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Abstract. We study a sol-gel mechanochemical model for cellular ewloplasm.
Using conservation equations and a foree balanee equation, we derive equations
for the sol-gel dvnamivs. Regular perturbation analvsis suprests the growth of
patlerns which may be either dynamic or stationary, depending on parameler
values, Nonlinear analysis. which indicates that these patterns remaimn bounded,
i confirmed by numerically solving the mechanochemical cquations, We use
these analytical and numerical results Lo madal two different brological problems:
the dynamic formalion of flopodia in nerve growth cones, and the growth of
microvilli in epithelial cells,

Key words: Cytoplasim — Mechunochemical  Sal-pel — Microwilli Filapodia

I Imtroduction

[ighly organized paticrny are often evident on the surfuce of cells that have
vomimietile actin-dense cortices. These may be stationary structures such s
microvilli and slereocilia (see, for example, Alberts 1982 or may extrude
iynamically from the cell surface as ruffles. blebs, microspikes and lilopodia {ses,
for example, Bray and White 1988): see also Figs. |8 and 19 below. These struclures
have diverse functions that include increasing the absorbent arca of the intestine
{microvilli), transmitting acoustic impulses in the ear {stereocilia) and guiding the
¥oung nerve yrowlh cone up haptetactic gradienls {(via filopodia).

‘The actin protein undergoes a dynamic sol-gel phase change that is thought
o he the erucial feature governing its contractile activity { Tavlor ¢l al. 1979
Condeelis [983; Ouler and Odall 1984a,b), Interacting with the actin filaments are
lve different classes of protein wilh various levels of calcium sensitivi Ly { Alberrs
el al. 1983} (Fir. 1), Gel forming {or actin binding) proteins eross-link the actin
filaments into 4 mesh or aclin gel (Stossel 1983), This polymer pel is closely
interwoven with the stable elements und is thereby linked to the cell slructure,
Bundling preteins stahilize che gelled actin [laments inlo isatropic networks

* Presen aefdeessy Department of Matheglivs, Unreersity of Uah, Salt Lake City, UT 84112, USA
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Fig, 1. Proteing alfecting the actn ceinskeleton. Sehematic diggrim surnmarizing U effect of various
welin Meding pritins on e aetin cytoskeleton, {Based on Adbers et oal, 1963

(Weods 19823 Fragmienting proteins, which cleave the actin filaments at tricd-
point between the cross-links, break the gel up inlao sol (Stossel 1983) The actin
filamenls are then in a dynamic crpuilibrium, This equilibrium is critically affected
by Lhe levels of Mee calcium. At lower calcium levels, e actin remains as a gl
but as levels of caleium rise from 107°M to 107 eAf, the sal phase predaminates.

Owsler et al, (1985) and Oster and Odell {1984k} suggested thal it is this
sol-gel phase Lransition which is a key [uctor in coordinating the formation of
slationary structural paterns on Lhe gell coriux. We suggesl that, in addition, the
sol-gel phase trunsition gives rige Lo important dynamic structural patterns. This
i borne aul by the analysis presenled hers.

Or investigalion mnyolves o mathematical model for actomyosin gels. Rather
(han starting with a detailed microscapiv model, we use the continuum mechan-
ics approach to model the mactascupic viscoelaslic propertivs of the cytoeel (sec,
for cxample, Oster and Odell 1954a,b; Oster 1984; Odell 1984; Oster ¢t al. 1983y
experimentally measurable niechamical propertics ol the cylogel are used in
estublishing 1ts constitutive behaviour. By characterising propertics of such 4
viscosity, elaslicity, osmolic stress and enntractile siress, we can describe the
dynamic behaviour of the cytogel through the use of Farce balance and mass
comservation egualions.

Our madel uses two reaction-diffusion-convection type squalions to describe
the chemical kinetios and one lensol eguation Lo describe Lhe bhalance of forces
williin the eytogel [Sect. 2). Linear analysis of these eyuations shows how spatial
patlerns can arise when disturbances of a critical wave lenplh grow away from
the humogeneaus steady stale selution {Secl. 3). The growth of those modes 14
bounded by nealinear terms and a new heterogencous steady slale evolves [ Ject,
4], While relating closely 1o a simpler two-sguation model which was proposed
by Oster et al. {1985}, our system exhibits long-term dispersive wave patlerns
which are nat evident from the simpler model. Tn Sect. 5 we show thal such
enhuneed pattern-Torming capahilities, such as the extrusion of filapedia from
nerve growth cones, ane also tound in nature, indicating thatl the model Tepre-
sents # uselul extension o that of Oster et al (1985).
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Clearly, the complexity of the microscopic and chemical structure of the
eyvtogel means that such a system of equations cannol describe precisely the
current state inoa given cell. Rather. its purpose is to provide a theoretical
framework with which the basic mechanisms that prevail during cortical differen-
tiation and movement can be understood,

2 The mechanics of actin gels

Cytoskeletal fibres fall into three main categories: actin filaments, microtubules
and dntermuediale filaments, In the presence of phosphorylated myosin, actin
filaments can form contractile units and provide a basis for cellular movement
and rearranization. By way of conteasl, micratubles and intermediate Glamenls
provide no conlraclion, but are the structural unils for maintaining rigidity and
cell shape. While microtubules assemble and disassemble according o cellular
dynamics, inlermediate filaments are highly siabhle and are the least soluble
components (Alberts o al 1983). The microtubules amd intermediate filaments
are loosely referred to as stadle elements, while the acun mesh s the condeaciile
element. Collectively, they give the cytoskeleton ils mechanical properiics.

24 A batance of forces determines the mechanical equiliteivm

We now consider the sum 1owal of the forces acting on an isalated piece ol
slalionary eytogel which is in mechanical equilibrium, 1t is able to mainiain ils
shape because of a balance of several forces:

I. the active contractile forces penerated by the actomyosin complex

2. the passive clastic restoring lorees arising from the stable elements and from
the actin pcl

3. the osmolic prossure of the eviogel,

Phe cytogel is a distribuicd asmometer (as opposed Lo a membrane osmome
ter) hecause each volume element cslablishes an osmotic equilibiriim with ils
surroundings. The osmotic pressure, resulling rom  eloctrostatic repulsions,
palymer/solvent interactions and mixing interactions ( Oster [984), provides an
expunsive lores,

The passive cluslic forces provided by the stable clements are long-range
ruslorative forces which counteraet siraing and re-establish the previous shape of
the cell. By contrast, the elasuc forces generated by the actin gel result from the
thermal motions of the fibres {Tanaka 1981) and provide shorl-runge restoring
frees which counteract stretching (dilaion} and compression,

22 Sel-gel dynanicy

We starl with » phenomenological relationship which forms the basis for the
‘solation-contraction” hypothesis { Taylor 1979} We expect an unsitained cvtoge]
unit Lo be in equilibrium sol-gel balance — in the absence of elastic lorces, the
osmotic and contraclile forces balance, If evtosolic calvium lovels decrease, the
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Fig, 2. Calvium wedialed solation and contraction of cytagel. 'Fhis disgromumatic rapresenaliot
shows Ui essentind features of the selation-contrastion hypathesiz. Calciven mediates hoth aclation
uned the assenbly of contractils s, Activation ol the meosin pustlein in the contractilc unit 1
throasl the dephasphorylation of ATE {ademesne ophasphate) o ATTE {adenosing diphosphate),
i Alenisks indicare sotivated compleses,) Superentivel calvium consentrations cause partial saliiion
wed e congtrnetion of contractile units

sl concentration Increases while osmotic forees overcome the appesing contiac-
lile andl clastic forces and the cytogel dilates, TF eylosolic caleium levels rise. the
cvtogel umt solates while contractile Torees surpass the opposing elaslic and
asmotie forees and Lhe cytogel contracts (lig. 2). Dilation and calcium levels
correlate nepatively and only the dilation s used in our phenomenological
madel. This relationship belween the dilation and the sol-gel dynamics is shown
in Fig 3.

We define & to be the concentration of sl and & to be the concentration of
gel. Thus, far 4 spalially homogeneous strip of cytogel. the sol-gel dynamics can
be wrillen as

5 .
= = kL S k(B0 (1}
i

Uk (MS —k_ (06, (2)
£
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Fig. 3. Dhlation epoiutes sol-wel dynanes, Unstramed gol iz in
chernical eopuilibvivm willk e sol. When the eyloplism contracts,

GEL the dynamic halance shifls so e Lo dncrease sel coneentragen while
— exLaplasmic dilatian shifts the balonee towerls increased gl con-
canbrected cilaten  centration

Fig. 4. The sal gel Gy
as & fonetion of dilatien, The
az= e ciease k egelation race (8 ) and soda
Lion rabe (&) ame pivan as
qualitative fusctions of the d:i-
0 lation, o

where & (0] and & () have the gqualitalive Torm shown in Fig, 4 and 0 is the
dilatiom, or measure of steetching, given by

0= {3

a being the distance that the slable elements of cvtoskeleton have been displaced
from their origingl unstrained pesilion.

A3 Stress-strain refattonships fn the evtigrel

We extend ouwr discussion 1o inchule cylore] dynamics giving rise to spatial
heteropencilics in higher space dimensions. In Sec. 2.2 we saw Thal an isolaled
pigce of stationary cylowel was able lo maintain s shape through the balance of
expansive and contractile forces. The key Lo understanding cyrogel dynamics is
provided by an analogous equation which accounts lor the time-dependend
cvlogel movements i three spalial dimensions,

We expect cytogel mechanisms to adhere (al this lovel of madelling) to
MNewtonian dyoamics. For cellular processes. the inertial terms are negligible
compared with viscous and elastic lorees [Oster o al 19837 motion ceases as
soon ax Lhe applied forces are turned off (Purcell 1977). Therelure, al any given
time, the mechanical Torces aeting upoan the cvtogel must balance, reflecting the
following equilibrium condition:

F=Y¥r6=I, (4

where £ s Lhe Toree veclor and @ is the stress tensor. Thus, in conjunction with
Fi. (43, the stress-strain relationships lor the clastic, viseous, conoractile and
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camotic forees will lead Lo ow foree balance equation describing the cvlogel
dynamics. We consider cach of the elastic, viscous, contractile aml csmatic
stress-strain relationships in Larn.

Although microscopic cvidence, such as immuneflucrescence micrographs,
indicates anisotremy in eytoskeletal structure, we choaose the simplest possible
case and model the acum zel as having isetropic elastic propertics. By measuring
the ferce taken Lo streteh the pel inoa given direction, one cam generate a
mechanical response curve relating the elastic uni-directional stress 1o the dila-
tion, This relationship s linear for small strains. but becomes nonlinear as gel
fibres align and eventually tear when the dilation increases (Oster and Odell
1984a). Because wo will primarily be concerned with the small strain eytoplasmic
behaviour, we use linear theory for our sel-gel model. This is cxprossed empiri-
cally Iy Hooke's Law, which relites shorr-range elastic stresses, such as those
arising from the actin gel. to the strain [(Lur'e 1964) Strains will alse incur a
long-range elastic response, however, when the fibrous stable elements transmit
nan-locdl strains. Because elasticity is a property of the actin gel, wo cxpeet the
elastic response of the evloplasm 1o be proportional o the gel concentration.
Thus, adding a leng-range elastic response {see, for example, Oster el al. 1985;
Murray 1989, Lewis 19900 1o Hooke's Law and multiplying by the normalized
el concentration, the elastie stress tensor is taken 1o be

0
Gp=17 [e—fde+ i —{A00, (3]
CII

where & = (Vo + V)72 is the stram tensor, 5 = E01 vl v =541 —2v), with £
the effective elastic modulus and v the Poisson ratio, § 20 is a measure of the
lonp-range elagticity and ¢, 15 the ¢ytogel density, measured at # =0,

The viscosity of the sol phase is far less than that of the gel phase, leading us
to expect that the viscous response of the cyvloplasm i proportional o the gel
concentration. Mulliplving the viscous stress tensor { Landau and Lifshits 1970
by the normalized gel concentration wiclds

o
Bp= d (e, + p: 000, ()

L]
where pyound goare the shear and bulk viscosities of the gel, respectively.

We expect a contractile siress, o, resulting from the complexing of myosin
aligomers with the partially selated actin gel. Contraction ol the gl leads 1o
increased [ibre concentrations and more myosin cross bridges, thereby resulting
in an mereased contractile strength (Osler el al. 1983), This is an important
moechanieal characteristic of cylogel; as it contracts, it gets stronger. However,
the cytogel cannot conlrac indefinitely: the sliding filament mechanism can oo
longer contract when the filaments are fully overlapping, Highly contracted
cylogel allimalely loses its ability to contract {Fig, 3),

The traction per libre will be o Tunclion of rthe availability of activated
myosin olimomers. This in turn, depends on a myriad of secondary Faclors {see,
tor example, Lewis 19900 To keep our madel as simple as possible we assume
Lhat there is an ample supply of activated myosin olipomers. As contraction
occurs in Lhe partially solated gel, we assume that the contractile stress is
approximately proportional to the gel concentration, Thus we modzl the contrac-
lile slress lensor gs

o o (i (7

i
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Fig, 5. Steesssloain relabonship for actin gels This shews the qualilative form of the stress-strain
relationship G e aoin gel. lgnoring solmel dynamics (1) (2, U relalionship i shown Ffar a
comatant gel concenlrativn. Here o (8 the elastic stress, w5 the contrelile or selive siress, Fyge, 18
the osmotic stress ol o s the welal siress eeponse

The funcuon o) models the dilaion-dependent contractile strength deseribed
abuve (Fip. 53,

The osmotic stress components, including electrostatic repulsions. polymer/
sobvenl intaractions and mixing trnleraclions (Osler 1984), become less potenl as
the cytopel dilales, giving a monotonically decreasing relationship betwesn the
osmatic stress and the dilation, Thus we model the osmotic stress tensor us

oy — —m{il}L (£

where m(f) 1% shown in g, 5

24 Made! fornudarion

Including diffusive and convective sol-pel fluxes into the sol and wel cquations
(1)=(2) and the stress components (3), (6), {7) and (&) into the force balance
equation (4) mives

AR R
‘f’ e (5 f_'") — D AS +k_{S —k (6 =10 ()
cr &
56 ar'
'—;r’- |V (r:; rﬁjJ— D, AG —k (NS +k (WG =0 (10)
£ [

Vs, +o,+6, | 6400 =0, (11}

where g and D are the diffusion cocfficients for the sol and gel respreclively.
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Fiar, 6 Posl-back regaiation of the sol-mel nuodel

I'he feed-hack mechanisms regulating the behaviour of (9) (11} are shown
diagramatically in Fig &

The houndary conditions Tor (95— 11 are derived Trom physical constrainls
on the system, These are also formulated as conservation laws,

First, the fbrous network of passive elements should not pass through the
domain boundary, 462 So

Hp oonin, (12)
]
whore s s the oubward drawn orienled unit normal w A2 Indepraton over The
surface of 4, integration with respect to time and application of the diverzence
theorem vields a conservation law for 0
A

el =%, [ constant), (135
wid

where & s the solution domain.
Second, the Lol amount of <ol plus gel present in the syslem should remain
constant, reflecting conservation for the sol-gel svstem. Thus

J (8 Oy el =y {constant), {14)
ik
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This is facihtated by Neumann boundary conditions for 5 and ¢

VS =10 on fQ (15
arul

BV =0 an &0 i 16}

Adding Fgs (9} and (10), applying the divergence theorem. nsing the boundary
conditions (12). (15} and (16}, and integraling with respect to time. we obtain
Lhi conservation law (14).

The spaiially homogeneous one-dimensional analogue of (9 1) &

s g
LT- + S(:—U A (S —k (G =0 (17

o cf

il i
S — = k(S S (G =0 Ly
ar + ¢ By K_{y — & (i {13

which nply

S+ =051 G)a_guxpl =) = ey expi M), [ 14}

The conservation Taw | 13) constrainsg the dilation to remain consiant al i =0,
while (14} and (19) require that § + ¢ =8, | G, =, wapl =y Thus (17 -(18)
his o stable sleady state,
p {000, expl — )
TNk (8 k()
- ke 1{5',_,}(‘;_, '3}‘-].][ )
Tk (D) + k{0,
We nondimensionalise the system (9)—(11) w0 that ¢ 15 unity at the uniform
slewaly state. Our new variables are

5 i P
- _5 s Bt v e
) 7y RUN T2
I Fr o, i
= ﬁ, R -]—._ D¥=""4 ,H“'=i {2
2 AT 0. Lty
CURI I T .
: i i i ¥

whore 5= o 4 g and T =1 4 ¥,
substituling these quantities into {99 -( 11}, and dropping the asterisks for
notational simplicily. we abtain i one dimension

ab E A R
L (Hfff) B R e T (21
of cX . i / X

T N

4 (Gr;”)—n‘—;-?—ff'rs. G, ) =0 (22)

o e of e

Fof A 4 b
(65 —pe =+ . E.'r})=t3._ (23)
X \ of [
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wherg
FIR, G, =k (S —k_{Me
H{G, N — 08 = G — mii),

(24)
(23}

The houndary conditions {12, (13} and (16} on a one-dimensional domain,

b=z Ly oare
w0, 1) =y (constant),

ti L. f} =t [constant),

i)
o= arx =01,
i
i
— =1 atx="01f
o

vielding the conservation laws

"L

J fedic —w, —my= LA,

and
T

{5+ 6) dr = LS+ Gy).

Jo

where the new, nondimensional steady stale values are

k() .
Sa= v w:}, Go=1, Oy=1(1, —u,)/L.
By imtegrating (23) we obtain
el Lol .
G— [G—— | HGH4at) =10
i LR

where aif) 15 the boundary siress. Thus, a constant boundary stress,
o= H{Gy, B,)

is exerted at the steady state.
Mrovided that & £ 40, (33} gives

G :
| (‘4 B HG, B + oG Y de =0,
n H) oXC

(26}
(27)

[2E)

(29}

[ 30}

(31)

(32)

(33)

(34)

Application of the condinons (26) —(27), which fix i at the boundaries, gives

i
(HGL ) = a0 15
.

() |

Thus, the boundary constraint for o is consistent with zero-gradient boundary

conditions Tor &4, provided thal
P

| (HG, 0) + o(0))/G d —
Wl

[33)
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3 Linear analysis

We consider the behaviour of small periurbations of the state variables AWy
from their steady stale, (S, Gy 0,). Except when olherwise stated, we assuimnc
thal f and £r are positive parameiers in (213 {23), Linearisalion of (213 (2%
vields a homogencous system of equations deseribing the behaviour of these 1o
small disturbances. A resulting solvability criterion relales the temporal and
spatial components of the perturbalions 1o the parameters in the model. This
deterimines conditions on the parameters for when and how the sleady state can
bocome linearly unstable,
The lincarised Torm af (213 (23] s

Foe: g ;
[4 & ki
= et —k_ .+ F e
Pl 0x= I I k& * &= a"ﬁl.:}ll
& a2 ] =0, =10
—k =— D= |k — — I ( .
J a7 ‘ : By
it il ( i Fe k
1] He— — =l
i dx | Bt f ot ')
{36)
where
; ar o
';'I:.p - -"l\. [urn_]- F::i = m 1'5‘“- E—'ru: r}-] ::I_-.
and sumilarly for &, B, and 4,
We laok for solutions to (36) of the form
5 =5, 0 — Uiy, 0 — 0y o0 explod + ikx), {37

Substitution inlo {36} yields a dispersion relation between ¢ and &2 which must
he satisfied if the system is (o have a nontrivial solulion. This is

ko' + AN + Bk e + Ok = 0 (3R)
wilh
Ak = 4 k% + 4, {39
Bk = B k*+ Bk + B, {40
™y = C R+ Ok 080 {41}
aticd

T N S I A=k, +k_+ 4, H.,
By — D+ fi1— ), By= (1 + ke (i =Dy +k (f+1)— H,,
By={k, +k YWy +(Fo—k, —k H,.
Co=Df. Co=DH, =Dk +k ), Co=(Pk_+k_ ), + FH,..

Our analysis carlier in this section indicates that the uniform slead ¥ atate of
(211 ={23) 15 stable 1o spalially uniform perturbations, To make the unilorm
steady stale siahle to perturbations with a spatial component, we reguire that the
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roats of (38) have nesative reul parts Tor all positive &7, If there 15 a roet with
a powilive real part for some &7, then the linear theory predicts thal, provided
the boundary conditdons (281 (30 are satisfisd, small random perturbations
away fram the steady slite can grow exponentially with a spatial wavelength of
Inik,

3.1 Conditions for real and Hopf bifurcarions to spatial patlern

For biological pattern formation, we require that any spalial palicrn bifurcations
must have finite wave numbers, & where 0= 57 <2 w0 and so

A0, By=00 0, (42)

In our subscquent analysis we assume thal the solution demain is given by
e s £, L= Dok where & is the critical wivve mumber at which the sysiem
Bifurcales to linear instability

300 Real bifircarion. We consider the case where this bifurcation o lincar
instability occurs tor the eritical wave number, &, a5 an cigenvalue of the lineur
system passes through zere. Tn lerms of the Routh Hurwitz condidons far
stahility, LAY =0 and AG™ = AETIBUT) — D) = 0 For all &, but

o [=0 k=,
Ok )
L

Thus we require

£ 1) (43
and
Gl A0, ¢y = (DM, — JDk_ +k ) —4DJHF, =1, {441
giving the crilical wave number, &, as
[
i T S {45)
: 2, :

Constraint {431 requires that Ay < 0 (see p-curve in big. 5) and therefore
Py s 0 so that €= 0 (42) To meet (43), we choose the larger toot for £ in (44)
ws the critical value, 22, at which C{E2) changes sian. As [ increases through 3
the maximum roor for (38) will increase through zevo. Linear analysis (37)
predicts o corresponding biturcation to the growth of unstable, stationary modes
with wave number &,

102 Hopl bifurcation, We now consider the alicrnale case, given by pure
imaginary bifurcation eigenvalucs. In lerms of the Routh Hurwitz eriterion.
A =0 and O =0 Ter all &, but

. . =0 =k,
AES — Atk DERD — Ol !
(k%) — AGDBG) — Clk ?{7,..;; if k2,

We write

A = ak® 4+ bEY + ek 4
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where
a= AR —C, =0,
b= Bat A48, — ),
o= B4 I —
d=Ad, 8, =L

[T we assume that long-range elastic «ffects and gel diffusion are Insiznilican
(=D =0, then » = 0. In this case, the constraints

b= oand e =0 {di)
vield
e = 2}; {47
whon
0 = dhif =), [48)
We assume (following Oster et al. 1983) thal =i} is given by
alth ==/{14+48), {49

where o is constant denoting the magaitude of the asmotic stress. IF thy =, then
(25), 1321 and (24) pive

Heo=wmlt) [ Al
Hy= Hy— He =146 + 6y (1)
Cuonseguently
ARy =k 1 ko H, (52)
AESY = (ke 7 Hylk, +k )+ HLF, (23]
COA) =(h_ My 4 HaFl . {34)

Provided F, 210, A, =0and 4. =0, the Routh—Hurwile crilerion is satisfied as
e | o

Clur simplifications means that the condition Tor a Hopf bifurcation (48) can
be written as a quadratic polynomial in =(d,), namely

am —ay )+ hir —a) e =10, (33}
where
=k,
= =2k _(H{ +205_+k W4k (B 1 k_Y)
~MH Ak WH kL,
Hi 42k +k VH. +E (k. +k 3)°
HHy +h_WH A+l E Nk, +k )H,

T satisfy (46), we choose the larger rool Tor = in L‘_H‘_H} as the critical value, n_,
at which A{&=) changes sign, producing a pair o[ pure imaginary roots for [jh}
given by o, = +in., w here

£

o= \B{&Tﬁ_., .;{_- (56)
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Thus {37) predicts A correspanding bifurcation to the exponential growth af

lineatly unstable, dispersive modss, with wave spectl o, and wave number k.,
riven from (47} by

b (m,—k -y WA R :
:._‘:_*_ + Sgin el + 2 _"_’I' (57)

WEH k)

k

=l

4 Nonlinear analysis
4.7 AMonvation and iheory

Lineat analysis indicales that for critical parameter sels spatial patlerns may
arise 4 the homaeszeneous stcady state becomes lingarly unstable with wavelength
2r k.. This is only valid Tor small lime and in finitesimal perturbations; over 4
longer time scale he exponential growth predicted by linear analysis Is domi-
nated by nonlinear tenms, We now include nonlincar terms thal can bound the
srowth of the perturba Lons 5o (hal they evalve to o new helerogencous steady
state solution. Associated wilh this process are three relevant time regions, The
first, denoted by ¢ is the imitial time range in which the solution bueging Lo
develop from the inilial perturbation. [lere we expec the linear lheory to hu
valid. The second region, where time is denotad by T, is thal in which the
nonlinear eiects begin Lo become Impartant. This is followd by the third region.
which is reached as T becomes infimte.

We use a standard method for Lhe nonlinear analysis (see, for cxample.
Matkowski 19700 and consider the case whore the bifurcation o spatial pattern
aeenrs as an cipenvalue of the linear syslem passes Lhrough zero {see Sect 311
In Sect. 4.5 we show that for the allernate casc, given by a Hopt ifurealion, the
analysis can be ruduced 1o an appropriate form by a change of variables.

4.2 Anglewiy of stationary parfers Jureation

We analyse here the nomlinear hehuviour of espanentially growing spalially
stutionary modes, predicted by linear analysis (Sect. 3017 as osccurring when
the maximum cigemvalue for (38) noreases through vero, Provided (42) ~(43) are
.atisfied. this bifurcation to linearly unstable muodes happens when I increases
throush D, the larger root of [44). The resulting wavelength ol the growing
paliern is 2mk,, whers k, is given by (45). Por lhe purpose of this analysis, we
assume lhal the domain length is an integral multiple of the wavelengih: in other
words I = 2am ik there is no practical lass of generulity.
We muke an o2 perturbation away [rom the eritical walue Tor £

DD wheel<eglandr— L 1, (5%

and use this as the basis for a series gxpansion ot &,
: BT o
ok, D) = a(k?, D) + ﬁ—n (k7. Detv 4 ). (59)
[h

The @(e™ term in {39) can be caleulated from (38 as
- f'(,_'_."(’.',t'J(J'ff)

i
. Bk a o, d

A Ir =
pp Ve 1)

(G}
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where B(k7) 5 given in (400, and (417 mives
QCEDRTY = BRE (1, — Bl M2 1 K Hak?. [ 6l)
Intrawduction of a slow time scale, 7 =7/, moans thal exponential growth
terms, predicted by the lincar analysis {37), can be written as (7)) capl | ik, x),
where
T by
(k2 DT 02
ap K6 DT ) ke

o

a( Ty = L:J'.I}(:
and do ek, DO is given in (60),
To simplify the analysis, we set Fia = 0. Thix would be the case if, for example.
we taok piecewise lincar dynamics for k() and & (8) (see Fig. 4). While reraining
the essential nonlinear behaviour, this reduces the terms to a manageable number.
With the new expressions for 23 in (58) and 7, we use (21) {3) to write a
vector equition for the perturbud sysem:

] "'? 5 IS.-UI.
LG—G|+N+E-q, (63)
VU
wlhere
i i
e —~k_ £y
e i
L —k, S S —Fy .o (6d)
T
3 a 23X L
0 Bt A= i,
o [N PR
i Feal 5 — 30000 — ) + Froplld — G — 8
— Pl S — Un} — Fraliy — (-"u:'{.'ﬂ - G'J.]
At il
N = r‘ | —HG —Gy) r_rvr P — o) + HealG — Gl —8y) | +hot.  (65)
__-_i I" i

+ f.lr,:lu {ﬁl = ﬁu }.xl-'.::!. + .:.famg l:':; (J:ﬂ ":{JI H{] J ?I.'Iﬁ
R

b Bl J-",-'ﬁ)

- -
& !

P s 0 R 3
E.'j'{b Sa) + anU—ﬂnjk e,

'!.:' ul

5 | . E IS -
E=i7 J?I:G' A+ rﬁi"‘m fhay v a2 ifr — 1) | +haot, [ Gi)

0 G
— =
L (A r'."TI: 4

eH
72 ISl o 1
el
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Har Fsoe Fop Hapy Hy,. Hepp and Mo arve defined in o similar way o M, and
hoot. indicates higher order 1erms,
We assume an ssymptotic representation for 5. 7 and f, given hy

F=S+ 3 5(x.T) G=G,+ Y e Ty, =0+ > 0%, 1),
R P i i—1

(67

Lrur asymplotic expansions for S, Goand 4 {87 reduce the analysiz ol the
nonlinear system {83) 1o a hierarchy of linear equalions for increasin I powers of
¢ (see Appendix A) The first such equation is

o
L(f},J =0, {68)
0,

5

while the equation lor the fih power of ¢ 1y

s,
L({?;) N+ E =0 (04}
Wi
where % and £, are calculated from the terms T ST FISROO - O . 1 2N

Since (68) possesses non-trivial solulions. a necessary and sufficient condition for
a solutien 1o (69) is given by the arthogomality relation

; | Lo I X =2 ;
lim -, (5% GY 0% (N A E) s ofT = 1), i

T

LI

where (5% % 271 15 4 bounded solution of the adioint prohlam

fge
LR G | =1
MLy

and L* s the adjoint of L. This relation, viven by the Frdholm Alternative,
suppresses secular leems which arise i solutions Lo (68) are presenl in N E.

Application of () 1o the hierarchy lincar equations indicates that no s lar
terms arise in the first two powers of ¢ { Appendix AL AL Cle ) the orthogonalily
constraing €70 vields « Landay equalion for the muaximum amplituds, |.x|, of
(see Appemdix A, Lgs, (100) and (1110,

The boundary conditions for (213=(23), given by {26) (29), constrain o 1o
be real. Therefore, provided + = | 1and ¥ =10 {see Appendix A, Eq. (1 131}, the
Landau equalion predicts that the large time solution eyolves 1o

S=k b, Xy el x) =+ e ),
G=1 1 (X %), costh, x) + 07, (7
U= {u, — /L — o X7 VY2 cosll, x) e 4,

where n,, uy, X and ¥ oare viven in Appendix A by (101) and {102), (112} and
(113), respectively.
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4.3 Patiern space and yensiticity analvsis for siationary pailern formetion

W now consider the pattern space {equivalent o a Twrntg space { Murray 1952))
of parameters needed Tor stationary pattern formation and the sensitivity of this
partern space Lo small changes in the modal parameters. When parameters lie
within the paltern space we expect that the spatially homogencons sleady state
will Dbifurcate 1 a stable paliern formation through the growth of linearly
unstable modes. We choose representative forms for F{S. G, 0) (Fig. ) and
HiG, iy (Fig. #) and consider the resulting projection of the pattern space on 1o
Lr-fi space,

Ax sumested in the previous section, the dyvnamics for &_ (@) and & {8 are
precewise linear {Fig. 71 Based on Oster er al. (1985), we choose o) and «(i)
s

1) F—— (72)

(73)

Here ¢ aml 5 are constants denoting the magnitudes of the o) and ()
respectively and ¢ 15 the dilation sl which the conrractiles elements are
strongest 10, for example. - =4 =z =3, and 1, = 0.1, then H,{G,, #,) < when
ty=T1 {Fig, 8} and thus the comstraing O, = 0 is met (43).

Fig, 7, Plecewise lncar dynamics lor

2 1 & oand &, The sel-pel dyvnamics, given
L FO8 Lo =4 G — & [0 (see
L2 vickd Fo= Fo, = for

k= LiZesti o M2 und Moy = Fy =1

a elae vl

— —1T Fip. B, Steady state dyvnamics for
Hilrg, Uk The steady state dynamics
T HOG, B anc G, )
Gy — Gl — il ) (23, where ol
respeclively, Purimeter wvidues are 1 — 4,
=3 and g = D1




47 WAL Deweds and T D Murmay
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Fip. %ab. -5 Palern spoce aod resulting critical wave number. a The paitern space 5 given by
= B where £ e D s the selution o {443 b The resalling critival wave pomher, £k, s the
solution {3 We olserve that ss ¢ increases, £, decrepses and &3 increases. Patameter valucs
are m=3 el 5= 41

1,07 Y
0.4
0.h
04|

} Fig, [ [fi-dependencies for the Lundao
0.2 constanta, ¥ oand 1 The Landuau vonslonts,

Y X¥oand ¥, oare caloulatsd Trom 11 and
i (113
0,074 0,020

Equations (44) and (43} yield the 2-ff pattern space and the resulling eritical
wive number, & (Fig. 9(a) and (k). The §-dependencies for the Landau
constraints, X and ¥, calculated from {112) and {113}, are shown in Fig. 10k

Figure 11 shows the erilical dispersion relation between max, ., - o Wlo,) and
2 defined hy the cubic (38), when § =001 and D is given by (44). All ather
parameter values ave as given in this seetion, The resulting erifical parameters
and solution constants are

D= 3435, k, =4.593, X — 0071, ¥ =0.6077, 4, = —0.253, n, = 007370
(74)

{see Figs, @ and 10 and Eqs. (101} and (102)). The resulting boundary stress 15
given by (34) as 5y = — L7L

3 OE O3
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B

25 sn 75 100 |.;"’~ I-Iig. I, lf'_':jlin_-u] dispumiun rili-
s o feading 1o spatial peliern
H‘"""—-—-.._ formation, The dispersion nela-
== ton s shown for F =000 and
0 B = 3435 Paramensr values
4T T -’.~, m =3 aml ¢ =—10]
For supcreritical P* thers is & hi-
[ureation to spatial patlermn as
=3 My e 2 WT, ] Booomes posilive

Table 1. Scnsitivity coeflicients for atationary patlern Tormalion. Rows refer t eritical parameters
and solulion eonstants and celumns refer to changes in nwdel purameters, The catries in the tahle
e dimensionless sensitivity eoellicients, svaluated at the values wiven 0 (74), For example, the eniry
i he lop, lelv cerner iz 200 S8

ari &l fta+ aldr [ e HliFL,
D T3 %10 ATt =750 108 26 = I AETw 107 ARLw !
ko =239 =1 32w L 280w 0t 0K = 10 AAT = 1070 A4l w7
¥ =&k = " [T 2AZw 1070 —RAd w0 D — 13w WY [26w (02
¥ A 137 = 10! FAZ A0 L2 1 233 = 10 [
'R —242= Y =137 x0—" 300w 100 — 105w 100 4237 %10 * —427 |0~

3 31900 1 =309 w0 TAR w0 I P VISl I T [ Ty £ 1 e

Using Ligs, {44, (45), (1013 (1023 (112) and {113), we numerically calcu-
lated the sensitivily of the critical parameters (P, and &) and solution constants
(ALY, w and w,). given in (74), ro small changes in the following model
parameters: (0 (longrange elasticity), n (osmolic siress, see (73, © and T
feontractile stress see (720 and £, and .ffm. (dynamics n[ sal-gel phase change,
see [24) and Fig, 7). Results are shown in Table | Rows refer Lo the l.ntu.ai
paramelers and solution constants and columns refer 1o the changes in model
parameters. Thus cach eniry in Table | indicates the sensitivity of a critieal
parameter or solution constant to changes in o model paramerer. 'The Tact that
the original equations and parameters (21} (25) are nondimensionalised means
that the numbers in Table 1 are dimensionless sensitivity coeficients.

Observing the columns in Table 1, we note thal the erilical paramerers and
solulion ¢onstants are very robust Lo changes in the sol-gel dynamics {entries in
the columns labelled & /88 and &/8F,, arc all less than unity). This insensitivity
suggests that our gqualitative formulation ol the *solation-conlraclion” hypolhesis
in Sect. 2.2 15 justifiable, because a more cxact formulation would make very
little change 1o the constants in (74) which define the selmion (71). Table 1
indicates that the eritical parameters and solution constants are fairly robusl Lo
changes in the magnitudes of the esmotic and conlractile stresses [entries in the
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columng labelled &/dén and 28t are order 1) bul are sensilive lo changes i
the long-range clasticity and to the value of T, {some entries in the colummns
labwled &/8F and &/0%, are much larget than unity). The sensitivity to § and
Ty suggests the biological mportance of these parameters; thus expurimental
investigations inte the nature of the long-range inleraclions in cytogel () and
into the exact form of the dilalion-dependent actomyosin comlractility {r,)
may aid to Turther understand the patterns.

4.4 Numerical simulation of stationary putiven formation

In the [ast section, we saw that when the orirical gel-dittusion conslant, £, is
exceeded (D> 3.). a spatial patiern of wavelenplh 2wk, arises. Provided
hat ¢ — (£) — 1) is sufficiently small, this spatial pattern is shown to exist
as a stable confguration when the Landau constant ¥ s positive (71, A
comparison between s analytical result and numerical simulations (method
cutlined helow) indicates agreement (or the £, given w {(74) and similar larpe
tme steady stale selutions for small ¢, However, we anticipate that (71) may
shll pive an indication o the resulting pattern in the biologically relevant
situation where ¢ s not necessarily a very small parameter, To this end, we
numerically solve {217-(23), with zero-gradient boundary comditions for oG
aml f. using the parameters given in the previous section and £ — 4.0 { Fig
12 50 as o he able w oapply a Crank—Nicholson type finite difference
solution method we inlegrale {23) (see (33)) and determine als) from (35) at
every time step. Thus & remains fixed al the boundaries and (20)={27) arc
mel. The value of miz) remained very close to that of @, (34) throughout the
simulation.

Fig. 12, Numerival solation for stationary patrern in
the sol-gel nuwadel. Shown s the large time {r — 2000,
finite differance pumerical seludon of the medel Gas.
[21) =023 The dowaiu siae 35 given by 05 x £ dm2k,
wheres &, the mode] perameters, and o discussicn of
the numerical mathed are piven in G lexl {Secrs,
4.3-4.4), Boundary conditions ave sero-srudient, and
it vorditions are given by ameall (<0001} wmodom
perturbalions of & & and 8 abont their stendy slites,
When the dilabion () increases above a critival level,
. bumiling pratems bind the actin fibres, thereky
reinfoucing the alresdy dense actin meshwaork in re-
mians af high gel concenlration

®

(NRLES
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4.5 Aralysis of dispersive wave paitevn formearion

[n this seolion we analyse the nonlinear behaviour of dispersive waves, Linear
analysis (Secl. 3.1.2) predicls a bifurcarion to these exponentially growing,
dispersive waves as the maximum cigenvalues for (38) increase through
Ll v I L

We consider the simplified case. given by =0 =0, in the interest of
keeping the problem analyiically tractable. Thus the Bifurcation to linearly
unstable modes happens as % increases through 7. the larger root of (33) The
resulling wavelength of the growing dispersive waves is Zn/k,, where & ix miven
b (570,

Since the system bifurcates 1o spalial patlern at &, — +is,, with a wave
number &, — + &, lmear theory suggests that we look Tor seluiions 1o (21)—(23)
{with =2 =01 which can be expressed 1w terms of the moving coonlinate
systen:

1

" %) T
=N 3 s =N I
! b K
Assuming that solutions are of the form S{zi.z¥ %), O(=F, 22 %) and
iz, ot it and procecding by analogy with the method of multiple seales, we
require that 5, 7, and @ salisly

[N

s

CRN

(i (el

;

3) bES, G, ),

*
(75)
soa -
i i
(= ami))e
cuf  dzit)
S Vo( 4 2(-L - LN rsen (76)
T e e e e Ly, L fili
rf'.?;').\ L Ar® Ok, Ln:’,“ d=if ] '
1) (ﬁ 4oL f_;{f € 4 T {; i )]ﬂ HiG, ) (77)
el e = e & s [
Lazy o dzf Y, \m?’ 0z ? ) :
[ere, the tme and space derivatives have boeen ree-wrilien as
e & o
=i | - }
4r  ar* ok \gsy o ezt
& 0 i
P Ty T, PN
e il iagd

In the nterest of notatienal simplicity, we now dispense with the asterisks when
referring to the moving coordinate systen.
Small perturhations ahoutl the uniform steady state are expressed as

F*=8 -8, G*=G-G, (*=g 4,
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Dropping asterisks, we look for solulions of the form

oG, B e eaplet 1 ikx) =5 expla t 4+ e {1 - ) enplaat + haa )l {TH)
where U<y s 1 and

h &
=0 — T gy =M+, U,

i W k.

Bilurcation to spatial pallern takes place when o (k% w, ) = @alk s m =1 The
fact that this hifurcation occurs al rere eigenvalues allows us o apply the
nonlinear biturcation theory discussed in Sect. 4.2, The value of 315 determinud
by the boundary comnditions {see Appendix B).

We make an ¢ perturbation away [rom the critical value Tor u,

= 4 cr where O %1 and v =41 {7
and use this as the basis for series expansions of @, and &;:
) ety T 4 -
gk, m) = ek n ) ok m et + ), =12 (&)
1A

The ¢z} terms o (80) can be caleulated [rom (38) as

-I. ').'t ) e ‘H 'I i e .
0T k2, ) = (55 (2 + i, o :a) 2B — i ARDCEDN e —s) (BD)
[ L [E [ ! J

and

5

[iF ; EG‘, -
—{fci, m) ———(kiim
dm i

where A", BUE?) and Ol are given in (32)-(34),

-

0B . J e i :
= {Iri-} = I"” and bt I:k_l:l = {Iti: f"f_l _hf‘: e {3‘2]
LE [N (F
Introduction af a slow Gme scale, § — o7, monns that exponential srrivwe by
terms. predicled by the lincar analysis (78}, can be written as ol T eaplif,.z ),
Al T) espl — de.z ), a2y explik z.) and (1) expl — ik, 7], where
JF:'f_]' y .
) _sxp[; Lep3, r-.,.]ri') (83)
te e
and dayidmlk?om) isoas given in (81
As in our analysis for stationary pattern tormartion, we sel F =0, s0 as
(0 reduce the terms lo n manageable number while retaining the essenlial
nonlinear hehaviour, With the new expressions for = (79) and 7. we use
(75— 77} to wrile a vector cyuation for the perturbed sysloom

1'5.\
L(G)I."\"+E—|l ()
L0

k]
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where
' oy
a0, i AN ” &k (r’j i L
e, \ ez, E--_a) : ko \dz)  éx £
& a2
o ) K
LBz Bz,
fe @ {0 4
e = 0 0., wffo iy |
o\ éz fz, ko hVBs e
f 1 Fa ] e
% il i
0 L+ ) o)
Rics f-:{:) g L&:. s,
o A 5
B
ko \Grp  dz 7 J
X . (85)
g A & Fo i i an T E
= 5[ — ,,—Ul = )H' T e ‘ﬂ‘f
A [ (f’-‘z, r.‘-zz) (-:32-_ i Bz ) [\r'_f'z, fiz, ]J ) ‘ RJ
e f-':,‘,r_l__':.‘ff | Fr;nGﬂ
e T i T W aN
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i é e, d E")
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Ay ol
e ';'—_|.'![' _.'I|E|" s
ol 8T
' L
E=¢ ar T ar +h.ot, (HT7)
s i e k
— 1, + WG+ # )
| (\r.‘-z, c'zz_)(é‘T ' jf

Gl e o
_mi-hu. Gy, thy)

LR ]
T
aned Ho, Fuyo P, He, Hyo, Hepe and Hygg are defined in a similar way 1o H,..

We assume an asymplotic representation tor S, & aml @, given hy
G=0Gy— ¥ 0z, 2. 1)

& = .clllll EH l: 'c'll"'ll’-."{zl 7Ty II}’
i de=
Dbyt Y. (e, T S
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Subslitulion inta {84) results in a hicrarchy of linear equations which are
evaluated lor increasing powers of « Using similar analysis 1o thal described for
slationary wave patterns (Sect. 4.2). we arrive at a Landau eguation Tor the
maximum amplitude, |« of @ (see Appendix B, Fqgs, (116) and (128}
A bounded stable solutiom of this equation reguires that v =1 and ¥ =10
Gsee Appendix B Lg. (130)) and predicls the maximum amplitude of #, as
| = (X ¥ Thus s 7 = o we expect % to lie on a cirele in the complex plane
which is centred about the origin and has a radius of (X/¥)'7,

We denote the real and imaginary parts of & by o — o, 4 d, Ordinary
differential equations, showing the ¥ -dependencies for z, and =, arise from
considering the real and imaginary parts in Fa. { 176) in Appendix B, As T uo,
these equations arne

:"; = (89)
IR .
= Frize o (90

where ¢, given in lerms of components calculated in Appendis B, is

C R et
i { i i
- (\R“] ¥ H/rlj)

§i=y ) (9l
R g
m( _ __)
-\ﬂ”;’ 3 H’(':'I':'f
The solution 1o (B9 (907 is
(-x,' B ( A ST+ A, cos(gid) k) 93
L B L Aasinfd T Ay cos(h TY 5 =

where Lhe cocflicients 4 and A, satisty A7+ 43— 2% = ¥/ ¥
By choosing
Ay = || costin
A, — lx| siniy),
the solulion (927 can be recwrillen as

.""ﬁ:‘ll‘.':l E J:‘I('S‘[nftﬁ.f' | ”:] fl;l_{'
(_x-- Cheom(p T4 ) L

Thus » slawly moves about the circle in the complex plane, which is centred at
the origin aml has a radivs of (7Y% with a period of 2z T (Fig 13)
Without loss of generality we choose a vero phase shift by setting = 0: the
gualilative. large time behaviour of (93} is not alfeelesd by a0 shift in phase. Thus
Lgs. (891 and (90) and Fuy. (128} in Appendix B predict that the larse lime
suludion cvolves to
S=L 0+ 20V Y, sin( T) — wy, cos( T coslk_z))
(n., sinfgh 1) 4wy, cos(p T sindk, 2,
| ety sinled T — 2oy, com(p T cosik, 2.
g, windd Iy oy, cos(H TN sindk, 20 — e (54
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1x.
)
O PO / o

Fig, 13 Movement of & about the camples plane, As

Tovod, o moves abowt the circle in the comple

e . . P i 2 .
2 ane, whick s cencred at the orizin and his o rodios
e =R/

of (X0

G=11 2e(XIY ¥, sin{d ) e cos(h T costh,z,)
(g 3I0{g T 1w, cOs{d T0) sinfk, 2 )
| (oo, sin{eh T} — iy, cos{p 1Y) coslk =)
Aty SIN(H T | s, cos( T sinlk 2,00 — &(c™) (95

= 2e(X} )2 (sin(hd) cosli,z)) | oos(T) costh, =z, )
—sinf g d') costh 2, ) + cos(eh ) costh,z ) o 6 (96}

where ey, i, e, and w, are the real and imaginary parts of n, and g. given in
Appendix Boby (117) and (118), and ¥ and ¥ are given in Appoendiz T by (129)
and (1340} cespeclively,

4.6 Patiern space and sensitivity analysiy for dispersive wave pattern formaiion

We now comsider the space of paramciers needed for dispersive wave partarn
formation and the sensitivity of this pattern space 1o small changes in the maodel
parameters. When paramelers lic within the pattern space we expect that the
spatially homogeneous steady state will hifurcate to a stable dispersive wave
pattern through the growih of linearly unstable modes,

As sugeested m Sect, 3.1.2, we choose =) as given by (49) and @, =0,
Precewise lincar dynamics for & (#) and & (9) yield £, =0 (see Fig. 7). The
values of & () and &_{f,) are chosen to be 0,75 and 1,25 respectively,

Choosing t{0) to be given by (72), with Ty =1, vields

Hio=1 4y (97
by Eg. (500, Thus My s independent of tidy ). Lquations (34) and (50} yield
Ho=1 sy=r1t (98}

In other words, as there are ne claslic stresses. the osmotic slress must exactly
Balance the teaction and houndary stresses in order for the system to slay al the
B = I} steady state.

Having fixed the steady state dynamics for /{5, g, 00 andd 1he farms for
i) and a(8), we now consider the resulting projection of the pattern space on
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3.07 > T, 0.4+
2
kC
0.3+
e~ Og
0.2
2,01
0.11
0.025 0050 007 0.025 0.050 0.075
a Hy b Hy

|
Fig. 14a,b. H,-n Pattern space and resulting critical wave number. a The pattern space is given by
n>m,, where © ==, is the solution to (55). b The resulting critical wave number, tk., is the
solution to (57)

to mn-H, space. The boundary of this space is given by Eq. (55). At this
boundary, the resulting critical wave number, +k., is given by (57) (Fig. 14(a)
and (b)). The H,-dependencies for the Landau constants, X and Y, and for the
periodicity constant, ¢, calculated from (91), (129) and (130), are shown in Fig.
15.

The critical dispersion relation between ¢ and k2 is defined by the cubic (38).
The resulting critical parameters and solution constants for H, =0.06 are

n, =2.165, k,=0.65591, o, =08301, X =0.03944, Y =1.445,
b =0.1458, u;, = —1.403, u;=—04669, u, =—1019, u,=—0.2673
(99)

(see Figs. 14 and 15 and Egs. (55)—(56) and (117)—(118)). Equations (97) and
(98) yield 65 = —0.94 and 7= 3:105 as the corresponding boundary stress and
traction parameter. Qur choice of 6, =0 means that H; >0 and H, >0 and
thus the Routh—Hurwitz criterion for stability is satisfied as k> —0, co (see Sect.
3.1.2).

Using Eqgs. (55), (56), (57), (91), (117), (118), (129) and (130), we numeri-
cally calculated the sensitivity of the critical parameters (n. and k.) and solution
constants (X, Y, @, uy,, uy;, 4, and uy;), given in (99), to small changes in H,
(see (97)) and Fg and F; (see (24) and Fig. 7). Results are shown in Table 2.
Rows refer to the critical parameters and solution constants and the columns
refer to changes in model parameters. Thus each entry in Table 2 indicates the
sensitivity of a critical parameter or solution constant to changes in a model
parameter. The fact that the original equations and parameters (21)—(25) are
nondimensionalised means that the numbers in Table 2 are dimensionless
sensitivity coefficients.

Observing the columns in Table 2, we note that the critical parameters and
solution constants are fairly robust to changes in the sol-gel dynamics (entries in
the columns labeled 8/0Fg and. 8/0F are typically order 1 or smaller), but are
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Landau constants, X and Y and for ¢.

-0.11 The Landau constants, X and Y, are
calculated from (129) and (130) (see a
and b). The periodicity constant, ¢, is

.0.24 calculated from (91) (see ¢)

Table 2. Sensitivity coefficients for dynamic pattern formation. Rows
refer to critical parameters and solution constants and columns. refer
to changes in model parameters. The entries in the table are dimen-
sionless sensitivity coefficients, evaluated at the values given in (99).

For example the entry in the top, left corner is 61: . [0H,

T f”“é}aﬂy &/apé sl ermtar
e by ST - g s s (arityyo
, 1.24 x 101 1.54 % 10° =101 x 10°

ko 2.70 % 10° 1.62 x 10~! —3.66 x 10—2

a, 4.27 x 10° 2.05x 10! —3.34 x 107!

X 1.52 x 10~! —1.70 x 10—2 —3.02x10—3

Y —7.59 x 10! 2.61 x 10! 7.06 x 10°

¢ - 1.32 x 10! —3.95 x 10° —1.16 x 10°

u, - 1.54x10° 1.88 x 10° 1.21 x 10°

u,  —1.04x10° 7.39 x 10! 3.94%x 10"

Uy, —250x107!  —9.54x10~2 —596x10~%
uy; =390 x 1o~l '?;' 6.7 10=27 7 12112/% 10=2
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fairly sensitive to chages in the boundary stress (many entries in the column
labeled 0/0H, are larger than unity; also see Eq. (97) for the relationship
between boundary stress (6,) and H, ). Insensitivity to exact sol-gel dynamics
suggests the same conclusion as we made in Sect. 4.3: that this may justify our
qualitative, formulation of the ‘solation-contraction’ hypothesis in Sect. 2.2. The
only solution constant that is sensitive to changes to all model parameters is the
Landau coefficient, Y. (This determines the magnitude and stability of the
heterogeneous steady state solution, see (128).) The sensitivity may be an
intrinsic property of dynamic pattern formation in sol-gel systems or, alterna-
tively, may possibly be an artifact of this particular model. The sensitivity to H,
(and thus g,) is most pronounced for =, Y and ¢. Whether this is acceptable in
a biological model depends upon the exact application. For example, the
sensitivity may be unacceptable in a model for the development of morphogenic
patterns, which should be stable to perturbations in the boundary conditions,
but is quite acceptable for our application to modelling filopodia in nerve growth
cones (Sect. 5.2), where the filopodial growth can be sensitive to surrounding
regions of neuron.

4.7. Numerical simulation of dispersive waves

In the last section, we saw that for any fixed H,, there is a corresponding critical
osmotic stress, m.. When this is exceeded (n > =,), dispersive waves of length
2n/k,, arise. Provided that ¢ = (n — =, )"/ is sufficiently small, these waves are
shown to be stable when the Landau constant, Y, is positive (94)—(96). A
comparison between this analytical result and numerical simulations (method
outlined in Sect. 4.4) indicates agreement for the value of =, given in (99) and
similar large time solutions for small ¢. However, we anticipate that (94)—(96)
may still give waves in the biologically relevant situation where ¢ is not
necessarily a very small parameter. To this end, we numerically solve (21)—(23),
with zero-gradient boundary conditions for S, G and 6, using the parameters
given in the previous section, except = = 2.365 and © = 3.305 (see (98)) (Fig. 16).
The numerical solution method is described in Sect. 4.4.

5 Applications to biological pattern formation

Our model for sol-gel dynamics (21)—(23) predicts that distinct spatial (Sects.
4.2-4.4) and spatio-temporal (Sects. 4.5-4.7) patterns will spontaneously arise
when the model parameters lie within the appropriate parameter space for
pattern formation. In this section we use these results to suggest how actin-dense
patterns arise from the contractile cytogel cortex of certain cells.

Actin-dense patterns typically take the form of fibre bundles, whether
protruding from the cell surface as stationary structures (for example, microvilli
and stereocilia) or as dynamic structures (for example, microspikes and filopo-
dia). The fibre bundles arise, to a large extent, from the action of actin-binding
proteins, such as those shown in Fig. 1 whose activity is usually related to pH or
calcium levels. Because calcium levels and dilation are negatively correlated
(Sect. 2.2) and that pH levels frequently follow calcium levels (Oster et al. 1985)
we assume that both the calcium and pH levels decrease with dilation. Even with
this simplifying assumption, the behaviours of actin-binding proteins are very
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Fig. 16a—c. Numerical so-
lution for dispersive waves
in the sol-gel model.
Shown is the large time
finite difference numerical
solution of the model Egs.
(21)-(23) for sol a, gel b
and dilation ¢. The do-
main size is given by

0 <x <2n/k,, where k_,
the model parameters, and
a discussion of the numeri-
cal method are given in
the text (Sects. 4.6—4.7).
Boundary conditions are
zero-gradient, and initial
conditions are given by
small (<0.001) random
perturbations of S, G and
0 about their steady states
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Fig. 17. Actin-dense cellular
cortex. Schematic drawing of
an actin-dense cellular cortex
(ectoplasm). The interior en-
doplasm may exert an os-
motic pressure on the
surrounding cortex. This os-
plasma membrane  motic force is distinct from
the osmotic force arising from
cortex the gel-like nature of the cor-
(ectoplasm) tex (n(0)). For the sake of
simplicity, cytoplasmic or-
ganelles have been excluded.
cell interior Stipples represent actin cy-
(endoplasm) togel and strands indicate sta-
ble elements (microtubules
and intermediate filaments)
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Fig. 18a,b. Hexagonal arrangement of microvilli. a When microvilli are sheared off, a hexagonal
pattern is evident. b View of a field of microvilli from the cytoplasmic side. The actin-sparse regions
between the bands of aligned fibres coincide with the microvilli protrusions. (Both figures are
redrawn from electron micrographs in Oster et al. 1985)

complex (see, for example, Weeds 1982). As a general rule, however, we expect
that calcium-sensitive gel-forming and bundling proteins (such as «-actinin)
become active at low calcium concentrations (increased ) and that the polymeri-
sation of actin filaments (through the inhibition of proteins such as profilin)
occurs at a high pH (decreased 0) (Weeds 1982). This is not the case for some
bundling proteins, such as fimbrin, that are calcium-insensitive.

We consider two specific pattern formations which arise from actin cytogel
present in the cell cortex (Fig. 17). The first is the formation of regular hexagonal
patterns of microvilli (Fig. 18). These are present on the exposed surfaces of
many kinds of epithelial cells, especially those that require a maximum area for
absorption, such as in the intestine or kidney (Alberts et al. 1983). This model
for microvilli pattern formation relates to the model of Oster et al. (1985); there
the authors suggest a mechanism arising from a simpler (two equation) model.
However, our analysis (Secs. 4.2—4.4) predicts that the resulting gel and dilation
fluctuations differ from the qualitative predictions given by Oster et al. (The gel
is out of phase.) This is also true for our analysis of the simpler model in Lewis
and Murray (1991). We suggest that the reason for this discrepancy stems from
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a b Movement

Fig. 19a,b. Microspikes and filopodia in actin-rich cells. a Schematic drawing of a nerve growth cone
at the tip of a growing axon which has extended many actin-containing filopodia. These extend onto
the surrounding surface and then retract back into the growth cone. b Schematic drawing of a
fibroblast migrating along the surface of a tissue-culture dish. Microspikes extend from the leading
edge of the cell. Locomotion is often accompanied by backward moving “ruffles””. (After Alberts et
al. 1983)

the fact that analysis in Oster et al. (1985) was restricted to showing that the
model equations could potentially produce pattern. The resulting qualitative
diagram (Fig. 4, Oster et al. 1985) is not supported by calculations for the phase
of the strain and gel (such as u, and u, in Sect. 4.3).

Finally, we consider dynamic extrusions from the actin cortex. Structures
such as ruffles and blebs (see, for example, Harris 1973) as well as microspikes
(Alberts et al. 1983) and filopodia (long microspikes) are found in a variety of
motile or growing cells (Bray and White 1988) (Fig. 19).

5.1 Microvilli pattern formation

Microvilli protrusions arise, at least in part, from a pressure difference between
the endoplasm and the extracellular fluid. Tilney (1975) shows this clearly;
an increase in the pressure exerted by the extracellular fluid results in the
disappearance of the microvilli, while a subsequent decrease to the normal
extracellular pressure results in the reappearance of microvilli after about 30
minutes. This result suggests that the internal and external pressure differences
may be sufficient to protrude the cortex into incipient microvilli (see Oster et al.
1985).

Epithelial cells which have microvilli protruding from their surface (such as
those lining the gut) are usually packed together closely and are bound to each
neighbour by tight junctions (Alberts et al. 1983). Hence we expect no movement
of the cytoplasm across the edge of the epithelial cell and the boundary
conditions (12), (15), (16) apply. Furthermore, if the cells are packed tightly,
then 0, <0 and stationary pattern formation (as described in Sect. 4.3) is
possible. Figure 12 illustrates this potential pattern. When the dilation increases
above a critical level, 0., bundling proteins bind the actin fibres, thereby
reinforcing the already dense actin meshwork in regions of high gel concentra-
tion. Between these actin-dense regions, the gel is depleted and less able to resist
the osmotic pressure exerted by the endoplasm. Microvilli ultimately result when
the weakened areas of cortex are pushed out by the endoplasmic osmotic
pressure.
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Within the microvilli, the actin filaments are bound together by a complex
assortment of proteins within varying degrees of calcium sensitivity (Weeds
1982). Other specialized proteins, such as vinculin, insert the actin cytoskeleton
into the membrane. A model which dealt with these mechanisms would have to
be considerably more elaborate than this model for microvilli pattern formation,
which deals only with the inception of microvilli and their spatial pattern.

An explanation for the regular hexagonal packing pattern requires both
linear analysis and numerical simulations in two (rather than one) spatial
dimensions. This material is discussed in Lewis and Murray (1991) but is briefly
summarised here: linear analysis in two dimensions shows that the resulting
patterns have a geometric periodicity. Thus we expect that patterns such as
squares, rhombi or hexagons may occur. Of these, the hexagonal pattern has a
high degree of structural stability and thus is most likely to occur. Alternately, if
we suppose that the foci of contraction form sequentially from an initiation site,
each new row will form in the space between the previous foci, thereby leading
to a hexagonally symmetric pattern (see, for example, Murray 1989).

Structural, developmental and organizational similarities between microvilli
and stereocilia suggest the possibility of common formative mechanisms (Oster
et al. 1985). The internal structure of stereocilia is like that of large microvilli
(Tilney and De Rosier 1986; Alberts et al. 1983). Stereocilia, found on the
surface of the inner ear, are instrumental in converting sound waves into
electrical impulses. They protrude from the cuticular plate of specialised hair
cells in an array of hexagonal patterns (Hudspeth 1983). This array arises from
a field of small regularly spaced nodes which later grow into rods, each of which
is filled with aligned actin fibres (Oster et al. 1985). The possibility that
stereocilia arise as osmotically generated protrusions from the actin cortex could
be tested by the application of an extracellular osmotic force during develop-
ment. A resulting reversal of development would indicate that such a hypothesis
is valid.

5.2 Dynamic pattern formation: Microspikes and filopodia

Structural and functional resemblances between the protrusive cellular processes
present in a variety of motile cells led Tosney and Wessels (1983) to suggest that
the filopodia and microspikes, which extend from nerve growth cones and
fibroblasts, may arise from analogous mechanical and chemical origins.

While the nerve growth cone is the growing tip of an axon, fibroblasts are
motile embryonic cells which secrete a fibrous material, helping to make up an
extracellular matrix within which cells move. In both cells, the microspikes and
filopodia may guide the movement of the cells up haptotactic gradients (Alberts
et al. 1983); protrusions adhering to the substrate contract and move the cell
towards the adhesive site.

Both fibroblasts and growth cones have actin-rich, gel-like, contractile cor-
tices (Dunn 1980; Tosney and Wessels 1983). For each cell, forward movement
is approximately 0.01 um/s (Alberts et al. 1983; Harris 1973; Abercrombie et al.
1970); however, the movement mechanisms are quite different. In the case of the
nerve growth cone, forward movement results from the growth of the axon (Fig.
19) (Alberts et al. 1983). Movement of fibroblasts, on the other hand, is thought
to arise from opposing flows of gel in the cell cortex and of sol in the endoplasm
(Bray and White 1988; cf. Oster 1984). These flows may be considerably faster
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than the movement of the fibroblast itself (0.05 ym/s) (Dunn 1980) and add an
extra level of complexity to any model for explaining the extension of mi-
crospikes in fibroblasts. In the interest of keeping the model as simple as
possible, we choose to concentrate on the mechanism for the extension of
filopodia in nerve growth cones, while noting that a very similar mechanism may
also be applicable to fibroblasts.

Filopodia emerge at seemingly random locations near the front of the nerve
growth cone (Alberts et al. 1983; Tosney and Wessels 1983). Extrusion of a
filopodium is often preceded by the emergence of a rounded protruberance at the
cell margin, which appears dense in phase-contrast optics. This protruberance
forms over the course of 2 to 5 seconds before losing its dense appearance as the
filopodium emerges (Argiro et al. 1985). Extrusion of the filopodium is rapid,
initial extension rates being of the order of 0.1 um/s (Argiro et al. 1985).

Current theory (Argiro et al. 1985; Tosney and Wessels 1983) suggests that
extrusion may occur by a rapid polymerisation of actin, in a manner consistent
with models for extension of the acrosomal process of sperm (see, for example,
Tilney and Inoué 1982). Here, rapid assembly of the actin polymers which make
up the acrosomal process can be triggered by a rise in pH. It is likely that a
profilin-like protein (see Fig. 1) stabilises the pool of actin monomers which
serves as a source for the polymer growth (Weeds 1982). This extrusion
mechanism contrasts with that suggested for microvilli (Sect. 5.1) where the
endoplasmic pressure plays a key role.

After 30 to 150 seconds the filopodia reach a length of approximately 5 um
and typically are reabsorbed or retreat back into the growth cone. Some
filopodia which adhere to the substratum may remain stable for longer time
periods (Argiro et al. 1985). Filopodial formations cease when the nerve growth
cone is treated with cytochlasin, a drug which prevents the sol-gel transition by
binding to the actin filaments (Forscher and Smith 1988).

Tosney and Wessels (1983) suggest that for a growth cone the transition
from a smooth surface to a protrusion may require alterations in the interactions
between actin and myosin-like proteins, or alterations in the gel-sol condition of
the cytoplasm. Using results from our mechanochemical model (21)—(23) (Sects.
4.6-4.7), we will show that such spatial and temporal changes in the dilation (6)
and the sol (S) and gel (G) concentrations may indeed occur in a manner
consistent with the extrusion of filopodia.

Experimental measurements clearly indicate that filopodial extrusions corre-
late with local ‘hotspots’ in intracellular calcium levels (Conner 1986; Cohan et
al. 1987; Kater et al. 1988; Silver et al. 1990). However, the fact that the
diffusion rate of calcium occurs on a much faster time scale than that of the
filopodial extrusion suggests that the calcium gradients must result from signifi-
cant local differences in either the intracellular release/resequestering rates or the
cell membrane permeability to calcium (Conner 1986; Cohan et al. 1987; Silver
et al. 1990). Thus the biochemical nature of calcium regulation in the neuronal
cytoskeleton becomes important for understanding the localized calcium
‘hotspots’ and their relation to filopodial extrusions.

Calcium regulation in the neuronal cytoskeleton is extremely complex and is
an ongoing area of research (see Forscher 1989, for example). As well as
regulating sol-gel dynamics through intermediate proteins (see Fig. 2), calcium
levels can themselves be regulated by the intermediate proteins. However, it is
likely that the polymerisation-promoting protein, polyphosphatidylinositol 4,5-
bisphophate (PIP,), that inhibits profilin (see Fig. 1), plays a key role in the
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formation of filopodia. The rapid actin polymerisation which occurs during
filopodial extrusion may be regulated by an interaction between PIP, and the
fragmentation protein, gelsolin. Gelsolin creates a pool of monomers (sol) by
fragmenting the actin, while PIP, promotes the rapid actin polymerisation (see
Forscher 1989 for the biochemical details). However, PIP, also controls local
calcium levels; hydrolysis of PIP, eventually produces two messenger products:
protein kinase C (PKC) and inositol 1,4,5-triphosphate (IP;) which in turn
regulate the influx of calcium across the cell membrane and facilitate the release
of intracellular calcium. Lastly, these increased calcium levels can activate the
gelsolin to fragment more actin.

We suggest that a possible mechanism for the growth of a filopodium is the
following: when the sol-gel cortex contracts below a critical dilation, 6,, and the
sol concentration increases, activated gelsolin interacts with PIP, so as to trigger
growth of the filopodium. The PIP, may also be instrumental in controlling local
calcium levels (and thus the pH) during the growth of the filopodium. The dense,
rounded protruberance observed by Argiro et al. (1985) as preceding the
filopodial extrusion may be a contracted nodule of gel. A subsequent change in
cytogel dilation, arising from oscillatory behaviour (shown in Sects. 4.6-4.7)
(Fig. 20), could sufficiently alter the PIP,-gelsolin interaction to reverse the
polymerization process and result in the withdrawal of the filopodia. Thus a
possible mechanochemical mechanism for the inception of filopodia can be
formulated by using only the inherent properties of the cytogel cortex.

Other biochemical pathways to filopodial growth may be possible. For
example, the neurone-specific growth associated protein, GAP-43 (alias B-50,
F-1, pp46 or p57) induces filopodia in non-neuronal cells (Zuber et al. 1989). But
this does not demonstrate that the molecule is essential for filopodial formation
since many cell types extend filopodia but do not contain GAP-43, including
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Fig. 20. Simulation of possible dynamics leading to a filopodial extrusion and retraction. When the
dilation decreases below the critical level, 6, rapid assembly of the actin polymers results in the
growth of a filopodium. This process is reversed when the dilation increases above 6. The
time-dependent profile for 0 is taken from Fig. 16 for ¢ = 1706 (lower) and ¢ = 1707 (upper)
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dendritic growth cones (Gordon-Weeks 1989). However, regardless of the exact
biochemical pathway taken for filopodial growth, we suggest that the dynamic
mechanochemical instabilities, arising from sol-gel interactions in the growth
cone cortex, may provide a spatial patterning of perturbations which then give
rise to filopodia.

Appendix A: Nonlinear analysis of stationary pattern formation

Substitution of (67) into (63) results in a hierarchy of linear equations
for increasing powers of e. Through solving these equations for the first
three powers of ¢ we calculate the coefficients, X and Y, of the Landau equation
(111). .

We define the matrix L, as arising from the action of L on terms of the form
exp(ikx). Thus

k*+ k., —k_ F,
Lk= —k+ Dck2+k_ _Fo
0 ikH ik(Bk? + Hy)
At O(c) we have
Sy
L Gl = 0.
6,

Therefore, solutions are of the form

Sy
G, | = aU exp(ik.x) + aU exp( —ik,x) (100)
6,

where o = aya(T) and

is the eigenvector given by L, U =0. Thus
uy = —((DkZ +k_)Bk? + Ho) + FoHy)/(k , Hg) (101)
u = —(Bk? + Hy)/Hg. (102)
At O(¢?) we have

Sz
L G2 +N2 = 0,
6,



60 M. A. Lewis and J. D. Murray

where i
Fgp8,0, + FeG, 0,
N, = —Fg9810, — FoG, 6,
=
i} 0%0
o ( BG - —— + HgeG, 0, + H9902/2>
= QWa2 exp(2ik,x) + @V exp( —2ik.x) + @@l
for
o o9
oMV =| ¢ and Q@ =(4¢%|,
2ik,.q$" 0

with components
g% =u, Fsg + u, Fge,
g =—q,
q5° = u(BkZ + Hgg) + Hoq 2
g =2u,Fgy + 2u, F,

99 = —qf.
Thus
S,
G, | = o, U exp(ik,x) + & U exp(—ik,x
6,
+ Va2 exp(2ik,x) + Va2 exp( —2ik.x) + V®|a|?,
where

Ly VO+Q®=0
LyV® +0®=0.
Solving (103) for V™ yields
o = Do’
0§ = (¢ + D, (k. +k_ + 4k2)§")/Fy,

45 Fo + (4Bk2 + Ho)qs"

D _ ‘
v =~ HF 7 D.(APK2 + Hy)(k, + k_ T 4k3)

(103)
(104)

Implicit in our asymptotxc representations (67) are the assumptions that S;, G;
and 6, are @(1) for all j >0, and thus that V' is also ¢(1). Hence our analys1s
is restrlcted to those parameter spaces in which the denominator of v§" remains

o(1).
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The matrix L, is rank deficient, yielding only one equation for the three
unknowns in (104). To solve (104) uniquely, we use the conservation laws (30)
and (31) to provide further constraints. Substitution of (67) into (30) and (31)
yields

~I‘L(Sj'i'fd‘;,-)dx=0 (105)

0
L
f 6,dx=0 (106)
0

for all j > 1. Our choice of L =2nn/k, and j =2 means that
VP +oP =vP=0.
Using these constraints, (104) gives
v = —qPlk, +k_).
At 0(e®) we have
S5
L|G; |+ N; + E; =0, (107)
05

where .
Fg9(S,0>+ S,0,) + Fe(G, 0, + G,0,) A

—FSG_(SIMO? + Sze}) - FGG(GIQZ + G,0,)

-

2 D%, | o%
x (—ﬂGl #—ﬂGz'a?;“*' Hgo(G,0, + G,0,)

'+ Hyg0,0, + Hg0 G, 032 + Heoao%/s)
S

and
( 35’, 601 " h
T +-6—T-k._ k. |
‘661,__,;;%;_‘,6261 :
oT  oT ox?

2 (%
ox\oT

Anticipating that secular terms may arise from N, + E;, we solve the adjoint
problem,

J

S*
L* G*| =0,
o*
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where L* is the adjoint of L (64), to prepare for application for the orthogonal-
ity condition (70). Solutions are of the form
S*
G* | = B, (T)W exp(ik.x) + ﬁz(T)_W_’ exp( —ik,x), (108)
0*

where B,(T) and B,(T) are arbitrary and

1
W = WZ
W3,
is the eigenvector given by E;TW =0. Thus
W2 = kz /k_'. + 1
and
—ik,wy = (k_ — (D.k2 +k_)kz [k, +1))/He.

Equation (108) indicates that terms of the form exp( ik x) give rise to a
secular solution ot the O(¢*) equation (107). We proceed by isolating these terms.
Thus

N; + E; = R®a|a|* exp(ik.x) + ROg|af? exp( —ik.x)
+ vR®0 exp(ik.x) + VR®4 exp(— ik x)

X d SETey) -
+R® d_;" exp(ik.x) + R® % exp( —ik.x) +n.s.t.,

where
f - Fepu 09 +u o8 +0P2+ v{d) W
+ Fop(uv? + up08" + 08 + o)
o  Fogluo®+ 10 + 0P+ o)
- — Fopuv P+ ups” + 0P + o) ’
ik (k2 B(4uvsP + v + o) + Hep(uv P + v + 0P +08)
L + Hgp@9 +v§) + 3H oot /2 + Hogo [2), J
0
RO = (K,
0
{62 oW 20
w+k_Jk,
RO=| w+1 )

ik,

and n.s.t. indicates terms that do not give rise to a secular solution.
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By choosing §,(7T) =0 in (108), the orthogonality condition (70) yields
— du

R® - Wala] + vR® - Wa + R® - W =0, (109)
while the choice of B,(T) =0 yields
W-Wa|a|2+vﬁ-wa+ﬁ~wj—;=o. (110)

Thus, solutions satisfying (109) (or its complex conjugate (110)) do not give rise
to secular terms.
Multiplying (109) by & and adding it to (110) multiplied by o gives

1 d'“lz 2 4
34T =vX|af> — Y|aft, (111)
where
R?. W
X= —‘R( _"_/>, (112)
RO® .- w
. W
Y=‘.R<R K) (113)
R® . W

This Landau équation predicts the amplitude of |u|.
Using (61), we calculate i

- 19C/oD(k?)
R®.w=_Z27%)
4 Hsk
Equation (40) yields
= _  Bk)p-»p
R® . W= _2JIb=D,
Hgk,
Thus Eq. (60) gives
d .,
55 k2. D),

and the linear term in (109) is commensurate with the linear behaviour predicted
by (62) and (60).

Appendix B Nonlinear analysis of dispersive wave pattern formation

Substitution of (88) into (84) results in a hierarchy of linear equations for
increasing powers of €. Through solving these equations for the first three powers
of € we calculate the coefficients, X and Y, of the Landau equation (128) and the
components of ¢ (91).
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We define the matrix L,(z) as arising from the action L on terms of the form

exp(ikz). For example,

' % E Y N
ko ) k k-
otk ok et
Li(z) = - =k, ikkq‘+k”.. , ikiacr—Fg
o ufifesn
kHy  \k 7T
- 7

At O(¢) we have

S,
L|G,|=0.
6,
Therefore solutions are of the form
S,
G, | = aoa(T)U® exp(ik.z;) + ,a(T)U® exp( —ik.z;)
0,

+ 0,d(T)U® exp(ik.z,) + a3a(T)U® exp(—ik.z,),
where oy, . .., @ are arbitrary constants and

L z)UD = L_; (2)U® = L (2)U® = L_ (2)U® = 0.

Thus
U9=0u0=U0
and
UO=U®=1,
where
5 ‘ul
U = u2
' 1

" is the eigenvector given by L, (z,)U =0.

(114)

(115)

To keep the solution real, we choose a; = & and o, = d;. Application of the
zero-gradient boundary conditions for S (28) and G (29) and the conservation
law for 0 (30) constrains a, = &, making y = 1/2 in (78). Therefore, we write the

solution (115) as

S

G, | = aU(exp(ik,.z,) +exp( —ik.z,)) + o'cl_](exp( —ik.x;) + exp(ik.z,)), (116)

6,
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where o = aya(T) and

ul = (0'2 + iac(HG k ) HGFG k_ He)/(k+HG) (117)
U= —‘(10' +H9)/HG g (118)
At 0(e?) we havg ;
S,
L Gz +N2=0,
6,
where Bt &

e

g, 0 0 0o 0
7‘:<Sl(a_zl ‘722>01+<521+‘722> l (6_21 azz).[ o dx)

+ FgpS,0,+ FgeG 16,

e (g2 _ Yo {2 [ 2 _'__i
M= |1\ 755)0 e T e )% e T

_FSOSIGI FGGGIOI

(0. dNfo. (8. @ ,
(62i+ az2)<k G (az, ¢z2)0‘ 4 HyyG,0, + H,p0? /2)
.

J

= QWa? exp(2ik,.z,) + Q(‘)o'z2 exp( —2ik,z,)
+ 002 exp( —2ik,z,) + 0Pa? exp(2ik,z,)
+ Q2 explik.(z) — 2,)) + QP52 exp( — ik (21 — 2,)
+ Q®laf exp(ik.(z; + 2,)) + @P|a* exp(— ik (z: + 22)) + Qe
for
N q?\
09=149), 1<i<s5,
q9
with components
gV = 2io uy + u; Fsp +u, Fp
qs" = 2io.u, — uy Fsp —, Fq
q§ = —2k.0.uy + 2ik (uy Hgo + Hoo [2)
P=qP  aP=gP  P=—g
9" = 2u, Fso + uF o)
g = —2(u; Fsy +u, Fgp)
g9 =0
(0 =2R(gP g}, P =2 g}, g = ~23{gP g0}
PR, P =R, P =0
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Thus
/s,
G, | = o, U(exp(ik.z,) + exp( —ik.z,)) + & U(exp( —ik,z,) + exp(ik,z,))
6,
+ V42 exp(2ik,z,) + Vg2 exp(—2ik,z,)
+ V@42 exp( —2ik,z;) + VOg? exp(2ik,z,)
+ VO explik.(z1 — 2,)) + VO exp( — ik, (z, — 2,))
+ Vo exp(ik,(z, + z,)) + Wlalz exp( —ik.(z; + 2,)) + VOlaf?,
where :
L @)VO+ QW =0 (119)
L oy (z)V®P+09=0 (120)
L (z, = z)V®+ 0® =0 (121)
L (2 +2)V9+ 0@ =0 (122)
LyV® 4+ 0® =0. (123)

These equations, of the form LV + Q =0, have the solution V = —-L~1Q,
provided the L is non-singular. However, as calculating L~ is algebraically
cumbersome, we take advantage of the zero element in L to write a general
solution of the form

U
V=WL, Q) ={v2)
Us
where ,
v3 = (n(l2q3 /b2 — 42) Iy — 123 /1s2 + ‘11)/(1;’1\(123 = balys[13) [y + hals [l — 1),
Uy = —(q3 + h303) [ Lsy, |
0y =(l2qs/l; — g + (la 133 1z — I2)v3) [y,

for
VR
0=|gq,
UE)
and

L=(;) 1<ij<3.
Thus our solutions to (119),:(120) and (122) are given by
VO = WLy (z1), @),
VO = WL_y,(2:), 0?),
Ve = V(ch(zl +25), @9).
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As neither a®exp(z; —z,) nor |x> have a space component, we use the
conservation laws (105) and (106) to add constraints so that the rank deficient
systems (121) and (123) yield unique solutions. The application of (105) and
(106) for j =2 and L =2nn/k, gives

P + 0o’ exp(2io 1) + TP + 0)a? exp(—2io, 1) + @ + v | =0

and

l2

v§%? exp(2io, 1) + 5§&* exp( —2io, 1) + vP|a| =
As these must hold for arbitrary ¢, the solution is
1P+ 0P =0P =0, vP+0P=0P=0,
yielding i
o = —qP/Qio, +2k, ), 0 = —q Pk, +K_).
At O(e®) we have

Ss
L G3 +N3+E3=0, (124)

where

3 laN. (8 0
+ azl+azz>S2 (aZI azz)J\el dx)

+ Fg(S,0, + S,0,) + Fge(G,0, + G,6,)

A A G
et am)o () [ e
(i am)e () [e)

— Fs(S,0,+ S,0,) — Fge(G1 0, + G,0,)

o o\fo. a0 a 0
(a+a;)(z (G*<az.—a—h)0 Gz(al aa)@r)
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and

([ 8s,, 08, A

1 1 ;

ar Vot K-+

_ G, 96,

iins ortor

0 20,

g (az,» £ 622)(6T (G +6) )

J

Anticipating that secular terms may arise from Ny + E;, We solve the adjoint
problem,

S*
L* G*|=0,
0*

where L* is the adjoint of L (85) to prepare for application of the orthogonality
condition (70). Solutions are of the form

S*
G* | = B (T)WD explik,z,) + B(T)W® exp( —ik,z,)
0*
+ Bs(T)W® explik,z,) + Bo(T)W® exp(—ik,z;),  (125)
where B,(T), B,(T), B5(T) and ﬂ4(T);are arbitrary and

L. @)W =L, ()W =0.

Thus
1\ 1
WO =(w,| and W@={ w, |
Wi : —w,
where
wy=(—io, +k2+k,)k,
and <

—ik,wy= (07 +io.(k? +k_+k,)—k_k2)/(Hgk, ).

Equation (125) indicates that terms of the form exp( + ik, x) give rise to a secular
solution to the O(e®) equation (124). We proceed by isolating these terms. Thus

N; + E; = RPa |u|* exp(ik,.z,) + _I_imo"dalz exp( —ik,z,)
+ RPalo|? exp(—ik.z,) + Fﬁo'zlodz exp(ik,z,)
+ VR® o exp(ik.z,) 4+ vR® & exp( —ik,z,)
+ vRWq exp( —ik,z,) + vRWa exp(ik,z,)
p T
+R® %, exp(ik.z,) + R® % exp( —ik.z;)

exp(—ik,z;) + R©® i exp(ik.z,) + n.s.t.

Oa
+ R‘“’ oT oT
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We write the vector components of R® as
r{)
RO=(r9), 1<ix<e6.
r{)
Thus R® is given by
r{P =io (@ 08" +209) + 0P — 0 + 0 {? — v )
+ Fsp( (09 +v8) + (05 +0P) + 0P + 0 + 0P + o))
+ Fg(u, (05 + v§°) + i, 0§ + 0) + 0 + 0§ + 0P + v{))
) = io (@05 + 208) + v =08 + 0§ — o)
= Fsp(u, (09 +0§7) + i, (08" + 09) + 00 + 0 + 0P + v(")
—Fgo(u 08 +0§?) + @05 + v§) + 0§ + v + v + v{))
r{) = —k.0 (2,0 + 0§) + 0§ + 0§ — v — vP)
+ ik (Hgo(u, 0 +0§) + i, (0 4 v§) + 0§ + 0§ + 0§ + v8))
+ Hop(v + 0§ + 0§ + 0§") + 3Hgee(2u + i85) 2 + 3Hopp [2).
We calculate the components of R® as
=, P =, D=,

where we have used the fact that ¥® — V@ = p® _ p® — (. The components
R® through R® are calculated as

FP=0,  rP=0, P =ik(1+u),

rO=rP, P =rY, r®=—rQ,

r®=u+k_Jk,, r® =u,+1, r =ik,,

r®=r®, r® =r, re® = —r.

By choosing B,(T) = 5(T) = B4(T) =0 in (125), the orthogonality condi-

tion (70) yields

RW. Walalz +VYR® - WOy 4 RO . W(l)%: 0, (126)
while the choice of B,(T) = B5(T) = B,(T) =0 yields

RO WOslaf +VED - W03 4 RO WO (127)

The choice of B;(T) or B4(T) as the non-zero coefficients yields two further
equations that are identical to (126) and (127), once the vector products are
multiplied out. Thus, solutions satisfying (126) (or its complex conjugate (127))
do not give rise to secular terms.
Using (56), (52), (54) and (82) we calculate
oc
ye') a

0B
(k?) +io, —— (k?)
RO -WH = _ LAY

gk
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Equations (56), (52), (53), and (54) yield ' -/
RO . W - 2(B(k3) — i\/ A(kf)c(kf)) |n= w2

Hek,

Thus the linear term in (126) is commensurate with the linear behaviour
predicted by (83) and (81).
Multiplying (126) by & and adding it to (127) multiplied by « finally gives

1 d|a'2 2 4
>~ = VXl — Y| (128)
where
[€) 2K (1)
X= —m<R—W_ ) (129)
RO Ww®)
a. (1)
Y=91(£L_). (130)
RO . Wa®

This Landau equation predicts the amplitude of |«| in the @(c) equation (116).
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