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We examine how an Allee effect in local population dynamics (reduced reproduc-
tive success at low densities) influences the spatio-temporal dynamics of ecological
invasions. OQur approach is to use a partial differential equation model of dispersal
and population growth, and then ask whether we can identify “rates of spread™ for
an invading organism subject to an Allee effect. Results indicate that an Allee effect
may substantially reduce the rate at which the invader moves into a new environ-
ment. Analysis of spread in two spatial dimensions entails application of a singular
perturbation theory approach. Here the two-dimensional spread velocity is given in
terms of the one-dimensional asymptotic spread rate and the curvature of a
boundary between invaded and non-invaded regions. Using this result, we show
that invasions cannot propagate unless they initially exceed a critical area. This
prediction is verified by numerically solving the original model. Numerical solutions
are used throughout in demonstrating the nature of the two-dimensional spread.

i€ 1993 Academic Press, Inc.

1. INTRODUCTION

The ecology of invasions has received much attention in recent years
(e.g., Mooney and Drake, 1986, Drake er al, 1989; Hengeveld, 1989),
largely because virtually every ecosystem has been invaded by exotic
organisms with potentially drastic consequences for the native fauna or
flora. In addition, agricultural scientists often try to sponsor beneficial
invasions to control selected pest problems (see Baker and Dunn, 1990).
Parallel with this empirical interest in invasions has been an explosion of
mathematical models that attempt to describe or predict the fate of
particular invasions (Williamson, 1989). One especially common way of
mathematically analyzing invasions is to investigate the form and rate of a
population’s spread in a new environment. This approach can be traced
back to R. A. Fisher, who was interested in the spatial spread of new genes
that appeared in a population (Fisher, 1937).

A large portion of the mathematical literature on invasions is couched in
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terms of deterministic partial differential equations, which often yield
appealingly tractable and compact models of invasion (Skellam, 1951). The
simplest possible model of this form is

¥=DV2u+f(u), (1)
ot

where the operator V denotes the spatial gradient, ¢ is time, u(x, y, t) is the
local population density, D is the coefficient of diffusion, and f(u) describes
the net population change from birth and death. Clearly such models do
not describe the exact ecological situation. For example, simple diffusion
models such as (1) neglect stochastic aspects and assume a continually
reproducing population, a spatially homogeneous environment, and an
absence of strong interactions with other species. The usefulness of
diffusion models arises, however, from the fact that they provide testable
analytical predictions about the asymptotic rate of spread (ARS) of a
population. For example, if f(u) describes logistic population growth,
analysis in one dimension indicates a travelling wave solution with the
minimum wave speed of 2 \/rﬁ, where r is the intrinsic rate of increase of
population growth (see Andow et al., 1990, for tests of this model).

To date, estimates for ARS have ignored the Allee effect (Allee, 1938),
which was originally proposed as a phenomenon associated with a paucity
of reproductive opportunities at low population densities. The key feature
of the Allee effect is that populations shrink at very low densities because,
on average, individuals cannot replace themselves. For populations subject
to an Allee effect, f(u) has the form shown in Fig. I. We now know that
populations may exhibit Allee effects for a wide variety of reasons: less
efficient feeding at low densities (Way and Banks, 1967, Way and Cammell,
1970), reduced effectiveness of vigilance and antipredator defenses (Kruuk,

e

Net Population Change (f(u))

Population Density (u)

Fi16. 1. Growth dynamics exhibiting the Allee effect. Very low population densities do not
survive due to a paucity of reproductive opportunity. Growth dynamics for large u exhibit
density-dependent mortality.
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1964; Kenward, 1978), inbreeding depression (Ralls et al., 1986; Gilpin and
Soule, 1986), and several other factors (Folt, 1987; Foster and Trehern,
1981; Turchin and Kareiva, 1989; Pulliam and Caraco, 1984).

In this paper we extend classical analyses of invasion models and
asymptotic rates of spread to include an Allee effect. We also extend the
theory by adding convection to the dispersal mechanism. Convection might
be important if organisms move with wind or water currents or purposely
migrate in some particular direction (Pedgley, 1982; Banks et al., 1988).
Finally we consider spread in two spatial dimensions and investigate how
the spatial arrangement of a founding population influences patterns of
spread.

2. THE ALLEE EFFECT AND ASYMPTOTIC RATES OF SPREAD

We begin by showing how including the Allee effect in the reaction
dynamics for (1) yields a substantially reduced travelling wave speed and
thus a slower ARS. Our analysis in this section draws entirely upon
classical results for travelling waves in reaction-diffusion theory (Fife and
McLeod, 1975; Hadeler and Rothe, 1975; Aronson and Weinberger, 1975,
1978; Fife, 1979; Rothe, 1981). However, this application to ecological
systems is new, and the mathematical results form the basis for further
analysis in Section 4.

By way of an example, we consider growth dynamics given by the cubic

Ju) = ku(l —u)(u—a), (2)

on the range ue [0, 1]. In other words, population densities have been
rescaled so that they vary between 0 and 1. Note that the Allee effect is
present when O <a< 1, and that when a= —1, the model corresponds
qualitatively with Fisher's original equation. When 0 <a <1 (i.e., an Allee
effect), the magnitude of a represents the fraction of carrying capacity
below which the ill-effects of a low density produce negative population
growth.

So as to readily compare shapes of the f(u) and the effects of varying
population growth rate, we choose k =k(a) as a normalization constant
which is determined by a maximum growth rate. This yields a family of
models which can compared for various a. For example, if the growth rate
( f(u)) is constrained to attain a maximum value of 1 then

k=27/2(((1 + a)* = 9a/2)(1 + a) + ((1 + a)* - 3a)*?)) (3)

653;43/2-2
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(Fig. 2a). Alternatively, a more relevant biological constraint may be the
maximum per capita growth rate (maxg_, ., f(u)/u). If this attains a value
of 1 then

k=4/(1—a)’ (4)

{(Fig. 2b). In this section we will show that our qualitative results regarding
the Allee effect and asymptotic rates of spread are independent from our
choice of the normalization constant ((3) or (4)).

We consider travelling wave solutions to (1)-(2) of the form u= U(z),
with z = x — ¢t, and where ¢ is the wave velocity. Substituting u(x, 1) = U(z)
into (1)-(2) yields the ordinary differential equation

DU" + cU' + kU(} = U)}U—a)=0. (5
Appropriate boundary conditions for an ecological invasion are given by
U(—ow)=1, U(o)=0. (6)

It can be shown that there exists a unique (modulo translation in z)
solution to (5)-(6) with a unique wave velocity (c¢) provided that 0 <a <1
(Fife, 1979). When a <0 there is a minimum wave velocity, ¢* >0 such
that for each ¢ > c* there exists a corresponding travelling wave solution
(Hadeler and Rothe, 1975; Aronson and Weinberger, 1975; Fife, 1979).

Although the the initial conditions for (1)-(2), which describe the dis-
tribution of the founder population at ¢ =0, will not, in general, satisfy the
travelling wave solution to (5)}{6) (u(x, 0)# U(x)), one can show uniform
convergence (modulo translation) to the travelling wave solution for a wide
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FiG. 2. Cubic growth dynamics. Shown are cubic growth dynamics, defined by (2) for
a=—1, —0.25, —0.1, 0.0, 0.1, and 0.25 (from left to right). The normalization constant (k)
is given by (3) in (a) and by (4) in (b).
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class of initial data. Therefore, after a very long period of time (1 — o), the
solution to (1)-(2) may converge asymptotically to a travelling wave solu-
tion that satisfies (5)-(6). It is thus evident that, if an invasion converges
to a travelling wave solution (ie., is successful), the ARS of the invading
population is given by velocity of the travelling wave (¢).

Details of conditions for the convergence of initial data to a travelling
wave solution are given in Fife and McLeod (1975) and Fife (1979) (for
the case 0 <a < 1) and in Aronson and Weinberger (1975) (for the case
a<0). Recall that when 0 <a <1 the magnitude of a is a threshold density
which must be exceeded for growth of the population. In this case, a
sufficient condition on initial data for convergence to the travelling wave
solution is

lim inf u(x, 0) > a, lim sup u(x,0)<a (7)

X = —

(Fife, 1979). When a <0, asymptotic travelling wave solutions achieve the
minimum wave velocity (¢ — c¢*) provided that the initial conditions have
bounded spatial support (Aronson and Weinberger, 1975, 1978); this is
always the case for founder populations.

Rothe (1981) distinguishes between “pulled” fronts and “pushed” fronts
for travelling waves. The minimum velocity of a “pulled” front is deter-
mined by the leading edge of the wave (near U =0) and is given by

c*2 = 4f'(0).

On the other hand, the minimum velocity of a “pushed” front is not deter-
mined by the leading edge of the wave, but by the whole travelling wave
front. This terminology is useful when considering solutions to (5)-(6); the
wave is “pulled” when a< —1/2 and is “pushed” when —1/2<a<0. The
resulting minimum velocity of the travelling wave front is:

2/ —akD for ag< -172
*= (8)

J2kD(1)2—a)  for —1/2<a<0

(Hadeler and Rothe, 1975; Rothe, 1981). The case 0 < a < 1 has the unique

wave speed
¢=./2kD(1/2 - a). 9)

This last result can be seen easily by choosing V to be the (unique modulo
translation) solution of

Viiz)=AV(1—V), V(—)=1, V(oo)=0.
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Relative Wave Speed (c/(D**0.5))
2
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FiG. 3. Theoretical and numerically simulated wave speeds. Theoretical one-dimensional
travelling wave speeds for (1)}-(2) are shown. These are given (8) for —1<a <0 and by (9)
for 0 < a<0. The normalization constant (k) is given by (3) for the upper curve and by (4)
for the lower curve. Numerically simulated wave speeds (crosses) are calculated from the
movement of the ¥ =0.5 point on the wave front solution to (1) with D =0.0001. The numeri-
cal solution alogorithm employs the method of lines and Gear’s method.

Then V also satisfies (5)-(6) provided we choose

A= — EkB and c=./2kD(1/2 — a).

Equation (9) tells us that for a successful invasion (¢>0) we require
a<1/2. In other words, the magnitude of the threshold density for the
Allee effect must be less than half the value of the carrying capacity.

The theoretical wave speeds, given by (8) and (9) and the numerically
calculated wave speeds are shown in Fig. 3 for —1<a<1/2. The upper
and lower curves correspond to normalization constants (k) given by (3)
and (4). The Allee effect causes a considerable reduction in the rate of
spread of an invading population. For example, if & is chosen so
max,_, ., flu)=1 (upper curve) then the wave speed for a=0.3 is less
than one third that for a= — 1.0, and if & is chosen so max,_,_, f(u)ju=1
(lower curve) then the wave speed for a =0.3 is less than one half that for
a= —10.

3. INCLUDING CONVECTION

Theory from the previous section can be easily extended to include
convection from bulk flows of the external medium. The appropriate model
is

Ju

gt—+(w-V)u=DV2u+f(u), (10)
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where the only new parameter is w=(w, w,)", which represents the
velocity of convection (in units distance/time). Employing the change of
variables

=1,  x*=x-wit, y¥=y-—wyi,

and dropping the asterisks for notational simplicity we transform (10) to
the reaction—diffusion equation (1). In other words, the convection term
merely shifts the entire travelling wave solution with a velocity w.

4. Two-DIMENSIONAL SPREAD OF
INVADING POPULATIONS SUBJECT TO THE ALLEE EFFECT

Although the issue of spread in two dimensions is not difficult concep-
tually, actual analytical predictions become challenging when we move
from a one-dimensional environment to two spatial dimensions. Planar
travelling waves do exist (Aronson and Weinberger, 1978) and this planar
form may be asymptotically achieved by an invading population. However,
the most important stage of an invasion may occur before the asymptotic
form of plane wave propagation is achieved; this is also the stage at which
the eventual success or failure of an invasion may be determined. We will
show that, when a newly established founder population is subject to Allee
dynamics, it may fail to establish itself, even when it is initially present at
levels which exceed the threshold density described for growth of the
population. This is because the growth in population density through
reproduction may not be sufficient to counteract the decline in population
density through dispersal of individuals. The net result may be the decline
and eventual extinction of the invading population. Critical factors in
determining the success of an invasion thus include the shape and size of
the region which the founder population occupies because these affect the
extent to which dispersal reduces population density. We will show how
the shape and size factors can be conveniently summarized mathematically
by the curvature of the interface that exists between the region which is
invaded and that which is as yet unoccupied (Fig. 4f).

When analysing the spread of an invading population it is useful to
consider four stages:

1. [Initial introduction of a founding population (Fig. 4b),

2. Convergence of the population density profile to a moving wave
front which connects invaded regions (where the population density is near
the carrying capacity) and non-invaded regions (where the population
density is zero) (Fig. 4¢),
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Fig. 4. Numerical solution showing the two-dimensional spread of an invading popula-
tion. Shown is the finite difference numerical solution to (1)}-(2) for D=1, k =1, and @ =0.05.
A founding population, which is initially introduced at =0, converges to a moving wave
front and spreads. The location of the spreading wave front is shown by the u = 0.5 contour
at successive equal time intervals of size 2, between 7 =0 (inner) and ¢ = 16 (outer) (a). The
corresponding profiles for « are given at t=0 (b), r=4 (c), and /=16 (d). The profile for u
at +=16 is also given a plot of u = constant isoclines (e). These isoclines are taken as ¥ =09
(inner), 0.7, 0.5, 0.3, and 0.1 (outer). The u=0.5 isocline (solid in (e)) denotes the location
of the interface, I'(y, t) separating invaded and unoccupied regions (f). The normal velocity
of I' is given by N, and, for any fixed time, the dummy parameter » parameterizes the length
of I'.
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3. Movement of this wave front as the invading population spreads
(Fig. 4d),

4. Eventual spread of a successul invading population after a very
long time.

In this section we will use some “initial asymptotics” to estimate the
dynamics in the Stage 3: those of the early spread of an invading popula-
tion, Our approach will entail the application of results from singular per-
turbation theory to derive an approximate formula for the two-dimensional
rate of spread. These asymptotics lead us to suggest that the invading
population may approach a planar travelling wave form in Stage 4.

To examine invasions with an Allee effect in two dimensions we use (1)
where the population growth function (f(#)) is given by a curve that
satisfies

f10)<0,  f'(u,) <0,

but is not given explicitly (see, for example, Fig. 1). Thus the model retains
a degree of robustness by not stating f(u) exactly. The carrying capacity for
the population is u, and the maximum value of f(«) on 0 <u < u, is given
by /., (Fig. 1). To facilitate analysis of the relevant processes we nondimen-
sionalize (1) by choosing

x*= —f'(0) 5“7‘—x, = —f1(o, “*=£“~
—f' 0 .
f*=—ff_’ 6= f} Ju .

The new carrying capacity is u* =1 and f* now attains a maximum value
of 1. Dropping asterisks for notational simplicity we obtain

6“_ 272
EE—aVu+f(u). (11)

To further simplify matters we consider the case where the reaction
dynamics are fast and exhibit a slight Allee effect, and thus ¢ is a small
positive parameter, 0 <¢ < 1.

We now assume that that the spread of the invading population has
reached Stage 3 (above). In other words, the initial invasion by a founding
population has converged to moving wave form which joins the w=1
(invaded) steady state solution to the u=0 (non-invaded) steady state
solution of the nondimensionalized system (11). We are unaware of
rigorous mathematical conditions for this convergence in higher dimen-
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sions. However, two-dimensional numerical solutions, such as those shown
in Fig. 4, do indicate convergence for a wide class of initial data.

Using results from singular perturbation theory, we employ an
approximate formula for the normal velocity, N, of an interface marking
the spatial separation of invaded and non-invaded regions (Fig. 4f). In
mathematical terms, this interface shows the location of a moving
transition layer joining the ¥ =0 and the v =1 steady states. The width of
the transition layer is ¢’(¢) and thus the location of the interface becomes
exact as ¢ = 0.

If the interface is planar then the wave front has constant velocity at all
points in the forward, normal direction (N is constant). However, if the
plane geometry of the interface is distorted, the normal velocity may now
vary locally along the wave front. Similar kinds of interfacial systems are
commonplace in physics, chemistry, and biology (for a discussion, see Fife,
1988). The system (11) arises in the theory of excitable reaction-diffusion
systems. For this system it has been established that the normal velocity of
the interface obeys the “eikonal equation for reaction-diffusion systems,”
namely,

N=1y—e¢x, (12)

where y is the unique planar travelling wave speed for (11) and « is the cur-
vature of the interface (Keener, 1986; Keener and Tyson, 1986; Gomatam
and Grindrod, 1987; Grindrod er al, 1991). When applied to Eq. (11), this
equation is valid to ¢(e?) (Lewis and Grindrod, 1991).

We denote the time-dependent location of the interface by I'(n, t), where
n is a dummy variable used to parameterize the length of the interface
(Fig. 4f). If we represent a point on the interface by Cartesian coordinates
(x(n, 1), y(n, t)) then the movement, given by (12), satisfies

ax X, Vy— V. X

'(q_t:()'+5 Z';z:_ ,'z;;szn 3 yn,z 172 (13)
) x,+ (x,+¥,)

ﬁy ( Xy VY — V,,,,X,,) — X

==\ vte— 5 oy (14)
ot (xJ+y¥) ) (x3+ D)7

(Keener, 1986). This system can be conveniently solved by finite difference
methods (Grindrod et al., 1991).

FiG. 5. Finite difference solution for movement of the wave boundary. Initial wave
boundary configurations are shown by dark lines. Equations (13)}-(14) are solved numerically,
using the method outlined in Grindrod er a/. (1991) and the location of the wave boundary
is plotted at equal 0.1 time increments (a). Parameter values are y=40.5 and ¢=0025.
In (b) a modification of (13)-(14) incorporating the convection velocity w = (0.2, 0) is solved
numerically.
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We numerically solved (13)-(14) with a square initial boundary between
invaded and non-invaded areas, using the method of Grindrod et al. (1991)
(Figure 5a). Note how the curvature term in (12) serves to round out
corners which were initially sharp. Convection was added in the numerical
solutions shown in Fig. 5b. As discussed in Section 3, this merely shifts the
entire solution with a velocity given by w.

If we consider radially symmetric solutions to (12), denoting the location
of the interface by I'(n, 1) =r(t), we have

or &

Fr Y " (15)
Hence we obtain a spherical wave which exhibits threshold behavior; the
region occupied by the invading population in Stage 3 (above) must exceed
a certain radius, #(0) > ¢/y, in order to initiate a radially expanding wave,
while regions of subcritical radius collapse in on themselves (Fig. 6). The
dimensional version of (15) is

or D

—_—=— —

e r’ (16)

where ¢ is the dimensional travelling wave speed. If we choose the reaction
dynamics as (2), with 0 <a < 1/2, we obtain ¢ from (9) and calculate the
minimum initial radius in dimensional terms as

D\'"? 1
rmin_(ﬂ> 2—a (17)

]

FiG. 6. Threshold behaviour for radially expanding waves. Disturbances must exceed the
critical radius, r.=¢/y, in order to initiate a radially expanding wave. Numerical solutions of
(13)~(14), with &/y =0.5, show how subthreshold disturbances (r(0)=0.44) collapse while
suprathreshold disturbances (r{0)=0.8) initiate a radially expanding wave.
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Thus, an increase in the diffusion coefficient (D) or an increase in the Allee
effect will have the same effect of requiring a larger initial “beachhead” if
an invading population is to take hold and expand (ie., for dr/dt > 0). The
effect of the minimum radius (17) is illustrated in Fig. 7, where the radiaily
symmetric version of (1)-(2) is solved numerically for subcritical and
supercritical initial radii.

Following Grindrod et al. (1991) we now show that planar interfaces
obeying the eikonal equation approximation (12) are linearly stable to
perturbations. This is a necessary condition for the asymptotic approach
towards a planar travelling wave form (k=0, N=7) in Stage 4 (above).
Suppose that there is an interface, {y, t)=(x(1y, 1), y(n, 1)), propagating
over the infinite plane and that for each s fixed, y(y, 1) is invertible with
v, <0. Eliminating », we write x(5, t) = X(y, t) so Egs. (13) and (14) yield

X, ‘
X,=& —2— 4 e(1+ X272, 18
(=& (1 +X%) o1+ _;) (18)
The solution X =ct represents a planar wave propagating over the (x, v)
plane in the Xx-direction. Linearizing about this solution by setting
X =ct+w(y, 1) and keeping leading order terms yields

W, =ew,..

These planar wave solutions are stable (modulo translation) because w — 0
uniformly as ¢ — oc provided [ w(0, y) dy is finite.
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FiG. 7. Numerical solution of the radially symmetric version of (1), (2) indicates threshold
behaviour. Parameter values, given by D=0.02, a =04, and k = 15.25, yield a critical radius
of rpi,=0256 (17). Initial conditions are given by the dashed lines, and the wave front
configuration is plotted at equal 1.0 time increments. Subecritical perturbations collapse (a) but
superthreshold perturbations expand radially (b). The numerical algorithm employs the
method of lines and Gear’s method.
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Equation (12) leads us to expect that highly corrugated initial wave
boundary configurations may lead to a rapid invasion by the organism,
particularly in the limit as ¢ is very small. Denoting the area of the invaded
region by A, we observe that

D] Nmodi=s0-c] o

I Yron Tn. 1)

where /(t) is the length of the interface 7'(n, ). As ¢ — 0, the area invaded
increases at a rate proportional to the length of the interface (/(¢)). We
verified this by contrasting numerical simulations for an invasion with an
initially sinusoidal wave boundary to numerical simulations for an invasion

-2

T — T —T T —— T

4 6 8 10 12 14 16
X

FiG. 8. Highly corrugated wave boundaries may lead to a rapid invasion. Initial wave
boundary configurations are shown by dark lines. Equations (13)-(14) are solved numerically,
using the method outlined in Grindrod ef al. (1991), and the location of the wave boundary
is plotted at equal 1.5 time increments. Parameter values are y=0.5 and £ =0.25. By the time
t=1.5 (last position plotted) the sinusoidal wave boundary (solid lines) has progressed farther
than the planar wave boundary (dashed lines) for all x.
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with an initially planar boundary; numerical results showed that invasions
outlined by corrugated boundaries increase their range more rapidly than
invasions outlined with planar boundaries (Fig. 8). This result suggests that
deliberate introductions of organisms may be most successful when the
initial distribution leads to a highly corrugated boundary between invaded
and non-invaded areas. The degree of corrugation can be measured as the
ratio of the shortest distance between adjacent peaks to the length of the
boundary that lies between them, a ratio which is independent of scale.
Ultimately, when the time since initiation of the invasion goes to infinity,
the importance of such a corrugation effect will diminish to zero. However,
in the early stages of an invasion, corrugation could be quite important.

5. DISCUSSION

Returning to the general ecological issue of invasions, there are several
potentially useful results that have emerged from our analyses. Notably, the
idea of an asymptotic rate of spread for an invader can be extended beyond
simple logistic population dynamics and beyond simple diffusive dispersal.
In particular, we show how to calculate a rate of spread for Allee
dynamics, and for diffusion plus convection. More interesting is what these
calculations tell us biologically: even if a population is introduced at a den-
sity above its critical Allee threshold, its spread will still be substantially
reduced by the presence of an Allee effect. This is easiest to summarize for
invasions in one dimensional environments. For example, if we quantify the
Allee effect by the fraction of the equilibrium density at which population
growth becomes negative (because of inbreeding, mate-finding problems,
and so forth), then the rate of spread decreases substantially as this fraction
increases, in the manner shown in Fig. 3.

In two-dimensional environments, the implications of an Allee effect are
more complex, but also more interesting. The major new feature that arises
in analyzing rates of spread in two dimensions is the role that “curvature”
plays in determining spread. Relevant curvature is defined by the boundary
between the invader’s occupied territory and unoccupied territory. The
more sharply this boundary curves outward (i.e., into vacant space), the
slower the spread will be; conversely, the more sharply this curvature bends
inward (i.e., so that there are fingers of vacant space sticking into an
invader’s territory), the faster the spread will be. Taken together, these
effects mean that details about the geometry of an invasion boundary can
play a substantial role in exactly how, and at what speed, that invasion
advances. For example, a critical area must be covered by an invader sub-
ject to Allee dynamics, if the invasion is to take hold. Even if a population
is inoculated at densities well above its low-density Allee threshold, the
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invasion will fail unless that inoculation covers a sufficiently large area. The
reason behind such a failure is that for a small area, with a highly curved
boundary between invaded and unoccupied regions, diffusion dissipates the
local density faster than population growth supplies new individuals.
Another result relates to the degree of corrugation of the initial boundary
between occupied and unoccupied territories; the overall increase in an
invader’s area will proceed more rapidly the greater the degree of corruga-
tion (see Fig. §).

Our two-dimensional analysis of invasions with an Allee effect may also
resolve a puzzle that has turned up in several field studies of real invasions.
In particular, Okubo (1988) observes that often the rate of expansion of an
invader’s range is initially very slow, but gradually increases until a con-
stant rate of radial expansion is achieved. This pattern is not predicted by
the classical analysis for constant diffusion plus logistic growth (see Okubo,
1988), but can be explained for organisms with an Allee effect by using
results from Section 4. Integrating Eq. (16) yields

1 D )
t=;[r+?log|cr—D|:l . (19)

r{0)

Plotting the radius of expansion (r) versus the time elapsed (1) for various
different initial conditions (r(0)) gives the curves shown in Fig. 9: radial
expansion begins slowly (if at all) before attaining the asymptotic rate.
Our results, together with other recent extensions of the mathematical
theory of invasions (Shigesada er al, 1986; van den Bosch et al., 1990),
suggest that it may be possible to develop a theory which is sufficiently rich
to describe a large portion of the invasion processes likely to arise in the
natural world. The challenge now is to develop methods for testing or dis-
tinguishing among the many different models, and for anticipating which
model is most likely to capture the essentials of any given invasion.

O - N W s WO,

Radial Distance (r)

Time (1)

FiG. 9. Radial expansion rates are shown for different initial conditions. Solutions to (16),
given by (19), are shown for ¢ =D =1 and various initial invasion radii (r{0)).
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Because most invasions start with only a few individuals and Allee effects
are likely to be common for small populations, we think that invasion
models need to incorporate these effects. Although our efforts in this direc-
tion have involved totally deterministic models, there is currently a need to
investigate the implications of Allee effects in stochastic models of invasion.
We predict that stochastic versions of our model will not only produce a
similar reduction in the rate of spread, but an even more pronounced
threshold area effect.
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