van Overbeek LS, Starodub ME (1990)
Transport of a genetically engineered Pseudomonas fluorescens
strain' through a soil microcosm. Applied Environmental
Microbiology, 56, 401-408.

Walker JC, Patel PN (1964) Splash dispersal and wind as factors in
epidemiology of halo blight of bean. Phytopathology, 54, 140-141.

© 1996 Blackwell Science Ltd, Molecular Ecology, 5, 165-175



Appendix

Wave speed calculation for competition with
mobile and sedentary classes

Equations 3-6, in the absence of convective transport take
the form

s, dng1ailig, o+ 0y 8]
=5 = TS [1_5_%1]3, AwsMy =AS, |
%, ‘ ¢85, 7

ate = rzsg[ _%_ zsw]*'AmsMef—Asmse i1
‘91;’” = -p,M, -A, M, +AS, +D VM,

agz = ~#M,-A, M, +A,S,+D,V?M, |

This system models microbe growth, death, competition
and movement.

We consider here the one-dimensional case. To simpli-
fy analysis and facilitate the assessment of relative impor-
tance of model parameters, we nondimensionalize eqn 25
making the following substitutions:

(g E {
e "=x[-lr)l-) A =ratsy =8, 1Ky Se =5, 1K,

w

mw=Muv/Kwrme=Me/Ker/lms=Ams/lsm=Asmr’=";e‘/8=—D'e—,
Ty . Tw tw . 1Dy
_ CaKe _CuweKw = _ By s He
7w Kw 17e Ke lﬂw—rwlﬂe—rw

Dropping the asterisks for notational simplicity, the fol-
lowing system of nondimensional equations is obtained:

X 9
710' =8y (1"5w_7wse)+)'msmw"lsm5w it i
> .
'Ee = 1Se (1—5, _7esw)+ AmstMe = AgmSe
om ; TP i (26)
Tw = = HypMyy = Mgy + Agy Sy +ax_2w
om Lo 9%m
3te = = UMy — Ayt + AgySe +0 axze J

We now investigate the rate at which a genetically engi-
neered strain with superior ability to withstand competi-
tion invades spatially into an environment that contains
the wild strain. Mathematically, an invasion will be seen
as a travelling wave solution to the system of partial dif-
ferential eqns 26. The competitive edge of the genetically
engineered microbes over the wild strain is expressed
mathematically by assuming that %, > 1 and 7, < 1. In this
manner, the effective growth rate of s, is reduced less by s,,
than is the effective growth rate of s,, by s.. To analyse com-
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petition alone, it is assumed that the wild and genetically
engineered strains are identical in all other respects. For
example, in the ice nucleation activity deficient mutants; it
has been shown experimentally that this assumption is
valid (Lindemann & Suslow 1987). Thus, to illustrate this
effect we assumer =1, =1, and u,, = . = 1.

Experiments have shown that the competition coeffi-
cients are also expected to be very similar (Lindemann &
Suslow 1987). A very slight competitive advantage for the
genetically engineered microbes means, in terms of the
original dimensional equations, that the growth rate for S,,
is reduced less by competition than the growth rate for S..
This can arise in two possible ways: (1) the carrying capac-
ity for GEMs is slightly higher than the carrying capacity
for wild microbes (K,./K,,=1+¢, 0 < & < 1) or (2) the inter-
specific competition coefficient C,,. is slightly larger than
the interspecific competition coefficient C,,, e.g. C,.. =1 -¢,
0<e<xland C,, =1+ ¢). In either case we have that y, >
1, % <1, but %,+ % =2 to O (&).

Thus equation 26 is given to O(&2) as

N

Py o .
7’0 1 58y [1‘Sw'(2_7e)se]+;l‘msmw— smSw
%, . . ’
El 1T Se (1;" SeT Yesw)+ Amse = Ao R S R3S
amw aty azmw it (27)
o = —um, _A‘msmw +Z'smsw +ja-xT
2
‘95:5 = —pm, = Apysm, + AgyS, + aa::‘ Ll

The spatially independent version of eqn 27 has the fol-
lowing equilibrium points:

Equilibrium Point:

A = (0,0,0,0)
B = (0,,0,%)
c = (®,0,%0) -

D = E(I_YW) 5(1_72) E(I_Yw)v 2(1'—713),
A-raye 1-107 T1-7,7. 1-7,7.

where
W= #(1__'15'"_)11& (28)
Kt A
and . ) A
5 = sm__ .

Point A represents a solution in which all the species
are extinct. At Point C, the genetically engineered
microbes are extinct and the wild microbes are endemic.
At Point B, the genetically engineered are endemic and the
wild type is extinct, and at Point D, the genetically engi-
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neered and wild type coexist.

We make the biologically plausible assumption that the
transfer rate, A, between the stationary and mobile
pools, is less than the intrinsic growth rate, r,. Then,
because A, = A/, we have A, < 1 and thus @and Z are
positive equilibrium points. Point D cannot be positive
because 1 = 7, and 1 -y, have opposite signs and the
denominator is the same for each co-ordinate. We con-
clude that the biologically realistic equilibrium points are
Point A, Point B and Point C, Point A representing the
extinction of both strains.

We now consider a travelling wave solution joining
equilibrium Point C, (i, 0, Z, 0), to equilibrium Point B, (0,
@, 0, Z). These points are chosen because they indicate
populations before and ‘after an invasion of genetically
engineered microbes. Before genetically engineered
microbes are introduced, the native species will have a sta-
ble population @ and z for the stationary and mobile class-
es respectively (Point C). If an invasion occurs, and the
genetically engineered microbes drive the native species
to extinction, the genetically engineered microbes will-
have a stable population @ and z, which corresponds to
equilibrium Point B. Thus, the biology behind the model
indicates we should look for travelling wave solutions
whose trajectory connects equilibrium Point C and equi-
librium Point B. Furthermore, these two points lie on the
manifold ‘

Sp+8, =W, my,+m,=3. (30)

We now show that a travelling wave solution to eqn 27
must satisfy eqn 30. To investigate the stability of the man-
ifold eqn 30 we define

w(x, t)=s,(x,t)+s,(x,t) @31
and
z(x,t)=m,,(x,t)+m,(x,t). (32)

We add the first and second equation of eqn 27, and the
third and fourth equations to get the reduced system

—=wW(l-w)+ Az — Agyw
C ot 33
X 2%z 33)
—§=—;tz—lmsz+lsmw+—2

The,yariables w and z now represent the total number of
microbes, both genetically engineered and wild, in the sta-
tionary pool and the mobile pool, respectively. This sys-
tem has spatially homogeneous steady-state ‘solutions
(0,0) and (@, Z). Using contracting: rectangle- arguments

(Smoller 1982) it can be shown that (@, Z) is a globally sta-
ble equilibrium point for eqn 33 (Schmitz 1993). Thus, a
travelling wave solution connecting Point C and Point B
that is valid for all ¢ > 0 must satisfy eqn 30. In other
words, solutions that are not identically zero approach
eqn 30 uniformly in x for large t. This allows us to reduce
the system eqn 27 to a system of two differential equations
in S, and m, only and to look for travelling wave solu-
tions, which correspond to invasions of the genetically
engineered microbes.

We thus choose ¢ sufficiently large so that we can make
the simplification

Sy =W-S, (34)
and
m,=z-m, (35)

Substituting into eqn 27 we obtain a system of equations
with only population densities of the genetically engi-
neered microbes as dependent variable:

ESL =S¢[1—S¢ _Ye(w—se)]"'/lmsme _;"smsz

ot

om, a*m, (36)
o =-um, - A’msme - A’smse + n2 )

The fact that @< 1 (eqn 28) and %< 1 means that eqn 36
describes logistic growth in the stationary state and
switching between stationary state and a mobile state. See
Lewis & Schmitz (1995) for analysis of a similar system.

We now look for a solution representing a wave of
genetically engineered microbes invading space previous-
ly occupied by wild microbes. This is given by a travelling
wave solution moving at a constand speed, ¢, and with a
constant profile:

(s.m,) (x,8)=(S, M) (x —ct)=(S, M)(2). (37)

Thus the solution is assumed to move with velocity c in
the positive x direction. In the new co-ordinate, the system
of partial differential equations 36 becomes a system of
autonomous ordinary differential equations.

~S" == (1=1,)+S(1~ . — Ay ) + AeuM } (38)

M’ =~ uM - A, M+ 24,,S+M”

where prime denotes differentiation with respect to z.

Because s, and m, represent population densities, we
seek nonnegative travelling wave solutions S and M join-
ing (0,0) ahead of the wave to (@, ) behind the wave. The
appropriate boundary conditions are
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S(—°°)= w, M(_°°)= E,} (39)

S(ex) =0, M(e)=0.
Here S(—) means lim S (a), etc.

Calculation of the af)r;velling wave speed for a very
closely related model is given in Lewis & Schmitz (1995).
Reapplying their approach of linearizing about the lead-
ing edge of the travelling wave and constraining the solu-
tion to be nonnegative it can be shown that the expected
travelling wave speed is given by the larger of the two real
positive solutions to

R(c)=Dyc® +Dyc* +Dic* +Dy =0 (40)
where
Dy = 4 Ay +kiky)—(ky -y )2

D, = 6(AgAys +kik, )k, - 3k;)
+2(k, — Ky )* (k, - 2k;)
Dy = 6ky(AgyAs +kiky )J(k; - 3k;)
k2 (ky = k1) + 27(Agyy Ay + Kk )
Dy = 4 A +kiky )3 -

2

and
kl =(u+2'ms)
k2 =1—’}'J—U—)’sm-

s
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(see also Schmitz 1993). This is the method we use for cal-
culating the wave speed in Fig 2. When the mortality rate
4 =0 and the transfer rates A, and A, are identical the
algebra is much simpler and the valid solution to eqn. 40
is given by

c=41-7,- (41)

This work is the result of interdisciplinary collaboration between
two mathematicians (Mark Lewis and Greg Schmitz), a theoreti-
cal ecologist (Peter Kareiva) and a microbial ecologist (Jack
Trevors), aiming to understand the fundamental processes that
control the spread of GEMs in a field setting. The study was initi-
ated when Mark Lewis was a postdoctoral research fellow work-
ing with Peter Kareiva at the University of Washington. A key
interest of Mark Lewis is the realistic modelling of movement and
spatial spread of organisms. Under his supervision graduate stu-
dent Greg Schmitz developed and analysed a model for GEM
growth, competition and movement. Peter Kareiva’s research
involves a mix of theory and field experiment in the modelling
spatial processes in ecology. Jack Trevors research includes envi-
ronmental risk assessment for GEMs and the survival, respiration
and movement of GEMs in soil.
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