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We investigate the dispersal-driven instabilities that arise in a discrete-time
predator-prey model formulated as a system of integrodifference equations.
Integrodifference equations contain two components: (1) difference equations,
which model growth and interactions during a sedentary stage, and (2) redistribu-
tion kernels, which characterize the distribution of dispersal distances that arise
during a vagile stage. Redistribution kernels have been measured for a tremendous
number of organisms. We derive a number of redistribution kernels from first
principles. Integrodifference equations generate patiern under a far broader set of
ecological conditions than do reaction-diffusion models. We delineate the necessary
conditions for dispersal-driven instability for two-species systems and follow this
with a detailed analysis of a particular predator-prey model. ¢ 1995 Academic

Press. Inc

1. INTRODUCTION

There is nothing surprising in the observation that organisms track
spatial and environmental variation. Indeed, there is an extensive literature
on habitat selection (Fretwell and Lucas, 1969; Morse, 1980; Cody, 1985;
Bazzaz. 1991; Morrison et al., 1992; Block and Brennan, 1993) and on the
role of habitat selection in determining the dispersion of organisms. There
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is also an older literature on autecological components of niche (Grinell,
1917, 1924, 1928; James et al., 1984), species-specific responses to gradients
{Gleason, 1926), and populations (Andrewartha and Birch, 1954, 1984)
that argues that environmental heterogeneity is frequently the principal
determinant of distribution and abundance.

Despite the ubiquity of environmental heterogeneity, patterned spatial
distributions may also arise in homogeneous environments (Steele, 1974,
1976, 1978; Mackas and Boyd, 1979; Levin, 1992). Thus it is essential that
we ask whether patterns can arise solely as the result of trophic interactions
and dispersal. A number of scientists have investigated this question using
continuous-time growth models with simple (Fickian) diffusion. The
diffusion in these reaction-diffusion models is generally thought of as a
stabilizing influence (McMurtrie, 1978), one that homogenizes populations
and moderates temporal fluctuations. However, Turing (1952) demonstrated
that diffusion may also combine with intra- and interspecific interactions to
yield instability and spatial patterns. Turing’s concerns were largely
developmental. However, his ideas regarding diffusive instability were soon
transferred to ecology by Segel and Jackson (1972), Levin and Segel
(1976), and Segel and Levin (1976). There 1s now an extensive literature on
diffusive instability and pattern formation in ecology (Okubo, 1980;
Conway, 1984; Murray, 1989).

The conditions for diffusive instability are surprisingly severe —at least
by ecological standards. There are a number of predator-prey reaction-
diffusion models that exhibit diffusive instability, but they invariably invoke
tenuous biological assumptions such as the coupling of prey autocatalysis
(Levin and Segel, 1976) or of an Allee effect (Mimura and Murray, 1978;
Mimura, 1979; Mimura e¢ al., 1979) with a density dependent death rate
for the predator. In effect, the assumption of Fickian diffusion in both
predator and prey is sufficiently restrictive that it may place an undue
burden on the interaction terms. A further difficulty with reaction-diffusion
equations is that they are inappropriate for the innumerable species with
discrete, nonoverlapping generations.

To circumvent these difficulties, we will consider discrete-time models
built around contact distributions (Mollison, 1977)—probability distribu-
tions for the distance that an organism moves. Discrete-time spatial contact
models have a surprisingly long history. They are at the heart of the
problem of random flights (Markoff, 1912; Chandrasekhar, 1943) wherein a
particle undergoes a sequence of independent and random displacements of
given distribution. Later Slatkin (1973), Weinberger (1978, 1984), and Lui
(1982a, 1982b, 1983, 1985, 1986, 1989a, 1989b) used them to describe
changes in gene frequency. And recently, they have appeared in population
ecology as integrodifference equations (Kot and Schaffer, 1986; Hardin
et al. 1988a, 1988b, 1990; Kot, 1989, 1992; Andersen, 1991; Hastings and
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Higgins, 1994) for populations with discrete nonoverlapping generations
and well-defined growth and dispersal stages.

Our principal claim is that discrete-time spatial contact models-—alias
integrodifference equations—exhibit dispersal-driven instability under a
broader set of ecological conditions than do reaction-diffusion models. Our
purpose in this paper is to provide a general foundation for systems of
integrodifference equations and to analyze and demonstrate the cir-
cumstances that lead to discrete-time dispersal-driven instability.

In Section 2, we briefly formulate a system of integrodifference equations
for a predator and its prey. Each equation is built around a redistribution
kernel (or contact distribution). There are a variety of possible redistribu-
tion kernels (Section 3); this multiplicity facilitates the occurrence of disper-
sal-driven instability. We derive necessary conditions for dispersal-driven
bifurcations in Section 4. A detailed example is presented in Section 5.
Concluding remarks are relegated to Section 6.

2. INTEGRODIFFERENCE EQUATIONS

We wish to consider some simple models for interacting popula-
tions—predator and prey or host and parasitoid—that grow, interact, and
disperse, in synchrony, on a continuous one-dimensional habitat. Each
model will be built on top of a system of first-order difference equations,

N:+l:f(NnPr)~ (la)
P/+l:g(Nl»Pl)* (lb)

for the levels of the two populations, N, and P,, at time 7. There is a long
history of such difference equations (Nicholson, 1933; Nicholson and
Bailey, 1935; Hassell, 1978). Some of the better-studied systems are known
to exhibit complicated and/or chaotic dynamics (Beddington et al., 1975;
Gumowski and Mira, 1980; Lauwerier and Metz, 1986; Hadeler and
Gerstmann, 1990; Neubert and Kot, 1992).

System (1) makes no allowance for the dispersion of our organisms. To
amend this situation, let N, (x) and P,(x) represent each population’s den-
sity in space at the start of the tth generation. We imagine that change
occurs as the composition of two distinct stages. Growth, predation, and
reproduction occur during a density-dependent sedentary stage. During
this stage, N,(x) is mapped to f(x, N{(x), P(x)) while P,(x) is mapped to
g(x, N(x), P(x)). Explicit spatial dependences in f and g (from here on
dropped) reflect clinal (spatially varying, time-independent) variation in
the parameters. Movement occurs during the second stage. We describe the
details of this movement with a pair of linear integral operators that tally
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the movement from all y to x. The composition of these two stages yields
a coupled system of integrodifference equations,

Nyar() = [ ki 3) AN, P b, (2a)
Q2

Praalx)=[ kalx. y) g(Np). 2L d. (2b)

for the growth and dispersal of N and P in their one-dimensional domain Q.

The two functions k,(x, v) and k,(x, y) are redistribution kernels. Each
kernel describes the dispersal of one of the populations. The product
k,(x, y)dy is the probability that an N individual at x originated from an
interval of length dy about y. The product k,(x, y) dy provides the same
information for P propagules. The two kernels are constrained to be non-
negative. Each kernel may depend on absolute location or on relative dis-
tance. If both kernels depend on relative distance, we may rewrite system
(2) in terms of convolution integrals:

N,+1(-\‘)=J kix—y) ANy), PAy)) dy, (3a)
L2

Prax)= | kalx =) g(Np). Py dy. (3b)

All of the examples in this paper will involve convolution integrals.

3. REDISTRIBUTION IN SPACE AND TIME

There are a number of methods for estimating redistribution kernels
from observed data (Southwood, 1978; Silverman, 1986). In point of fact,
redistribution kernels have been measured for a tremendous number of
organisms (see Fig. 1), ranging from plant spores to small animals
(Dobzhansky and Wright, 1943; Wolfenbarger, 1946, 1959, 1975; Cremer,
1966; Platt and Weiss, 1977; Stapanian and Smith, 1978; Taylor, 1978;
Westelaken and Maun, 1985; Okubo and Levin, 1989, Tang, 1989;
Willson, 1993). Observed dispersal curves are frequently characterized as
being leptokuric (Bateman, 1950; Okubo, 1980; Howe and Smallwood,
1982; Howe and Westley, 1986; Willson, 1992).

Our purpose in this section is not, however, to dwell on empirical dis-
tributions. Rather, we wish to derive, as parsimoniously as possible,
theoretical distributions that highlight the inherent diversity of redistribu-
tion kernels. We begin by modelling dispersal as the diffusion or advection
of volant propagules that settle with some prescribed failure rate. We
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Fic. 1. Frequency distributions of distances (a} for the dispersal of diaspores of the

annual grass Vulpia fasciculata (n=246) (Carey and Watkinson, 1993), {b) for the dispersal
of seeds of the European ash Fraxinus excelsior (n=127.070) (Geiger, 1971), and (c} between
natal sites and nests of the queens of the paper wasp Polistes riparius (n=353) (Makino et al.
1987).

follow this with a more mechanical approach, one that generates a
redistribution kernel as the solution to a ballistics problem. We will use
various of the derived probability density functions in our examples of
dispersal-driven pattern formation in Section 5.

Diffusion and Settling

Consider a propagule, at the origin of an infinite one-dimensional domain.
If the propagule performs an unbiased random walk, the probability density
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function for the propagule’s location at time t, u(x, t), satisfies the diffusion
equation

Ou &%u
—=D-—— 4
il ox?’ @)
subject to the Dirac delta-function initial condition
u(x, 0) = d(x) (5)
{Berg, 1983). The solution to this initial value problem is just
e~ x2aDt (6)

1
u(x, t) = —==—
2 \/n Dt

(e.g., Kevorkian, 1990) and the position of the propagule is seen to be a
normally distributed random variable.

We now extrapolate to an entire population of propagules that disperse
in synchrony and that settle simultaneously at 7=:,. From Eq. (6), the
redistribution kernel is just

() 1 - x4 D1, 7
k(x) _2\/71Drl\€ (7)

(see Fig. 2).

\ Laplace Distribution
0.02 ——=— Normal Distribution

FiG. 2. Redistribution kernels for simple diffusive dispersal with settling. Synchronous
settling gives a normal distribution; settling at a constant rate gives a leptokurtic Laplace
distribution. Leptokurtic distributions—frequently observed in field studies—are more peaked
and have fatter tails than normal distributions (see inset). In this figure, Dr =1 (see Eq. (7))
while a= D (see Eq. (11}).
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It seems contrived, however, to assume that each individual settles at
the exact same instant of time. We may instead assign a probability of
settling, h(1)dt, to each time interval dr. The function A(r) 1s commonly
referred to as a failure rate or hazard function (Fox, 1993). If we let
v{x, t) represent the normalized density of settled propagules, v and v
must satisfy

ou o2 ,

E:Da_—z—h(t)u, (8a)
v

5‘;:/1(1)11, (8b)

subject to the initial conditions

w(x, 0) =d(x), (9a)
v(x, 0)=0. (9b)

Let us begin with the simplest interesting failure rate: #(z) =a, a a con-
stant. If the dispersal period is long enough for all propagules to settle, we
may take the redistribution kernel as the limit as 7 goes to infinity of v(x, 7).
Integrating Eq. (8a) from =0 to ¢= s, we derive a modified Helmholtz
equation for the redistribution kernel &(x):

D&%k
a éx?

k= —d(x) (10)

The solution to this equation is the leptokurtic Laplace or double-exponen-
tial distribution

k(xy=1%./a/D e~ aDIx (1

(see Fig. 2).

Broadbent and Kendall (1953), in their examination of the dispersal of
larvae of the helminth Trichostrongylus retortaeformis, and Williams
(1961), in a discussion of the infestation of fruit by the larvae of the codling
moth, give a more general derivation of the Laplace distribution as the
marginal distribution of a random walk in rwo spatial dimensions with
constant failure rate (see also Turchin and Thoeny, 1993). Other failure
rates may be used in system (8), resulting in redistribution kernels
qualitatively similar to the Laplace distribution.
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A simple extension of this dispersal process is a multi-stage process such
as

Ou 8*u

E: l——axz—au, (12a)
ov 2%

= =D,z +au—br. (12b)
ow

AL 12
3 = bo (12¢)

where v is now a secondary dispersal stage and w is the density of settled
individuals. For example, seeds that initially diffuse in the air may be
redistributed on the ground by ants and rodents (Beattie and Lyons, 1975;
Brown et al., 1979; Price and Jenkins, 1986; Vander Wall, 1992; Moore,
1992). This example results in the redistribution kernel

NI RN

,';_(5——6 \ﬂ \/S (13)
~Je(1+ Je|x]ye Ve, d=¢
g+

with é =a/D, and ¢ = b/D, (see Fig. 3). The extension to even more disper-
sal stages is straightforward.

k(x)=

0.6 T v v T -

05t
04 |
k(x) 03}
oz}

0.1

0.0 bemazmizs

Fi6. 3. Two-stage dispersal. Two diffusive dispersal stages coupled by a constant failure
rate generate a redistribution kernel that is a combination of two Laplace distributions (see
Eq. (13}). This process might describe seeds initially dispersed through the air that are subse-
quently redistributed on the ground by ants or rodents. In the limit as & approaches infinity,
we recover the Laplace distribution for a single dispersal stage (solid line).
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Advection and Settling

Many dispersal curves have their maxima at some intermediate dis-
tance from the parent (Cremer, 1966; Platt and Weiss, 1977; Stapanian
and Smith, 1978; Howe ¢! al, 1985). This may reflect an increase in
propagule mortality close to the parent, as proposed by Janzen (1970)
and Connell (1971). Or, it may simply indicate advection (Okubo and
Levin, 1989).

Consider propagules that move outward with constant speed ¢ and that
fall or settle with failure rate A(¢). Let u(x, t) be the (normalized) density
of volant propagules and v(x, 1) the density of settled propagules. This new
dispersal process is governed by the partial differential equations

u Ju
az—csgn(.\)a-—h(”u, (14a)
v
ha 4
F h(t) u, (14b)
and the nitial conditions
u(x, 0) = o(x), (15a)
vx,0)=0. (15b)

We may solve Eq.(14a) by the method of characteristics (Zwillinger,
1992),

u(x, 1) =16(]x| —~ct) e fohtnds (16)

The redistribution kernel is just the final distribution of propagules on the
ground. Integrating Eq. (14b) from ¢ =0 to ¢t = o, we obtain

k(x)= ~—1— h (m> ol hsr s (17)

Remarkably different redistribution kernels may arise for different
choices of the hazard function /i(¢) (see Table I). A constant failure rate
once again generates a Laplace or double-expontial distribution. If the
failure rate increases or decreases as a power of time, we obtain the
double-Weibull distribution of Andersen (1991). Finally, a carefully
chosen failure rate that tends monotonically towards a constant yields a
double-gamma distribution. The double-gamma distribution has a simple
characteristic function (Fourier transform) and will be used extensively
in Section 3.

653:48:1-2
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TABLE 1

Advective Dispersal

Hazard Function
h(t)

Graph of
k(x)

Graph of Redistribution Kernel
h(t) k(x)
la
2¢ ¢
Laplace
Distribution

batt* !

1 ‘ ! L
Sefax p folesa?
20( c ) be

Double - Weibull

Distribution

b1
lafalz| ¢ aiz e
2e\ ¢ T'(b)

Double - Gamma

Distribution

Ballistics

Finally, consider a propagule that is launched from a fixed point on the
ground, with fixed speed c¢. but at random angle . We imagine that only
gravity acts upon this propagule and that we may describe the trajectory
of this propagule with the differential equations

subject to the initial conditions

with 0<0<n.

a'z,\‘_

a7

d’y _

drr

dx

X0)=0,  “T(0)=ccoso,
x(0) dt( ) = cos
$(0) =0, %(0)=csinﬁ,

(18a)

(18b)

(19a)

(19b)
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Equations (18) are easy to solve. Each propagule returns to the ground
with a horizontal displacement x determined by the launch angle 0,

-

x(0) =< sin 26. (20)
P

We may also invert Eq. (20) to find the rwo launch angles corresponding
to a given horizontal displacement. If we combine this information with the
probability density function f(f#) of launch angles, we can derive the
probability density function k(x) for the distribution of displacements. In
particular, let the launch angles be uniformly distributed over the interval
0<0<m, so that

Ay =1/x. (21

Then, a simple change of variables,

" +cig do
1) db) = 2 X)) |—dx 2
JO fU0) dt j L e (22)
leads us to the redistribution kernel
10
k(x) = 2/(00x)) | 5- (23)
dx
and to the distribution
1 c?
]\’(.\‘)2—*"——;——;—:, t.\‘|<~‘ (24)
L/ (clg) —x° g

(see Fig. 4). This kernel has singularities at x = + ¢?/g. However, the area
underneath the kernel, and hence the probability of landing in any interval,
1s finite.

Distribution (24) neglects factors such as air resistance and the height of
the source. Buller (1909) included air resistance (proportional to the
velocity) in his study of basidiospores discharged from a basidium. Each
basidiospore follows a rather peculiar trajectory, a “sporabola,” consisting
of a horizontal leg, traversed very quickly, and a vertical leg wherein the
spore falls slowly with a terminal velocity determined by Stokes’ law.
Similarly, Beer and Swaine (1977} included the effects of (1) the height of
the source, (2) air resistance (proportional to the velocity squared), and (3)
a limited range of launch angles in their study of explosively dispersed
seeds. Finally, Stamp and Lucas (1983) have discussed the ecological
correlates of ballistic dispersal.
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FiG. 4. Ballistic dispersal. The top graph shows the trajectories of propagules launched at
various angles and moving under the influence of gravity. Although the angles are uniformly
distributed, the landing sites cluster near the maximal dispersal distance. This produces a
redistribution kernel (bottom, see also Eq. (24)) with singularities at x = +¢7/g. In this figure,

=g

4, DISPERSAL-DRIVEN INSTABILITIES

Turing (1952) was the first to appreciate that diffusion may destabilize a
spatially uniform solution. Diffusive instability occurs when one species
diffuses and decays so rapidly that it cannot exert its stabilizing influence
upon a second species (Segel and Jackson, 1972). However, the conditions
for diffusive instability are surprisingly stringent, at least from an ecological
perspective. There are a number of predator-prey reaction-diffusion models
that exhibit diffusive instability, but they invariably invoke tenuous biologi-
cal assumptions such as the coupling of prey autocatalysis (Levin and
Segel, 1976) or of an Allee effect (Mimura and Murray, 1978; Mimura,
1979; Mimura et al., 1979) with a density-dependent death rate for the
predator.

Are the conditions for dispersal-driven instability in discrete-time
integrodifference equations any less stringent than those for diffusive
instability in continuous-time reaction-diffusion models? The tremendous
diversity of redistribution kernels and of difference-equation dynamics
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suggest that this might be so. The preliminary results of Kot and Schaffer
(1986) and of Kot (1989) also point in this direction. So as to go beyond
suggestion, we study the effects of dispersal on an otherwise stable
equilibrium.

We start with a pair of difference equations,

N1+1:f(N1’P,)s (253)
Pl+]=g(NrsPl)a (25b)

with an equilibrium point (N*, P*) in the interior of the first quadrant.
The equilibrium point must satisfy

N* = f(N*, P*), (26a)
P* = g(N*, P*). (26b)

We assume that this equilibrium point is asymptotically stable, with all of
the eigenvalues of the Jacobian or community matrix

ef of
5N aP a), aa )
J= = - 27
5g 5g <a')1 [25%} ( )
N P/ o po
of magnitude less than one.
Next, we add dispersal and consider
Neatd=[ " klx— ) fIN() P dy, (28a)
+ XL
Poo(x)=]  kalx—y) g(NA¥), P(y) db: (28b)

—

The domain is infinite so that we may start with a spatially uniform steady
state. We further limit ourselves to kernels k,(x — y) and k,(x — y) that are
symmetric (or even) and nonnegative. Finally, as a matter of convenience,
we assume that there is no mortality during dispersal,

[ ki ax=1, (29)

—

so that the equilibrium (N*, P*) is also a spatially uniform steady state of
the full integrodifference system (28).
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Can dispersal destabilize (N*, P*)? Consider perturbations of the steady
state of the form

Nix)=N*+n,(x), (30a)
P(x)=P*+p,(x) (30b)

For sufficiently small perturbations, we may linearize about (N*, P*),

S

nea(x) =] k(x=planndy)+anp(y)]dy, (31a)

-

o+

1’1+1(-"’)=J kylx—y)lann(y)+anply)]dy. (31b)

— %

The a; are once again given by the Jacobian of the underlying system of
difference equations evaluated at (N*, P*) (see Eq. (27)). If the perturba-
tions n, and p, decay to zero, (N*, P*) is asymptotically stable.

The integrals in Eqgs. (31) are convolutions. Since convolution integrals
simplify under Fourier transformation, we may use the Fourier transform
pair

o+ o

flw)y= J e Yf(x) dx, (32a)
) 1 o+ L o

/(x):——J e “*flw) do, (32b)

2nt_ .,

and the transformed perturbations

Alw) =J - e™*n (x) dx, (33a)

+ o
plw) = J ¢“p () dx, (33b)

—

to simplify our analysis. Indeed, upon taking the Fourier transform of

system (31}, we get
<)if+l)___KJ(’fI>’ (34)
P P

where J is the Jacobian or community matrix

J:<au a12>, (35)
a; dxp



DISPERSAL AND SPATIAL PATTERN 21

and K is given by

_(hkyw) 0
K—< 0 131(0))) (36)

Decay of the A (w) and p(w) for all v guarantees the decay of n,(x) and
pAx) in Ly(R).
In the absence of dispersal,

("’*‘):J("’). (37)
p1+1 Py
(’il+l>:KJ <’ir>. (38)
pr+1 P

By assumption, (N*, P*) is asymptotically stable in the absence of
dispersal, with all of the eigenvalues of J of modulus less than one.
Dispersal-driven instability arises if the matrix KJ, in turn, has one or more
eigenvalues of modulus greater than one.

One can say more. All of the eigenvalues of J have modulus less than
one if the trace and determinant of J satisfy the Jury test (Jury, 1964, 1974)

With dispersal,

| —trd +detdJ >0, (39a)
l+trd+detJ>0, (39b)
I —detJ>0. (39¢)

For dispersal-driven instability, conditions (39) must still hold. In addition,
one of the corresponding conditions on KJ,

1 —tr(KJ) + det(KJ) >0, (40a)
1 + tr(KJ) + det{ KJ) > 0, (40b)
1 —det(KJ) >0, (40c)

must be violated. The matrix K depends on the wave number «; dispersal-
driven instability will occur (if it occurs at all) for limited ranges of w.
Inequality (40a) guarantees that all real eigenvalues of KJ are less than
+1. If we reverse this inequality, the uniform steady state will lose its
stability to a spatially structured solution. We refer to this as a plus-one
bifurcation. If we reverse inequality (40b), so that an eigenvalue passes
below —1, stability is lost to a spatially structured, time-periodic solution
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of period two (a two-cycle); we have a minus-one bifurcation. The reversal
of {40c) would lead to a Hopf bifurcation {with a complex conjugate pair
of eigenvalues passing through the unit circle), would that it could occur.
However, two-species dispersal-driven Hopf bifurcations are impossible on
an infinite domain, as we prove in the Appendix (see also Kot, 1986, 1989).

Inequalities (39) and (40) impose restrictions on the elements a,; of the
community matrix and on the transformed kernels (or characteristic func-
tions) l\:‘(w) and l@z(a)). If dispersal-driven bifurcations are to arise, certain
necessary conditions must be satisfied by the elements of the of the com-
munity matrix. These necessary conditions are summarized in Table 1. We
prove these conditions in the Appendix. Despite the fact that these condi-
tions are rather varied, it is immediately clear that one must have a ( +, —)
interaction (a,,a,, <0) between, for example, a predator and its prey or a
parasitoid and its host, for dispersal-driven instability.

If both characteristic functions are of the same sign, we also require an
activator (|a;| > 1) and an inhibitor (]a,| <1). If, for example, a plus-one
bifurcation is to occur at a wave number where both characteristic
functions are positive, we require

(a;, — Dla; —1)<0. (41)

As with reaction-diffusion equations (Segel and Jackson, 1972; Levin and Segel,
1976; Mimura and Murray, 1978; Mimura, 1979; Mimura et al., 1979; Okubo,

TABLE 1t

Necessary Conditions for Dispersal-Driven Bifurcations for System (3)
on an Infinite Domain

Characteristic Functions

Bifurcation 0 < kw) <1 ~1 < kw) <0 0<kw <1
Type 0 < kyw) <1 1< kw) <0 ~1 < klw) < 0
+1 (an -1 {anp-1) < 0 {an+1){an+1) < 0 a; > lorag,; <1
anay < 0 apay < 0 apay < 0
-1 (ay+1)(an+1) < Q (ay—1){ap-1) < 0 a; < lora; > 1
anay < 0 andy < 0 apay < 0

Hopt Impossible




DISPERSAL AND SPATIAL PATTERN 23

1980), this condition may be satisfied by coupling prey autocatalysis or an Allee
effect with a density-dependent death rate for the predator.

Similarly, if a minus-one bifurcation is to occur at a wave number where
both characteristic functions are positive, we require

(a; + )a,, +1)<0. (42)

In this instance, a predator that stabilizes a cyclic or chaotic prey
{a,; < — 1) in the absence of dispersal may fail to do so in the presence of
dispersal (Kot, 1989).

These necessary conditions are relatively severe. Surprisingly, the
replacement for conditions (41) or (42) when IE,r(w) >0 and Ej(w) <0,

a,;>1 or a.,<l1, (43)

S7

is rather undemanding. An activator may no longer be essential! Many
realistic kernels are bimodal, have characteristic functions that go negative,
and would appear to facilitate the occurrence of dispersal-driven instability.
We explore this possibility further, by way of example, in Section 5.

5. AN EXTENDED EXAMPLE

A simple system of two reaction-diffusion equations with logistic growth
of the prey and mass-action functional and numerical responses is incapable
of exhibiting diffusive instability (Conway, 1984). Can a similar system of
integrodifference equations exhibit dispersal-driven instability? To answer
this question, we started with the (rescaled) set of difference equations

N,oi=(+r)N,—rN?—cN,P,, (44a)
Pt+]:CNtPl (44b)
(Maynard Smith, 1968; Neubert and Kot, 1992).

System (44} possesses one computationally undesirable property:
predator and prey numbers may become negative. To circumvent this
problem, we replaced system (44) with the system

N =Nt =M, (45a)
P,,,=cN,P,. (45b)
The linearizations of systems (44) and (45) yield identical eigenvalues for
equilibria with prey. The full nonlinear systems exhibit qualitatively similar

behavior except for the aforementioned lack of first-quadrant invariance in
system (44).
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In the absence of the predator, system (45) reduces to the Ricker curve
{Ricker, 1954); a prey species with a high intrinsic rate of growth (r >2),
bereft of its predator, may thus exhibit oscillatory or chaotic behavior
(May, 1975; May and Oster, 1976). System (45) also possesses a unique
equilibrium,

N*=1/c, (46a)
P*=1-—1/c, (46b)
where predator and prey coexist. The stability of this equilibrium is deter-

mined by the Jacobian or community matrix J evaluated at equilibrium
point (46):

1 I r
J= c c . (47)
c—1 1

The jury conditions (39) guarantee that this equilibrium is stable for

l<e<?2, (48a)

4¢
O<r<~3—(‘ (48b)

—c

(see Fig. 5). For ¢ <1, the predator is inadequate and is unable to persist,
leaving the prey to its natural tendencies. For ¢ > 2, equilibrium (46) is
unstable because of a Hopf bifurcation; predator and prey exhibit sustained
oscillations. Finally, as we tune r so that r > 4¢/(3 — ¢), we observe a sub-
critical flip bifurcation (Neubert and Kot, 1992): the predator population
undergoes a catastrophic collapse to extinction and the prey population is,
once again, left to its natural tendencies.

To these dynamics, we added combinations of two redistribution kernels,
the double-gamma distribution and the Laplace distribution (see Table I).
we thus considered four different models (two species, each with one of two
kernels). For a high-r prey and fixed prey dispersal, sufficiently high

(a) Solutions in the (N, P) phase plane superimposed upon the (¢, r) parameter plane. For
different values of ¢ and r, solutions tend to a stable equilibrium point (inset I), an invariant
circle (inset II), a chaotic strange attractor (inset H1), a periodic two-cycle bereft of predators
(inset IV), or a variety of other attractors. The equilibrium point is stable for parameter
values falling within the tooth-shaped region defined by inequalities (48). (b) Time series
corresponding to the phase-plane trajectories (I-1V).
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predator dispersal invariably set off a minus-one bifurcation with pattern
formation. In three of the four models (the exception involved two
Laplace distributions), sufficiently high prey overdispersal led to a plus-
one bifurcation, again with pattern formation. Plus one bifurcations did
not require high prey intrinsic rates of growth; they occurred throughout
region {48).

Figure 6 shows the outcome of a typical numerical simulation. The
parameters r and ¢ were chosen so as to lie in region (48). We added

25 25
k
0.0 0.0
1. 1.0 -1,
20 20
N 1o 1.0 .
]
/ UK
0.0 0.0
50 25 0 25 50 50 25 O 25 50
0.2 0.2
P o1 { W 0.1
0.0 — 0.0
50 25 0 25 50 50 25 0O 25 50
X X

FiG. 6. A minus-one bifurcation. For the indicated values of r,¢, and «, increasing
predator dispersal from =35 to f=0.5 destabilizes a spatially homogeneous solution. The
resulting instability grows until a stable, spatially-patterned, two-cycle is reached. We iterated
system {49) 5000 times on a domain of length 100 using the initial conditions N(x)=0.833,
P(x}=0.167, and 4096 grid points prior to plotting the two-cycle. The top panel illustrates the
redistribution kernels for the predator (dashed line) and for the prey (solid line)} before (left)
and after (right) the bifurcation. The middle and bottom panels show the prey and predator
distributions for succeeding iterations, after convergence, before (left} and after (right) the
bifurcation.
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double-gamma-distribution dispersal to the prey and Laplace-distribution
dispersal to the predator so as to give us

Nl+ 1x) =J ki(x— ¥IYNY) e U1~ Ny = Pidxi] d}‘, (49a)

[e]
P i(x) =] kolx—»[eNdy) P31 dy, (49b)

2

with
a® .

kl(.\'—_v)=?|x—y\e‘”“-‘, (50a)
kz(x—)r')-——ge””‘" l, (50b)

Mathematical analyses were performed on an infinite domain. Numerical
simulations were, in contrast, performed on a large finite domain Q using
a fast FFT algorithm (Andersen, 1991). In particular, we iterated system
(49) until we obtained a stable solution. Figure 6 shows the resulting
steady state for « =13 and, f=5. The interior of this solution is flat. There
is variation toward the ends, but this is an edge effect stemming from the
finiteness of the domain. As we increased the variance of the predator’s
redistribution kernel (by decreasing f), the “homogeneous” solution even-
tually became unstable. In its place, we obtained a spatially structured
two-cycle. This period doubling is characteristic of a minus-one bifurcation.

In contrast, when we increased the variance of the prey’s redistribution
kernel (by decreasing «), we obtained a plus-one bifurcation: the spatially
homogeneous solution was replaced by a time-independent, but spatially
structured, steady state (see Fig. 7).

A Detailed Analysis

How much predator or prey overdispersal is necessary in order to
destabilize the spatially homogeneous solution? What is the wavelength of
the spatially structured solution? We can predict these quantities using
inequalities (39) and (40).

Let us consider the plus-one bifurcation of Fig. 7. This bifurcation arises
when inequality (40a) (alone) is reversed. The characteristic functions {or
the double-gamma distribution
. (- w?)

kl(w)=m, (51)
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FiG. 7. A plus-one bifurcation. For the indicated values of r, ¢, and f. increasing prey
dispersal from a =13 to x= 1.3 destabilizes a spatially homogeneous solution. The resulting
instability grows until a stable, spatially-patterned, equilibrium is reached. We iterated system
(49) 5000 times on a domain of length 100 using the initial conditions AN{x)=0.571,
P{x}=0429, and 4096 grid points prior to plotting the new equilibrium. The layout of this
figure mirrors that of Fig. 6.

and for the Laplace distribution

- B

kz(w)=m, (52)

coupled with the left-hand side of inequality (40a). give us the “dispersion
relation”

. . R . 2
O(w) =1k (w) (1 —£> —Fyw) + k() w) <1 +r~~;’>. (53)
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A plot of Q(w), for the parameter values of Fig. 7, is shown in Fig. 8.
Increasing prey dispersal (by decreasing «) causes () to cross the w-axis
at w*. This w* predicts the wavelength of the spatially structured solution
sufficiently close to the bifurcation. In our example, w* ~ 1.8; there are
(1.8)(25)/2n =7 troughs between x=0 and x=25 in Fig. 7. Note that
/\:,(w*)<0, 122(0)*)>O; this plus-one bifurcation satisfies the necessary
conditions in column 3 of Table 11.

To determine the degree of prey overdispersal required for bifurcation,
we calculated f/x at the point of contact of Q(w) with the w-axis. We set
our dispersion relation equal to zero. multiplied by (%% + w?)? (% + w?),
and made the change of vanables

5 2
U Y S SR (54)
x? ¢ x”
This gave us
R(z)=2+(3—4) 22 + A(1 = BC) = + ABC =0 (55)
0.40 T y
035 :
----- a=200,3=100
030 -—— a=1453=100 ]
: @ =1.30,B =100
02s |
020 |
Qo)
0.15 1
oo} :
0.05 |
0.00 =
-0.05 : y
0.0 1.0 2.0 3.0

FiG. 8. Dispersion relation (53). When Q() crosses the w-axis (at w* = 1.8), a plus-one
bifurcation occurs. The critical wave number «* is an accurate predictor of the spatial
frequency of the resulting spatially-structured equilibrium, as evidenced by Fig. 7.
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The critical wavelength z* s determined by simultaneously solving

R(z*)=z*+(3—-A)z*? + 4(1 — BC) z* + ABC =0, {56a)

dR

;(:*)=3z*2+2(3—A):*+A(1—BC)=0. (56b)

Alternatively, one can solve for 4 and C. Reversing the change of variables
then gives us ¢ and r parametrically as

a® z*(z* 4+ 1U3 —z*)

('=1+/72 2(=*2_3) s (57a)
k(%2
r=§f§;i—“_—l)2ﬂ- (57b)

By fixing f/x and varying z*, we may thus determine the locus of points
in the (c, r) parameter plane where that fixed f/a is just enough to set off
a plus-one bifurcation. If we fix z* and vary f/a, we may also draw the
curves in the (¢, r) parameter plane corresponding to fixed values of w*/x
at bifurcation. These two sets of level curves are illustrated in Fig. 9.
Increasing r decreases the amount of prey overdispersal needed to initiate
a plus-one bifurcation and shortens the wavelength of the corresponding
spatially structured solution.

An equivalent procedure can be used to analyze the minus-one bifurca-
tion that follows from predator overdispersal. Level curves of f/x and w*/a

8.0 a 1 8.0 b
- 1400
6.0 r 6.0 F +— 1.385
( r ,’1 < 1370
4.0 L 40 F A 1385
-
v
A 1340
20 ¢ 20F -
______ — 1325
0.0 0.0
0.0 3.0 0.0 1.0 2.0 3.0

FiG. 9. Level curves of critical dispersal ratios and of critical wave numbers for the plus-
one bifurcation: (a) For different values of the parameters ¢ and r, differing levels of prey over-
dispersal are required to initiate a plus-one bifurcation. We plot level curves of the ratio f/x
at bifurcation. High-r prey are most susceptible to plus-one bifurcations. (b) Here we plot
level curves of the ratio w*/x. This critical wave number w* increases with r for fixed a.
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8.0 [a | 8.0 b
6.0 b 8.0 |
r J r

40} 40

20} i 2.0

0.0 0.0

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
c c

Fig. 10. Critical dispersal ratios and wave numbers for the minus-one bifurcation. Minus-
one bifurcations are restricted to that subset of the stability region above the line r=2c:
(a) For different values of the parameters ¢ and r, differing levels of predator overdispersal are
required to initiate a minus-one bifurcation. We plot level curves of the ratio ff/a at bifurca-
tion. High-r prey are more susceptible to minus-one bifurcations. (b) Here we plot level curves
of the ratio w*/x. These curves exhibit a complicated dependence on r and c.

are displayed in Fig. 10. Minus-one bifurcations are restricted to that
subset of the stability region above the line r =2¢. This stands in marked
contrast to the situation with plus-one bifurcations and follows directly
from the necessary condition (&, + 1)(a,, +1)<0. As one might expect,
high-r prey require less predator overdispersal for dispersal-driven minus-
one bifurcations than do low-r prey.

We have just begun analyzing dispersal-driven bifurcations in a higher
number of spatial dimensions. Nevertheless, the patterns that arise in two
dimensions are, if anything, more dramatic than those that arise in one.

6. DiscussiON

The wide variety of dispersal mechanisms in nature produces an equally
wide variety of redistribution kernels. This diversity, coupled with the com-
plicated dynamics inherent in discrete-time systems, predisposes systems of
integrodifference equations to produce striking spatial patterns—under a
more generous set of ecological circumstances than for reaction-diffusion
models. How do dispersal and predation interact to produce these
patterns? Equivalently, what is it that causes the instability of the spatially
uniform steady state?

The growth of our model’s prey is limited by two factors: predation and
intraspecific competition. Predation will typically keep the prey population
depressed below its carrying capacity. If prey are able to escape predation,
at least locally, an instability may arise. Small, local perturbations to the

653:48:1-3
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prey population will then grow until the prey is once again kept in check
by intraspecific competition and predation. There are, as we have seen, two
scenarios. Prey may escape predation in situ because of predator over-
dispersal, leading to a minus-one bifurcation. As this is a large-r
bifurcation, strong density-dependence then causes the prey to oscillate.
For suffictently large r, further increases in predator overdispersal can set
off a sequence of period-doubling bifurcations leading to chaos, a la the
logistic difference equation {May, 1975; May and Oster, 1976).

In contrast, a plus-one bifurcation occurs when the prey overdisperse.
In this instance, prey manage to escape not only predation, but over-
compensation as well. The “excess” reproduction of one generation, which
ordinarily would have produced a local population crash the following
year, disperses to regions of lower density. Prey overdispersal is thus
associated with static patterns.

Is there any indication of dispersal-driven pattern formation in nature?
Janzen (1970) observed that adult individuals of lowland tropical tree
species appear to be more regularly distributed then expected. He
hypothesized that this regularity is generated by the combined effects of a
seed shadow that declines with distance from the source and the dispropor-
tionate depredation of seeds and seedlings close to the parent tree. He
argued that the composition of these two processes would produce a
population recruitment curve with a peak at some distance from the
parent. We have shown that redistribution kernels with just this shape are
those that are most likely to generate dispersal-driven instability and
pattern formation, at least in one dimension. Janzen's observations may, in
fact, be an indication of dispersal-driven pattern formation.

In this paper, we have emphasized the destabilizing effects of dispersal.
However, dispersal can also stabilize the predator—prey interaction that we
have studied. For ¢=1.1 and r=2.32, system (45) possesses a single inte-
rior equilibrium point where predator and prey coexist. This equilibrium is
unstable. Small perturbations about this equilibrium grow, leading to the
extinction of the predator and to an oscillatory two-cycle for the prey.
When we simulated this system on a finite domain with the same moderate
dispersal for both the predator and the prey (using Laplace redistribution
kernels with « = =10 on a domain of length 20), we observed the same
phenomena. However, as we increased the prey’s dispersal ability, we
passed through two qualitatively different regimes. In the first (x=1,
f=10), we found two attractors: a steady state where predator and prey
coexist, and a prey two-cycle without the predator. With a further decrease
in a (x=0.2) the two-cycle lost its stability, leaving the steady state of
coexistence as the only attractor. This sequence mimics the subcritical flip
bifurcation that occurs in model (45) as r is reduced below 4¢/(3—¢)
{Neubert and Kot, 1992). Increasing the prey’s dispersal ability has the
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same effect as lowering its intrinsic rate of growth because of the increased
dispersal through the ends of the domain. The situation is reminiscent of
the minimum patch-size problem studied by Kierstead and Slobodkin
{1953) and Ludwig et al. (1979), wherein diffusion out through the domain
boundary must be compensated for by increased reproduction within the
domain if the organism is to survive. In the current model, moderate
increases in prey dispersal allow the predator to persist.

We have described one of the mechanisms by which integrodifference
equations can generate complex spatial patterns. This scenario depends
upon the richness of redistribution kernels. Recent analyses (Kot et al,
1995) suggest an even greater role for this variety in predicting the speed
of biological invasions. There are many other interesting questions
regarding the behavior of integrodifference equations waiting to be
answered. We encourage the reader to pursue these questions.

APPENDIX

In the absence of dispersal, a spatially homogeneous solution of system
(28) is stable if

| —lay +ay)+la,an—apsay) >0, (Ala)
L+ (ay +ayn)+ay an—apay)>0, (Alb)
I —(ay axp—a,;a,)>0. (Alc)

This same solution is stable despite dispersal if

1= (k,ay, +k,an)+k kla, ary—aay) >0, (A2a)
V+(ka, +kyan)+ K ky(a, ay—aa.,)>0, (A2b)
1k kylay, asy,—azas) >0, (A2c)

for all positive wave numbers w.

Inequalities (A1) and (A2) impose restrictions on the elements a,; of the
community matrix and on the Fourier-transformed kernels (characteristic
functions) /E,(w) and /fz(w). In this appendix, we will derive certain
necessary conditions that must be satisfied by the elements of the com-
munity matrix for dispersal-driven bifurcation (see Table IT). The exact
nature of these necessary conditions is determined by the signs of the
characteristic functions and by the bifurcation type (ie., which of
inequalities (A2) is reversed). The results for the case of nonnegative
characteristic functions were derived previously by Kot (1989); we include
them below for completeness.
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Plus-One Bifurcation

A dispersal-driven plus-one bifurcation occurs when inequalities (Al),
{A2b), and (A2c) hold, but inequality (A2a) is reversed:

1 —(kya, +Kkyapn)+k ksla, ay—aay)<0. (A3)

Equation (29) guarantees that |£ | <1, |/€2| < 1. First consider the case
0<k, <1 and 0<k,<1. If we use inequality (Alc) to eliminate
dy; dx — A1, d5; from inequality (Ala), we obtain

Ay +ay, <2 (A4)
The a,, can thus be arranged in one of two ways. Either
(a;; —1)a, — 1) <0, (AS)
or

a, <1 and a, <1 (A6)

We can also use inequality (Ala) to eliminate a,,d,, —da,,a, from
inequality (A3):

k(1 =Ky a, +ko(1—k)ap>1—kk,. (A7)

But this inequality cannot be satisfied for any of the a, that satisfy condi-
tion (A6), for if it could, it would hold for the particular values
ay, = a,, = L. Inequality (A7) would then simplify to

k(1 —ky)>1—k,, (A8)

which is clearly impossible, given our restrictions on k, and k. Instead, we
must have that (¢, — ){g,,— 1) <0.
Inequality (AS5) may, in turn, be rewritten as

l—(a, +axn)+(aan—a,ay)+a;a, <0. (A9)

Hence, by inequality (Ala), a;,a,, <0.

For —1<k,<0 and —1<k,<0, we obtain different necessary condi-
tions. Proceeding in analogy with the previous case, we use inequality
(Alc) to eliminate a,, a5, —a,,a,; from inequality (Alb) and obtain

ay +ay > —2. (A10)
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Thus either
(a; +1)an+1)<0 (All)
or
a,z—1 and a, > —1. {A12)

If we now use inequality (Alb) to eliminate @,, a,, —a,,4a,, from inequality
(A3), we obtain, after some algebra,

Fy(l+ky)a, + k(1 + k) asn>1—k, k. (A13)

If this last inequality were to hold under condition (A12), it would have to
hold for the particular values a,; =a,, = —1. But the resulting inequality,

k(1 +k)> 1+ 45, (Al4)

is clearly impossible given our restriction that both —1<k,<0 and
—~1 <122 < 0. Since inequality (A13) must be true, condition {A12) must be
false. The only alternative is that (a,, + 1)(a,, + 1) <0.

Having obtained inequality (All), we rewrite it as

I +{ay +ap)+laa,;—aan)+anay <0, (ALS)

which, along with inequality (Alb), gives us a,;a,, <0.

Finally, consider the case 0 <£&, <1 and —1<k,<0 for some wave
number w. (For 0 <k,<1 and —1<k, <0, one can simply permute the
indices in all that follows.) The necessary conditions that we derive for this
case are far less stringent than the necessary conditions for the previous
two cases.

Imagine that

kya +kyan <k +k,. (A16)

It would then follow, using inequalities {Alc) and (A3), that

(I—k )1 —kyy=1~(k, +hk,)+ K, K, (Al7a)
=kl —k) <1~k a, +k,as)+ Kk Ky, (A17b)
(1—k )1 —ky) <1 —(kya,, +kyas)+k kylay, a,~ay,a.,), (Allc)
(1—k )1 —ky)<0. (A17d)

But this last inequality is impossible, given that 0 <4, <l and — 1 <k,<0
Therefore, supposition (A16) is impossible; it must be that

kia,+k,an>k, +k,, (A18)
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or
kl(al|—1)+k2‘a22—1)>0. (Alg)

Thus a;, > 1, or a,, < 1.

To show that we still require a “predator-prey” interaction, we prove
that the left-hand side of inequality (A3) is negative only if the product
a,, a5, 1s negative. Let

flayy,az)=1 _'(lélall +/€2a22)+12,/22(a“azz——alzaﬂ). (A20)

We find the local extrema of /" with respect to «,, and a,, by setting the
following partial derivatives equal to zero:

o

:‘I;: Ig IG') 2 :O, A l'
6(1“ |+ K 23y ( 2 d)
) P

f = "k2+k|k2(l”:0. (AZlb)
Oays

Solving these equations for «,, and a,, gives (af,, a%) =(1/1€l, 1/k,) as the
only candidate for an extremum of /. This extremum is a global minimum
of f since

*
(afi a%) H <aL'> =2>0, (A22)
az;
where H is the Hessian matrix
o3 o
da3, dayy Oy 0 Kk,
= - —_ n” A 5 2
H iy 2 (lnk: 0 (A23)
da,,day, daz,

But f(a¥, a%)= —k, k,a,,a,,. So for inequality (A3) to be true, we must
have a,,a,, <0.
Minus-One Bifurcation
A dispersal-driven minus-one bifurcation occurs when inequalities (Al),
(A2a), and (A2c) are in effect while inequality (A2b) is reversed:
L+ (kyay +kyas) + K kylayy ax, —aypay) <0, (A24)

As with the plus-one bifurcation, we will consider three cases corre-
sponding to the various combinations of signs that the Fourier-transformed
kernels may take for a given wave number. If we first consider the case
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0<k,<1 and 0<k,<1, we may use inequality (Alc) to eliminate the
term a,, a;, — ;4 from inequality (Alb). We thereby obtain

Ay +an>—2 (A25)
Thus the @, must satisfy either
{ay; + Wa, +1)<0 (A26)
or

a,; = —1 and ap = -1 (A27)

Note, however that if we eliminate a,,a., —a,; a5, from inequality (A24),
using inequality (Alb), we also have that

l+(l€1a”+l‘::azl)~/:'[lf'2(1+a“+azz)<0. (A28)
which is equivalent to
kit =&y ay + k01 =k ap< — 1+ KK, (A29)

This latter inequality cannot be satisfied for any of the a,, that satisfy condi-
tion (A27), for if it could, it would hold for the particular values
a,, =da,, = — 1. Inequality (A29) could then be rewritten

k(1 —ky)>1—k,. (A30)

However, this last inequality contradicts the assumption that both &, and
k, are bounded between 0 and 1. We are left with inequality (A26). It was
shown above that inequality (A26) implies a;,a,; <0 (cf. inequality (A15)).

If —1<k, <0 and -1 s/?z <0, different necessary conditions once
again arise. Inequality (Alc) may be used to eliminate ¢, a,, — a;>a,, from
inequality (Ala). This yields

ayy +dx <2, (A31)
Thus the a; must be arranged as either

(an‘_l)(az (A32)

N
|
—
A
[

or

a; <1 and ax <l (A33)
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Inequalities (A33) lead to a contradiction. In particular, note that we may
also use (Ala) to eliminate a,, a5, —a@,,a,, from (A24):

(LK) ay, +ho(l +k)apn< —1+kk,. (A34)

If condition (A33) were true, inequality (A34) would of necessity be true
for a;, =a,, =1, implying that

—k (1 +k)y>1+4k,. (A35)

This last inequality is inconsistent with our assumption that —1 <k, <0
and —1<k,<0. Hence (a,,—1 Was; — 1)< 0. From here it follows that
ay,a, <0 (cf. inequality (A9)).

Finally, let 0 <k, <1, —1<k,<0. (For0<k,<1and —~1<k, <0, one
may permute the indices in all that follows.) Imagine that

121“114'/‘:20222/;14‘/22- (A36)

It would then follow, by inequalities (Alc) and (A24), that

(1+k)V+E)=1+k +k,)+k k. (A37a)
(L + &) +ky) K1+ (kyay, +hkyay) +k ks, (A37b)
(1 + k) +ky) <14 (kyay, +kras) + ki ky(ay ay, —ag,ay), (A37c)
(1+k )1 +K,)<0. (A37d)

But (1+4,)(1+k,)>0 by hypothesis. Therefore supposition (A36) is
impossible; 1t must be that

k(1 —ay,)+ky(1 —azy)>0. (A38)

Now, since k, is positive and &, is negative, a;, <1 or ay, > 1.

We must have a predator—prey interaction (4,4, <0) in this case as
well. To show this, we prove that, at its minimum, the left-hand side of
(A24) is negative only if a,,a,, <0. Let

flay,axn)=1 +U€1011 +I€2a22)+121122(alla22_a12a21)' (A39)

Setting the partial derivatives of f with respect to a,, and a,, equal to zero,

A b vk kay, =0, (A40a)
day,
o =k, + bk, kya,, =0, (A40b)

5a22
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gives (ak, a%)=(—1/k,, —1/k,) as the only candidate for an extremum of
f. This extremum is a global minimum of f, since

*
mr]agg)ﬂ<““>:z>o. (A41)

Here H is tl}e ) Hessian matrix (cf. Eq. (A23)). At this minimum
flat,, a%)= —k,k,a,a,,. Thus, for inequality (A24) to be true, we must
have a,,4,, <0.

Hopf Bifurcation

A dispersal-driven Hopf bifurcation would occur if inequalities (Al),
(A2a) and (A2b) applied, while {A2c) were reversed. This situation is
impossible. Adding inequality (Ala) to (Alb) yields

Ay dy—d;dy > —l. (A42)
Along with inequality (Alc), this implies that
lay axn—apay] <l (A43)

Given that |k,] <1 and |k, <1, it follows that

Py

Velkz(anazz“a)za:l)l <lay ax—aypayl <l (A44)

In other words, we cannot reverse inequality (A2c). For two species on an
infinite domain, we cannot use dispersal to precipitate loss of stability via
a Hopf bifurcation.
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