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A Model for Wolf-Pack Territory Formation and Maintenance
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A model is developed to investigate the formation and maintenance of wolf territories based on the
spatial patterns observed in northeastern Minnesota. Initially we simplify the model to consider the
movements of a single pack. In this case we obtain steady state density distributions corresponding to
territories and determine how the size of a territory depends on the number of wolves in a pack. We
suggest how, with sufficient access to the relevant field data, this simplified model could be used to
estimate some of the model parameters. The complete multi-pack model shows how interactions
between adjacent packs determine the shape of the territory. We investigate the solutions to the
mathematical model systems and discuss ecological implications.
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1 Introduction

Territorial behaviour is an intrinsic part of the
ecology of many mammals and introduces large scale
spatial heterogeneity into population interactions.
Clearly such heterogeneity can have major effects on
the spread of disease and population survival, but
despite this there have been very few attempts to
model the phenomenon mathematically.

In 1939, Noble defined territory as ‘‘any defended
area’’, thus providing a very general and flexible
definition for future development. Since then there
has been a large number of alternative definitions
each with a slightly different emphasis. Emlen (1957)
suggested ‘‘a space within which an animal is
aggressive to and usually dominant over certain
intruders’’, Pitelka (1959) suggested ‘‘any exclusive
area’’, Eibl-Ebesfeldt (1970) ‘‘a space associated
intolerance’’ and Brown & Orians (1970) ‘‘a fixed
exclusive area with the presence of defense that keeps
rivals out’’. In all cases the territory is an actively
defended fixed area in space (but this can vary over

time) and the holder has exclusive use of the space
with respect to a certain group of individuals. It is
important to reiterate that boundary areas can
overlap temporally, allowing them to be used by two
different groups at different times (Brown & Orians,
1970). The large number of definitions that have been
developed by field ecologists indicates the importance
of territoriality in many different natural systems.

The motivation for this paper came from field
studies on the ecology of the timber wolf (Canis lupis)
carried out in northeastern Minnesota over a period
of many years (see, for example Mech, 1977a; van
Ballenberghe et al., 1975). Although wolves are highly
developed carnivores with a complex social structure,
we restrict discussion of wolf behaviour in this paper
to those elements most directly related to territorial-
ity.

Wolf packs are extended family groups typically
consisting of 3–12 wolves with territories ranging
from 125–310 km2 in northeastern Minnesota (van
Ballenberghe et al., 1975). Buffer zones which
separate adjacent territories can be as wide as 1–2 km
covering between 25 and 40% of the available land
(Mech 1977b, c). These buffer regions are areas of
potential inter-pack conflict into which wolves rarely
trespass, although when prey levels are low within the
territory cores, wolves may move into the buffer zones
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to hunt and the levels of inter-pack strife can increase
(Mech, 1977b).

One pair of wolves, known as the alpha couple,
dominate pack activities. This alpha couple is usually
the only pair to produce young. Pups are born in the
late spring, are reared at the den site for some time
after birth, and then move to above ground
rendezvous sites. Thus, during the summer months
pack activity is centred around the den or rendezvous
sites where the pups are fed and cared for. By the end
of the summer, the pups have developed sufficiently
and are able to move with the pack. In this way, the
den loses its focus and the pack can move extensively
through the territory.

Olfactory stimuli are well known to be used in a
variety of different roles by many mammals. The
raised leg urination (RLU) is closely connected with
territorial marking and maintenance (Peters & Mech,
1975). These markings are made throughout the
territory along wolf trails but, more importantly, they
increase significantly around the territory edges giving
rise to high concentrations of RLU markings from all
packs in the buffer regions. Unlike other olfactory
stimuli associated with wolves, the RLU shows little
correlation with pack size. In fact, it is the alpha pair
which is predominantly responsible for this marking.

Mathematical models describing animal movement
have been proposed, for example, by Skellam (1951)
in which the idea of modelling animal movement with
simple Fickian diffusion was developed. Okubo
(1986) investigated mathematical models describing
animal groups such as schools and swarms while
more recently, Grunbaum & Okubo (1993) reviewed
models for social aggregations.

The specific issue of territoriality, however, has
been less often considered. Statistical models, both of
the univariate and bivariate type were compared by
van Winkle (1976) for their ability to predict home
range movements. A home range is similar to a
territory but there is no element of defense associated
with this area so models of home range activity
are of limited value when describing territorial
behaviours and movements. Don & Renolls (1983)
used a more sophisticated model based upon
probability distributions to determine home range
movement when attraction points were used to
represent a nesting or similar site. Benhamou (1989)
developed a correlated random walk model to
describe animal movement which is governed by
olfactory gradients and produced results in agreement
with field studies. A probability model concerned
specifically with territorial animals was proposed by
Bacon et al. (1991) to investigate the resource
dispersion hypothesis of Macdonald (1983) which

suggests that spatial distribution of resources
determines territory size and the richness of these
resources independently determines group size. They
use normal distribution to represent yield from a
territory during a feeding period for a habitat of
discrete independent food patches. The results show
agreement with Macdonald’s theory (1983). More
generally, Covich (1976) investigated the shape and
size of foraging areas using graphical techniques.
These simple, non-mechanistic models give an
indication of the dependence of foraging areas on
ecological constraints such as predation, resource
distribution and population density. Another simple
model by Possingham & Houston (1990) reconsiders
the ‘‘marginal value theorem’’ (Charnov, 1976) in the
case of territorial foragers and shows that resource
renewal is an important element of foraging strategy
for a territorial animal.

Of particular relevance to this paper, Taylor &
Pekins (1991) used a modified Lokta-Volterra system
of ordinary differential equations to investigate how
important the buffer zone is in maintaining the
stability of the wolf-deer ecosystem in Minnesota.
Here, however, territories were specified as hexagonal
shapes and movement between the core and buffer
was achieved by splitting the deer population into two
subpopulations. As the spatial structure of territory is
assigned, nothing can be deduced from this model
about the natural development and maintenance of
wolf territories.

The recent paper by Lewis & Murray (1993)
considers a partial differential equation model with
two wolf packs and deer and shows how the system
gives rise to territorial patterns and the subsequent
spatial segregation of wolves and their prey, the
white-tailed deer (Odocoileus virginianus). This model
has a similar structure to that described below,
incorporating dispersive movement to represent wolf
foraging activities and a convective term representing
movement towards an organising centre. The model
described here, however, differs from that one in
several ways. In the Lewis & Murray model,
convection back towards an organising centre occurs
only upon encountering foreign RLU markings. In
our model, this component of movement occurs
irrespective of any olfactory stimuli and we represent
wolf response to friendly and foreign RLUs with
chemotactic type terms.

This paper considers territory formation without
predator–prey interactions. Subsequent papers will
deal with this aspect (White et al., submitted). Our
primary interest is in summer movement patterns
when the den is a focal point of pack activity and thus
we are essentially considering a model with a time
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span of several months. We begin by formulating
the mathematical model assuming that there are
two wolf packs in a region with plentiful food
supply. Analysis is carried out on the simpler
single pack model and shows that territories can
be formed even in the absence of neighbours.
The steady state solution for the single pack model
allows us to determine a relation between pack and
territory size. The interaction of several packs is
shown to introduce spatial heterogeneities into the
wolf density distributions about the den location and
allows an investigation of RLU density distribution
in relation to the wolf density distribution. We also
discuss model solutions when the den is no longer
a focus of activity in the winter months and show
that, in its present form, the model is rather limited
in its ability to describe the density distributions in
this case.

2 Model Formulation

The behaviour and ecology of the wolf are clearly
highly complex but the stability of the territories
found in N.E. Minnesota suggest that there are
certain mechanisms underlying the movement of the
pack members.

To define state variables, we must account for the
size of the territory relative to the pack size. As wolf
packs are small in size when compared with their
territory sizes, there will be large periods of time when
no wolf is found in a given location. In view of this,
we define the state variables as expected density of
wolves using a probabilistic approach. Scent marking
is thought to be an important component in
maintaining territories—we reflect this in the model
by assigning two state variables to each wolf pack,
one for expected wolf density and the other for
expected RLU density. In this case the state variables
for a two pack model are:

u(x, t)=expected density of scent marking wolves
in pack 1

v(x, t)=expected density of scent marking wolves
in pack 2

p(x, t)=expected density of RLUs from pack 1
q(x, t)=expected density of RLUs from pack 2.
In this simplified model system, wolf movement

is assumed to comprise four components—movement
towards the den (during summer) to feed the pups,
dispersal to find food and to mark the territory,
movement away from regions of foreign RLU
marking and movement back towards familiar
RLU marking. We assume that there is no starvation
or inter-pack conflict during the summer months
and hence that there is no wolf mortality. For the

adult members of a pack at least, this is not an
unreasonable assumption (Mech, 1970).

Each of the movement components is represented
by a term in a nonlinear partial differential equation.
Movement towards the den is modelled by advection
towards a single point in the (x, y) plane—xu for pack
1 with convection coefficient Cu (x−xu ) and xv for
pack 2 with convection coefficient Cv (x−xv ). Disper-
sal is modelled by nonlinear diffusion with coefficient
Du (u) for pack 1 and Dv (v) for pack 2 and the
response to familiar and foreign RLU marks is
represented by chemotactic-type terms with co-
efficients Fu (q) and Gu (p) for pack 1 and Fv (p) and
Gv (q) for pack 2. They combine together to give the
governing equations for each pack (given first in
words),

Rate of change=Rate of change because of
movement back to the den

(in wolf density)+Rate of change because of
dispersal for foraging

+Rate of change because of
avoidance of foreign RLUs

+Rate of change because of
attraction of familiar RLUs

1u/1t=9·[Cu (x−xu )u]+9·[Du (u)9u]

+9·[uFu (q)9q]−9·[uGu (p)9(p)] (1)

1v/1t=9·[Cv (x−xv )v]+9·[Dv (v)9v]

+9·[vFv (p)9p]−9·[vGv (q)9q] (2)

Typical forms for the movement coefficients are
discussed in Section 2.2.

The equations governing the temporal distribution
of RLU marking are structurally simple. We assume
there is a low level marking in the territory core which
increases significantly when foreign marking is
encountered. We also assume the strength of the
marks decays over time. Combining these gives the
two equations governing the temporal variation in
RLU distributions as

1p/1t=u[lp+Mp (q)]−fpp (3)

1q/1t=v[lq+Mq (p)]−fqq. (4)

The parameters can be interpreted as follows: lp and
lq denote the rate of low level scent marking
throughout the wolf territory, and fp and fq indicate
the first order rate at which the RLUs decay. Again
the model functions Mp (q) and Mq (p) which
represent the increase in RLU marking in the
presence of foreign RLU markings are discussed in
Section 2.2.
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To completely specify the problem mathematically,
we give the initial expected density distributions,

u(x, 0)=hu (x), p(x, 0)=hp (x),

v(x, 0)=hv (x), q(x, 0)=hq (x) (5)

for arbitrary functions hu (x), hp (x), hv (x), and hq (x).
Typically we set hp (x)=hq (x)=0 because we are
primarily interested here in initial territory formation.

We consider the problem on some domain V with
zero flux boundary conditions for the expected wolf
density distributions; that is,

0=[Cu (x−xu )u+Du (u)9u+uFu (q)9q−

uGu (p)9(p)]·n on 1V

0=[Cv (x−xv )v+Dv (v)9v+vFv (p)9p−

vGv (q)9(q)]·n on 1V (6)

where n is the outward normal to the domain on its
boundry 1V. The zero flux boundary condition
effectively imposes the biological constraint that there
is no immigration or emigration of wolves across the
boundary of the finite study area.

Equations (1) and (2) with the boundary conditions
given in (6) are conservation equations and thus the
number of wolves in a pack remains constant for all
time. To show this we look at just one of the
equations, (1) for example, and suppose that the
number of wolves in the pack is Qu (t) where

Qu (t)=gV

u(x, t)dx. (7)

Using (1), (6), (7) and the divergence theorem, we get

1Q
1t

=gV

1u
1t

dx

=gV

9·[Cu (x−xu )u+Du (u)9u+uFu (q)9q

−uGu (p)9(p)] dx

=g1V

[Cu (x−xu )u+Du (u)9u+uFu (q)9q

−uGu (p)9p]·dn

=0 (8)

Thus the number of wolves in the pack does not
change with time; that is

Qu (t)=Qu (0)=Qu=constant.

Similarly for pack 2,

Qv (t)=Qv (0)=Qv=constant.

2.1. -

We non-dimensionalize the model system to allow
comparison between the relative size of model
parameters and to reduce the number of parameters
in the problem. The area of V is given by

A=gV

dx

and we define L=A1/m where m is the dimension of the
solution domain (that is, m=1 for 1 space dimension
and m=2 for 2 space dimensions). We use the decay
time for the RLUs of pack 1 as a typical timescale.
We take U0 and V0 to be average expected wolf
densities for the respective packs, that is

U0=
Qu

Lm V0=
Qv

Lm

and non-dimensionalize by letting

u*=
u
U0

, v*=
v
V0

, p*=
fp

U0lp
p,

q*=
fp

V0lq
q, t*=tfp , x*=

x
L

C*u =
Cu

Lfp
, C*v =

Cv

Lfp
, D*u =

Du

L2fp
, D*v =

Dv

Lfp

F*u =
FuV0lq
L2f 2

p
, F*v =

FvU0lp
L2f 2

p
,

G*u =
GuU0lp
L2f 2

p
, G*v =

GvV0lq
L2f 2

p

M*p =
Mp

lp
, M*q =

Mq

lq
, f=

fq

fp
.

For the dimensionless quantities to be well-defined,
we require that both wolf packs have a low level of
RLU marking (lpq0, lqq0) and that the RLU
intensity decreases over time ( fpq0). With this choice
of dimensionless variables, and dropping the asterisk
for notational simplicity, the model equations for the
two wolf packs (1–2) remain unchanged in appear-
ance as do the initial conditions (5) and the boundary
conditions (6). The model equations for the RLU
density distributions become,

1p/1t=u[1+Mp (q)]−p (9)

1q/1t=v[1+Mq (p)]−fq (10)
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The conservation condition (7) now takes the form

gV

u(x, t) dx=1 gV

v(x, t) dx=1, (11)

and the dimensionless domain for study is an area or
length equal to unity. The integral relation (11) shows
that we can consider the dimensionless dependent
variables u(x, t), v(x, t) as probability density
functions for the location of the wolves at some time
t. We use the non-dimensional form of the system in
the analysis below to indicate which parameters are
important in determining the qualitative behaviour of
the solution.

2.2.    

Okubo (1980) used the advection-diffusion
equation

1u
1t

=
1

1x 0Cu (x)u+Du (u)
1u
1x1

to describe the swarming of the insects. In that
one-dimensional model he used a density dependent
diffusion coefficient of the form

Du (u)=duun

for some positive value of n and the function
Cu (x−xu ) was chosen as the piecewise discontinuous
function

cu sgn(x−xu ).

It can be seen that this model is one that would
govern the movements of a pack (in one space
dimension) if their movements were unaffected by
RLU markings for a general Cu (x−xu ). We use these
functional forms as a basis, therefore, for the model
functions Du (u), Cu (x−xu ) proposed here.

In particular, we use an identical diffusion
coefficient chosen to have a non-negative exponent n
and compare the cases n=0 and nq0 for which the
solution takes different forms. The first case
represents standard Fickian diffusion so that, in the
absence of the advection term, the wolves move in a
random way during their foraging activities. The
other represents density dependent diffusion where
the rate of random motion, as measured by the
diffusion coefficient Du , is highest in those regions that
are used most commonly (u high) and lowest in those
regions which are used least (u low). In fact, it is
assumed that as a wolf approaches totally unfamiliar
regions (u 4 0) the rate of random motion ap-
proaches zero (Du 4 0). In effect this means that if we
begin with a density distribution which is not spatially

homogeneous in V, (for example a hat or delta
function) the leading edge moves outwards with a
finite speed. While recognising that this nonlinear
diffusion term has not been derived directly from the
underlying stochastic process [see, for example,
discussion of the Fokker Planck equation in Okubo
(1980)], we believe that this term provides an effective
means for characterizing movement rates based on
familiarity with a region. As this work is the first of
its kind to mathematically investigate the movements
of territorial carnivores such as wolves using partial
differential equations, we have chosen to compare
these situations and see what information each can
provide.

The convective flux term of the Okubo (1980)
model is generalized to a two-dimensional function of
the form

Cu (x)=cu tanh (br)
x
r

(12)

where r=>x> is the distance of a point from the
den site.

This formation differs from that of Okubo in that
Cu (x) is a continuous function of space. The
parameter cu measures the maximum speed of the wolf
when moving towards the den and b measures the
change in the rate of convective movement as the den
is approached. In particular we can see that the above
function in one space dimension approaches that of
Okubo (1980) as b 4a. In summer when the den is
a focus of activity we take cuq0 and in winter when
the den has been abandoned we can set cu=0.

We assume that when there is no RLU marking at
a location, there is no wolf taxis away from foreign
or towards familiar RLUs. Moreover, we assume that
there is a maximum value for this coefficient which
corresponds to the maximum wolf speed. We
therefore take Fu (q), Fv (p), Gu (p) and Gv (q) to be
monotonic non-decreasing functions with Fu (0)=0,
Fv (0)=0, Gu (0)=0, Gv (0)=0 which asymptote to a
finite non-zero value.

Finally, the functions Mp (q) and Mq (p) determine
the extent to which RLU marking increases in the
presence of foreign scent marks. They are also
bounded monotonically non-decreasing functions
similar in form to Fu (q), Fv (p), Gu (p), Gv (q).
Qualitative forms for these functions are shown in
Figs 1–2.

3. Single Pack Steady-State Distribution

If we suppose that pack 1, for example, is not
affected by the presence of RLU marks (either
familiar or foreign) so that Fu (q)=Gu (p)=0, we can
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determine the steady-state solution for this pack
analytically. This situation corresponds to the idea of
home range because there is no mechanism of defence
involved in the pack activities. Moreover, when the
dimensionless distributions are converted back into
their dimensional form, we can determine a
relationship between pack and territory (home range)
size.

A steady state arises when the diffusive flux
balances the convective flux so that 1u/1t=0. In one
space dimension the dimensionless convective flux
(12) simplifies to

Cu (x−xu )=cu tanh [b(x−xu )]

and the non-dimensional steady state wolf
distribution is governed by (1) with 1u/1t=0;
that is

1

1x 0cu tanh [b(x−xu )]u+duun 1u
1x1=0. (13)

We can integrate this once and apply the zero flux
boundary condition to obtain

cu tanh (b(x−xu ))+duun 1u
1x

=0 (14)

F. 2. Typical forms for (a) the convection coefficient in one
space dimension, Cu (x−xu ) for b=2, cu=1, xu=1 and (b) the RLU
related coefficient, Fu . The other RLU related coefficients Mp , Mq ,
Fv , Gu and Gv have a similar form.

3.1.  1: n=0

The solution to (14) when n=0 is

us (x)=
A

[cosh b(x−xu )]cu /dub (15)

where A is a constant of integration determined by the
conservation condition (11) such that

A gV

dx
[cosh b(x−xu )]cu /dub=1 (16)

Note that us (xu )=A, so A can be interpreted
biologically as the ratio of probability of finding a
wolf near the den site versus the probability of finding
a wolf at a randomly selected point in space. This is
effectively a measure of the aggregation about the den
site. In Fig. 3(a) we show how the value of A varies
with the parameter du for typical values of the
parameters cu and b and in Fig. 3(b) with the
parameter b for typical values of cu and du . The results
are indeed reasonable, as they suggest that the
probability density function for the wolves within a
pack at the den location increases with increasing
convection back to this location and decreases as the
diffusion away in search of food increases. These
results are verified in Fig. 4, where we show two
steady-state density distributions—again, by increas-

F. 1. Typical forms for the diffusion coefficient D(u)=duun with
du=0.8 and (a) n=0.5, (b) n=2.
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F. 3. The parameter A calculated from eqn (16) as a function
of (a) du when b=5 and (b) b when du=0.5. In both cases, cu=1.

F. 5. Graphical solutions of eqn (17) with k determined by eqn
(18) for the cases n=0.5, du=0.12 (——) n=1, du=0.21 (— · —)
and n=2, du=0.39 (— —) and with b=5, cu=1.

definite and can be calculated from the model
solution.

3.2.  2: nq0

As us (x) is a probability density function satisfying
(11) it cannot become negative or grow without
bound. As a result, by integrating (14) we obtain the
steady state solution

us (x)=g
G

G

F

f

0k−
cun
dub

ln{cosh [b(x−xu )]}1
1/n

0 if kqcun
dub

ln{cosh [b(x−xu )]}

otherwise (17)

where k is the constant of integration given by the
conservation condition

gV 0k−
cun
b

ln{cosh [b(x−xu )]}1
1/n

=1 (18)

This integral equation is used to determine k
uniquely once the model parameters have been
specified and is used in the next section to determine
the territory boundaries. In Fig. 5 we show the
solution (17) for the three different cases of n and
fixed choices of cu , b and du .

4. Estimation of Territory Boundaries

The steady-state distributions (15–16) and (17–18)
have one fundamental difference, namely the possi-
bility of having a definite territory boundary.

ing the strength of the convection coefficient relative
to the diffusion coefficient, we localize pack activity
around the den site.

Although in theory the density given in (15) is never
zero (us (x)4 0 as x 42a), us (x) can become very
small particularly if the convective flux is large. This
suggests that the probability of finding a pack
member beyond some finite distance from the den
approaches zero and a territory has, in some sense,
been established. When nq0, the boundaries are

F. 4. Graphical solutions to eqn (15) with A determined by
eqn (16) for the cases du=0.25, b=2 (— · —) and du=0.15, b=5
(——). In both cases, cu=1.
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4.1.  1: n=0

In the first case where we are using ordinary
Fickian diffusion, us (x)=0 only when x=2a. There
is no definite region in space beyond which the
probability of spotting a wolf from the pack is zero
although this probability becomes immeasurably
small at large distances from the den. The spatial
heterogeneity that arises in the solution demonstrates
a form of territoriality and, if we assume some
threshold density within which there is an 80%
chance of finding an individual, then we obtain
territories with n=0. When there is no den, however,
the territory breaks down completely as we show in
Section 8.1.

4.2.  2: n$0

When n is non-zero, the density distribution
becomes zero at a finite distance from the den. Now
us (x)=0 when k=n/dub ln{cos h[b(x−xu )]}. If this
occurs at x=xu2xb then xb can be determined
uniquely by

k=
cun
dub

ln[cosh (bxb )], xbq0,

[see eqn (17)]. The spatial points xu2xb define the
limits of the wolf territory. Figure 5 shows that
there is a difference in the shape of the leading edge
between the cases 0QnQ1, n=1 and nq1 and this
arises in the gradient of the system. Rearranging (14)
we have

1u
1x

=−tanh [b(x−xu )]u1−n.

At the leading edge, u=0 so that if 0QnQ1,
1u/1x=0, if n=1, 1u/1x=−tanh [b(xb−xu )] and if
nq1, 1u/1x=a. Ecologically this distinguishes the
cases where there is a gradual or an abrupt end to the
territory. In all cases, the result is a non-dimensional
steady state expected wolf density distribution given
by (17) as

us (x)=g
G

G

F

f

$cun
dub

ln 0 cosh bxb

cosh b(x−xu )1%
1/n

0

=x−xu =Exb

otherwise.

(19)

This non-negative function of x satisfies the boundary
conditions. Moreover we can see that the steady state
has boundaries at a fixed and finite distance from the
den.

5. Two-Dimensional Single Pack Problem

We have shown that the steady-state density
distribution for a single wolf pack in one space
dimension is symmetric about the den location. In
two space dimensions the solution maintains this
symmetry and in fact the solution is radially
symmetric about the den. This is illustrated in Fig. 6,
where we solve the model system numerically using
explicit finite difference schemes with upwinding for
the convection term. Symmetry is lost when there is
interaction between neighbouring packs.

6. Relationship Between Pack and Territory Size

For non-zero n we have shown that territories with
definite boundaries can be formed. We now convert
(19) back into dimensional terms and show how the
number of animals in a pack can affect the size of the
territory. McNab (1963) suggested that the size of the

F. 6. Two-dimensional single pack solution with n=1, b=1,
cu=1 and du=0.05. The solution domain is the unit square and the
solution obeys the conservation requirement (11). The steady- state
solution is not dependent on initial conditions and is radially
symmetric about the den location. In (a) we show the surface plot
and in (b) the contour plot.
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F. 7. Number of wolves in a pack as a function of the territory
length (2xB ) for n=0.5, b=0.001 and du=2.

solution in the two-dimensional radially symmetric
case should be used. With sufficient data on pack and
territory sizes one could attempt to fit this model
solution to the field data using nonlinear least squares
estimation. The results suggested here, however, are
for packs that do not respond to the presence of
neighbours. Clearly this will have some effect on the
size of the territory and the estimation of parameters
from the actual field data.

7. Interaction Between Neighbouring Packs

When two packs interact we must consider the
complete model system (1–2) and (9–10). Analytical
results are now more difficult to obtain unless we
simplify the model by considering, for example, that
one pack is unaffected by the presence of the other.
This type of analysis is useful for predicting possible
model behaviours that can be verified by solving the
complete system numerically. For the purposes of this
paper we show only the numerical solutions—at least
in one space dimension, the behaviours that they
exhibit are also shown in the mathematical analysis of
the simpler systems.

7.1. - 

The one-dimensional simulations are used to
demonstrate the ability of the model to describe the
buffer region and to show the effect of RLU
avoidance on pack density distributions. In Fig. 8 we
show the steady-state density distributions for two
packs with dens located at x=0.205 and at x=0.795.
The initial densities for each pack are uniform and
identical. In Fig. 8(a) there is no avoidance of foreign
RLU marks (Fu=Fv=Gu =
Gv=0), although marking is increased in these regions
(Mp , Mqq0). In Fig. 8(b) packs do avoid foreign
marks. The results are striking; they show quite
clearly that the region of shared land is significantly
reduced when packs avoid the RLUs of other packs.
Moreover, they show that asymmetries in the wolf
density distribution occur. When there is inter-pack
interaction, the densities are no longer symmetrical
about the den unless, (of course) one pack is
surrounded by packs on both sides and response to
them is identical. The levels of RLU marking are
directly related to the density of the packs, which
explains the higher levels when there is no avoidance.
Note that the solution domain was not sufficiently
large to show the entire territories of both packs. In
the case of no avoidance, however, the wolf density
would be symmetrical about the den analogous to the
results for the single pack
model.

home range for mammals is directly related to the rate
of energy intake required per animal. Okubo (1980)
continued this idea and suggested that the size of the
home range R is related to the body weight W
through the expression

R=aWb

where a and b are constants. For mammals, b was
estimated to be approximately 0.75. More recently,
Calder (1984) has a thorough discussion of the
relation between home range size and body weight.

Imposing the conservation condition on (19) gives

g
xu+xb

xu−xb
$cun
dub

ln0 cosh (xb )
cosh (x−xu )1%

1/n

dx=1 (20)

which, in dimensional form becomes

g
xu+xB

xu−xB
$cun
dub

ln0 cosh b(xB )
cosh b(x−xu )1%

1/n

dx=Q=Q(xB )

(21)

where x=xu2xB are the positions of the territory
boundaries in dimensional form.

In Fig. 7 we show the relation of pack size to
territory size for selected parameters b, du and n. We
estimated the maximum value for the convection
coefficient cu=5 km h−1; Mech (1970) suggests that a
wolf travels at speeds 5–8 km h−1, we use the lower
value because we are interested in speeds that could
be maintained for several hours. The relationship
between the size of the territory 2xB and number of
animals Q in the pack is nonlinear and monotonically
increasing, as would be expected. This suggests that
smaller packs will, on average, occupy more area per
capita than larger packs, a result that could be verified
with field data. For use with field data the steady-state
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In Fig. 9 we show the variation in the cumulative
RLU and wolf densities in time, again verifying that
the model can predict the observations made in the
field. The maximum cumulative RLU density is found
midway between the dens where (for ecological
realism) the cumulative wolf density is a minimum.
Comparison between this and Fig. 8(b) also shows
that the individual pack RLU attains a maximum at
a different location to the cumulative RLU marking.
These results suggest that, at least in one space
dimension, the model solutions are in agreement with
the field observations.

7.2. - :   

The model is particularly interesting in two space
dimensions because of its capacity to develop spatial
asymmetries. In view of this we simulated the model
equations (1–4) for three packs in two dimensions

F. 9. Time dependent cumulative wolf (a) and RLU (b) density
distributions for the model solutions shown in Fig. 8(b).
Parameters and functions are those given for Fig. 8.

F. 8. Steady-state density distributions for two interacting
packs showing the differences between avoidance of foreign marks
and no avoidance. We use the parameter values, xu=0.205,
xv=0.795, n=0.5, du=0.05, cu=cv=0.7, b=1. In (a) Fu (q)=0 so
there is no avoidance of foreign marks and in (b) the avoidance
coefficient takes the form Fu (q)=0.025q/(1+q).

starting with spatially homogeneous initial expected
wolf densities and with no RLU marking.

The surface plot in Fig. 10(a) shows the steady-state
cumulative wolf density distributions. Clearly wolf
densities are greatest in the den regions as in the case
of the single pack. The contour plot in Fig. 10(b)
shows that the density distribution for a single pack
is no longer symmetrical about the den. That is, the
effect of wolf response to olfactory stimuli is to shift
wolf activity away from regions of potential conflict.
These results are in agreement with the idea of a
buffer region between wolf packs. The RLU density
distributions are not as well described by this model.
It appears that more complex functional forms are
required to give realistic RLU densities in two space
dimensions (Lewis, White & Murray, submitted).

8. Wolf Distribution in Winter

During the winter months, the den is no longer a
focal point for the pack and wolves move more
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extensively through their territories. The territory,
nonetheless, is maintained and for most of the time
the wolves are found within the region.

8.1.   

To solve the time dependent problem for a single
pack, we choose the study domain V to be infinite
with the requirement that both u and 9u approach
zero as x4a. This choice allows an exact solution
the nature of which is easier to see than for the finite
domain. The simplified model in which pack 1 is

unaffected by the presence of any other packs is the
density dependent diffusion equation

1u/1t=9·(duun9u). (22)

which can be solved exactly in one space dimension
and in the radially symmetric case for the particular
initial condition

u(x, 0)=d(x−xu ).

This initial condition represents the ecological case
where the entire wolf pack abandons the den together
at the start of the winter period.

8.1.1.  1: n=0

When n=0, (22) reduces to the simple Fickian
diffusion equation the time dependent solution to
which is

u(x, t)=
1

2!(dupt)
exp−(x−xu )2/(4dut) (23)

This solution extends to infinity for all time and thus
it suggests the breakdown of the territory. This
scenario is unlikely to occur either for well-established
wolf packs or for the newly established ones which
may not den for several seasons.

8.1.2.  2: n$0

In this case, (22) is the porous media equation, the
solution of which is given by a radially expanding
wave moving outwards. Unlike the density indepen-
dent diffusion equation, the speed of the leading edge
is finite depending upon t. An exact solution to this
equation is known for the initial condition above and
is given as,

u(x, t)=

g
G

G

F

f

[l(t)]−1$1−0x−xu

r0l(t)1
1/n

%
1/n

0

=x−xu =Er0l(t)

otherwise

(24)

where

l(t)=0 t
t01

1/(2+n)

, r0=
G(1/n+3/2)
p1/2G(1/n+1)

, t0=
r2

0n
2du (n+2)

and G is the Gamma function. In this case the
territory boundary is not fixed in time but moves
continually outwards covering an ever increasing
region; at the same time, the density within the
region becomes more uniformly distributed. Clearly
the long-term solution suggests breakdown of

F. 10. In (a) we show the steady-state cumulative wolf density
distributions when there are three wolf packs in two space
dimensions. The parameters used here are identical for each pack,
so we give only those for pack 1 (u(x, t): cu=0.5, du=0.05, n=0,
Fu (q)=0.025q/(1+q), Mp (q)=2q/(5+q). The dens are positioned
at (5.5, 10.5), (19.5, 10.5), (12.5, 19.5). The mesh grid size is 0.04 so
that we are solving the problem on the unit square and each pack
obeys the conservation condition (11). In (b) we show the contour
plot for one of the wolf packs.
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territories as in the density independent case.
Restricting the solution to a timescale of a few months
only, we can propose this as a possible description of
wolf winter movement.

8.2.   

When there is no longer convection back to the den
location, the only steady-state solution for the
complete model system, (1–2) and (9–10) with zero
flux boundary conditions is spatially homogeneous.
We now analyse the stability of this spatially
homogeneous solution.

To simplify the model we assume that the functions
in (1–2), are constants and that the wolf packs are
identical so that similar coefficients take on the same
values, that is

Du (u)=Dv (v)=d Fu (q)=Fv (p)=f1

Gu (p)=Gv (q)=f2.

In addition, we suppose that the coefficients in the
RLU governing equations are equal and thus set

f=1.

Moreover we choose the simplest linear functions for
Mp and Mq namely

Mp (q)=mq Mq (p)=mp (25)

where m is a constant. Providing that m is not
too large, the spatially homogeneous steady-state
distribution can be written as

[us (x), vs (x), ps (x), qs (x)]=(U0, V0, P0, Q0) (26)

where

P0=
U0(1+mV0)
1−m2U0V0

Q0=
V0(1+mU0)
1−m2U0V0

(27)

with the constraint m2U0V0Q1. To simplify the
system further, we assume that the average density of
wolves in each pack is the same so that U0=V0=W,
which means that P0=Q0=W where

R=
W

1−mW
.

To investigate the stability of this steady-state
solution we consider the effect of imposing small
perturbations proportional to exp(st+ikx) to the
homogeneous distribution. Using standard tech-
niques from linear analysis (see, for example, Murray,
1989) we obtain the dispersion relation

s4+f(k2)s3+g(k2)s2+h(k2)s+s(k2)=0 (28)

where

f(k2)=2+2dk2

g(k2)=d 2k4+k2[4d−2f2W(1+mR)]+1−m2W 2

h(k2)=2d 2k4+2dk2(1−m2W2)

−2Wk2(1+mR)(f2−f1mW+f2dk2)

s(k2)=k4[d 2−d 2m2W2−2Wd(1+mR)

×(f2−f1mW)+W 2(1+mR)2(f2
2−f2

1 )].

Solutions s(k2) of (28) determine whether the small
perturbations will grow (R1sq0) in time and, if so,
for which wavelengths.

We are interested in the possibility of spatio-
temporal oscillations so we set

s(k2)=p(k2)+iq(k2).

where both p and q are real functions of k2. When we
compare the real and imaginary parts of the
subsequent expression the imaginary part gives

q=0 or q2=(h+2gp+3fp2+4p3)/(4p+f ). (29)

The case q=0 corresponds to the case where s is real,
then any instabilities in space do not change with
time. The other case corresponds to the possibility of
temporal oscillations of any instability. Substitution
for q2 into the real part of the dispersion relation gives
an equation for p, namely

(4p+f )2(p4+fp3+gp2+hp+s)

+(h+2gp+3fp2+4p3)2−(4p+f )

×(h+2gp+3fp2+4p3)(g+3fp+6p2)=0. (30)

The important property exhibited by this dis-
persion relation is that the curve only cuts the k2 axis
at the origin. This means that either the curve is
wholly below the k2 axis, in which case the steady
state is stable, or it is above in which case small
perturbations of all wave numbers will grow. Figure
11 shows two typical curves for p(k2)—in the first the
disturbance will die out (as p=Re sQ0) and the
steady state is stable and in the second the
perturbation will grow (p=Re sq0). Moreover, the
latter case also has a non-zero value for q(k2) which
gives rise to spatio-temporal oscillations.

The instability can be found for many parameter
combinations, but for fixed f, l, m and W it occurs
when the diffusion coefficient is not sufficient to
overcome the destabilizing terms from the movement
in response to the urination marking.

This result highlights the importance of the den, or
some other such organizing centre (a rendezvous site,
for example), to produce a stable territory. When
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F. 11. Solution to eqn (30), the dispersion relation when W=1,
m=0.5, f1=f2 and (a) d=4 and (b) d=1.

We began by analysing a simplified model which
considers the formation of a wolf territory when there
are no external constraints such as neighbouring
packs. In view of this, the model is perhaps of interest
to the issue of wolf reintroduction presently being
considered in several areas of northern America such
as Yellowstone.

A report on the wolf recolonization of the Glacier
National Park (Ream et al., 1991) provides some
interesting observations both for future recolonizing
policy and, from our point of view, for model
validation and adaptations. Wolf packs observed in
the study showed a preference for colonizing areas
which had already been investigated by lone wolves.
The reason for this is unclear, although olfactory
stimuli left by the pioneers may provide useful
information as to the potential of a region. The wolf
packs in the study are thought to be closely related,
but despite considerable inter-pack associations (over
short time intervals) and the availability of suitable
unoccupied regions, there was clear evidence of strong
pack adhesion. Our single pack model agrees with this
observation as it suggests that packs will form
territories even in the absence of any mechanism (such
as foreign RLU marking) for territory maintenance.
Pack adhesion in this case may be related to the
optimal pack size necessary both to hunt large prey
and to provide sufficient social interactions for these
highly social carnivores (Mech, 1970).

The convective flux term which describes move-
ment back to the den during the summer months
assumes that the wolves know their position relative
to the den site and will return to the den using a
straight line path as observed by Mech (1970). As the
convective flux suggests that wolves know their
position relative to the den, it can also be interpreted
as one component of a wolf’s cognitive map. Peters
(1979) interpreted field observations by suggesting
that wolves develop a mental map of their territory
which is continually being reinforced. Within the
territory, RLU markings are found most often along
wolf trails (Peters & Mech, 1975), indicating that
olfactory stimuli may play an essential role in
maintaining and updating this cognitive map.

The importance of the cognitive map is highlighted
by the analysis in Section 8.2 which showed that, in
the absence of a den, the only steady state solution
was spatially homogeneous. That is, that steady-state
spatial heterogeneity, which represents the mainten-
ance of pack territories, only occurs when the
convective flux is non-zero. Thus long-term winter
behaviour indicates territory breakdown. On a
shorter time scale of several months, however, the
model can be reasonably used to describe winter

there is no den, even in the simplest case described
here, a small perturbation to the steady-state wolf
distribution can lead to spatio–temporal oscillations
and thus no formation of territories. In fact, in
contrast to the case where there is a den, the
distribution is dependent upon the initial wolf and
RLU distribution.

9. Discussion

In this paper we have presented a new math-
ematical model system to describe the territorial
nature of movement. The research was motivated in
part by the extensive field studies carried out on
wolves in N.E. Minnesota (see, for example, Mech,
1970; van Ballenberghe et al., 1975). Several aspects
of the field ecology have been captured by the model
solution.
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distributions, as shown in the results of Section 8.1.1
where the winter wolf distribution consists of a
radially expanding wave moving outwards with some
finite speed. This suggests that the pack is moving
more extensively through the territory (expected
density becomes more homogeneous) and that there
is a greater chance of a wolf trespassing into the buffer
zone or some neighbouring territory. Field obser-
vations indicate that when the rendezvous sites are
abandoned, the pack moves extensively throughout
the territory (van Ballenberghe et al., 1975) which
agrees with the more uniform use of land predicted by
the model. Clearly one drawback of this model is that
there is no form of cognitive map associated with the
winter wolf behaviour. We are investigating ways to
amend the present model systems to maintain some
form of cognitive map during the winter months. One
possible scenario is that the wolves move back to
more familiar regions during the winter so that a con-
vective flux can be based on the centre of mass of
the expected wolf density (Lewis, White & Murray,
submitted).

When considering the interaction of several packs,
scent marking is thought to have an important role in
maintaining territories. The role of scent marking in
the model solutions was to break the symmetry of
wolf density distributions about the den locations. In
this way it allowed for the possibility of buffer regions
where wolves are scarce but where RLU marking is
at its highest density. In one space dimension, the
model solutions showed good agreement with the field
ecology. In two dimensions, however, although buffer
regions were formed with low wolf densities, the
cumulative RLU density did not increase significantly
in this region. We are now investigating other forms
for the functions related to wolf response to scent
marking. In particular we are considering the idea of
a threshold phenomena where response to foreign (or
friendly) marks is only significant when the density
exceeds some critical level. Preliminary results (with a
slightly different model formulation) indicate that if
we use functional forms of this nature, the cumulative
RLU density may attain its maximum value in the
buffer region (Lewis, White & Murray, submitted).
The importance of the functional response of wolves
to scent marking is very interesting—moreover, it is
one which could be investigated further by controlled
field experiments.

Movement back to an organizing centre (which
can be interpreted as a response to a cognitive
map) was clearly very important for obtaining a
spatially heterogeneous steady-state solution (terri-
tory). There are, however, several other possible
mechanisms for maintaining territory structure

without a focal point. For example, newly formed
wolf pairs may form a territory for 2 years before
producing young (and thus constructing a den site);
similarly for sterile pairs and established pairs or
packs who maintain their territories even in years
where there is no reproduction (David L. Mech, pers.
comm.).

If surrounding territories already exist, then the
non-reproductive pair will be subject to some form of
foreign RLU spatial patterning. In this case, the
territories may be formed or maintained merely by a
response to local densities of scent marks. A more
long range form of territorial behaviour is that of
howling. Harrington & Mech (1983) present results of
a field study which show that wolf response to
howling, both in terms of reply and movement, is
independent of wolf position within the territory and
depends rather on the immediate social and ecological
circumstances, such as the presence of a prey kill or
that of young pups. This mechanism for territory
maintenance differs from scent marking both in its
spatial and temporal properties but, along with wolf
preference for familiar regions, seems capable of
maintaining exclusive territories without the need for
an organizing centre. Clearly it would be interesting
to compare the territory structures formed in the case
of a short range, long lasting mechanism (RLU
marking) and for a long range, short time mechanism
(howling).

In another study, Ciucci & Mech (1992) showed
that dens situated within the central portion of
territories were randomly located relative to the
territory centres although, in larger territories, the
dens did tend to be more centrally located. In the
numerical simulations shown in Section 7, the den
positions were chosen arbitrarily. The resulting wolf
distributions were such that the den was positioned
somewhere in the central region of the wolf territory,
suggesting some agreement with the field work.
Further investigation is necessary to determine the
extent of model agreement.

The discussion would not be complete without
some comparison of the model presented and
analysed here with that of Lewis & Murray (1993). As
mentioned in the introduction, the forms of the two
models are similar, both being nonlinear partial
differential equations with diffusive and convective
fluxes. The qualitative behaviours differ, however, in
the way in which territories form because the model
of Lewis & Murray (1993) requires the presence of
foreign wolf packs (or at least foreign RLU markings)
in order to obtain a territory. In the absence of such
olfactory stimuli, their model reduces to the diffusion
equation which suggests that the territory mechanism
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breaks down and wolves from all packs move
randomly around. In the model proposed here, the
formation of a territory depends only upon the pack
itself (supported by van Ballenberghe et al., 1975) and
foreign markings serve to determine the size, shape
and maintenance of the territory.

This work (K.A.J.W., J.D.M.) was supported in part by
U.S. National Science Foundation Grant DMS 9296848
and (M.A.L.) by U.S. National Science Foundation Grant
DMS 9222533.

REFERENCES

B, P. J., B, F. & B, P. (1991). A model for
territory and group formation in a heterogeneous habitat. J.
theor. Biol. 148, 445–468.

B, S. (1989). An olfactory orientation model for
mammals’ movements in their home ranges. J. theor. Biol. 139,

379–388.
B, J. L. & O, G. H. (1970). Spacing patterns in mobile

animals. Ann. Rev. Ecol. Syst. 1, 239–262.
C, W. A. III. (1984). Size, Function and Life History.

Cambridge, MA: Harvard University Press.
C, E. L. (1976). Optimal foraging, the marginal value

theorem. Theor. Pop. Biol. 9, 129–136.
C, A. P. (1976). Analysing shapes of foraging areas: some

ecological and economic theories. Ann. Rev. Ecol. Syst. 7,

235–257.
C, P. & M, L. D. (1992). Selection of wolf dens in relation

to winter territories in northeastern Minnesota. J. Mammal. 73,

899–905.
D, B. A. C. & R, K. (1983). A home range model

incorporating biological attraction points. J. Anim. Ecol. 52,

69–81.
E-E, I. (1970). Ethology: the biology of behaviour. New

York: Holt, Rinehart and Winston.
E, J. T. (1957). Defended area? A critique of the territory

concept and of conventional thinking. Ibis 99, 352.
G, D. & O, A. (in press). Modelling social animal

aggregations. In: Animal Aggregation: Analysis, Theory, and
Modelling (tentative title). Cambridge: Cambridge University
Press.

H, F. H. & M, L. D. (1983). Wolf pack spacing:
Howling as a territory-independent spacing mechanism in a
territorial population. Behav. Ecol. Sociobiol. 12, 161–168.

H, R. L. & M, L. D. (1976). White-tailed deer

migration and its role in wolf predation. J. Wildl. Manage. 40,

429–441.
L, M. A. & M, J. D. (1993). Modelling territoriality and

wolf-deer interactions. Nature 366, 738–740.
M, D. W. (1983). The ecology of carnivore social

behaviour. Nature 301, 379–384.
M, L. D. (1970). The Ecology and Behavior of an Endangered

Species. Garden City, N.Y.: Natural History Press.
M, L.D. (1977a). Productivity, mortality and population trends

of wolves in northeastern Minnesota. J. Mammal. 58(4), 559–574.
M, L. D. (1977b). Wolf-pack buffer zones as prey reservoirs.

Science 198, 320–321.
M, L. D. (1977c). Population trend and winter deer

consumption in a Minnesota wolf pack. In: Proceedings of the
1975 Predator Symposium (Philips, R. L. & Jonkel, L., eds)
University of Montana, Missoula, Montana.

MN, B. K. (1963). Bio-energetics and the determination of
home range size. Am. Nat. 97, 133–140.

M, J. D. (1993). Mathematical Biology, 3rd Edn. Heidelberg:
Springer-Verlag.

N, G. K. (1939). The role of dominance on the social life of
birds. Auk 56, 263–273.

O, A. (1980). Diffusion and Ecological Problems: Mathemati-
cal Models. Berlin: Springer-Verlag.

O, A. (1986). Dynamical aspects of animal grouping: swarms,
schools, flocks and herds. Adv. Biophys. 22, 1–94.

P, R. (1979). Mental maps in wolf territoriality. In: The
Behavior and Ecology of Wolves (Klinghammer, E., ed.),
pp. 119–152. New York: Garland Press.

P, F. A. (1959). Numbers, breeding schedule, and
territoriality in pectoral sandpipers of northern Alaska. Condor
61, 233–264.

P, H. P. & H, A. I. (1990). Optimal patch use by
a territorial forager, J. theor. Biol. 145, 343–353.

R, R. R., F, M. W., B, D. K. & P, D. H.
(1991). Population dynamics and home range changes in a
colonizing wolf population. In: The Greater Yellowstone
Ecosystem: Redefining America’s Wilderness Heritage (Keiter,
R. B., Boyce, M. S., eds), pp. 349–366. Binghamton NY:
Vail-Ballon Press.

S, N., K, K. & T, E. (1979). Spatial
segregation of interacting species. J. theor. Biol. 79, 83–99.

S, J. G. (1951). Random dispersal in theoretical popu-
lations. Biometrika 38, 196–218.

T, R. J. & P, P. J. (1991). Territory boundary avoidance
as a stabilising factor in wolf–deer interactions. Theor. Pop. Biol.
39, 115–128.

 B, V., E, A. W. & B, D. (1975).
Ecology of the timber wolf in Northeastern Minnesota. Wildlife
Monographs 43, 1–43.

 W, W. (1975). Comparison of several probabilistic home
range models. J. Wildl. Manage. 39, 118–123.


