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In recent years regulations have been developed to address the risks of releasing
genetically engineered organisms into the natural environment. These risks are
generally considered to be proportional to the exposure multiplied by the hazard.
Exposure is, in part, determined by the spatial spread of the organisms, a compo-
nent of risk suited to mathematical analysis. In this paper we exampine a mathe-
matical model describing the spread of organisms introduced into a hetereogeneous
environment, focusing on the risk of spread and plausibility of containment
strategies. Two competing populations are assumed, one the natural species and the
other an engineered species or strain, both of which move randomly in a spatially
heterogenous environment consisting of alternating favourable and unfavourable
patches. The classical Lotka�Volterra competition model with diffusion is used.
Analyses of the possible spread and invasion of engineered organisms are thus
reduced to finding periodic travelling wave solutions to the model equations. We
focus on whether a very small number of engineerd organisms can spatially invade
a natural population. Initially we investigate the problem for spatially periodic dif-
fusion coefficients and demonstrate that, under the right circumstances and a large
enough unfavourable patch, invasion does not succeed. However, if spatially peri-
odic carrying capacities are assumed along with spatially varying diffusion rates, the
situation is far more complex. In this case containment of the engineered species is
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no longer only a simple function of the unfavourable patch length. By using pertur-
bation solutions to the nonuniform steady states, approximate invasion conditions
are obtained. � 1996 Academic Press, Inc.

1. Introduction

Through recombinant DNA technology it is now practical to modify
plants and animals to perform special agricultural or ecosystem functions.
However, concerns regarding the disruption of the ecosystem and even the
climatic system, by the release of such genetically engineerd organisms,
have been raised (see, for example, Tiedje et al., 1989; Andow et al., 1986).
A study of the spatio-temporal dynamics of genetically engineered
organisms in the natural environment has therefore become increasingly
important. Indeed no genetically engineered microbe has yet been
approved for widespread use, because scientists have not reached a consen-
sus regarding risks or containment.

The main concerns regarding the release of engineered organisms are
how far and how rapidly are they likely to spread, assuming different
ecological scenarios and management plans (Office of Technology Assess-
ment, 1988; Anderson and Betz, 1991). Ultimately an assessment of risk
associated with release should lead to strategies for the effective contain-
ment of an outbreak. To date there is no good quantitive basis for estimat-
ing spread rates and analysing possible containment strategies.

Genetically engineered microbes are especially amenable to mathemati-
cal analyses because they are continuously reproducing, lack complex
behaviours, and exhibit population dynamics well-described by simple
models. One example of such a microbe is Pseudomonas syringae (ice
minus bacteria), which can reduce frost damage to crops by occupying
crop foliage to the exclusion of Pseudomonas syringae strains that do cause
frost (Lindow, 1987).

With the aid of a theoretical model we obtain quantitative results on the
spatio-temporal spread of genetically engineered organisms in a spatially
heterogeneous environment. In doing this we generate information regard-
ing the risk of outbreak of an engineered population from its release site in
terms of its dispersal and growth rates as well as those of a competing
species. As shown below, the nature of the environment plays a key role in
the spread of the organisms. We focus specifically on whether containment
can be ensured by the use of geographical barriers, for example water, a
different crop, or, day, barren land.

One of the most successful ways of modelling the spread of a growing
population is by using Fisher's equation, pioneered by Fisher (1937), in
which it is assumed that spatial spread is only due to diffusion and logistic

2 CRUYWAGEN ET AL.
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growth. Applications of this model include the spread of waves of advan-
tageous genes, pests, epidemics and exotic organisms (see, for example,
Murray, 1989; Murray et al., 1986; Andow et al., 1990; Fife, 1979).

This basic model can be extended to a more involved system of two com-
peting and diffusing species, yielding the Lotka�Volterra competition
model with diffusion (see, for example, Murray, 1989). This system has
been successfully used by Okubo et al. (1990) for modelling the spatial
spread of the grey squirrel in Britain. With this model they were able to
provide an explanation why the externally introduced grey squirrel invaded
at the cost of the indigenous red squirrel.

Such models deal with invasion, only as travelling waves propagating
in a homogeneous environment. However, in practice, because of the
geographical, geological, and human-made variations in the environment,
this is almost never the case. Not only is spatial heterogeneity one of the
most obvious features in the natural world, but it is very likely one of the
most important factor influencing population dynamics.

A first analysis of propagating frontal waves in a heterogeneous
unbounded habitat was carried out by Shigesada et al. (1986) for Fisher's
equation which describes a single species with logistic population growth
and dispersal. The condition for linear stability of the steady states and the
travelling wave speed were obtained.

Here we use the Lotka�Volterra competition model with diffusion to
model the population dyncamics of natural microbes and competing
engineered microbes. We, however, adapt this model to account for a
spatially heterogeneous environment by assuming a periodically varying
domain consisting of good and bad patches. The good patches signify the
favourable regions in which the microbes are released, while the bad
patches model the unfavourable barriers for inhibiting the spread of the
microbes. We give special attention to the invasion and�or containment
conditions for the genetically engineered population.

Although the motivation for this work is to determine the conditions for
the spread of genetically engineered organisms, the models and analyses
also apply to the introduction of other exotic species where containment,
or in some cases deliberate propagation is the goal.

2. The Model Equations

Our approach is to write reaction-diffusion equations that specify the
spatio-temporal dynamics of both engineered microbes, whose density
at time t and position x is E(x, t), and unmodified microbes similarly
represented by N(x, t). We use classical Lotka�Volterra dynamics to
describe competition between our engineered and natural microbes. Our
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innovation is to allow key model parameters to vary spatially, reflecting
habitat heterogeneity.

Specifically the dynamics of the system is described by

�E
�t

=
�

�x \D(x)
�E
�x++rEE(G(x)&aEE&bEN ), (2.1a)

�N
�t

=
�

�x \d(x)
�N
�x ++rN N( g(x)&aNN&bN E), (2.1b)

which is the Lotka�Volterra competition model with difusion; see, for
example, Murray (1989). The functions D(x) and d(x) measure the diffu-
sion rates. The intrinsic growth rates of the organisms are reflected by the
positive parameters rE and rN . These are scaled so that the maximum
values of the functions G(x) and g(x), reflecting the respective carrying
capacities, are unity. The positive parameters aE and aN measure the effects
of intraspecific competition, while bE and bN are the interspecific competi-
tion coefficients.

As a first step in describing environmental heterogeneity we focus on a
model in which it is the dispersal and carrying capacity that vary (i.e., the
functions D(x), d(x), G(x), and g(x) are spatially periodic). We assume
that l is the periodicity of the environmental variation and accordingly
define

D(x)=D(x+l), d(x)=d(x+l ), G(x)=G(x+l),

g(x)=g(x+l ).

We further assume that there are no engineered microbes initially; that
is E(x, 0)#0. So, the natural microbes, N(x, 0), satisfy the equation

�
�x \d(x)

�N
�x ++rNN(g(x)&aNN )=0.

The engineered organisms are then introduced at a release site, which in
our case we shall take as the origin. This initial distribution in E(x, t) is
represented by the initial conditions

E(x, 0)={H(x)>0
0

if |x|�xc

if |x|>xc ,
(2.2)

where H(x) is a one-humped continuous function of x and xc is a positive
constant, typically as used in Fig. 1.

4 CRUYWAGEN ET AL.
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Fig. 1. A travelling wave solution connecting the native-dominant steady state to the
coexistence steady state in a spatially uniform environment. Parameter values used were #e=
#n=0.5, D(x)=d(x)=G(x)=g(x)=1, and r=2, so that the coexistence state is the only
stable state.

We further assume that the environment consists of two kinds of homo-
geneous patches, say Patch 1 of length l1 and Patch 2 of length l2 , connected
alternately along the x-axis. These patches are such that l=l1+l2 . We take
Patch 1 as the favourable patch and Patch 2 as the unfavourable patch. In
the unfavourable patches the diffusion and carrying capacity of the
organisms are less than in the favourable patches. Biologically this could
occur because the unfavourable patch is a hostile environment that either
limits a population or interferes with its dispersal. Correspondingly, the
functions D(x), d(x), G(x), and g(x) are periodic functions of x. In Patch 1,
where ml<x<ml+l1 for m=0, \1, \2, ...,

D(x)=D1>0, d(x)=d1>0;
(2.3)

G(x)=1, g(x)=1.

In Patch 2, where ml&l2<x<ml for m=0, \1, \2, ...,

D(x)=D2>0, d(x)=d2>0;
(2.4)

G(x)=G2 , g(x)=g2;

Since Patch 1 is favourable,

D1�D2 , d1�d2 ;

1�G2 , 1�g2 .

In Fig. 2 we show, an example, of how the diffusion of the engineered
microbes could vary in space.

At the boundaries between the patches, say x=xi , with

x2m=ml, x2m+1=ml+l1 for m=0, \1, \2, ...,

5SPREAD RISK
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Fig. 2. The spatial pattern in the diffusion coefficient of the genetically engineered
microbes, D(x), in the periodic environment. There are two patch types. Diffusion is higher
in the favourable patch, Patch 1, of length l1 , than the unfavourable patch, Patch 2, of
length l2 .

the population densities E(x, t) and N(x, t) must be conserved, so

lim
x � xi

+
E(x, t)= lim

x � xi
&

E(x, t),

lim
x � xi

+
N(x, t)= lim

x � xi
&

N(x, t),

and since the flux most also be conserved,

lim
x � xi

+
D(x)

�E(x, t)
�x

= lim
x � xi

&
D(x)

�E(x, t)
�x

,

lim
x � xi

+
d(x)

�N(x, t)
�x

= lim
x � xi

&
d(x)

�N(x, t)
�x

.

The system of equations for modelling the problem has now been defined
completely. Using this, the key questions we attempt to answer below are:
(1) Under which conditions will the engineered organisms invade success-
fully when rare? and (2) If invasion succeeds, will the engineered species
drive the natural population to invader-dominant or will a coexistant state
be reached?

Pacala and Roughgarden (1982) used a similar Lotka�Volterra competi-
tion model with diffusion in a two patch finite domain for describing two
general competing species. They, however, only assumed spatially varying
death rates and competition effects. They examined these equations for
conditions of invasion and, apart for one very special case, all their results
were obtained from numerical experimentation. In contrast, we follow

6 CRUYWAGEN ET AL.
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Shigesada et al. (1986) by studying the problem on the inifinite domain and
by assuming that the diffusion and carrying capacities vary among the
different patch types.

Our focus throughout this paper is upon the stability of the system to
invasions initiated by a very small number of individuals. Mathematically
this corresponds with linear analysis of steady state solutions to perturba-
tions with a spatial component. Except where otherwise noted, our numeri-
cal results indicate that the predictions from our linear analysis hold true
even if the number of invading organisms is not small.

3. Nondimensionalisation

We can nondimensionlise our equations by introducing

e=aEE, n=aNN, t*=rEt, x*=x \ rE

D1+
1�2

,

(3.1)

d*(x)=
d(x)
D1

, D*(x)=
D(x)
D1

, r=
rN

rE
, #e=

bE

aN
, #n=

bN

aE
,

and so

l*=l \ rE

D1+
1�2

, l1*=l1 \ rE

D1+
1�2

, l2*=l2 \ rE

D1+
1�2

. (3.2)

The nondimensional model equations, where we have dropped the
asterisks for convenience, are now

�e
�t

=
�

�x \D(x)
�e
�x++e(G(x)&e&#en), (3.3a)

�n
�t

=
�

�x \d(x)
�n
�x++rn( g(x)&n&#ne), (3.3b)

where

D(x)={1
D2

if ml<x<ml+l1

if ml&l2<x<ml,
(3.4)

d(x)={d1

d2

if ml<x<ml+l1

if ml&l2<x<ml,
(3.5)

7SPREAD RISK
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and the functions G(x) and g(x) are as before (see (2.3) and (2.4)). The
values of d1 , d2 , and D2 in (3.4) and (3.5) are as given by the nondimen-
sionalization in (3.1).

At the boundaries between the patches, x=xi , where xi=ml for i=2m
and xi=ml+l1 for i=2m+1 (m=0, \1, \2, ...) the nondimensional con-
ditions are now,

lim
x � xi

+
e(x, t)= lim

x � x i
&

e(x, t), (3.6a)

lim
x � x i

+
n(x, t)= lim

x � x i
&

n(x, t), (3.6b)

and also

lim
x � x i

+
D(x)

�e(x, t)
�x

= lim
x � xi

&
D(x)

�e(x, t)
�x

, (3.7a)

lim
x � xi

+
d(x)

�n(x, t)
�x

= lim
x � xi

&
d(x)

�n(x, t)
�x

, (3.7b)

for all integer i.

4. No Patchiness

We begin by examining the behaviour of our model equations in the
absence of patchiness. Hence we assume that the whole domain is
favourable and thus the unfavourable patch has zero length, l2=0. So
D(x)=1, d(x)=d1 . G(x)=1, and g(x)=1 everywhere. This results in the
classical Lotka�Volterra competition model with diffusion.

The initial steady state condition reduces to e1=0, n1=1. We shall refer
to this steady state as the native-dominant steady state further on. There are
two other relevant steady states. The invader-dominant steady state, where
the engineered organisms have driven the natural organisms to invader-
dominant; that is e2=1, n2=0, and the coexistence steady state

e3=
#n&1

#n#e&1
, n3=

#e&1
#n#e&1

. (4.1)

The latter is only relevant if it is positive, which means that either #e<1
and #n<1, thus weak interspecific competition for both spieces, or #e>1
and #n>1, thus strong interspecific competition for both species. The tri-
vial steady state, given by e0=n0=0, is not of any significance here.

It has been shown formally (see, for example, Grusa, 1988) that the
Lotka�Volterra competition model with diffusion does not have any other

8 CRUYWAGEN ET AL.
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steady state solutions, for example patterned solutions, apart from the
above uniform steady states when zero-flux boundary conditions are
imposed. Furthermore, all solutions are bounded and always nonnegative
for nonnegative initial conditions such as (2.2).

We are now interested in the existence of travelling wave solutions to
(3.3) connecting the native-dominant steady state, (e1 , n1), to the existence
steady state, (e2 , n2), or the invader-dominant steady state, (e3 , n3). Such
solutions would correspond to waves of microbial invasion, either driving
the natural species to invader-dominant or to a new, but lower, steady
state.

By performing a linear stability analysis about the initial native-domi-
nant steady state, (e1 , n1), we can determine under which conditions inva-
sion succeeds. By looking for solutions of the form eikx+*t in the linearised
system we obtain the linear dispersion relationship

*(k2)=
&b(k2)\- b2(k2)&4c(k2)

2
,

where

b(k2)=k2(d1+1)+(#e&1)+r,

c(k2)=d1 k4+[#e&1+r] k2+r(#e&1).

The native-dominant steady state is linearly unstable if there exists a k2 so
that *(k2)>0. From the dispersion relationship it can be seen that if #e>1
then the initial steady state will always be linearly stable, since b(k2) is
always positive. However if #e<1 then there are values of k for which the
steady state is unstable and the invasion of the engineered species, e, will
succeed.

By similarly linearising about the other steady states we can also deter-
mine their stability. The invader-dominant steady state, (e2 , n2), is stable if
#n>1, and unstable if #n<1. On the other hand the coexistence steady
state (e3 , n3) is stable if #e<1 and #n<1, and unstable if #e>1 and #n>1.
Note that if #e<1<#n or #n<1<#e , the coexistence steady state is no
longer relevant, since either e3 or n3 becomes negative.

It is furthermore easy to show that the trivial steady state is always
linearly unstable; in the absence of an indigenous species either the natural
strain, the engineered strain, or both, would invade.

We begin by examining numerically whether travelling wave solutions
can exist when the native-dominant steady state is unstable. Indeed, when
#e<1, a travelling wave connecting the native-dominant steady state to the
invader-dominant steady state results, but only if #n>1, On the other
hand, a travelling wave connecting the native-dominant steady state to the

9SPREAD RISK
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coexistence steady state results only if #n<1. In Fig. 1 we illustrate the
numerical solutions for the case when #e<1 and #n<1.

The requirement, #e<1, for the native-dominant steady state to be
unstable, implies, in terms of our original dimensional variables (see (3.1)),
that the interspecific competitive effect of the natural organisms, n, on the
engineered species, e, is dominated by the intraspecific competition of the
natural species.

If #n>1 the natural species is driven to invader-dominant and in terms
of our original dimensional parameters, this happens when increases in
density of the engineered species reduce the population growth of the
natural species more than they reduce their own population's growth rate.
When #n<1 the situation is just reversed; again refer to (3.1).

If, on the other hand, the native-dominant state is stable, #e>1, we can,
simultaneously, have the invader-dominant steady state stable if #n>1.
This is also the conditions for the coexistence steady state to be unstable.
In this case the stability of the native-dominant steady state depends on the
initial conditions (2.2). If H(x) represents a small perturbations about e=0
then the native-dominant steady state remains the final steady state solu-
tion. However, we found from numerical experimentation, that for very
large perturbations, corresponding to a very large initial release of e, a
travelling wave solution results and the invader-dominant steady state
becomes the final solution. Conley and Gardner (1989) proved the exist-
ence of such a travelling solution under these circumstances. Thus, contain-
ment can be only ensured for all initial release strategies if #e>1 and #n<1.

Note that if we consider the whole domain as unfavourable, instead of
favourable, by setting l1=0 instead of l2=0, then we obtain analogous
results. However, our nonzero steady states are different now. The native-
dominant steady state is e1=0, n1=g2 , the invader-dominant steady state
is e2=G2 , n2=0, while the coexistence steady state is

e3=
#nG2&g2

#e#n&1
, n3=

#eg2&G2

#e#n&1
.

The stability conditions are now determined from whether #e and #n are
respectively larger or smaller than G2 �g2 and #n<g2 �G2 the coexistence
steady state is stable, and all other steady states are unstable.

5. Spatially Varying Diffusion

As above we perform here a linear stability analysis about the various
steady states when the patchiness only affects the diffusion functions. In the

10 CRUYWAGEN ET AL.
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first part of this section we investigate how spatially varying diffusion coef-
ficients affect the ability of the engineered species to invade. In the second
part we determine the conditions necessary for reaching a specific invasion
steady state.

5.1. Conditions for Invasion

The initial native-dominant steady state is (e1 , n1), where again e1=0
and, depending on the function g(x), either n1=1 or n1 is a periodic func-
tion of x with period related to the length of the patches.

In this section, as a first case, we assume, however, that g(x)=1 so that
n1 is thus independent of x. As we shall see below, this simplifies the
problem considerably. We consider the much more involved problem when
g(x) is a periodic function in x in Section 6.

To determine the stability of the initial native-dominant steady state we
linearise about (e1 , n1)=(0, 1) to obtain

�e
�t

=
�

�x \D(x)
�e
�x++e[G(x)&#e], (5.1a)

�n
�t

=
�

�x \d(x)
�n
�x++r[&n&#ne], (5.1b)

where e and n now represent perturbations away from the steady state
(n1 , e1) and |e|R1 and |n|R1.

The stability of this system can be determined by looking only at the
equation for the engineered species (5.1a), since it is independent of n. This
reduces the linear stability problem to

�e
�t

=
�2e
�x2+e[1&#e] in Patch 1, (5.2a)

�e
�t

=D2

�2e
�x2+e[G2&#e] in Patch 2. (5.2b)

By substituting e(x, t)=e&*t f (x) into (5.2) we obtain the characteristic
equation

�
�x \D(x)

�f
�x++[G(x)&#e+*] f=0, (5.3)

which is generally known as Hill's equation. Here, according to our defini-
tion, G(x)&#e and D(x) are both periodic functions of period l ; see
Section 3.
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It is known from the theory of Hill's equation with period coefficients,
that there exists a monotonically increasing infinite sequence of real eigen-
values *,

&�<*0<*� 1�*� 2<*1�*2�*� 3�*� 4< } } } ,

associated with (5.3), for which it has nonzero solutions. The solutions are
of period l if and only if *=*i and of period 2l if and only if *=*� i .
Furthermore, the solution associated with *=*0 has no zeros and is
globally unstable (in the spatial sense) in that f � � as |x| � �; refer
to Shigesada et al. (1986). For the detailed theory see Coddington and
Levinson (1972) or Magnus and Winkler (1966).

So, the stability of the native-dominant steady state of the partial
differential equation system (5.1) is determined by the sign of *0 . If *0<0
the trivial solution e0=0 of (5.1) is dynamically unstable and if *0>0 this
solution is dynamically stable.

By extending a result of Borg (1946) it is possible to obtain a bound on
*0 (see Appendix A).

By defining the function

Q(x)=G(x)&
l1+G2 l2

l
,

we can write Eq. (5.3) in the form

�
�x \D(x)

�f
�x ++_Q(x)+

l1+G2 l2

l
&#e+*& f=0. (5.4)

Since

|
(`+1) l

`l
Q(x) dx=0 for arbitrary ` # R,

it follows from the result in Appendix A that

l1+G2 l2

l
&#e+*0<0.

Thus a sufficient condition for *0<0 and for the system of Eq. (5.1) to be
unstable is

(1&#e) l1�(#e&G2) l2 . (5.5)

12 CRUYWAGEN ET AL.
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There are now three relevant cases to consider. Recall that G2<1.
In the case when #e>1>G2 the native-dominant steady state is stable in

both the favourable and unfavourable patches if they are considered in
isolation. Refer again to Section 4 for the detailed discussion of the stability
conditions for either the favourable or unfavourable patches (note that
g2=1 here). However, although it seems reasonable, we cannot conclude
from (5.5) that the native-dominant steady state will be stable for the full
problem, since this is only a sufficient condition for instability.

On the other hand, when 1>G2>#e the native-dominant steady state is
unstable in both patches if they are considered in isolation. Moreover, as
expected, it follows from (5.5) that the native-dominant steady state is also
unstable for the problem on the full domain considered here. Thus, if the
carrying capacity of the engineered microbes in the unfavourable patch,
Patch 2 (reflected by G2) exceeds their loss, due to the interspecific com-
petitive effect of the natural organisms (reflected by #e), the engineered
organisms always invade.

However, if 1>#e>G2 , the native-dominant steady state is unstable in
the favourable patch but stable in the unfavourable patch when considered
in isolation. Which of these patches dominates the actual stability of the
native-dominant steady state depends on the relative sizes of these patches,
as can be seen from inequality (5.5). By increasing the favourable patch
length, l1 , and�or decreasing the unfavourable pach length, l2 , the native-
dominant steady state will become unstable so that invasion does occur.
The above condition (5.5) is not a necessary condition for instability and
so does not provide exact conditions for ensuring the stability of the native-
dominant steady state.

We begin by obtaining separable solutions for the above equation (5.2)
for each of the two types of patches. Since we expect periodic solutions we
use Fourier series expansions to find the solutions.

In Patch 1 we obtain the solution

e(x, t)= :
�

i=0

Aie&*i t cos _\x&
l1

2
&ml+ - 1&#e+*i& , (5.6)

while in Patch 2 we have

e(x, t)= :
�

i=0

Bie&*i t cos _\x+
l2

2
&(m+1) l+ �G2&#e+*i

D2 & , (5.7)

with Ai and Bi constants.
Applying the continuity conditions (3.6) and (3.7) the following series of

equalities must hold

13SPREAD RISK



F
ile

:6
53

J
12

55
14

.B
y:

B
V

.D
at

e:
07

:0
2:

96
.T

im
e:

08
:3

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

30
09

Si
gn

s:
19

51
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

- 1&#e+*i tan \l1

2
- 1&#e+*i+

=&D2 �G2&#e+*i

D2

tan \l2

2 �
G2&#e+*i

D2 + ,

for i=0, 1, 2, ... Note that if the expressions inside the above square roots
become negative identities

tan iz=i tanh z, arc tan iz=i arc tanh z, (5.8)

should be used.
We are, of course, interested in the sign of the smallest eigenvalue,

*=*0 , satisfying the above equality. It is not difficult to show that *0 will
be negative if and only if the expressions 1&#e+*0 and G2&#e+*0

appearing under the square roots have opposite signs.
Since, by definition G2<1, this can occur only if #e<1. Thus, as is the

case in the problem with spatially uniform coefficients, a necessary condi-
tion for the native-dominant steady state to be unstable, thus permitting
engineered microbes to invade is that the competitive effect bE , of the
natural species on the engineered species is smaller than the intraspecific
competition effect, aN , of the natural species; refer to (3.1).

If G2�#e then *0 is negative and invasion will succeed regardless of the
other parameters and the patch sizes, as we have discussed above.

However, if G2<#e<1, then depending on the various parameter values,
*0 can either be negative or positive. We shall now consider this case, in
which the native-dominant steady state is unstable in the favourable patch,
but stable in the unfavourable patch, in further detail. As we have seen
above the relative sizes of the patches now become important.

At critical value, *0=0, the following inequality holds:

- 1&#e tan _l1

2
- 1&#e&=D2 �#e&G2

D2

tanh _l2

2 �
#e&G2

D2 & , (5.9)

from which we find the critical length, l1*, of Patch 1 as

l1*=
2

- 1&#e

arc tan _�D2(#e&G2)
1&#e

tanh {l2

2 �
#e&G2

D2 =& .

For l1<l1* the native-dominant steady state would be stable, since *0

would be positive, while for l1>l1*, *0 would be negative and the native-
dominant steady state unstable. So, as shown earlier in this section,
invasion will succeed if the favourable patch is large enough compared to
the unfavourable patch.

14 CRUYWAGEN ET AL.
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Note that as l2 increases towards infinity the boundary curve approaches
an asymptote

lim
l2 � �

l1(l2)=l c
1=

2

- 1&#e

arc tan �D2(#e&G2)
1&#e

. (5.10)

Thus invasion will always succeed, regardless of the unfavourable patch
size, if l1�l c

1 . Furthermore, since

l c
1>l m

1 =
2 arc tan �

- 1&#e

=
?

- 1&#e

,

invasion will succeed regardless of the values of l2 , G2 (<#e) and D2 if
l�l m

1 . The stability region in terms of l1 and l2 , for the case when G2<#e ,
is shown in Fig. 3(a).

Likewise we can draw a stability curve for #e versus l2 . We have shown
that if #e<G2 invasion will always succeed independent of the length of
Patch 2 (l2). However, as #e increases beyond G2 a stability curve appears
from infinity at some critical value #e=#c

e . The asymptote of the curve,
#c

e can be obtained from the following nonlinear relationship

D2(#c
e&G2)

1&#c
e

=tan2 \l1

2
- 1&#c

e+ .

The stability region is shown in Fig. 3b. Note that, as l1 increases towards
l c

1 , the stability curve would appear for increasingly larger values of #c
e ,

while for l1�l c
1 , the stability curve would not appear at all.

The properties of the stability graph of G2 versus l2 is similar to that of #e ver-
sus l2 . For G2>#e invasion is successful, however, as the value of G2 decreases
beyond #e , a stability curve appears from infinity at the asymptote

G c
2=#e+

#e&1
D2

tan2 \l1

2
- 1&#=+ .

The diffusion rate of the engineered species in the unfavourable patch,
Patch 2, also plays an important role in determining the stability of the
native-dominant steady state if l1<l1*. For sufficiently small values of D2

invasion succeeds regardless of the value of l2 . Biologically this implies that
the diffusion rate is so small in the unfavourable patch that the effect on the
favourable patch is minimal. However, as D2 increases, a stability curve
appears from infinity at the critical asymptotic value D2=Dc

2 , with

Dc
2=

1&#e

#e&G2

tan2 \l1

2
- 1&#e+ .
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On the other hand, as D2 � � the stability curve approaches an asymptote
at l c

2 . Since from (5.9)

l2=2 � D2

#e&G2

arc tanh _� 1&#e

D2(#e&G2)
tan \l1

2
- 1&#e+& ,

and, after applying L'Hopital's rule, we obtain

lim
D2 � �

l2(D2)=l c
2=

2 - 1&#e

#e&G2

tan \l1

2
- 1&#e+ .

Thus l2<l c
2 the engineered microbes invade for any diffusion rate. In

Fig. 3c, the graph showing the D2 versus l2 stability curve, is shown.
We can conclude that for #e<1 necessary conditions for containment are

G2<#e , and

l1<l c
1 , l2>l c

2 , #e>#c
e , G2<G c

2 , D2>Dc
2 .

These inequalities point out that containment can be ensured either by
decreasing l1 or G2 , or by increasing #e , D2 , or l2 . Note that #e<1 implies,
in the context of Section 4, that the native-dominant steady state is
unstable in the favourable patch, while, on the other hand, G2<#e implies
that it is stable in the unfavourable patch. The simplest strategy for
ensuring the stability of the native-dominant steady state is, however, to
have #e>1 as discussed above.

It is important to note here that linear stability has been discussed in this
section for the patchy domain as a whole. Even though invasion succeeds
somewhere in the whole domain, it might be the case that, depending on
initial conditions, invasion is only local and, in effect, contained in a certain
patch. This could be the case when 1>#e>G2 . Although the native-domi-
nant steady state can be stable for the full problem it is locally unstable
in the favourable patch. Local invasion in a favourable patch, resulting
from small nonzero initial perturbations for e in that patch, might thus
occur in some cases. We shall consider such an example in more detail in
Section 6.4.

Fig. 3. The stability diagram for the native-dominant steady state, obtained from (5.9),
when we have spatially periodic diffusion coefficients and a spatially periodic carrying capacity
for the engineered population. The boundary curves are indicated by the solid line, while the
asymptotes are indicated by the dotted lines: (a) The (l1 , l2) plane for D2=0.5, #e=0.75, and
G2=0.5. (b) The (#e , l2) plane for D2=0.5, l1=1.0, and G2=0.5. (c) The (D2 , l2) plane for
#e=0.75, l1=1.0, and G2=0.5. The algebraic expressions for the asymptotes are given in the
text; see Section 5.1.
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5.2. Invasion Steady States

In the previous section we have obtained stability conditions for the
native-dominant steady state, (e1 , n1). As there are three other possible
steady states, the zero steady state (e0 , n0), the invader-dominant steady
state (e2 , n2), and the coexistence steady state (e3 , n3) (see Section 3), we
must now determine whether, and under which conditions, our solution
would evolve into any of these steady states. Naturally in these cases,
travelling wave solutions, connecting the unstable native-dominant steady
state to non-native-dominant steady states, are expected.

We begin by examining the stability of zero steady state (e0 , n0)=(0, 0).
Application of methods from the previous section indicates that the zero
steady state is always dynamically unstable. Thus we would not expect a
stable travelling wave solution connecting the zero steady state with the
unstable native-dominant state.

Examination of the invader-dominant steady state, (e2 , n2) with a spa-
tially varying capacity function, G(x), yields a spatially varying steady state
solution, e2 . However, since are unable to obtain the exact solution for e2

it is therefore not possible to examine its stability. We shall therefore
assume, in the remainder of this section, that G2=1, leaving the more
involved case for the next section. The invader-dominant steady state now
becomes (e2 , n2)=(1, 0).

Due to the symmetry of the model equations we can obtain, in complete
analogy with the previous section, the linear stability conditions for the
invader-dominant steady state. The initial sufficient condition for
instability, similar to that in (5.5), is

(1&#n) l1�(#n&g2) l2 .

Also, as before, a more exact stability boundary can be obtained, by
applying the boundary conditions (3.6) and (3.7) to the separable solutions
of (5.1). This gives as stability boundary

- rd1(1&#n) tan \l1

2 �
r(1&#n)

d1 +=&- rd2( g2&#n) tan \l2

2 �
r(g2&#n)

d2 +
and, as before, we can find a critical l1*,

l1*=2 � d1

1&#n
arc tan {�d2(#n&g2)

d1(1&#n)
tanh _l2

2 �
r(#n&g2)

d2 &= .

18 CRUYWAGEN ET AL.
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Stability curves similar to those in Figs. 3 can be obtained, where G2 is
now replaced by g2 , #e is replaced by #n , and D2 is replaced by d2 .

Again there are three cases to consider.
When #n>1>g2 , so that the invader-dominant steady state is stable in

both patch types when considered in isolation (refer to Section 3), then the
invader-dominant state is indeed stable for the full problem. On the other
hand, if 1>g2>#n , so that the invader-dominant state is unstable in both
the favourable and unfavourable patches when considered independently, it
is unstable on the patchy domain.

The critical situations occurs when 1>#n>g2 so that the invader-
dominant steady state is unstable in the favourable patch and stable in the
unfavourable patch. As was the case for the native-dominant state the
stability of the global problem now depends on the parameter values. For
example, the instability of the invader-dominant state on the full domain
can be ensured by having the relative length of the favourable Patch 1, l1 ,
much larger than the unfavourable Patch 2, l2 .

We would, however, like to consider this stability curve in conjunction
with the stability of the native-dominat steady state, (e1 , n1). To obtain the
stability boundary for (e1 , n1) we assumed that g2=1 and so we have to
extend this assumption to this section as well. Similarly, since we have
assumed here that G2=1, this has to be extended to the results of Section 5.1.

With this in mind, we, third, consider the stability of the coexistence
steady state when G2=g2=1, so that (e3 , n3) is as in (4.1). By linearising
about (e3 , n3), two coupled linear equations are obtained. Looking for
solutions proportional to e&*t gives a set of two ordinary differential
equations in which the sign of * determines the dynamics stability of the
coexistence steady state. We again obtain two separable solutions for this
sect of equations, each valid for one of the two types of patches. Intro-
ducing the continuity conditions (3.6) and (3.7) leads to a set of eight linear
equations. From the solvability condition we can determine the sign of the
smallest eigenvalue *=*0 . This is obtained by setting the determinant of
the following matrix equal to zero,

_
cosh(l1%+)

k%+
cosh(l1%+)

%+ sinh(l1%+)
d1%+k% +

sinh(l1 %+)

cosh(l1%&)
k%&

cosh(l1%&)
%& sinh(l1%&)

d1 %&k% &
sinh(l1 %&)

&cosh(l2;+)
&k; +

-cosh(l2;+)
D2;+ sinh(l2;+)

d2 ;+k; +
sinh(l2;+)

&cosh(l2;&)
&k; &

cosh(l2;&)
D2;& sinh(l2 ;&)

d2;&k; &
sinh(l2 ;&)& ,

where the expresions for %\ , ;\ , k%\
, and k;\

are given in Appendix B.
As can be seen from these the solvability condition is extremely involved

in terms of the model parameters, and it is impossible to determine the role
of the various model parameters in the stability of the coexistence steady
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state. Its stability has to examined separately for each set of parameter
values.

Recall that a positive coexistence steady state can only exist if #e<1 and
#n<1, or if #e>1 and #n>1. We are thus unable to demonstrate con-
clusively that the coexistence steady is stable if and only if #e<1 and #n<1,
and unstable if and only if #e>1 and #n>1, as in the case for constant dif-
fusion. However, detailed numerical experimentation, provides strong
evidence in support of this.

We now examine our system for travelling wave solutions connecting the
unstable native-dominant steady state to any of these other three steady
states. We assume that there are no other steady states apart from the four
uniform states and that all the solutions are bounded and nonnegative.
Although we are considering spatially varying diffusion here these assump-
tions still seem reasonable in the light of the results of Grusa (1988) as dis-
cussed in Section 4.

When G2=g2=1 everywhere and the native-dominant steady state
(e1 , n1) is unstable (i.e., #e<G2=1), we can conclude that if the invader-
dominant steady state (e2 , n2) is unstable (i.e., #n<g2=1) the coexistence
steady state (e3 , n3) is stable. A travelling wave of invasion could thus result
connecting the native-dominant steady state (e1 , n1) to the coexistence
steady state (e3 , n3).

On the other hand, when the invader-dominant steady state (e2 , n2) is
stable (i.e., #n>g2=1) then the coexistence steady state is negative. Since
all biologically reasonable solutions are nonnegative a travelling wave
solution connecting the native-dominant steady state (e1 , n1) to the
invader-dominant steady state (e3 , n3) is indicated.

However, as before, when the native-dominant and the invader-domi-
nant steady states are linearly stable (i.e., #e>1 and #n>1) then invasion
depends on the density of the engineered organisms introduced initially,
that is H(x) in (2.2). If the initial release is relatively small, containment is
ensured.

So, in the light of the above analyses, #e>1 and #n<1 is the only
strategy for containment that is safe for any initial microbe release density.
Comparing this with the result of Section 4 we see that varying diffusion
does not affect the stability conditions at all.

6. Spatially Varying Carrying Capacities and Diffusion

In Section 5.1, because g(x) is assumed to be a constant, the initial native-
dominant steady state (e1 , n1) is spatially uniform. However, to address
carrying capacities that differ among the favourable and unfavourable
patches for both populations, we assume now that g(x) and G(x) are

20 CRUYWAGEN ET AL.
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spatially periodic functions, which means all three nonzero steady states
have spatially periodic solutions. Because it is impossible to obtain exact
expression for these spatially nonuniform steady state solutions it is dif-
ficult to determine their stability. However, by using regular perturbation
solutions to the nonuniform steady states, approximate stability conditions
can be found, as is shown below.

6.1. Perturbation Solutions

Here we obtain a regular perturbation solution to the initial native-
dominant steady state, (e1 , n1), when the carrying capacity of n in the
unfavourable patch, g(x)=g2 , is different, but close to its carrying capacity
in the favourable patch, g(x)=1. In some types of environments this could
indeed be the case and the perturbation solution would thus be in very
close agreement with the exact solution.

As before, at the initial native-dominant steady state the density of the
genetically engineered population, e1 is zero everywhere. The initial steady
state distribution of the natural population, n1 , is described by the equa-
tion

�
�x _d(x)

�n1

�x &+rn1[g(x)&n1]=0. (6.1)

To obtain an approximate solution to this equation we solve it in each of
the respective patches before introducing the continuity conditions. We
define a small perturbation parameter, =, as the difference between the
carrying capacities in the favourable and unfavourable patches,

==1&g2 , |=|R1.

To avoid notational ambiguity we shall represent the natural species, n1 ,
in Patch 1 by & and in Patch 2 by '.

In Patch 1 we assume a power series expansion of the form

&=1+=&1+=2&2+O(=3), (6.2)

while in Patch 2 we assume

'=g2+='1+=2'2+O(=3). (6.3)

We substitute these into the steady state equations coefficients of the same
order of =.

The equation for Patch 1 at O(=) is

d2

d 2&1

dx2 &rg2&1=0,

21SPREAD RISK



F
ile

:6
53

J
12

55
22

.B
y:

B
V

.D
at

e:
07

:0
2:

96
.T

im
e:

08
:3

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

24
72

Si
gn

s:
10

36
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

which has the general solution

&1=A1 cosh[- (r�d2) (x&l1 �2&ml)]+B1 sinh [- (r�d2) (x&l1 �2&ml )],

where A1 and B1 are constants to be determined from the boundary condi-
tions and m=0, \1, \2, ... . Similarly, for Patch 2, we find

'1=A2 cosh[- (rg2 �d2) (x+l2 �2&(m+1) l )]

+B2 sinh[- (rg2 �d2) (x+l2 �2&(m+1) l )],

with A2 and B2 constants and m=0, \1, \2, ... .
By matching the continuity conditions (3.6) and (3.7) we find that both

B1 and B2 are zero. The expressions for A1 and A2 are, however, nonzero
and are given in Appendix C.

The equation for Patch 1 at O(=2) is

d1

d 2&2

dx2 &r&2=r&2
1 .

By adding the general and particular solutions we obtain a solution to this
equation,

&2=C1 cosh {� r
d1 \x&

l1

2
&ml+=+F1 sinh {� r

d1 \x&
l1

2
&ml+=

&A2
1 cosh2 {� r

d1 \x&
l1

2
&ml+=+A2

1 sinh2 {� r
d1 \x&

l1

2
&ml+= ,

where the constants C1 and F1 are to be determined from the continuity
conditions. We obtain a similar solution in Patch 2, that is,

'2=C2 cosh {�rg2

d2 \x+
l2

2
&(m+1) l+=

+F2 sinh {�rg2

d2 \x+
l2

2
&(m+1) l+=

&A2
2 cosh2 {�rg2

d2 \x+
l2

2
&(m+1) l+=

+A2
1 sinh2 {�rg2

d2 \x+
l2

2
&(m+1) l+= ,

with C2 and F2 constants.
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By again using the boundary conditions we find that F1 and F2 are zero.
The expressions for C1 and C2 are given in Appendix C.

We now have the Patch 1 perturbation solution

&=1+= _A1 cosh {� r
d2

(x&l1 �2&ml)=&
+=2 _C1 cosh {� r

d1 \x&
l1

2
&ml+=

&A2
1 cosh2 {� r

d1 \x&
l1

2
&ml+=

+A2
1 sinh2 {� r

d1 \x&
l1

2
&ml+=&+O(=3), (6.4)

which matches with the Patch 2 perturbation solution,

'=g2+= _A2 cosh {�rg2

d2

(x&l1�2&ml )=&
+=2 _C2 cosh {�rg2

d2 \x+
l2

2
&(m+1) l+=

&A2
2 cosh2 {�rg2

d2 \x+
l2

2
&(m+1) l+=

+A2
1 sinh2 {�rg2

d2 \x+
l2

2
&(m+1) l+=&+O(=3). (6.5)

These perturbation solutions were compared with the numerical solutions
and we found that even when = is relatively large, which means the carrying
capacity in the unfavourable patch g(x)=g2 is much smaller than the
carrying capacity in the favourable patch, g(x)=1, they agree remarkably
well with our the numerical calculated result (see Figs. 4 and 5).

6.2. Conditions for Invasion

Using the above perturbation solution we can determine the approx-
imate stability boundaries of the, now spatially periodic, native-dominant
steady state (e1 , n1). As before it is sufficient to consider only the equation
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Fig. 4. A comparison of the perturbation solution (see (6.4) and (6.5)) to the numerically
calculated solution for the native-dominant steady state. The perturbation solution is taken to
O(=), with ==0.1, while the other parameters are g2=0.9, d2=0.5, r=1.0, l1=1.0, and
l2=3.0.

for the engineered microbial population which in its linearised form about
the native-dominant steady state (e1 , n1) is

�e
�t

=
�2e
�x2+e[1&#e&] in Patch 1, (6.6a)

�e
�t

=D2

�2e
�x2+e[G2&#e'] in Patch 2, (6.6b)

where & and ' are the perturbation solutions to n1 in Patch 1 and Patch 2,
respectively; see (6.4) and (6.5).
- The corresponding characteristic equation is

�
�x \D(x)

�e
�x++[G(x)&#en1+*] e=0, (6.7)

which is valid for |e|R1.
Since the functions G(x)&#en1(x) and D(x) are periodic in l,

D(x)=D(x+l ), G(x)&#en1(x)=G(x+l )&#en1(x+l ), (6.8)

we can use results of Hill's equation to examine the stability of the native-
dominant steady state.

As in Section 5.1 we again employ the results of Appendix A, but now
in conjunction with the perturbation solution for n1 (6.3). For illustrative
purposes we consider here the perturbation solution only to O(=). This
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Fig. 5. Here we compare the native-dominant steady state perturbation solution (see (6.4)
and (6.5)) to the numerically calculated solution for a relatively large ==0.25. The parameter
values are g2=0.75, d2=0.5, r=0.1, l1=1.0, and l2=3.0. In (a) the perturbation solution is
taken to O(=), while in (b) it is taken to O(=2).

gives a good approximation to the actual solution for small enough values
of = as we have seen in Figs. 6 and 7.

We begin by rewriting (6.7) as

�
�x \D(x)

�e
�x++[Q(x)+*+S] e=0, (6.9)

where S is a constant and

Q(x)=G(x)&#e n1&S.
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Fig. 6. The (#e , l2) stability diagram for the native-dominant steady state, as obtained
from (6.11), when G2<g2 and we have spatially periodic diffusion coefficients and carrying
capacities for both populations. The boundary curve is indicated by the solid line, while the
asymptote #c

e=G2 �g2 is indicated by the dotted line. Refer to cases (i) and (ii) in Section 6.4.

The constant S is chosen such that

|
(`+1) l

`
Q(x) dx=0, ` # R.

Using our perturbation solution to O(=), it can be shown that

S=(1&#e) l1+(G2&#eg2) l2

+
2#e=

l _A1 �d1

r
sinh \� r

d1

l1

2+&A2 � d2

rg2

sinh \�rg2

d2

l2

2+&
with A1 and A2 as in Appendix C.

As before there exists a series of monotonically increasing values *i+S,
i=0, 1, 2, ..., for which Eq. (6.9) has nonzero solutions. From the result in
Appendix A it now follows that the smallest value in this series satisfies

*0+S<0.

A dynamically unstable solution to (6.6) corresponds to a nonzero solu-
tion of (6.7) for which *0<0. So, a sufficient condition for this to hold is
that S�0.
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Fig. 7. A numerical solution of the model equations when parameters are such that
coexistence is predicted for both the favourable and unfavourable patches, so
#e<min[1, G2�g2] and #n<min[1, g2 �G2]. As expected invasion occurs via a travelling wave
connecting the native-dominant steady state to the coexistence steady state. The parameters
used in this example are l1=l2=5.0, D2=d2=0.5, G2=g2=0.75, #e=#n=0.5, and r=2.0.

By substituting the expressions for A1 and A2 into S this inequality
becomes

_�rg2

d2

coth \�rg2

d2

l2

2++g2 � r
d1

coth \� r
d2

l1

2+&
_[(1&#e) l1+(G2&#eg2) l2]�2#e(g2&1)2. (6.10)

Note, however, that the right-hand side of this inequality is O(=2), since, by
definition, ==1&g2 . So, because the first factor of the expression on the
left-hand side of the inequality is always positive, as a first approximation,
we can replace the above condition by

(1&#e) l1>(#eg2&G2) l2 , (6.11)

which is a sufficient condition for the native-dominant steady state to the
linearly unstable.

From the above we see that if the carrying capacities are equal in
Patches 1 and 2, thus g2=1, the inequality (6.10) reduces to the one we
obtained for the case when there is no patchiness in the natural popula-
tion's carrying capacity; see (5.5).

The full implications of this condition (6.11) will be discussed in Sec-
tion 6.4 after the stability conditions for the other steady states have been
examined.

6.3. Invasion Steady States

In the last section we determined an approximate sufficient condition for
which the native-dominant steady state, (e1 , n1), would be unstable. Here
we examine the linear stability of the other steady state solution so as to
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determine the new solution, given that the native-dominant steady state is
unstable.

As in Section 5.2 it is easy to show that the trivial steady state (0, 0) is
unstable for all relevant parameter ranges.

To determine the stability of the invader-dominant steady state, (e2 , n2),
we first obtain its perturbation solution, using as small parameter
==1&G2 . In Patch 1 we then find

e=1+= _A� 1 cosh \x&
l1

2
&ml+&+=2 _C� 1 cosh \x&

l1

2
&ml+

&A� 2
1 cosh2 \x&

l1

2
&ml++A� 2

1 sinh2 \x&
l1

2
&ml+&+O(=3),

while in Patch 2,

e=G2+= _A� 2 cosh {�G2

D2

(x+l2 �2&(m+1) l )=&
+=2 _C� 2 cosh {�G2

D2 \x+
l2

2
&(m+1) l+=

&A� 2
2 cosh2 {�G2

D2 \x+
l2

2
&(m+1) l+=

+A� 2
1 sinh2 {�G2

D2 \x+
l2

2
&(m+1) l+=&+O(=3),

where the expressions for A� 1 , A� 2 , C� 1 , and C� 2 are given in Appendix C.
As before we can obtain approximate stability curves for this steady state

by using the result in Appendix A. From this we find that the sufficient
approximate condition for the invader-dominant steady state (e2 , n2) to be
unstable is

_�G2

D2

coth \�G2

D2

l2

2++G2 coth \l1

2+&
_[(1&#n) l1+(g2&#nG2) l2]�

2r#n

d1

(1&G2)2.

Again, since 1&G2== we can approximate this condition by

(1&#n) l1>(G2#n&g2) l2 . (6.12)

Now as before we can draw stability curves to determine the parameter
values for which this steady state is unstable.
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Unfortunately, although one could in principle find a regular perturba-
tion solution to the coexistence steady state (e3 , n3), the calculations are so
involved as to be impractical. Furthermore, even with these perturbation
solutions, it does not seem possible to do a stability analysis of the steady
state as in the case with the invader-dominant and native-dominant steady
states. However, it is possible to get bounds on the coexistence steady state
for each species since the steady state values would always lie between the
coexistence steady state value would always lie between the coexistence
steady state values for Patch 1 and Patch 2 when considered in isolation.
Thus,

min {#eg2&G2

#e#n&1
,

#e&1
#e#n&1=�e3�max {#eg2&G2

#e#n&1
,

#e&1
#e#n&1= , (6.13a)

min {#nG2&g2

#e#n&1
,

#n&1
#e#n&1=�n3�max {#nG2&g2

#e#n&1
,

#n&1
#e #n&1= . (6.13b)

6.4. Discussion of Implications for Containment

Using the results obtained above we discuss here the global behaviour of
the model in the case of spatially varying carrying capacities. First, from
inequalities (6.11) and (6.12) we see that varying carrying capacities deter-
mine the stability properties of the native-dominant and invader-dominant
steady states, but that the diffusion parameters d(x) and D(x) are not
involved in the stability conditions. Note that this does not mean diffusion
rates are irrelevant to rates of spread when microbes escape��only that
whether or not containment is possible is dominated by local habitat
dynamics and the pattern of spatial variation in habitats. We summarize
the results in Table I.

There are altogether four cases to consider. We begin by examining the
stability of the native-dominant steady state when 0<#e<1. For the
favourable patch, considered in isolation, this means that either the
engineered species, e, wins or the engineered and natural species, e and n,
coexist; refer to Section 4. Under these two circumstances the inequality
(6.11) will always be satisfied if #e<G2 �g2 , while a stability curve results if
#e>G2 �g2 ; see Fig. 6. This gives rise to the first two cases:

(i) When #e<min[1, G2�g2], then, depending on the value of #n ,
either the two species, e and n, coexist or the engineered species, e wins
in the unfavourable patch when considered in isolation; again refer to Sec-
tion 4. Since the native-dominant steady state is linearly unstable, invasion
always succeeds. Intuitively this is to be expected, since e invades in both
the favourable and unfavourable patch types.
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TABLE I

Approximate Predictions of Coexistence and Extenction and Invasion for
Genetically Engineered Microbes Competing with a Wild-Type Strain

Predictions for
isolated patch

Coexist in
GOOD

GEM wins
in GOOD

Wild type wins
in GOOD

Either wins
in GOOD

Parameter
ranges

#e<1, #n<1 #e<1, #n>1 #e>1, #n<1 #e>1, #n>1

Coexist in
Bad

#e<G2 �g2 ,
#n<g2 �G2

Coexist
everywhere

GOOD:
coexist

if (6.12);
otherwise

GEM
wins BAD:

coexist

GOOD:
coexist

if (6.11);
otherwise
wild type

wins BAD:
coexist

Inconclusive

GEM wins in
BAD

#e<G2 �g2 ,
#n>g2 �G2

GOOD:
coexist

BAD: coexist
if (6.12);
otherwise

GEM wins

GEM wins
everywhere

GOOD:
coexist

if (6.11);
otherwise
wild type

wins BAD:
coexist

if (6.12);
otherwise

GEM wins

Inconclusive

Wild type
wins in BAD

#e>G2 �g2 ,
#n<g2 �G2

GOOD:
coexist

BAD: coexist
if (6.11);
otherwise

wild type wins

GOOD:
coexist

if (6.12);
otherwise

GEM
wins BAD:

coecist if
(6.11);

otherwise
wild type wins

Wild type wins
everywhere

Inconclusive

Either wins in
BAD

#e>G2 �g2 ,
#n>g2 �G2

Inconclusive Inconclusive Inconclusive Inconclusive

Note. Here it is assumed that the environment consists of alternating ``good'' patches of
length l1 and ``bad'' patches of length l2 . We assume that both strains of microbes grow and
disperse in this heterogeneous environment according to Eq. (3.3). The constants g2 and G2

scale the growth rates in the bad patch, as described in Eq. (2.4). The relative effects of inter-
strain vs, intrastrain competition are characterized by the variables #e and #n , as described in
Eq. (3.3). The predictions for an isolated ``good'' patch are shown in the top row, and predic-
tions for an isolated ``bad'' patch are shown in the left column. The parameter spaces corre-
sponding to the possible outcomes are shown in the adjacent row and column. Finally, the
lower right section of the table shows the predicted outcome for alternating adjacent ``good''
and ``bad'' patches which are connected together. If a given strains ``wins'' this means that it
invades and drives the competing strain extinct.
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Crucially, the relative patch sizes do not play any role in determining the
approximate stability of the native-dominant steady state.

We now examine which steady state would be reached on invasion.
When #n<1 and #n<g2 �G2 , so that n and e coexist in both patch types,
it follows from (6.12) that the invader-dominant steady state is unstable. As
expected the only possible stable steady state is, thus, the coexistence one.
Recall that the zero steady state is always unstable. In this case, as is
shown in Fig. 7, a travelling wave of invasion connects the native-dominant
steady state to the coexistence steady state. On the other hand, when e wins
in both the favourable and unfavourable patches, which implies #n>1 and
#n>g2 �G2 , then, as expected, e wins overall. This follows from the fact that
the coexistence steady state is negative (see (6.13)), which, in turn, means
that the invader-dominant steady state is the only relevant stable steady
state.

However, when G2>g2 and either e wins in Patch 1 or Patch 2 and
coexists with n in the other patch (thus either 1<#n<g2 �G2 or g2 �G2<
#n<1), the resulting invasion steady state is determined by the invader-
dominant state stability condition (6.12). As is expected, the larger the
patches in which coexistence is indicated, the more likely is the invader-
dominant state to be unstable, in which case the only stable steady state
could be coexistence state.

(ii) When the carrying capacity of the engineered population is
smaller than that of the natural poplation in the unfavourable patches,
G2<g2 , then #e could satisfy the inequality G2�g2<#e<1. Here, as in case
(i), e either wins, or it coexists with n in Patch 1. However, the fact that
n now wins in Patch 2, or, depending on the initial conditions, either n or
e wins in Patch 2, complicates the situation considerabley. According to
(6.11), for invasion the unfavourable patch, l2 , must be sufficiently small
relative to the favourable patch, l1 , so that the effect of the natural species
winning in the unfavourable patches is relatively small (Fig. 6).

When n wins in the unfavourable patch (i.e., #n<g2 �G2) and coexistence
is indicated in the favourable patch (i.e., #n<1) then, according to (6.12),
the invader-dominant state is unstable and so the coexistence steady state
is reached on invasion. However, if e wins in the favourable patch (i.e.,
1<#n<g2 �G2) then either an invader-dominant steady state or a
coexistence steady state is possible depending on whether (6.12) is satisfied.
However, when the winner in the unfavourable pathc depends on the initial
conditions (i.e., #n>g2 �G2) our above analysis does not indicate the
resulting steady state.

Next we assume that #e>1, which implies either the natural species wins
in the favourable patches or the winner in the favourably patches depends
on the initial conditions. In the previous sections we saw, for spatially
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uniform carrying capacities, that containment is ensured when #e>1.
However, as we shall see below, when we have spatially varying carrying
capacities, this no longer holds. Inequality (6.12) gives rise to a stability
curve if G2>g2 and 1<#e<G2 �g2 (see Fig. 8), thus giving rise to two
separate cases.

(iii) We begin by examining the case when G2>g2 and #e is such
that 1<#e<G2 �g2 . Under these conditions either e wins in the
unfavourable patch or the winner depends on the initial conditions. From
(6.11) we see that invasion now occurs only if the length of the
unfavourable patch, l2 , is large in relation to the length of the favourable
patch, l1 . As is illustrated in Fig. 8, this is especially true for values of #e

close to #c
e=G2 �g2 . However, for a fixed Patch 1 length, as #e increases

towards 1, a progressively smaller l2 is required for ensuring ensuring inva-
sion. Given that invasion succeeds, the next question is which steady state
will be reached.

If n wins in the favourable patch (i.e., #n<1) and the species coexist in
Patch 2 (i.e., #n<g2 �G2) then, according to (6.12), the invader-dominant
state is always unstable and so the only stable steady state is the
coexistence steady state. If, however, e wins in Patch 2 (i.e., g2 �G2<#n<1)
then the stability of the invader-dominant state depends on (6.12). If it is
satisfied a coexistence state would develop; otherwise the engineered species
could win.

The only other possibility to consider is when the winner in the favourable
patch depends on the initial conditions and e wins in the unfavourable patch

Fig. 8. The (#e , l2) stability diagram for the native-dominant steady state, as obtained from
(6.11), when we have spatially periodic diffusion coefficients and carrying capacities for the
both populations. The boundary curve is indicated by the solid line, while the asymptote
#c

e=g2 �G2 is indicated by the dotted line. Refer to cases (iii) and (iv) in Section 6.4.
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Fig. 9. A numerical solution of the model system when the parameters are such that the
winner depends on the initial conditions for the favourable patch and the engineered species
wins in the unfavourable patch, so G2>g2 , 1<#e<G2 �g2 and #n>max[1, g2 �G2]. Now inva-
sion occurs only if the unfavourable patch length, l2 , is large enough relative to the favourable
patch length. This is indeed the case inour example and as a result the invader-dominant steady
state is reached. The parameter used are l1=5, l2=20, D2=d2=0.75, G2=0.9, g2=0.6,
#e=#n=1.25, and r=2.0.

(i.e., #n>1>g2 �G2). For this case it is not possible to predict the resulting
steady state. In our numerical example we portray this situation using a
case in which an invader-dominant steady state is reached on invasion (see
Fig. 9; notice how large l2 is relative to the other parameters).

(iv) The last case to consider is when #e>max[1, g2 �G2]. Under
these conditions either the natural species wins or the winner depends on
the initial conditions for both the favourable and unfavourable patches. If
n wins in both patches, #n<min[1, g2 �G2], then as is expected, n also wins
overall.

Fig. 10. A numerical solution of the model system when only localised invasion occurs.
The parameters are such that the species coexist in the favourable patches and the
natural population wins in the unfavourable patch, so G2<g2 , G2 �g2<#e<1, and
yn<min[1, g2 �G2]. The unfavourable patch is too large for the engineered species to cross,
and invasion occurs only in the favourable patch into which it was introduced. Here it
coexists with the natural species. The parameters used are l1=5, l2=35, D2=d2=0.25,
G2=0.5, g2=0.8, #e=#n=0.9, and r=2.0.
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When n wins in either of the patch types and the winner depends on the
initial conditions in the other patch type (i.e., either 1<#n<g2 �G2 with
G2<g2 or g2 �G2<#n<1, with G2>g2), it is not evident from our analysis
whether invasion succeeds or not. In both cases the stability condition
(6.12) comes into play; see Fig. 10.

7. Conclusion

Although our model is too simple to be realistic, it identifies several key
scenarios for the effect of a heterogeneous environment on invasion in com-
petitive systems. First, although invasion is less likely to occur for large
unfavorable ``moats'' surrounding an interior suitable habitat island, once
the interior island get sufficiently large, no size of the surrounding hostile
region can prevent an invasion. In general, a decrease in the relative size
of patch type in which the native species dominates increases the chances
that the exotic species can invade. The most interesting scenario involves a
situation in which an invasion can succeed locally (within one patch) but
fail globally. This is the situation in which results are not intuitively clear
and the mathematical model is particularly helpful.

We suspect that the most important avenue for further theory is the
examination of models that include convective transport as well as a
possible distinction of sedentary and mobile classes into the model (Lewis
et al., 1995). This would account for the fact that microbes enter different
mobile and immobile compartments, such as the roots of plants, various
hosts, ground water, or wind. Finally, an absolutely crucial aspect of this
study and extension of the basic model is the associated field studies to
estimate the interspecific competition parameters.

Appendix A

We extend here a result found by Borg (1946) concerning the sign of the
smallest eigenvalue of Hill's equation for the case when we have a periodic
diffusion function. Our proof is a generalisation of that of Ungar (1961).

Consider the equation

�
�x \D(x)

�u
�x++[_+Q(x)] u=0,

where D(x) and Q(x) are periodic with period l and D(x)>0.
We know from the theory on Hill's equation (refer to Section 3) that the

periodic solution u(x)=u0(x) of period l corresponding to the smallest
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eigenvalue _=_0 has no zeros. We may assume that u0(x)>0 for all x
and, therefore, define the integrating factor h(x) as

h(x)=
d
dx

(ln u0(x)).

Thus h(x) is periodic with period l and is a solution to the equation

�
�x

(D(x) h(x))+D(x) h2(x)=&_0&Q(x).

Integrating this relationship over one period of length l yields

|
(`+1) l

`l
D(x) h2(x) dx=&l_0 , ` # R,

since D(x), h(x), and Q(x) are periodic. So _0=0 if the integral over h2(x)
vanishes; otherwise _0<0 because D(x)>0.

Appendix B

The expressions for %\ , ;\, k%\
, and k; \

, as used in Section 5.2, are

%\=
1
2 _

&b%\- b2
%&4d1 c%

2d1 &
1�2

,

;\=
1
2 _

&b;\- b2
;&4D2d2c;

2D2d2 &
1�2

,

where

b%=
d1(1&#e)+r(1&#n)

#e #n&1
+*(1+d1),

c%=
r(1&#e)(1&#n)

1&#e#n
+\r(1&#n)+1&#e

#e#n&1 + *+*2,

b;=
d2(1&#e)+rD2(1&#n)

#e#n&1
+*(d2+D2),

c;=
r(1&#e)(1&#n)

1&#e#n
+\r(1&#n)+(1&#e)

#e#n&1 + *+*2,
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and

k%+
=&

(*+%2
+)(#e#n&1)+(1&#e)

#e(1&#e)
,

k%&
=&

(*+%2
&)(#e#n&1)+(1&#e)

#e(1&#e)
,

k;+
=&

(*+D2 ;2
+)(#e#n&1)+(1&#e)

#e(1&#e)
,

k;&
=&

(*+D2 ;2
&)(#e#n&1)+(1&#e)

#e(1&#e)
.

Appendix C

The expressions for A1 , A2 , C1 , and C2 as they appear in the perturba-
tion solution for the native-dominant steady state in Section 6.1 are

A1=
&cosech \� r

d1

l1

2+
d1

g2d2

coth \�rg2

d2

l2

2++coth \� r
d1

l1

2+
,

A2=
&cosech \�rg2

d2

l2

2+
coth \�rg2

d2

l2

2++
g2d2

d1

coth \� r
d1

l1

2+
,

C1=
(A2

1&A2
2) cosech _� r

d1

l1

2&
d2

g2d1

coth \�rg2

d2

l2

2++coth \� r
d1

l1

2
,+

,

C2=
(A2

2&A2
1) cosech _�rg2

d2

l2

2&
coth \�rg2

d2

l2

2++�g2 d1

d2

coth \� r
d1

l1

2+
.
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The expressions for A� 1 , A� 2 , C� 1 and C� 2 as they appear in the perturba-
tion solution for the invader-dominant steady state in Section 6.2 are

A� 1=
&cosech \l1

2+
1

G2D2

coth \�G2

D2

l2

2++coth \l1

2+
,

A� 2=
&cosech \�G2

D2

l2

2+
coth \�G2

D2

l2

2++- G2 D2 coth \l1

2+
,

C� 1=
(A2

1&A2
2) cosech \l1

2+
D2

G2

coth \�G2

D2

l2

2++coth \l1

2+
,

C� 2=
(A2

2&A2
1) cosech \�G2

D2

l2

2+
coth \�G2

D2

l2

2++�G2

D2

coth \l1

2+
.
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