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ABSTRACT 

Employing theoretical models, we show that the sterile insect release method 
(SIRM) can give rise to traveling waves of fertile insects. The velocity of these waves 
depends critically upon the density of sterile insects (and thus upon the rate at which 
sterile individuals are being released into the environment). When the sterile density 
is sufficiently low, the traveling wave advances, giving rise to an invasion. However, 
when the sterile density exceeds a critical threshold, the wave reverses direction, 
thereby retreating and giving rise to local extinction. Both analytical (regular 
perturbation) methods and numerical methods are used to determine wave velocities 
and wave profiles. This is the first time traveling wave solutions have been shown for 
the SIRM. 

1. INTRODUCTION 

Release of sterile insect pests may be used to control the density of 
fertile pests, diluting their reproductive capacity, and eventually leading 
to a population “crash” and local extinction. Originally suggested by 
Knipling [15], this sterile insect release method (SIRM) has been 
applied successfully in field conditions against species such as the 
screwworm fly [S, 161, the fruit fly [14], the codling moth [28], and the 
pink bollworm [ 111. 

Concurrent with the application of such biological control methods 
has been an explosion in the number of SIRM mathematical models 
(see, e.g., 111, [3], [4], [6]-[8], [13], [19], [21], [25]-[27]) as well as SIRM 
computer models (see, e.g., [20], [261) for quantitatively assessing their 
effectiveness. However, with few exceptions, SIRM mathematical mod- 
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els have ignored the spatial aspects of controlling insect pests (but see 
D91, [251X 

Spatial considerations are significant for two reasons. First, any 
environment is likely to vary spatially, and thus key ecological parame- 
ters, such as intrinsic growth rates, carrying capacity, and mortality, are 
likely to differ between locations. The result may be spatial variations in 
the efficacy of any particular method of control. Provided insects do not 
move between sites, variations can be incorporated into spatially inde- 
pendent models by requiring different sets of parameter values for 
different locations. 

Complications arise, however, when insects are free to move; fluxes 
of insects between different sites require models with explicit spatial 
terms to describe this movement. The example considered by Manoran- 
jan and van den Driessche [19] (in the context of SIRM) and by Ludwig 
et al. [181 (in the context of spruce budworm populations) is that of 
environments favorable to insects interspersed with hostile regions. This 
scenario could arise from spraying an area with pesticide selectively, in 
a striplike pattern. Sprayed regions would be hostile, and the remaining 
areas favorable. Analytical and numerical results indicate that, in this 
case, persistence of the insect pest is conditional upon the size of the 
favorable environment exceeding a critical value. In other words, the 
strip spacing for spraying must be sufficiently small to ensure eradica- 
tion of the pest. Other examples of this approach to spatial processes in 
ecology are given in [23]. 

In this paper we make a second argument for considering space in 
models for SIRM, even in the absence of any environmental variation. 
We show that the combined effects of dispersal terms and growth 
dynamics can amplify and modify small variations in the original distri- 
bution of fertile insects until a traveling wave of fertile insects forms, 
advancing (or retreating) across a region with a constant velocity, as an 
invasion (or an extinction). The wave arises from the combined effects 
of dispersal terms and growth dynamics; neither of the terms indepen- 
dently is sufficient to trigger a traveling wave. (See, e.g., [221 for a 
discussion of traveling waves.) We will show, for realistic parameter 
values, that models neglecting insect dispersal predict persistence of an 
outbreak while models including dispersal terms predict the antithesis 
-a wave of extinction. A strong argument for including space and 
movement in models for SIRM is thus provided. 

It transpires that it is the density of sterile insects (or, alternatively, 
their release rate) that determines the velocity of the traveling wave. 
Provided the density (or release rate) of sterile pests is sufficiently low, 
the wave velocity is positive and the fertile insects invade, but when the 
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density (or the release rate) of sterile insects exceeds a critical value, 
the wave velocity is negative and a retreating wave of extinction arises. 

In this paper we briefly review the biological background and typical 
parameter values (Section 2) before listing the assumptions that go into 
our models (Section 3). We employ two approaches to the modeling and 
analysis: (i) detailed mathematical and numerical analyses for a simpler 
single-equation model (Section 4) and (ii) numerical simulations for a 
more complex two-equation model (Section 5). We then draw biological 
conclusions based upon the behavior of the two models and discuss 
strengths and weaknesses of the models and areas for further research 
(Section 6). 

2. BIOLOGICAL BACKGROUND 

Our goal is to use biologically realistic parameter values in determin- 
ing the behavior of traveling waves resulting from the SIRM. While 
exact parameter values depend critically upon the particular pest and its 
ecosystem, order-of-magnitude estimates are possible. 

We will show in succeeding sections, however, that analytical and 
numerical results regarding the system behaviors depend, not upon 
precise parameter values, but rather upon the magnitude of few critical 
parameter ratios. Although translations into precise estimates for densi- 
ties and wave speeds eventually require exact data, we are able to make 
definite predictions about qualitative behaviors for a wide variety of 
insect pests. 

Key life history parameters for the control of insect pests include the 
reproductive rate, survivorship, and carrying capacity. We now list 
typical ranges for parameter values. Values for the birth rate (a,) are 
approximately 2-25 offspring per individual per day, with tse-tse flies at 
the low end of the scale and fruit flies at the high end. At low densities, 
survivorship S typically lies between 0.55 and 0.9 per day, thus predict- 
ing instantaneous density-independent death rates (a2 = -In 5) in the 
range 0.1~ a2 < 0.6. Biologically realistic values for the ratio of 
density-independent death to birth rates thus lie in the range 0 < A < 0.3 
(A = a2 /al). Carrying capacities may be lo-10,000 per hectare, with 
typical values of 100-1000 hectare-‘. 

Movement rates for insects, given in terms of mean squared displace- 
ment per day (m2/day>, vary greatly between different species but are 
often lower for sterile insects; the sterilization process can actually 
reduce mobility. In an experiment by Hamada [12] the dispersal of 
melon flies irradiated with 10,000 R was significantly reduced. For 
example, 33% of the control (nonirradiated) flies were captured at a 
station 50 m distant from the release site, but only 8% of the irradiated 
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flies were captured there. Lower levels of irradiation (5000 and 7000 R) 
also reduced the dispersal ability of melon flies, but to a lesser extent. 

3. MODELING ASSUMPTIONS 

We base our description of birth and death dynamics upon the 
deterministic, continuous-time, density-dependent model of Barclay and 
Mackauer [4]. Other classes of models have been applied to the SIRM, 
including stochastic and discrete-time models, the relative merits of 
which are discussed in [7]. 

Barclay and Mackauer [4] gave explicitly the assumptions that went 
into their model, commenting that these would seem to apply to a wide 
range of biological situations. For the sake of completeness, the as- 
sumptions are reproduced here in a slightly modified form (see [2]): 

(1) Populations exist as a continuum and reproduce continuously 
over time. 

(2) Population growth follows a logistic curve. 
(3) The carrying capacity of a given environment is constant. 
(4) Sterile males are fully competitive with fertile males. 
(5) Mating is at random, and the proportion of fertile matings is in 

direct proportion to the number of sterile and fertile individuals present 
in the population. 

(6) Sterile sperm is fully competitive with fertile sperm. 
(7) Each individual mates a random number of times; the number of 

matings follows a Poisson distribution with an identical mean for all 
individuals. 

(8) The population sex ratio is l-to-l throughout life. 
(9) The release of sterile individuals is continuous and at a constant 

rate per unit of time and per unit of habitat. 
(10) The release of sterile individuals leads to the complete and 

instantaneous mixing of wild and treated individuals. 

For analysis of our initial single-equation model (Section 41, we 
modify assumption (9) to the more restrictive assumption, which is that 
the release of sterile individuals is maintained so that there is a 
constant density of steriles. The unmodified assumption (9) is adopted 
for our more complex two-equation model (Section 5). Our extension of 
Barclay and Mackauer’s [4] model lies in the important addition of 
dispersal terms for the fertile and sterile insects (see also [19]); insects 
are assumed to disperse randomly by means of simple one-dimensional 
diffusion (see, e.g., [231X We then analyze our quantitative models for 
invasions and extinctions by means of traveling waves-a new phe- 
nomenon in the context of the SIRM-and draw conclusions regarding 
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the impact that such waves may have on the biological outcome of 
SIRMs. 

4. SINGLE-EQUATION MODEL 

We initially assume that biocontrol treatment maintains the density 
of sterile insects (2~2) at a constant level. The density of sterile females 
is thus 12 by assumption (8) in Section 3. Thus, 

du a,u -= 
dt ( d2U 

--a* u-2gu(u+n)+D- u+n 1 dX2 ’ (1) 

where u(x, t) denotes the density of fertile females ( = density of fertile 
males, measured as number of insects per hectare), a, is the birth rate 
(measured as number of female offspring per day per individual female), 
a2 is the density-independent death rate (per day), g is the density- 
dependent death rate [measured as hectares per insect per day and 
given by 2g = (a, - a,)/carrying capacity], and D is the mean squared 
rate of spread (measured as square meters per day and assumed to be 
constant). To facilitate assessment of ecologically relevant parameters 
and to simplify analysis, we nondimensionalize (l), choosing 

t* = ta,, g u*=u- g 
a1 ’ 

n*=n- 
a1 

7 A=$ 

(2) 

Dropping asterisks for notational simplicity, we rewrite (1) as 

where 

f(u;n)=u(&-A-2(u+n)), (4) 

(3) 

with the initial condition 

u(x,O) =u”(x). (5) 

The qualitative behavior of this model thus depends upon a sin- 
gle dimensionless parameter (A = a2 /a,), the ratio of the density- 
independent death rate to the birth rate. 
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4.1. INKASION OR EXTINCTION? 

In the absence of sterile individuals (n = O), f(u;O) is quadratic with 
roots at u = 0 and u = (1 - A)/2 [see Eq. (4)]. In such a case, Equation 
(3) reduces to the well-known logistic equation with diffusion, which is 
also known as Fisher’s equation. A spatially uniform steady-state solu- 
tion to (3), corresponding to the extinction of fertile insects is given by 
the trivial root of f(u;O); another spatially uniform steady-state solu- 
tion, corresponding to the outbreak of fertile insects, is given by the 
positive root of f(u;O). 

If the fertile insects are initially introduced into a local, bounded 
region, invasion can result when they reproduce and spread across the 
solution domain. This is evident from the well-known result that, 
provided initial conditions have compact support, the solution to Fisher’s 
equation asymptotically approaches a traveling wave that sweeps across 
the domain with a fixed wave velocity [22], joining the extinction steady 
state (U = 0) to the invasion steady state [U = Cl- A)/21. 

When sterile individuals are introduced (n > 0), the function defining 
birth and death dynamics for fertile insects [f(~; n)] undergoes an 
important qualitative change in shape, from a quadratic form to an 
essentially cubic form (Figure 1). In this latter case there are either one 
or three real roots for f(u; n), depending upon whether IZ is greater 
than or less than the value 12, = (1 - A)*/8 (Figure 1). Thus the roots for 
f(u;n) are u = 0 and, when 0 < n <n,, u = l;-(n) and u = I;‘(n), where 

zP(,)=-,+ 
(1-A)+[(1-A)Q3n]“2 >. 

4 (6) 

Locally stable, spatially uniform steady-state solutions to (3) are given 
by the smallest and largest roots of f(u; n). The smallest root [u(x, t) = 0] 
corresponds to an extinction steady-state solution, and the largest root 
[4x, t> = fi+ (n)] corresponds to an outbreak steady-state solution. Sta- 
bility arises from the fact that f’(O;n> < 0 and f’(fi’(n>;n) < 0. The 
third root, l;-(n), corresponds to an unstable steady-state solution 
[f’G - (n>; n) > 01. 

Our model predicts that, in the absence of sterile individuals a 
population of fertile insects will invade and spread into the new envi- 
ronment. However, by introducing sterile females (n) at a sufficiently 
high density in (3), (41, such an invasion can be effectively prevented or 
reversed. For example, if 12 exceeds n,, then the outbreak steady state is 
eliminated, and the fertile population density (u) asymptotically ap- 
proaches the extinction steady-state solution. However, we will show 
that, providing the initial condition (5) meets some very general criteria, 
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0.0 0.10 0.20 0.30 

Fertile Density (u) 

FIG. 1. Growth dynamics for n > 0 [Eq. (411. Curves are shown for A = 0 and 
n = 0.1100 (upper), n = n, = 0.12029, and n = n, = 0.1250 (lower). 

the population of fertile insects can go extinct even when the sterile 
females are present at levels that are substantially lower than the 
threshold n,. This can occur by means of a traveling wave of extinction, 
joining the outbreak steady state to the extinction steady state and 
sweeping across the solution domain. 

Our mathematical approach will be to determine a class of stable 
traveling wave solutions to (3), (4) parameterized by the density of 
steriles (n) and to determine constraints upon the initial conditions (5) 
that guarantee uniform convergence to the traveling wave solution. We 
implicitly assume that 0 < n < n,. 

Traveling wave solutions to (3), (4) are expressed in terms of the 
moving coordinate z = x - ct, where u(x, t) = U(z). Without loss of 
generality we consider solutions that join the outbreak steady state 
[U = z2+ (n) as z + - ~1 to the extinction steady state (U = 0 as z + a). 
When the wave velocity is positive (c > 0) the wave moves to the right 
and there is an invasion, and when the wave velocity is negative (c < 0) 
the wave moves to the left and there is an extinction. 

Substituting the traveling wave form into (3) and applying boundary 
conditions described above, we observe that traveling wave solutions 
satisfy 

cU’+f(U;n)+Cr” =O, (7) 
lim U(z) = li+ (n), lim U(z)=O, (8) z+--m *+m 

where a prime denotes differentiation with respect to z. This is an 
eigenvalue problem for the wave velocity c(n). 
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Using results from [9], it can be shown that for 0 < IZ < IZ, there exists 
a unique (module translation in z) solution to (7), (8) with a corre- 
sponding unique wave velocity c. A key feature in determining the 
existence and uniqueness of this traveling wave solution is the fact that 
f’(0; n) < 0 and f’(li+; n) < 0. Sufficient conditions on initial datum (5) 
for convergence to the traveling wave solution are 

lim infuO(x) >zY(n), lim supuO(x) <C-(n), (9) x+--m x-+m 

where i;-(n) is given by Equation (6) [9]. Thus the solution to (3H.5) 
converges asymptotically to a traveling wave solution, satisfying (7), (8), 
providing that the initial condition (5) satisfies (9). 

We now show that the direction of the traveling wave solution 
[sgn(c)] critically depends upon the value of n. Analysis of (7), (8) in the 
UU phase plane indicates that the unique solution has a slope U’ < 0 
for z E ( - CQ, m) and that lim z ~ f,U’(z) = 0. Thus, multiplying (7) by U’, 
integrating over the range - ~0 < z < ~0, and applying the boundary 
conditions (8), we obtain 

qa [U~(z)12dZ=F(lif(n);n), (10) 
--m 

where 

and f is given by (4). The direction of the traveling wave solution 
[sgn(c)] is thus given by sgn[FG+ (n); n)]. 

We define no as the value of II yielding a stationary (c = 0) solution 
to (7), (8). Accordingly no is determined uniquely by 

o=F(fi+(n,);n,) 

-$[ Ii+(no)]3+[1-A-2no] 
P’ (;o)12 

(12) 

+ no 
[ 

-fi+(n,)+n,ln l+ ( 2X$)] 

[see Eq. (lO>]. 
We are not able to give exact analytical solutions to (71, (8), (41, but 

we are able to determine the qualitative behavior of a traveling wave 
solution near the point n = no. If the number of sterile insects drops 
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below the critical value, then the integral of the growth dynamics 
increases [F(fi+ (n); n) > 01 (Figure 21, the wave velocity is positive [Eq. 
(lo>], and initial conditions satisfying (9) result in an invasion. Con- 
versely, if the number of sterile insects increases above the critical 
value, then the integral of the growth dynamics decreases [R’(fi’ (n>; n) 
< 01 (Figure 21, the wave velocity is negative [Eq. (lo)], and initial 
conditions satisfying (9) result in an extinction. 

The relationship between n - IZ~ and F(Li+ (n); n), shown graphically 
in Figure 2, can be determined to leading order by using the expansion 

(13) 

where K(n,) < 0 is given in Appendix A. This approximation, which is 
most accurate for IZ close to n, (Figure 21, suggests the utility of regular 
perturbation methods for calculating the traveling wave profile U(z) 
and the wave velocity c(n) for small (IZ - IZ,,[. In this paper we use such 
methods, as well as numerical solutions, in determining the shape and 
velocity of traveling wave solutions to (71, (81, (41. 

4.2. TRAVELING WAVE SOLUTIONS USING REGULAR PERTURBATION 
METHODS 

Defining In - n,l = E, where n, satisfies (12) and 0 < E 4 1, we have 

n=nO+V&, v=,l. (14) 

We rewrite the function (4) as 

f(U;?Z)=+(U;E)= C Ei4j(U) 

j> 0 
(15) 

and the integral (11) as 

F(U.;n)=@(U;E)=)f4( /JJ;E)~P= C Ej@j(U), (16) 
j>O 

where 

(17) 

The larger root for +(u, E), given by (61, is rewritten and expanded as a 
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Sterile Density in Excess of n0 (n-no) 

FIG. 2. Graphical representation of relationship between n - n, and F(Li+ (n); n) 
shown here for A = 0 and n close to n, = 0.12029 (solid line). The dotted line shows 
K(n,)(n - n,) [see Eq. (13)], where K is given in Appendix A. 

regular series in E: 

i’(n) =ii+(&) = c &if. (18) 
ja0 

The first two terms of the series (19, (161, and (18) are given in 
Appendix B. 

The traveling wave problem (71, (8) can thus be expressed as 

cU’+cp(U;E)+~=o, (19) 
lim U(z)=E+(&), lim U(z) = 0. (20) z+ -CC *+m 

To calculate an approximate solution to this problem, we assume 
regular asymptotic expansions in terms of E for the traveling wave 
solution and the wave velocity so that 

U(z) = c &q(Z), (21) 
jz=O 

c= c EI’C. 
I’ (22) 

ja0 
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and substitute these expressions into (19), (20). The resulting 8(l) 
problem is 

c,u; + &( V,) + u; = 0, (23) 

lim I!&( 2) = i$, lim V,( 2) = 0, (24) =+-CC z+m 

and the B(E) problem is 

c,u,;+c,,u;+u,~(u,)+~,(u,)+u; =o, (25) 

lim U,(z) =U:, lim V,( 2) = 0. (26) I-_, --oo *-+m 

The two systems (23), (24) and (25), (26) contain unknown quantities c0 
and cr. As we now show, these unknown wave velocity coefficients can 
be derived using Equation (10). 

Employing (111, (16), and (18), we observe that 

@&ig+) =qTi+(o);o) =F(fi+(n,);n,)=o. (27) 

Equations (15), (16), and (18) also yield 

-&“o+) = &(Egf) = CfJ(E+(o);o) =o. (28) 

Using these results and Equation (16), we expand C’(E) about the 
point U,+ , rewriting Equation (10) as 

c/- [U’(z)12dz 
-cc 

=qa+(E);E) =aqE+(E))+E@l(ii+(E))+8(&2) (29) 

=~,(Li,:)+Eii:~(liO+)+E~1(iiOi)+8(E2) 
= E$( ii,+ ) + @( &“) . 

Substitution of the asymptotic expansions for U(z) [Eq. (2111 and c [Eq. 
(2211 into Equation (29) yields 

Equating coefficients for successive powers of E, we derive the 80) 
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co/- [u;(z)]*dz=o, 
-cc 

(30) 

and the B(E) equation, 

These two equations provide additional constraints to the systems 
(23)-(26), allowing us to determine the two unknown wave velocity 
coefficients, c0 and cl, when solving for the variables U,(z) and U&r>. 

A solution, Us(z), to Equation (23) that is identically constant for all 
z cannot satisfy the boundary conditions (24). Thus Equation (30) gives 
c0 = 0. This result is consistent with our choice of no as the value of II 
yielding a stationary wave [see Eq. (12)l. Equations (231, (29, and (31) 
now simplify to yield 

u; = - +a(&), (32) 

U,$$Io)+U;’ = -c*lJ;-f#Q(Uo), (33) 

c*/= [Ug(z)]2dz=Q,l(uo+). (34) --m 

The boundary conditions for (32) and (33) are already given by (24) and 
(26). 

Equation (34) can be simplified still further; multiplying Equation 
(32) by Vi and integrating yields 

(U(i)‘= -2@o(U,), 

and thus (34) is rewritten as 

Q+w > 
c1 = -2/rn,@a(Uo( z))dz 

or 

(35) 

(36) 

Numerical quadrature of the denominator in Equation (36) [in conjunc- 
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tion with the definitions for n,, QO(.), Car(.), and Ui, which are (121, 
(601, (61), and (62), respectively], can be used to calculate c1 directly in 
terms of the parameters A and v [see Eqs. (4) and (14) for these 
parameters]. The traveling wave’s velocity can thus be obtained to B(E) 
without any knowledge of its shape. 

4.3. NUMERICAL SOLUTIONS 

As discussed in Section 4.1, IZ = n, yields a stationary wave solution 
for (31, (4) that links outbreak and extinction steady states. The solution 
is, in other words, a cline joining u = ci’ (n,) to u = 0. The value of n, 
given by Equation (12) depends upon the dimensionless parameter A. 
Results, shown in Figure 3, give the constant n, over the biologically 
relevant range of A (0 < A < 0.3); see Section 2. Calculations used 
Newton’s method to iteratively refine initial estimates for no. These 
values of no lie below 12, = (1 - A12/8, the maximum possible value of n 
for which the outbreak steady state exists (Figure 3) (see also Section 
4.1). Recall that in Section 4.1 we predicted the value of c in (71, (8) to 
be negative for n, < n < IZ, and to be positive for 0 < II < no, the former 
case corresponding to an extinction wave and the latter to an invasion 
wave. In this section we provide quantitative estimates for c by evaluat- 
ing the first-order wave velocity coefficient, cr. 

Before discussing the first-order wave velocity coefficient (Figure 31, 
we present numerical solutions for the stationary wave (n = n,). Be- 
cause biologically relevant values for A are typically small (Section 21, 
we choose to calculate this stationary profile for the limiting case, 
A + 0 (n, = 0.12029). This solution is obtained on a finite domain 
[ - L, L] (L = 14) by two different methods: 

(1) Solution of the original nonlinear PDE system [(3)-W], with 
boundary conditions 

u(-L,t)=G+(n,), u(L,t) =o, 

and a step function initial condition that satisfies these boundary 
conditions. The method of lines and Gear’s method were used to solve 
the PDE. 

(2) Solution of the ODE equation describing the stationary traveling 
wave solution (32), with boundary conditions derived from (24) and 
given by 

l&(-L) =uo’ =ii+(n,), U,(L) = 0. 

Newton’s method was used to solve the ODE. 
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0.0 0.05 0.15 0.25 

Density Independent Mortality Per Birth (A=a2/al) 

FIG. 3. Critical values for disappearance of the outbreak steady state (n,) and for 
stationary wave solutions (no) are shown as a function of A over the biologically 
realistic range, 0 Q A < 0.3. The first-order wave speed coefficient (c,) is also 
calculated for this range of A (dotted line). 

The two solutions are shown in Figure 4. The solid line shows the 

ODE solution (method 2). Overlying this is the PDE solution (method 
11, denoted by diamond-shaped symbols. Notice that the two solutions 
line up very closely with each other; any discrepancies between these 
solutions are only a result of approximation errors encountered in the 
numerical methods. 

From our asymptotic analysis in Section 4.2, we know that values of n 
that are a distance E away from IZ,,, Equation (141, can result in a 
non-zero traveling wave velocity given by Equation (22). We have 
already shown that the H(l) wave velocity term is c0 = 0 (Section 4.2). 
Calculation of the @(E) wave velocity term results from numerical 
integration of Equation (36) (Figure 3). For A = 0, the 6’(g) correction 
to the wave velocity is 

c1 = -29.9~. (37) 

This constant (c,) is also calculated using Equation (35) and numerical 
quadrature of the ODE solution (calculated by method 2, above, for 
A = 0 and shown in Figure 4). Limits of integration are f 14 rather than 
f ~0 [as required by Eq. (35)], thereby introducing a source of truncation 
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9 0 

Location (x) 

FIG. 4. The numerical solution for the ODE that describes a stationary traveling 
wave [Eq. (3211 is overlaid with the numerical solution for the analogous PDE [Eqs. 
(3)~(5) with n = n,,, i.e., E = 01. Boundary conditions are as described in Section 4.3. 
The ODE solution is represented by solid line and the PDE solution by diamonds. 

error. The resulting value of c, is 

c, = -3O.lV, (38) 

which compares quite closely with that given by Equation (371. 
Traveling wave solutions to the full PDE model [Eqs. (3)--(511 are 

numerically simulated (see Figure 5). When E = 0.001, average wave 
velocities of - 0.0316 and 0.0284 result for Y = f 1. As E is decreased, 
the average wave velocity converges to approximately -3O.ev, corre- 
sponding closely to the previous estimates given in (37) and (38) and 
indicating that for small E an accurate estimate of the wave velocity is 
obtained when only the first two terms in the expansion for c are kept. 

5. TWO-EQUATION MODEL 

In this section we assume that the biocontrol treatment consists of 
releasing the sterile females [n(x, t>] at a constant rate. Dynamics for 
both the sterile females and the fertile females [z&t)] are now 
included. Thus 

du a,u -= 
c?t ( ---a2 u-2gu(u+n)+D-- 

u+n 1 d2U 
dX2 ’ 

dn - d2n 
-=r-u2n-2gn(u+n)+D- 
at dX2 ’ 
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50 100 

FIG. 5. Numerical solution to the full PDE model [Eqs. (3)-(511 with zero-flux 
boundary conditions. The dashed line indicates initial conditions. Solutions are 
shown for time intervals of size 200. Parameter values are A = 0 and n defined by 
(14), with n, = 0.12029 and E = 0.001. (a> The case v = + 1 yields a wave with 
average velocity c = -0.0316; (b) the case Y = - 1 yields a wave with average velocity 
c = 0.0284. 
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where parameters are as described in Section 4, except that the addi- 
tional parameters r and fi are the constant release rate for sterile 
insects (measured as number of sterile females released per hectare per 
day) and the diffusion coefficient for sterile insects (measured as square 
meters per day), respectively. Note that D typically is less than D, as 
discussed in Section 2. To nondimensionalize we use (2) and 

Equations (39) and (40) now become 

and 

an d2n 
-=g(u,n)+6-j-p dt 

where 

f(U,n)=U(&-A-2(u+n)), (43) 

g(u,n)=R-An-2n(u+n), (44) 

(41) 

(42) 

with initial conditions 

u(x,O) =uO(x), n(x,O) =nO(x). 

We briefly consider spatially homogeneous steady-state solutions to 
(411, (42). Results .similar to those given below can also be found in [4] 
and [24]. The null cline for the spatially independent version of (41) is 
given by f(u, n) = 0 [see Eq. (43)]. Two nonzero roots for f [cf. Eq. (6)] 
satisfy 

&-&2(u+n)=O, (45) 

and the third root is zero (Figure 6). The null cline for the spatially 
independent version of (421, given by g(u, n> = 0 [see Eq. (4411, satisfies 

(Figure 6). 

u=-n+(R-An)/2n (46) 
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Sterile Density (n) 

FIG. 6. The null cline for f = 0 (A = 0) is denoted by the upper solid line, the 
solid line at u = 0 (stable branches), and a dotted line (unstable branch). The null 
cline for g = 0 is denoted by a dashed line and is shown for R = 0.025 and 
R = R, = 0.0741. [See Eqs. (43), (44) for details.] Steady-state solutions are shown for 
the case R = 0.025. 

When u = 0, the steady-state value for n, given by (461, is 

(Figure 6). Substituting (46) into (45), we observe that when u # 0, 
steady-state values for n satisfy 

h(n) = 2n3 + An2 - R( 1 + A)” + R2 = 0. (47) 

By Descartes’ rule of signs, this equation is shown to have exactly one 
negative root and either two positive real roots (null clines intersect at 
u > 0) or two complex roots (null clines intersect only at u = 0). When 
the null clines intersect at u > 0 we denote the positive real roots to (47) 
by n+ and n- > IZ+ and the corresponding values of u by i;‘(n’> = U+ 
and fi - (n - ) = u - (Figure 6). 

As the release rate for sterile insects (r-1 increases in relation to the 
birth rate for fertile insects (a,) (R increasing), the g = 0 null cline 
moves to the right in Figure 6. A positive steady-state value for u 
requires that R < R,, where R, satisfies 

h(n) = h’(n) = 0. (48) 

In other words, at R = R, the two positive roots for (47) (n’ and n- > 
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coalesce. Solving (48) we obtain a quadratic in R, 
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108R2+4(1+A)[A-2(1-A)2]R-A2(1-A)2=0 (49) 

with positive root R,. 

5.1. TRAVELING WAVES 

Linear analyses about the steady-state solutions for (411, (42) indicate 
that points (u+, n+ > on the upper solid line in Figure 6 are locally stable 
to spatially homogeneous perturbations, as are points (0, n*) on the 
u = 0 solid line. Points (u-,n- ) on the intermediate dotted line in 
Figure 6 are, however, unstable to spatially homogeneous perturbations. 
The results arise directly from analysis of the community matrix, C, 
corresponding to the linearized version of (41), (42) (with spatial terms 
omitted) evaluated at a given steady state, namely 

(1) If u # 0, then 

trC=f,+g,=-[A+2(u+n)12-2(u+n)<O, 

(2) If u # 0, then 

detC=f,g,-g,f,=-uh’(n)/[n(u+n)], 

which is >O if (U,n)=(u+,n+) and is <O if (u,n)=(u-,Iz-), and 
(3) If u = 0, then the eigenvalues of C are {-(A +2n), -(A +4n)). 

For any fixed R < R, we thus have three steady-state solutions, with 
the outer two solutions [(u+,n+ > and (O,n*)l locally stable and the 
middle solution (u-, 12) unstable-a stability arrangement that qualita- 
tively resembles that of the single-equation model (31, (4) in Section 4. 
It is natural to ask, therefore, whether traveling wave solutions also 
exist for this system, joining the outbreak steady state (u+, yl’) to the 
extinction steady state (O,n*). Our approach is to conjecture the exis- 
tence of such traveling wave solutions (in this section) and then to 
compute solutions numerically (in Section 5.2). It transpires that this 
two-equation system closely resembles the previous one-equation model 
in qualitative behavior, thereby suggesting that further in-depth mathe- 
matical analysis may yield little new biological insight. For example, to 
change (40, (42) to the previous one-equation model (31, (4), we would 
require it to be constant everywhere. But n varies little over traveling 
solutions such as the ones numerically computed in Section 5.2 and 



240 M. A. LEWIS AND P. VAN DEN DRIESSCHE 

shown in Figure 7 (n” - n + is small), and so a simplification in which IZ 
remains constant is not unreasonable. 

Traveling wave solutions to (41), (421, joining (u,n) = (u’,n’) to 
(u, n> = (0, n*), satisfy 

cU’+f(U,N)+U”=O, (50) 
cN’+ g(U,N) + SN” = 0, (51) 

lim U=u+, lim U= 0, (52) z+ --m Z’m 

lim N=n+, lim N=n*, (53) z-i --co z+m 

where U and N are functions of the moving coordinate, z = x - ct, so 
that u(x, t) = U(z) and n(x, t> = N(z). 

For the single-equation model (3), (4) in Section 4, it was the fixed 
concentration of sterile insects (n) that determined the traveling wave 
velocity c. In our two-equation model, the concentration of steriles is no 
longer fixed but depends upon release and death rates. The release rate 
r can, however, be manipulated, thereby modifying the dynamics of the 
steriles through R = gr/af [Eq. (44)]. 

Before discussing numerical solutions we determine how R affects 
the velocity of any traveling wave solution to (41), (42) [in other words, 
how R affects c in (50)-(53)J In particular, we calculate the value of R 
(say, R,) that yields a cline for (50)-(53) (c = 0). We use the fact that 
typical values for A are small (Section 2) and that S G 1 to determine 
R, analytically when A, 6 + 0. For this case the value of N can be 
determined explicitly in terms of U: 

N(U) =(1/2)[ -U+(U2+2R)1’2] (54) 

because g(U, N) = 0 [see (44) and (51)]. The fact that g(U, N) = 0 also 
means that (43) simplifies to 

f(U,N)=2U[N(U/R-1)-U]. (55) 

Using an approach analogous to that in Section 4.1, we multiply (50) 
by U’ and integrate over - ~0 < z < ~4 to obtain a necessary condition for 
the stationary solution: 

/‘+2U[N(U)(U/R-l)-U]dU=O, 
0 

where N(U) is given in (54). The trigonometric substitution U 
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63 

FIG. 7. Traveling wave solutions for the two-equation model (41)-(44), joining 
(U’ , n + ) to (0, n*) (see Figure 61, are given for A = 6 = 0. The dashed line indicates 
initial conditions. Solutions are shown for time intervals of size 50. (a) R = R, = 
0.06661 yields a stationary wave solution; (b) R = R, +0.005, a retreating wave of 
fertile extinction; and k) R = R, - 0.005, an advancing wave of fertile invasion. 
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= I/%? tan 0 can be used to integrate Equation (56) explicitly to yield 

1 
u+ (57) 

-gln(U+&%Z?) . 

0 

This equation must be satisfied by R = R,, the release rate yielding a 
stationary solution. Note that the limit, u+, in Equation (57) is also a 
function of R. [u = u+ is given by (46) for II = n+, the smaller positive 
root of (47) (see also Figure 61.1 

5.2. NUMERICAL SOLUTIONS 

Numerical solution of Equation (571, in conjunction with Equations 
(46) and (471, using Newton’s method to iteratively refine an initial 
estimate for R, yields the root R, = 0.06661. A stationary wave results 
(c = 0) in the absence of density-independent death (A = 0) and in the 
absence of diffusion of sterile insects (6 = 0). The corresponding critical 
value for R, above which the outbreak steady state disappears, is 
calculated from (49) for the case A = 0 as R, = 0.07407. 

The existence of a traveling wave solution to the two-equation model 
(411, (42) was conjectured in Section 5.1, and it was predicted that 
R = R, would yield a stationary wave. Numerical solution of this PDE 
system with A = 0 and R = R, does indeed result in a stationary wave 
profile (Figure 7a). Numerically calculated traveling wave solutions are 
shown for R = R, ~-0.005 in Figures 7b and 7c. The former results in a 
traveling wave of extinction (Figure 7b), and the latter in a traveling 
wave of invasion (Figure 7~). The method of lines and Gear’s method 
were used to solve the PDE system. 

Relaxation of the assumption 6 = 0 causes little change in R,. For 
example, when S = 1, numerical trial and error, solving the PDE system 
for various values of R, gives the new value of R, as 0.06555 (rather 
than R, = 0.06661). 

6. DISCUSSION 

The purpose of this paper is to show quantitatively how dispersal of 
insects, coupled with nonlinear growth terms, can result in waves of 
invasion or extinction. Even though this is the first time traveling wave 
solutions have been proposed for an SIRM model (as far as we are 
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aware), the existence of wave solutions to this SIRM model is not 
surprising from a mathematical perspective; other bistable reaction- 
diffusion systems have been widely studied and analyzed, and general 
properties regarding traveling waves are well understood (see, e.g., [91X 
(See also [17] for applications of such systems to dispersing asocial 
populations.) With a regular perturbation approach, we have, however, 
been able to quantitatively evaluate the effect of sterile individuals, and 
their release rate, upon the wave velocity and to calculate the wave 
profile to 8(l). 

Conditions on initial data for convergence to the traveling wave 
solution [see, e.g., (9)] strongly recommended the utility of controlling 
outbreaks by a joint strategy that combines SIRM with the spraying of a 
few selected areas. This would be sufficient to guarantee initiation of a 
traveling wave solution. Under these conditions our predictions for the 
asymptotic behavior of an SIRM system with dispersal differ dramati- 
cally from predictions where dispersal is not included in the SIRM 
model. In particular, when n, < n < n, (in the one-equation model, 
Section 4) or when R, < R < R, (in the two-equation model, Section 51, 
we predict a traveling wave of extinction while analysis of the analogous 
ODE model with no dispersal predicts persistence of an outbreak (see, 
e.g., [41X 

By necessity the mathematical models presented in this paper do not 
include all factors affecting sterile releases; some biological detail is 
sacrificed to make the models mathematically tractable. It is also hoped 
that by retaining only important biological details (which are fundamen- 
tal to SIRMs) we achieve general results that are, at least to some 
extent, applicable to a wide variety of different release scenarios. The 
price we pay for these simplifications is in the predictive capacity of our 
models when applied to a specific release-precise predictions are far 
more likely to come from carefully tailored numerical simulations. Our 
discussion would therefore not be complete without mentioning possible 
violations of the model assumptions that were made in Section 3: 

(1) The assumption that the carrying capacity of a given environment 
is constant (assumption 3 of Section 3); the carrying capacity, and thus 
the density-dependent death rate g, may vary between good and poor 
patches. 

(2) The assumption that the release of sterile individuals is continu- 
ous and at a constant rate per unit time and per unit of habitat 
(assumption 9 of Section 3); it is unlikely that the release rate for sterile 
insects is uniform at all locations. 

(3) The assumption of simple constant dispersal rates; this may 
inadequately reflect the true biology, as dispersal is likely to be lower in 
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a good patch (where food is abundant) than in a poor patch (where the 
insect pest may actively move around, looking for food). 

(4) The assumption of dispersal in one spatial dimension; a more 
realistic model would include dispersal in two spatial dimensions rather 
than one. 

Spatial variations in g and Y (points 1 and 2 above) may mean that IZ 
(r) achieves a value above n, (r,) in some regions, but below IZ, (rc.,) in 
others. The regions in which critical parameter values are exceeded will 
quickly experience extinctions because the outbreak steady-state solu- 
tion will have disappeared. Provided n > n, (r > rO) everywhere, the 
remaining regions may then experience a more gradual extinction 
process by means of a traveling wave. In the case where n < IZ~ (r < rO) 
in some regions, a spatially heterogeneous stable steady-state solution 
may exist and the eradication program will have been only partly 
successful. Conceptually this is somewhat analogous to the spatial 
patterning problem discussed by Ludwig et al. [18] and Manoranjan and 
van den Driessche 1191 (see also Section 1). Based on the above 
discussion, we postulate therefore that when g and r vary spatially, a 
sufficient condition for eradication of the insect pest is that n > no 
(r > r,,) everywhere and that n > n, on a region large enough to initiate 
a traveling wave solution. 

We expect that spatial variations in the diffusion rate (point 3 above) 
will result in corresponding variations of the wave velocity. Shigesada et 
al. [29] showed that this is the case for a traveling wave solution for 
Fisher’s equation (n = 0) in variable environments. 

The last point regarding dispersal in two spatial dimensions has, to 
some extent, been addressed analytically and numerically by Lewis and 
Kareiva [17] for asocial populations (i.e., YE > 0 or r > 0). Results indi- 
cate that the two-dimensional analog of a traveling wave solution is a 
moving wave boundary, joining outbreak and extinction steady states. 
When the wave boundary is planar, the two-dimensional problem is 
reduced to one dimension by symmetry. Nonplanar waves propagate 
according to the curvature of an interface that marks the location of the 
wave front in [w’. (See [17] for further details.) This problem is repre- 
sentative of a far larger class of interfacial problems in reaction- 
diffusion theory (see, e.g., [lo]). 

Further mathematical work, deriving analytical results for variable 
environments (points 1-3, above) or for dispersal in two spatial dimen- 
sions (point 4) would clearly be very useful. Alternatively, two- 
dimensional numerical simulations for (391, (40) could easily incorpo- 
rate variable coefficients and could be tailored to fit particular release 
scenarios. 
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APPENDIX A. EVALUATION OF K(n,) 

A series expansion of FG+(n),n) in terms of (n - n,> yields Equa- 
tion (13), where 

KC%) = [ &F(fi+(n);n)] 
n = Ilo 

=f(r;+(n,);n,)[~a+(n)]~=~~ 

Lz+(n(J =- ( I 0 
@ (&2 +2 dk<O 

1 

=- 
[ 
z?+ (n,) + n, -Zn,ln(l+ F) 

6 - 
ii+ ( nO) + no 

+ [fi+(n,)12 1 . 
APPENDIX B. TERMS IN EXPANSIONS FOR (p(u; E), Wu, E), 

AND Z+(e) 

Using (4) and (14), the first two terms in series (15) are calculated to 
be 

and 

&(u> = - vu 
i 

(,+“, 
0 

)’ +2 , 

i 

(58) 

(59) 
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whose integrals, defined by (171, are 

cpo(u)=-$43+(1-A-2no)~+n ,[-u+n,++;)], (60) 

n; aI(u)=-v u+n,-2n,ln 1-i-t -- 
[ ( 1 u + n, 

+u2 . 
I 

(61) 

Using (6) and (14), the first two terms in series (18) are calculated to 
be 

-+=-n + 
UO 

(1-A)+{(1-A)Z-8n,)“2 
0 4 9 (62) 

and 

-+ - 
24, -- v l+ 

i {(I - A)‘-t3no]1’.z I ’ 
(63) 
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