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Spatial variations in the abundance of insect herbivores and in herbivore damage
are both striking an commonplace. The standard explanations for heterogeneity in
herbivore attack emphasize spatial variations in plant genetype, soils, or physical
environment. Here [ examine an alternative hypothesis—that heterogeneity arises in
plant-herbivore systems, even in homogeneous environments, as a result of the
direct coupling of herbivore movement to herbivore density and plant quality.
Using a mathematical model for plant quality and herbivore growth and dispersal,
I demonstrate how spatial instabilities about homogeneous steady state values
result in both transient and stationary waves of damage to the plant. Key herbivore
movement behaviors include the tendendy for herbivores to aggregate over a range
of spatial scales for increased feeding efficiency and the tendency for herbivores to
move up gradients in plant quality (herbivory-taxis). My approach translates the
biased “random walk™ behavior of individual herbivores into a continuum partial
differential equation model. Analytical and numerical methods are used to
demonstrate the nature of the spatio-temporal variations in plant quality and
herbivore density. €1 1994 Academic Press, Inc.

1. INTRODUCTION

Most experimental investigations of variation in herbivore density
concentrate on external forces such as plant genotype and environmental
stress as the ultimate cause of such variation. The assumption is that there
must be an underlying template of variation among plants or in the
physical environment before one would expect herbivores to end up in highly
uneven spatial distributions. Alternatively, abstract mathematical theory
has indicated that spatial patterning is possible in many model ecological
systems in homogeneous environments. (For an overview of this theory see
Okubo (1980).) I examine whether an initially homogeneous distribution of
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plants, all identical in character and quality, and all in a spatially uniform
environment could generate spatial patterning in herbivore densities.

First suggested by Turing (1952) to explain morphogenic patterns, and
subsequently applied to ecological problems, the classical mathematical
approach to modelling biological patterns is based upon the idea of a
“diffusion-driven instability.” In an ecological context, when there are
differential dispersal rates for two species (such as predator and prey), one
can determine sufficient conditions upon birth and death dynamics of the
two species to ensure growth of spatial patterns via linear instabilities
away from a spatially homogeneous steady state solution (Okubo, 1980).
Typically, such instabilities occur only for certain modes of a given
wavelength. This wavelength characteristically dominates the final patterns
that evolve {Murray, 1989). Dispersal is assumed to be random and thus
is modelled by a diffusion process. However, a necessary condition for the
generation of spatial patterns is that both species disperse.

Although many herbivores are mobile, plants remain stationary over the
length of time that it takes for patterns to evolve. For example, aphids
introduced to plants commonly form high density clumps after one or two
days. Thus, classical pattern formation theory cannot simply be re-applied
in this new context of plant-herbivore interactions since only one species
(the herbivore) is dispersing.

My alternative approach to modelling the growth of plant-herbivore
spatial patterns depends upon a detailed description of the herbivore move-
ment. As well as moving randomly, herbivores are assumed to move in
response both to variations in the quality of the plants they are consuming
and to variations in the population density of conspecifics. I show that,
under this assumption, and with appropriate dynamics for the plant and
herbivore growth, both persistent (stationary) and transient (dynamic)
patterns can evolve spantaneously from a homogeneous environment.

In this paper I employ a mathematical partial differential equation
approach to studying spatial dynamics in plant herbivore systems.
1 introduce the concept of plant quality as a relevant plant feature for
the interacting herbivores (Edelstein-Keshet, 1986). Key elements of plant
and herbivore dynamics are then considered. These include the regulation
of herbivore abundance (through density-dependent and plant quality-
dependent herbivore birth and death), the response of plants to herbivory
(through plant damage, and possibly inducible defenses and compensatory
growth), and the movement of herbivores (Section 2). Equations for
herbivore movement are derived from first principles using a random walk
with a bias towards locally increasing plant quality (Section 3.3) and with
short- and long-range biases towards increased herbivore density
{Section 3.4). Coupling the plant and herbivore dynamics (Section 3.2) with
the herbivore movement terms, Iderive a system of partial differential
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equations (Sections 3.1 and 3.5), the analysis of which (Sections 3.6-5)
reveals that spatially heterogeneous patterns can arise naturally, even in
completely homogeneous environments. Numerical solutions of the full
partial differential equation model are used to illustrate the rich variety of
spatial patterns possible in plausible plant-herbivore systems (Section 5.1).
I thus demonstrate that patchiness in plant quality and herbivore density
need not actually be linked to external environmental variations; spatial
coupling of the plant and herbivore dynamics is by itself sufficient to
produce patchiness.

2. PLANT AND HERBIVORE DYNAMICS

2.1, Plant Quality, Inducible Defenses, and Compensatory Growth

Early attempts to model plant-herbivore systems adopted a Lotka-
Volterra approach that essentially represented slightly modified predator-
prey theory (Rosenzweig and MacArthur, 1963; Hassel and May, 1973,
May, 1973; Noy-Meir, 1975; Caughiey and Laughton, 1976; Crawley,
1983). Recently, the inadequacies of this approach have been made clear.
In particular, it is evident that any robust theory of herbivory should
include factors that affect herbivore sustenance but are independent of
plant biomass (see Edelstein-Keshet (1986) for a discussion).

Many plants exhibit mechanical, physiological, and chemical changes in
response to herbivory. In some cases these changes may actually take the
form of an active induced defense. Whatever the cause, as a result of
feeding on plants, herbivores often alter plants such that their subsequent
survivorship, growth rate, and fecundity are reduced (Rhoades, 1982;
Karban and Carey, 1984; Maddox and Root, 1987; Edelstein-Keshet and
Rausher, 1989). Alternatively, some herbivores actually seem to improve
their subsequent prospects by changes wrought by their feeding. For
instance, groups of sucking insects (such as aphids) on a leaf may actually
act as physiological “sinks” that divert nutrients from distant parts of the
plant (Thrower and Thrower, 1966; Way and Banks, 1967, Way and
Cammel, 1970; Wu and Thrower, 1973; Dixon, 1975; Veen, 1985; Hawkins
et al, 1985, 1986a, 1986b, 1987). This physiological “sink” effect is an
example of a compensatory mechanism whereby local plant quality can
actually increase in response to herbivory (see also Ghent, 1960; Crawley,
1983; McNaughton, 1983, 1992; Edelstein-Keshet, 1986). In summary,
herbivores may affect plant quality in opposing manners, either depressing
it (in the case of damage, or possibly inducible defenses), or enhancing it
(in the case of aphids and compensatory plant responses) (Fig. 1).

Because plant responses to herbivory determine herbivore demography
but typically are independent of plant biomass, plant quality, rather than
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Fig. 1. Dynamical relationships between plant quality and herbivore density. The + and
— signs adjacent to the arrows indicate positive and negative feedbacks.

plant abundance, is the relevant measure for models of plant-herbivore
dynamics. Iadopt the plant quality definition proposed by Edelstein-
Keshet (1986) (see also Edelstein-Keshet and Rausher, 1989): plant
quality, v(x, ), is an index of how the foodplant might be “rated” by a
herbivore on a purely arbitrary scale. Included in any consideration is a
composite of properties such as internal nitrogen, concentrations of
noxious defence substances, succulence of foliage, toughness of stems,
amount of resin, and size or function of the plant. Plant quality is specific
to each plant-herbivore relationship; a different herbivore species may have
a different physiological effect upon the plant and may have different
nutritional needs (Hawkins et al, 1987; Mattson and Addy, 1975; Myers
and Post, 1981; Kraft and Denno, 1982; Lincoln er al., 1982; Rhoades,
1982; Crawley, 1983; Denno and McLure, 1983; Strong et al, 1984). By
using plant quality as a state variable in my model, I treat the vegetation
as a physiologically structured population.

2.2. Regulation of Herbivore Abundance and Distribution

Herbivore abundance and distribution are regulated by birth and death
processes and by herbivore movement. These, in turn, depend upon factors
such as the plant quality and the herbivore density. Other factors such as
predation (Kareiva and Odell, 1987), parasitism (Price, 1980), and age
structure (Hastings, 1992) may also be significant but add an extra level
of complexity to any model. In the interest of focusing upon the plant-
herbivore interaction I do not include these other factors in the models I
examine.

Exact details of plant—herbivore interactions often depend upon the
particular herbivore and plant species. To develop models connected to the
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real world, I use the example of aphid populations, while noting that many
of the behaviors and processes that apply to aphids can also be found in
other plant-herbivore interactions.

Very high potential reproductive rates, based upon parthenogenesis,
viviparity, and telescoping of generations, permit aphid populations to
exploit plants over short seasons when the conditions are right for growth.
However, experimental evidence indicates that reproductive rates are
controlled by two factors: (1) population density and (2) plant quality
(Dixon, 1985). Jostling movements from developing larvae seem to slow
reproduction even when nutrition appears to be adequate (density-
dependent natality), and, at the same time, feeding on the opposing side of
the leaf from highly crowded aggregates (lower plant quality) reduces the
reproductive rate of solitary aphids (Way and Cammel, 1970).

Aphids are believed to feed more effectively in groups because they may
divert food to the colonized leaf from other parts of the plant (Way and
Cammell, 1970; Hawkins er al, 1986a). Thus, although highly crowded
aggregates of aphids typically reduce plant quality, low levels of aggrega-
tion may actually enhance it. For example, mean adult sizes of single
aphids have been found to be significantly higher when a moderately
crowded aggregate of aphids was experimentally placed on the other side
of the leaf from the single aphids (Way and Cammel, 1970). In addition
experiments indicate that aphids often aggregate actively, using tactile and
possibly chemical mechanism (Ibbotson and Kennedy, 1951; Way and
Cammel, 1980; Turchin and Kaveira, 1989). By acting as local “sinks” for
nutrients, aggregations can compete succesfully against the natural “sinks,”
namely, growing parts of the plants (Dixon, 1975) and storage organs
(Hawkins et al, 1987). Aphid aggregation also has the advantage of
reducing the per capita predation pressure in dense patches (Cappuccino,
1987; Turchin and Kareiva, 1989).

Experimental evidence indicates that aphids are sensitive to variations in
the quality of their food plants. Vail (1990) showed that aphids respond to
experimentally manipulated variations in quality of Brassica plants by
moving to the higher quality areas.

In the remainder of this paper I consider a plant-herbivore model that
captures the following essential features: (1) density-dependent and plant
quality-dependent herbivore growth dynamics (see Fig. 1), (2) inducible
defenses, herbivory damage, inhibitory effects, compensatory mechanisms,
and plant repair for controlling the plant quality (see Fig. 1), and (3)
herbivore movement up gradients in plant quality and dependent on
conspecific density.

633/45/3-5
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3. MopEL FORMULATION

3.1. Overview of the Mathematical Model

To build a model that encompasses the key elements of a wide variety
of plant-herbivore interactions, I need to include terms that describe the
coupling between herbivores and plant quality in the abscence of move-
ment, and then 1 need to describe the movement process, itself. For the
movement process I will include three types of motion (with the relative
importance of each controlled by parameters that can be adjusted
depending on the biological system in question): random motion, motion
towards regions of high plant quality and away from low plant quality
(herbivore-taxis), and motion towards conspecifics (aggregation). The local
population density of herbivores is represented by the variable u(x, ¢), x
denoting space and ¢ denoting time, and the local plant quality is
represented by the variable v(x, ¢). The resulting system of equations takes
the form

J
a—L:=f(u, v) + Movement Term (1)
¢
_a%:g(u, v), 2)

where f(u, v) describes herbivore birth and death processes and g(u, v)
describes plant quality dynamics.

3.2. Modelling the Dynamics

Prior to formulating a specific model for the dynamics f(u, v) and g(u, v)
in Eq. (1) and (2), respectively, it is instructive to determine general
rules which we expect the dynamics to obey. The rules, based upon the
discussion in Section 2, are also shown diagrammatically in Fig. 1.

1. Reproduction and survival of herbivores will correlate positively
with plant quality. An increase in plant quality (v) thus causes a corre-
sponding increase in the population growth rate for herbivores ( f{x, v)).

2. Herbivores will regulate themselves through density-dependent
death. At high herbivore densities (u), a further increase in u results in a
decrease in f(u, v).

3. Herbivores will damage plants (and possibly induce defences in
plants), thereby reducing the plant quality. An increase in u results in a
corresponding decrease in the plant quality growth rate (g(u, v)).

4. Plant quality will self-regulate through inhibitory effects. In the
absence of herbivory, the quality of plants well self-regulate and eventually
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plateau at some high value. In other words, when ¥ =0 and v is high, a
further increase in v results in a decrease in g(u, v). When herbivores are
present u > 0, the situation may become more complex (Fig. 1); inhibitory
effects may be reduced by a competing compensatory response of the plants
to the herbivores.

5. I assume that, for large u, herbivory damage and inducible
defenses (item 3) eventually dominate compensatory mechanisms (second
half of item4). Otherwise the possibility of a biologically unrealistic
positive feedback loop exists, where herbivore density and plant quality
increase unboundedly (sce Fig. 1).

These rules are sufficient to determine the general shapes for null clines of
f(u, v) and g(u, v); the shape of the null cline f(u, v) =0 is determined by
items (1) and (2) and the shape of the null cline g(u, v) =0 is determined
by items (3) through (5). These rules indicate that the function f(u, v) is
positive for small # and large v and is negative for large ¥ and small v, and
that the function g(u, v) is positive for small u and small v and negative for
large u and large v. Null clines that assume a shape similar to that shown
in Fig. 3.

The following is a specific model for the growth dynamics (x =0 and
v > 0) which satisfies the above rules (see also Fig. 1),

f=Natality +  Natality = — Density-dependent
independent of  dependent on death and
plant quality plant quality natality reduction
pu + yuv — Su? (3)
g = Improvement — Inhibitory — Herbivory
due to plant effects (which damage and
maintenance  may be reduced inducible
and repair by herbivory) defenses
u — sv/(1+mu) — du (4)

where p, y, 6, i, s, h, and ¢ are non-negative.

3.3. Modelling “Herbivory-Taxis”

It is natural to expect that mobile herbivores will orient and move
towards stimuli that signal increased plant quality. These behaviors of
orientation and taxis have, indeed, been widely studied and documented
for herbivores such as phytophagous insects (Ahmad, 1983). Field observa-
tions indicate, however, that not all herbivore movements are directed up
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gradients of plant quality; typically there is a balance between random and
directed motion (Morris and Kareiva, 1991).

In this section I mathematically derive movement terms that describe the
random and directed components of herbivore movement in relation to
plant quality. Temporarily ignoring birth, death, and aggregative move-
ment, [ assume that individuals within a population can be described by
motion with two components: (1} a completely random component and (2)
a tendency to move up gradients of plant quality (v(x, 7)). My approach is
to describe the behavior of an individual organism with a random walk
which exhibits bias toward regions of superior plant quality. This gives rise
to a partial differential equation describing spatial fluxes in the population
density of herbivores (u(x, t)).

Equations for modelling such random and directed movement com-
ponents are well established in the mathematical biology literature. Such
equations can be used to describe chemotaxis (Keller and Segel, 1971) and
prey-taxis (Kareiva and Odell, 1987) as well as herbivory-taxis (Gueron
and Liron, 1989; Morris and Kareiva, 1991). My brief derivation for the
movement terms thus has a secondary purpose—to introduce the
framework for a biased random walk which can be used in deriving more
complex aggregative movement terms in Section 3.4.

Let the variable p(x, t) be defined as the probability of a randomly
chosen individual being found on the interval (x— /2, x+ A/2) at the
time ¢, where 4 is a small space interval. Thus, for a population size N,

plx, ,)=le”’” W(E. 1) di - 25

X - A2

as A-—0. (5)

I discretize time (0<:<oc) into short intervals of size t, and space
{—oc < x < o) into small intervals of length 1 and model the movement of
individuals as follows: during the time interval T an individual may move
4 to the right with probability R(x, ), A to the left with probability L(x, 1),
and may remain stationary with the probability N(x, t)=1— R(x,t)—
L(x, t).

[ assume that herbivores can sense plant quality on the space intervals
directly to the right and left and that the probability of the herbivore
moving in a given direction depends linearly upon the ensuing increment
in plant quality. Thus the probability of moving to the right is given by

R{x, t) = random component of motion
+ a x increase in quality to the right

=ir(x, ) +alv(x+ 4, 1)—v(x, 1)]
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and the probability of moving to the left is given by

L(x, 1) =random component of motion
+ o x increase in quality to the left
=3r(x, )+ alv(x— 4, 1) —v(x, 1)],

where 0 <r(x,t)<1 is the random component of the movement and «
relates the probability of moving to the increase in plant quality. Provided
dv/éx is bounded, R and L converge to r/2 as A— 0. Thus R, L>0 and
R+ L <1 for sufficiently small 2. If there are no births and deaths then
p(x, t) satisfies

p(xa t)=N(x’ t—r)p(x, t—T)
+Rx—-At—t)p(x—At—1)
+L{x+At—1)p(x+ A t—1)

Expanding all the above terms about the point (x, t) yields

P2 _
Tat (x’ t)—_lax {(R(x’ l) L(X, t))p(xat)}
——22-——62 R L oA 6
+26X2 {( (x’t)+ (x’ t))p(xit))}+ (' )9 ( )

where the bias, R(x,t)— L(x,t), and the motility, R(x,t)+ L(x,t), are
given by

Rx,) —L(x,t)=a[v(x+ 4, t) —v(x—4, )] (7

=2a/1€2(x, N+ 0(4%) (8)
0x

and

R(x, )+ L(x, t)=r(x, t)+a[v(x+ 4, t)—2v(x, t) + v(x— 4, 1)]
2
=r(x, z)+a129—i (x, 1)+ O(2*). 9)
0x

Substituting (9) and (8) into (6), taking the appropriate limit as A and 1
converge to zero (4, t—0 so that %/(2t) — D)(see, for example, Okubo
(1980)), and using (5) gives

ou 5, du ov
E*Da[r-j——4xu—]. (10)

653/45/3-6
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The first term inside the square brackets in this equation describes the flux
due to random movement of individuals and the second terms describes the
flux due to herbivory-taxis, or movement up gradients in plant quality.

3.4. Modelling Aggregative Movement

Because many herbivores respond positively to one another, either
because they can enhance one another’s feeding efficiency or because the
presence of a fellow feeder might signal a good food source, it is worth
developing a way of describing such aggregation. Previous mathematical
descriptions of aggregation have simply emphasized the effects of neighbors
in the immediate vicinity (see, for example, Turchin (1989)). For greater
flexibility, I envisage aggregation that represents a weighted response to
conspecifics as a function of their distance from the individual herbivore.
I will show that this weighted response model is really a natural extension
of the previous “local aggregation” models; it can be simplified to such a
local aggregation model by choosing the appropriate weighted response
function.

Temporarily ignoring birth, death, and movement by herbivory-taxis,
I assume that individuals whithin a population can be described by motion
with two components: (1) a completely random component and (2) a
tendency to move toward groups of conspecifics. To date, models for this
latter component have assumed movement up Jocal gradients of conspecific
density. This kind of movement up local gradients is restrictive; indivi-
duals can only respond to the conditions precisely at their own location.
Conspecifics sensed a short distance away are ignored completely. Such
local aggregation models typically result in ill-posed equations from a
mathematical perspective (see the discussion in Section 3.4.2).

I derive an alternative method for modelling movement toward groups
of conspecifics by assuming that the aggregative movement of an individual
depends not only upon the density of conspecifics at the individual’s precise
location, but also upon the density of conspecifics short distances away.
The relevant quantity for determining aggregative movement is thus a
spatial average of the conspecific density, weighted according to the distance
between the location of the individual and the location of conspecifics.
Using this approach, individuals are assumed to move up gradients in the
non-local, spatially averaged, density of conspecifics. Typically, conspecifics
that are far away have little influence upon an individual's movement
behavior, while conspecifics that are nearby may influence movement
behavior strongly; the weighting function is thus assumed to be mono-
tonically non-increasing with distance and to be equal to zero for
large distances. With such a non-local aggregation model the problem of
ill-posedness, encountered by local aggregation models, is typically
avoided.
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Similar non-local aggregation models have been formulated inde-
pendently by researchers employing a generalized flux in continuum
conservation laws (see Section 3.4.2 for a discussion). However, my
approach for deriving the model equation is new in the context of non-
local aggregation—that of a biased random walk. Interestingly, the
resulting equations are subtly different from typical generalized flux models.
This is discussed in more detail in Section 3.4.2.

In Sections 3.4.1 and 3.4.2 I formulate the non-local aggregation model
and analyse its potential to generate spatial patterns, or “clumps” of
individuals. Ishow that, in the absence of any other interactions,
aggregating populations form regular patterns, with a wavelength which is
determined approximately by three factors: (1) the average density of
individuals, (2) the magnitude of aggregation tendencies relative to random
movement tendencies, ahd (3) the variance of the spatial weighting func-
tion. I define each of these components precisely and derive the relationship
describing the wavelength of resulting aggregation patterns.

3.4.1. Derivation of the Aggregation Model

I envisage herbivores sensing their conspecifics through a weighted
spatial average of the surrounding population density, given by

0

Ax =] wp)uCx+y, 0 dy, (1)

— o0

where w(y) is the weighting function, or kernel. This general formulation
assumes only that the information is linearly related to the density of
conspecifics. (An even more general formulation might replace u by some
function f(u) in (11).) For the purpose of our model, we normalize the
weighting kernel so that

[" way=1.

—

Some typical shapes for the kernel w(yp) are shown in Fig. 2. A normally
distributed kernel, shown by the dashed line, uses

b
W(y)=\/%eXp(—bx2)- (12)

Two simple forms for w(y), shown by the solid and dotted lines, assume
that individuals cannot sense conspecifics beyond a certain radius. The
kernel denoted by a solid line assumes that individuals have perfect
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FiG. 2. The aggregation kernel, w(y). The kernel is assumed to be symmetric about the
point y =0, and thus only the right half of the kernel is shown. A normally distributed kernel,
denoted by the dashed line in (a), is described by (12) with b chosen as 1.5. Two alternate
descriptions for the kernel, denoted by the solid and dotted lines in (a), are described by
Egs. (13) (/;,=1) and (14) (/, = \/5.). All three of these kernels have identical second moments
wy =% (see (21)-(23)). Fourier transforms of the kernels are shown in (b).

perception within the radius, /|, and treat all conspecifics within this radius
as having equal weight,

0 if |yl>1,

a=d1 13
w(y) o i bi<h, (13)

If perception decreases linearly with distance or the weight accorded to a
conspecific decreases linearly with distance then the following kernel,
denoted by a dotted line, may be appropriate:

0 it |yl>1,
w(y)=<5L—1yl

(14)
5

if (yl<é.

Employing (11) it is observed that the net increase in A(x, t) incurred by
moving from the point x, to the point x, at time ¢ is

Ay, )~ Ao, =] wO)[u(x, + 3, ) —ulxo+y, D] dy  (15)

— a0
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This change in the weighted spatial average of the population density is
used to determine the direction of aggregative movement. When (15) is
positive then individuals at point x, will tend to move to x, and when (15)
is negative then the converse is true. Using this simple idea, I model the
movement of an individual herbivore by a random walk with bias towards
regions of increasing A(x, t).

As in the previous section I define the variable p(x,t) to be the
probability of a randomly chosen individual being found on the interval
(x—A/2, x+ A/2) at the time ¢, where A is a small space interval (see also
Eq. (5)). I discretize time (0 < t < o) into short intervals of size t and space
(—o0 < x < o0) into small intervals of length 4 and model the movement of
individuals as follows: during the time interval t an individual may move
A to the right with probability R(x, t), 4 to the left with probability L(x, t).

The probability R(x, t) is given by

R(x, t) = random component of motion

+ m x net increase in A(x, ¢) incurred by moving to the right

=r(x, )+mN Y w(Aplx+ G+ 1) A t)—plx+ i, )],
—x < j< o (]6)

where 0 <r(x,t)<1 is the random component of the movement and m
relates the probability of moving to the net increase in A(x, t) incurred by
moving. This increase in A4(x, t) is expressed as a discrete formulation of
(15) which is exactly correct as A — 0 and is approximately correct for
small 4 (see also Eq. (5)). The probability L(x, ) is given by

L(x, t)=random component of motion

+ m x net increase in A(x, t) incurred by moving to the left

=1r(x, 1)+ mN Z w A px+ (=1 A 1) —p(x+ji, 1)].
—w<j<w (17)

Provided dp/0x is bounded, the infinite sum in Eq. (16) converges to zero
as A—0. Thus R, L>0 and R+ L<1 provided 4 is sufficiently small.
It is shown in Appendix A that, using these probabilities for individual
movements, and constraining 4 and 7 to converge to zero in the usual
manner (4, T — 0 so that A%/(2t) - D), a partial differential equation can be
derived that describes spatio-temporal changes in the population density,

‘u J Ju © ou
E:Da[ra—mujm w(})é;(x+}, z)dy], (18)



290 M. A. LEWIS

and, alternatively, the integro-partial differential equation (18) can be
reduced to a partial differential equation with higher order derivatives,

ou 0 Ou du
Z_pZ| & _y . 1
or D@x[ré?x mujgow"léxf]’ (19)
where
LT oy, =012 20
Wj-ﬁ-“,wy.n(y) Vs J=U L 4 ( )

defines the moments of the kernel w(y).

Implicit in the derivation of the diffusion limit (4,7 —0 so that
42/(2t) — D) are assumptions of infinite speed of motion (i/t — o0} and
frequent (¢(r~')) changes in movement direction. A consequence of this
limit is that the net displacement of an individual over a given time interval
is much less than the total distance that the individual travels in that time
interval. Lin and Segel (1988) provide further discussion of this limiting
process. In the context of herbivore movement, I am assuming that the
herbivores are highly mobile and that they can frequently change move-
ment direction.

The first term in Eq. (18) and (19) describes the flux due to random
movement of individuals, and the second term describes the flux due to the
aggregation of individuals. The alternate formulation (19) is often simpler
to study mathematically than (18), especially when the infinite series in
equation (19) is truncated after a number of terms. Such a truncation is
valid (provided the solution to (18) is not singular) because the higher
order moments, w; converge to zero. Note that the normalization of w( y),
established earlier, ensures that wy=1.

3.4.2. Discussion and Analysis of Aggregation Model

Equation (18) can be viewed as a very general model for random
motion; by employing appropriate kernel functions, w(y), it can be reduced
to various classical random walk models. For example, if w(y)=0 the
simple random motion equation (see, for example, Okubo (1980)) is
obtained; if w(y)= —J(y) the biased random motion of Gurney and
Nisbet (1975) is obtained; and if w(y)=4(y) the aggregative movement
model of Turchin (1989) is obtained (see also Aronson, 1985). (Substitution
of these kernel functions into the alternative formulation (19) produces
identical results.) None of these classical models, however, incorporate the
responses to nonlocal populations density, described in (18) and (19).

For kernels such as those described in (12)-(14) and shown in Fig. 2a,
all odd moments are zero (due to symmetry of w(y)) and higher moments
get progressively smaller. When these kernels are employed, the moments
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1 \/"?
( ) if jiseven

w,= < \28j (21)
0 if jis odd,
L if jiseven
w,={ G+ 1) J (22)
0 if jisodd,
and
2% if jiseven
w,={ (G +2)! / (23)
0 if jisodd

are calculated for (12), (13), (14) respectively.

For the purpose of analytically and numerically studying aggregation
dynamics, I truncate the infinite series in (19), retaining only the significant
lower order terms. When terms containing the 4th moment (w,) and higher
are excluded from (19), one obtains the following more tractable equation:

du é du 0%u
-67=D5;[(r—4mwou)a—4mw2ué}—2]. (24)

In Appendix B, I show that Eq. (24) can act as a useful caricature of the
more complex equation (18). In this appendix each equation is linearized
about a constant solution u =u, and behaviors of these linear equations
are compared for each of three different spatial averaging kernels (12)-(14).
The caricature model (24) predicts that when r/(4mu,) <1 aggregate
patterns form with wavelength of approximately 2n/k,, where k,, satisfies

2 = L= r/mug)

b
m 0,2

(25)

and ¢ is the variance of the kernel w(y) (see Appendix B). This prediction
is shown to be approximately true for (18) with each of the three different
kernels. Based upon these results, it seems highly likely that the result holds
true for most biologically relevant spatial averaging kernels. In that case,
given (1) an unknown spatial averaging kernel w(y) with known variance
6%, (2) an average density u,, and (3) an estimate of the magnitude of the
random component of motion relative to the aggregative component r/m,
one can predict approximately the wavelength of resulting aggregations as
2n/k,,, where k,, satisfies (25). This caricature is particularly useful because
it reduces the problem to one for which all parameters are experimentally
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accessible. Alternatively, a given population with a fairly constant density
will start to aggregate into clumps once the density exceeds r/(4m). Results
also indicate that in order for (24) to be an appropriate caricature for (18),
r/(4mu,) cannot approach zero (Appendix B).

The derivation of (24) from a random walk approach relates the
partial differential model directly to individual behavioral rules. This is
particularly useful in ecological applications, where overal population
patterns are clearly a result of individual behaviors. An alternative
approach to describing generalized dispersal in a population derives the
relevant partial differential equation model directly from a continuum
conservation law,

Ju

Frae V-J,
where J represents the population flux (see, for example, Murray, 1989).
While classical simple diffusion models employ Fick’s law for J, formula-
tions for a generalized flux arise from a variety of other models. These
include Landau—Ginzburg free energy models (Cohen and Murray, 1981,
Ochoa, 1984), integral models which use weighted spatial averaging
(Murray, 1989), and random walk models with integral formulations
(Kawasaki, 1978; Appendix I of Turchin, 1989). As in Eq. (24), many of
the generalized flux formulations have high order spatial derivatives (such
as biharmonic terms), although in contrast to Eq. (24), their terms are typi-
cally non-degenerate as u — 0 (but see Alt, 1985). The degeneracy property
evident in (24) and also in (18) and (19) causes the equations to reduce to
simple diffusion models as w — 0. It can be shown that the related non-
degenerate version of (24) can have negative solutions; it appears that the
degeneracy is crucial for ensuring that solutions remain non-negative and
thus biologically realistic. This is a subject of ongoing research by the
author.

Discussion of the aggregation model formulated here would be incom-
plete without a brief mention of how it fits in with previous theoretical
models. A model for population redistribution according to attractive and
repulsive interactions between organisms, termed a “4-model”, was
proposed by Taylor and Taylor (1977, 1978). Partly in response to
criticisms regarding the logical structure and predictions of this 4-model
(see, for example, Thorarinsson, 1986, and Turchin, 1989), Turchin (1989)
developed an alternative “aggregative movement” model, based on a
random walk approach with local bias towards increasing densities. The
aggregative movement Eq. (24) extends Turchin’s model to cover the case
in which organisms respond to both local conspecifics and conspecifics that
are at a distance. As discussed earlier in this section, Turchin’s model can
be recovered from Eq. (24) if w(y)=4(y).
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Turchin also chose to let the constant m in (24) depend on herbivore
density so that m = m(u). This is biologically reasonable; it is quite possible
that organisms may attract each other at low densities but repel each
other at higher densities and thus the sign of m would change with u.
[ do no incorporate this additional detail into the model because a rich
variety of aggregative patterns are evident in the simplest case where m is
constant.

The aggregative movement model presented in this paper overcomes two
limitations of Turchin’s (1989) model (which were pointed out in his

paper):

1. Local aggregative movement models using initial boundary value
problems with negative diffusivity are ill-posed (for discussion see Alt,
1985; Aronson, 1985); small perturbations in initial conditions cause major
qualitative changes in the solution to Turchin’s equation. This problem
does not arise with Eq. (24). The higher order term acts to stabilize
growth of aggregations and the final solution is not sensitive to initial
conditions.

2. Turchin’s model has no “characteristic” clump size for aggrega-
tions; the density profile at equilibrium may be broken into discontinuous
clumps of any size, from very wide to very narrow. In contrast, my model
yields a wave number defining the characteristic clump size, whose wave
number can be calculated explicitly (see Eq. (25)).

A model that shares many features with the one presented here is given
by Roughgarden (1974); a more mathematical presentation and some
elaboration can be found in Gurney and Nisbet (1976). This model con-
siders a resource/plant or resource/plant/consumer system in which the
plant draws resource from a finite neighborhood and the consumer’s
feeding rate and movement are determined by appropriate average plant
density over a locally averaged neighborhoods. The papers look at spatial
pattern caused, not by true local instability of the spatially homogeneous
steady state, but by the amplification of small local inhomogeneities in the
carrying capacity.

3.5. Incorporating Random Motion, “Herbivory-taxis,” and Aggregative
Motion into the Movement Flux Term

I now incorporate the descriptions of random motion, herbivory-taxis
(Section 3.3), and aggregative motion (Section 3.4) into the movement term
for Eq. (1):
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Movement Term

Random Motion + “Herbivory-taxis” + Aggregative Motion

0* 0 ov 0 du *u
—Dg)-c—z [ru] —4D5;(ozu a’) ﬂ4D6—x' (mw0u5;+mw2u5)—c—3>

0 ou o*u dv
—Da-xl:(r—4mw0u)—a;——4mw2u5;—4au—a;j|. (26)

The mathematical model for plant-herbivore interactions is thus given
by (1)-(4) and (26).

3.6. Nondimensional Model

I nondimensionalize the plant-herbivore model (1)-(4) and (26) to
reduce the number of parameters and facilitate an assessment of the
essential ecological processes. The new variables are

X o
u*=4mw0u, U*:4mW0U, x*= , t*'—_pt, d*: i
Djp mwe
P* = v *_ é }l*=4mw0# bt = h
g’ dmwop’ P .
s*=i ¢*=Q w* = WZ/’, f*=4mwof, g*=4mwog'

Dropping the asterisks for notational simplicity, (1)-(4) and (26) are
rewritten as

ou d Ju *u v

E:ﬂu, v)+é;[(r—u)a-);—wu5;§—aua] (27)
ov

;=8 v), (28)

where

fu, v) = u+ yuv — du?

sv
1+ hu

glu, v)=p— —du.
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<e— null clines for herbivore
Ws density (f=0)
plant e

i null cline
qu?\l’l)(y for plant

quality (g=0)

(ug, vo)

>0

<0 g>0)g<0

1/8 H/o
herbivore density (u)

F16. 3. Null clines for the nondimensionalized herbivore~plant equation (27)~(28).

3.7. Steady States

Inow consider spatially homogeneous steady state solutions to
(27)-(28). The null clines for (27), given by f=0, are

1
u=0 and v=;(5u—l)
and the null cline for (28), given by g=0, is
1
v=;(#—¢u)(1 + hu)

(Fig. 3). Note that there is a steady state solution (ug, vy} in the first
quadrant provided that ¢ < ¢, where

¢.=op (29)
(Fig. 3). The steady state value u, is the larger root satisfying
yhou® + (8 + y(¢ — hu))u — y — s =0, (30)

and v, is given by (du,—1)/y. A second steady state solution is given by
(u, v) = (0, u/s) (Fig. 3).

3.8. Boundary and Initial Conditions

In a typical field environment a variety of different boundary conditions
may apply. For example, herbivores may or may not enter and leave the
system. In this paper I do not attempt rigorous derivation of boundary
conditions from first principles for a physically isolated patch; such a
derivation must by necessity take into account the higher order moments
(see (20)) which are not included in the model (27)-(28). Instead, 1
consider a patch of length L which is located in the interior of a field and
prescribe values surrounding the perimeter of the patch. I consider two
possible cases:
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1. Steady state values at the perimeter,
u(os t)=u(L’ t)=u0’ U((), t)=U(L’ t)=UO’ (31)
which have been supplemented by the additional constraint

o%u o%u
5?(0, t)=$(1«t)=0 (32)
{see Ochoa (1984) for similar boundary conditions).

2. Zero flux for the herbivore across the perimeter. This is achieved
when the flux terms in (27) vanish at the perimeter and thus

Ju Ju ov ov
-6—);(0’ t)=5;(14,t)—6—x‘(0,1)—a(14, t) (33)
and
Au &*u
—c'?—x—3(0’ l)=5;(L,t)=0- (34)

Biologically these conditions indicate that there will be no net flux of
herbivores across the perimeter if (i) the plant quality does not vary at the
perimeter and (ii) there is local symmetry of herbivore density with respect
to the perimeter.

Because I am specifically interested in the potential that (1)—(2) has for
spontaneous formation of spatial patterns, I will assume that that state
variables are initially very close to the unique spatially homogeneous
positive steady state solution (ug, v,) which is given in Section 3.7. Thus a
linear analysis about this steady state solution can be used to determine
whether perturbations with a given wave number will grow.

4, LINEAR STABILITY ANALYSIS

Linearization of (27)-(28) reveals the stability of this steady state to spa-
tially uniform perturbations; the inequalities for the partial derivatives

o

of 0 0
‘a_l;(uo, v0)<0’ %(uo, 1)0)>0, é%(u07 UO}<03 —g‘

av (u()) UO) < 0
ensure that the eigenvalues for the linearized system have negative real
parts. The other biologically relevant steady state solution, given by
(u, v) = (0, u/s) (Fig. 3), corresponds to healthy plants with no herbivores.
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This is a saddle point; it is stable to spatially uniform perturbations in v,
but is unstable to spatially uniform perturbations inu«. In other words,
plant quality will regulate itself in the absence of herbivory but herbivore
density will grow when herbivores are introduced at a uniform low level.

I consider the behavior of small spatially heterogeneous perturbations of
the state variables away from (u,, vy). Linearization of (27)-(28) gives rise
to a homogeneous system of linear equations describing the behavior
of these small disturbances. Non-trivial solutions to this system satisfy a
dispersion relation between the temporal and spatial components of the
perturbations and the parameters in the model. Thus I determine when and
how the steady state can become linearly unstable.

The linearized form of (27)-(28) is

p;] 2 4 62

where

I3}
fu=é£(u0’ UO)
u

and similarly for f,, g,, and g,. I use the principie of superposition and
look for solutions of the form

U—ug, v —vg o exp(at + ikx). (36)

Substitution into (35) gives a dispersion relation between ¢ and k2 that
must be satisfied for non-trivial solutions. This relation is

o2 + B(k*)o + C(k?) =0, (37)

where
B(k*)y=wugk* + [r—u, ] kK*— f,—g. (38)
Clk*) = —g,wuok® — [g.(r—uo) k? + g, ouo1 K>+ £, 8, — 8. /.- (39)

For the uniform steady state to be stable to perturbations with a spatial
component, it is required that the roots of (37) have a negative real part
for all positive k% If there is a root with a positive real part for some &2,
then the linear theory predicts that small random perturbations away from
the steady state will grow exponentially with a spatial wavelength of 2n/k.
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4.1. Conditions for Bifurcation to Spatial Patterns

Necessary and sufficient conditions for the roots of (37) to have negative
real parts are

B(k*)>0 and C(k*)>0 (40)

for all positive k2.

If the spatial pattern bifurcations have finite wave numbers, k, where
0 < k? < w, Eq. (40) must be met for very large and very small k2. The case
k* — 0, describing spatially homogeneous perturbations, was shown to be
stable earlier in Section 4. Perturbations with large wave numbers are also
stable because the leading order terms in (38) and (39) are positive and
thus (40) is satisfied as (k? — o).

Consider the case where either condition in (40) is not met over some
range kK _ <k <k, . Then the linear analysis predicts that modes with wave
numbers in this range will grow exponentially according to (36) providing
the boundary conditions ((31)-(32) or {33)-(34)) are met. In other words,
a mode will grow providing

k_,<5’Lf<k+ (41)

for some integer n, where L is the length of the solution domain, 0 <x < L.
The special case

k =fL’f=k+ (42)

describes a neutrally stable mode, which neither grows not decays.

I now consider the point at which where there is a bifurcation to linear
instability for a critical wave number, 0 <k < oo, as the real part of an
eigenvalue of the linear system increases through zero. According to (42)
this mode will be neutrally stable provided k_ =k, =k_ and thus L=
nn/k.. For the purpose of simplifying the linear analysis 1 assume that this
L satisfies this constraint, while noting that the more general case given by
(41) is

nn nn
—<L<—,
k., k_

The bifurcation to linear instability can be described by

max R{o;}

1,2

{:0 if k=k,
<0 if k#k,.
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This bifurcation occurs through a pure imaginary eigenvalue (Hopf
bifurcation) when the first constraint in (40) is violated, and at a zero
eigenvalue when the second constraint in (40) is violated. For notational
convenience, I denote the critical wave number for a Hopf bifurcation as
k.= ky and the critical number for a zero bifurcation as k.= k. Thus the
condition

=0 for k=k
B(k? H 250 )
() {>0 for k#ky and Ck”)> forall k (43)
leads to a Hopf bifurcation through 6 = +isy and
=0 fork#k
B(k? 2 R A
(k*)>0 forallk and  C(k ){>0 e

leads to a bifurcation through o =0.

Examination of (38) and (39) reveals that a necessary condition for
either of the above bifurcations is that r <u,. In ecological terms this
means that the tendency for the herbivores to aggregate over short
distances dominates the tendency for the herbivores to make random
movements. Thus the short-range movement term in (27) ([(r —u) u,.],) is
destabilizing. This contrasts with the two other movement terms; both the
long-range movement term ({ —wuuw,,. ], describes how the herbivores
aggregate over further distances) and the herbivory-taxis term ([auv,],
describes how the herbivores move up gradients in plant quality) are
stabilizing.

I now find necessary constraints on the model parameters for the Hopf
and real bifurcations described above. For the Hopf bifurcation (43),
setting B(k};) = B'(k3) =0 yields

k=21 4
H 2wu0 ( 5)
when
(u()_r)2+wu0(fu+gv)=0' (46)
For the real bifurcation (44), setting C(k%)= C'(kz)=0 yields
uo—r og,
K =20 £ (47)

" 2wu, h 2g,@
when

[gv(r_u0)+aguu0]2+4wgvu0[fugu—gufv]:O' (48)
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If both the Hopf and real bifurcations were to occur simultaneously then
(46) and (48) would both be met and the ratio of critical wave numbers
would satisfy

<£‘3)2 =gu(“0"’) — g, Uy
ky goltg—r)

Employing (46) and (48), it is observed that this ratio must also satisfy

{c_R_>4=fugv—guf;J 49
(kH gb(fu+gu) ( )

5. DYNAMIC AND STATIONARY PATTERNS

Given a particular plant-herbivore system one might determine a specific
set of parameter values for Eq.(27) and (28). However, rather than
modelling a specific system, my primary purpose is to investigate the rich
potential that (27)-(28) has for pattern formation. This is achieved by
considering the effect of varying parameter values near a doubly critical
bifurcation point that satisfies (46) and (48).

By way of an example I choose the reaction dynamics to be given by

y=0297, §=125 u=170, s5=190, h=0, ¢=10
(50)

and movement terms to be given by
0 =001, r=r.=0.1, =qa.=12.825. (S1)

Thus at the steady state solution (ug, vy) = (1.0, 0.842) partial derivatives
for the reaction dynamics are

f.=-—125 f,=0297, g,=-—10, g.,=—190
and the critical wave numbers satisfy
ki =450, ky=1125

(Fig. 4).

I now determine the effect of small changes in the random motion
parameter (r) and herbivory-taxis parameter (o) upon the dispersion
relation (37)-(39). The effect that these two parameters exert upon the
dispersion relation describes how small changes in herbivore movement
behavior (measured through changes r and a) manifest themselves as
dramatic changes in patterns of herbivore density.
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FiG. 4. Dispersion relation for a doubly critical bifurcation satisfying (46) and (48).
Parameters are given by (50)-(51).

1. r=r.—001, a=a,+0.5: Hopf bifurcation (Fig. 5). Linear analysis
predicts an exponentially growing oscillatory mode with wavelength
approximately 2n/ky = 0.94.

2. r=r.+001, a=0a,—0.5: real bifurcation (Fig. 6). Linear analysis
predicts an exponentially growing stationary mode with wavelength
approximately 2n/kg = 1.87.

41

B, C and Re(sigma_i)
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B
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Fi1G. 5. Supercritical dispersion relation near a Hopf bifurcation. Parameters are given by
(50)-(51) except r=r,— 001 and x=a +0.5.
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Fic. 6. Supercritical dispersion relation near a real bifurcation. Parameters are given by
(50)-(51) except r=r.+0.01 and a =a.~—0.5.

3. r=r,—~0.01: simultaneous Hopf and real bifurcations (Fig. 7).
Linear analysis predicts simultaneous growth of the two modes described
above.

From this example it is observed that a decrease in r may lead to the
growth of both stationary and oscillatory modes and a decrease in o may
lead to the growth of stationary modes. Analysis of the bifurcations
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FiG. 7. Supercritical dispersion relation near Hopf and real bifurcations. Parameters are
given by (50)-(51) except r=r,—0.01.
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conditions (43)-(44) and the dispersion relation coefficients (38)—(39)
indicates that this is indeed the case in general.

5.1. Numerical Solutions

Linear analysis indicates that for critical parameter sets spatial patterns
may arise as the homogeneous steady state becomes linearly unstable to
perturbations with a spatial component. This analysis is valid only for
small time and infinitesimal perturbations; over long periods the exponen-
tial growth predicted by the linear analysis may be dominated by other
non-linear terms. If these non-linear terms damp and eventually balance
the growth rate predicted by linear analysis, then a new, bounded, spatially
heterogeneous solution may result (much in the same way that a limit cycle
can arise from a Hopf bifurcation). A classical analytical method for
analyzing the contribution of higher order terms is through weakly non-
linear analysis (see, for example, Matkowski (1970)). For the purpose of
this paper, however, I restrict myself to a numerical approach. This has the
added advantage of illustrating graphically the resulting spatial patterns of
herbivore density and plant quality.

For each of the three cases discussed above 1 solved the full non-linear
system (27)-(28) with the boundary conditions (33)-(34) numerically by
using finite differences for the space terms (Smith, 1985) and solving the
resulting system of ordinary differential equations. Results are shown in
Fig. 8 through 10. In each of the three cases, growth of the modes remained
bounded. Note that for the third case (where linear analysis predicts

50.0 50.5 51.0 515 52.0
Time ()

Fic. 8. Numerical solution to (27)-(28) with boundary conditions (33)-(34) and
parameter values are given in Fig. 5. The method of lines and Gear's method were used to
calculate the herbivore density (u(x, 7)) and plant quality (v(x, £)) through time. Isoclines for
herbivore density are shown for ¢ € {50, 52]. Shaded areas mark the regions where u > ug=1.0.
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0] 10 20 30 40 50 60
Time (1)

FiGc. 9. Numerical solution to (27)-(28) with boundary conditions (33)-(34) and
parameter values are given in Fig. 6. The method of lines and Gear’s method were used to
calculate the herbivore density (u(x, r)} and plant quality (v(x, 7)) through time. Isoclines for
herbivore density are shown for 7€ [0, 60]. Shaded areas mark the regions where u > u, = 1.0.

hr ‘t> T -
T
MMMM f NWV T
80 85 90
Time (t)

FiG. 10. Numerical solution to (27)-(28) with boundary conditions (33)}-(34) and
parameter values are given in Fig. 7. The method of lines and Gear’s method were used to
calculate the herbivore density (u(x, ¢)) and plant quality (v(x, ¢)) through time. Isoclines for
herbivore density are shown for re[75,90]. Shaded areas mark the regions where
u>uy=1.0.
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simultaneous growth of oscillatory and stationary modes) it is the
stationary pattern that dominates over a long time period although both
modes grow initially. This transformation to stationary pattern is shown in
Fig. 10. The transformation may arise from interactions between higher
order nonlinear terms in (27}-(28) and would be an interesting subject for
further detailed mathematical analysis.

6. DISCUSSION

The purpose of this paper is to illustrate how, in a spatially
homogeneous environment, the spatial coupling of herbivore dispersal with
plant and herbivore dynamics can give rise to dynamic and stationary
waves of herbivore density and thus of plant damage. The growth and
propagation of such patterns also depends critically upon the interplay
between random (i.e., diffusive) and non-random (i.e., herbivory-taxic and
aggregative) elements of herbivore dispersal.

Several general conclusions can be drawn from the analysis:

1. The generation of spatial patterns (both stationary and dynamic)
depends upon the herbivores aggregating toward surrounding conspecifics
{(w>0in (38) and (39) so that the bifurcation conditions (43) and (44) can
be satisfied). If herbivores were merely to respond to conditions precisely
at their own locations, no patterns will form. Patterns form by the growth
of linearly unstable modes about a positive steady state solution (ug, vy).
Such a steady state solution can be shown to exist providing some very
general rules about plant-herbivore dynamics are satisfied (see Section 3.2).

2. When herbivores aggregate towards surrounding conspecifics
(w > 0), stationary aggregative patterns may form, even when plant quality
and birth and death dynamics are ignored completely. The wavelength for
such a pattern, calculated in Section 3.4.1, is shown to be approximately
2n/k,,, where k,, expressed in Eq. (25), is a function of the variance of
spatial averaging kernel (¢?), an average denmsity (u,), and a ratio of
random movement to aggregative movement (r/m).

3. The introduction of herbivory-taxis («>0) tends to reduce the
likelihood of the formation of stationary aggregative patterns (note that
C(k?) increases in (39) and thus it is more difficult to achieve a bifurcation
as described by (44)). If stationary aggregative patterns do none the less
occur they will have a reduced wavelength. (This can be seen by evaluating
2n/ky, where kg satisfies (47)). However, herbivory-taxis introduces the
possibility of dynamic spatial waves. Mathematically, these arise through a
Hopf bifurcation with a spatial component, as described in (43). Further-
more, it can be shown that dynamic spatial waves cannot arise unless there
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is a herbivory-taxis component to herbivore movement: when a=0,
Eq. (38) and (39) yield

C(k*)+g,B(k*)=g.f,~g2<0

and thus (43) can never be satisfied.

4. Stationary and dynamic patterns in herbivore abundance/plant
quality can both grow simultaneously, with different wavelengths.
Numerical solutions indicate that the resulting patterns can evolve and
change slowly over long time periods (see Section 5.1) providing a complex
spatio-temporal progression of patterns. This is an interesting subject for
further detailed mathematical analysis.

5. The other major possibility for pattern formation in plant-her-
bovore systems may arise through coupling the plant-herbivore system to
a third trophic level (i.e., predators or parasites). Possibly classical models
for diffusion-driven instabilities would apply here. This remains an open
question.

Moving to the wider context of modelling spatial movement in ecology,
1 suggest that for many populations simple diffusion provides an inade-
quate description of the dispersal process, particularly when individuals
respond actively to environmental gradients and to conspecifics. This paper
demonstrates that the detailed analysis of other movement components
{such as herbivory-taxis and aggregation) can be instrumental in revealing
new mechanisms that are capable of generating spatial patterns.

APPENDIX A: Bias AND MoOTILITY TERMS
FOR RANDOM WALK WITH AGGREGATION

The bias, R(x, t)— L(x, t), and the motility, R(x, ¢)+ L(x, t), are given
by

R(x, )= L(x, t)=2mN. Y w(ji) (% (x+ jA, t)+(9(/12)>

- < J< X

9
—2mN [é x.1) Y w(iA)h

—0 < < oo

62
+5§ (.) Y jAw(iA)A

- < f< o
’p 1 : . \
teans _MZR ) A WA A+ -+ @(AZ)]

(52)
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and
R(x, 1)+ L(x, t)

=r(x,t)+mN Y  w()[px+(i—1)41)

—~o0 < j< oC

—2p(x+jA 1)+ p(x+(j+1)4 1)]

2
=r(x, +mNi* Y w(j,a)g-x’—;(x+j;.,:)+@(z4), (53)

—w < j<a

respectively. Substituting (52) and (53) into (6), taking the limit as 4 and
t approach zero so that A?/(2t) - D, and using (5) I obtain

Ju a du © Ou
—a—t—Dé;[r:a;—4muLw w(y)a-x-(x+y, t)dy], (54)

or, alternatively, Eq. (52) yields

u o[ ou u
Z_p_—|r=_ P 5
ot Dax['ax 4m“j§0”-'lax-']’ (53)
where
[ (= .
NI J yw(y)dy, =012, . (56)

defines the moments of the kernel w(y).

APPENDIX B: LINEAR BEHAVIOR FOR EQUATIONS
FOR AGGREGATIVE MOVEMENT

In this appendix the linear behaviors of Egs. (18) and (24) are compared
about a constant solution, u = .

Linearizing (18) about the constant solution, u=u,, and transforming
the resulting linear equation yields

U= DUk 4muyF {w(x)} —r], (57)

where Ul(k, t) is the Fourier transform Z {u(x, t) —u,}. Alternatively, the
same procedure when applied to (24) yields

U= DUK*[4muy(wo — wok?)—r]. (58)
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These two equations are identical except for the fact that & {w(x)} in
Eq. (57) has been replaced by wy, — w,k? in (58).

How close are stability prediction for these two equations when the three
different kernels (12)-(14) are used? Transforms (% {w(x)}) for these three
kernels, given by

sin(k{,) 2
kl, ° k212
respectively, are shown in Fig. 2b. The choice of /; =1, [, = \/i, and b=1.5
(Fig. 2) yields kernels with identical second moments (w,=¢{) and thus
identical variances (o” = 2w, = 1). The linearized caricature equation (58) is

thus identical for all three kernels. Equations (57) and (58) can be
rewritten in the form

%exp(——kz/(étb)), and (1 —cos(kl,)), (39)

U=4Dmu,G(k)U,

where G(k) is proportional to the growth rate for modes with wave number
k. Figure 11 shows the growth rate G =k*(F {w(x)} — r/(4mu,)), for each
of the three kernels and the growth rate G = k*(wq— w,k” — r/(4muy)) for
the linearized caricature equation. (For this sample calculation the value

1501
_ 101 s .
g /'4 \’\_
[ — N
‘g // \\\ \\\
L \ AY
3 \ \,
<4 \ S
©os \\ N
\ N
\ \
\ \
\\ ‘.\.
\ Y
\ LN
0.0 : , . o .
a— 5 W S w—
0 2 4 6 8 10

Wave Number Squared (k*2)

FiG. 11. Plot of the growth rate (G) versus the wave number squared (k?) (see
Appendix B). Curves are shown for G=k*(wo—w,k?—r/(4muy)) (inner) and G=
kY F {wlx)} — r/{4muy)) with w(x) given by (14), {13), and (12) (outer). Parameter values for
(12)-(14) were chosen as /, =1, [, = \/5, and b = 1.5. The Fourier transforms (# {w(x}}) are
given by (59).
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for r/(4mu,) was chosen to be 0.25.) These dispersion relations between the
growth rate and wave number indicate that the linearized caricature
equation succesfully captures the qualitative dynamics of the more complex
models (Fig. 11).

We expect that, when the linear approximation is valid (¢ near u,), wave
numbers with the largest growth rates, shown in Fig. 11, will grow fastest
and dominate the solution. In other words, linear analysis predicts that the
wavelength of resulting aggregations is approximately 2=n/k,,, where, for
each kernel, k,, is the square root of the maximum value of £? attained on
the relevant curve in Fig. 11. For the caricature model

K- wo —r/(4mug) 1 —r/(dmu)
= = 5 ,

m

(60)

2w, o]

where 62 = 2w, is the variance of the kernels. This relationship (60), which
is exactly true for the caricature model, holds approximately true for
specific kernels, as shown in Fig. 11.

However, Eq.(24) may be a poor caricature for the integral equation
model (18) when the quantity r/(4mu,) approaches zero. For example,
observing Fig. 2b we note that, for r/(4mu,) sufficiently small, the linear
growth rate, k*(F {w(x)}—r/(4mu,)), may possibly have two or more
local maxima at different k. This feature would not be reflected by the
growth rate of the caricature model.
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