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Summary. Contractile actomyosin systems play a central role in the generation of
intracellular patterns. Models for pattern formation have benefited greatly from the
application of mechanochemical theory. However, investigations of the patterns have
been primarily qualitative in nature; the two-dimensional nature of the evolving pat-
terns has not yet been addressed mathematically, nor has the evolution of stable het-
erogeneous steady-state solutions. We consider these issues, supporting our analytical
predictions with numerical simulations in one and two spatial dimensions. We show
how, for certain gels, the two and three-dimensional tensor equation which describes
a balance of forces can be reduced to a reaction-diffusion equation.
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1. Introduction

Eucaryotic cells (those with nuclei) are highly organized and differentiated. They are
capable of altering their shape, repositioning their organelles (or internal structures)
and, in many cases, moving from one place to another. These properties of shape,
nternal organization and movement depend on the cytoskeleton, or a complex network
of protein filaments in the cytoplasm (Alberts et al., 1983). Within the cytoskeleton,
a contractile actomyosin gel provides the basis for generating forces.

The relationship between the molecular structure of the cytoplasm and its mechani-
cal properties is the key in the understanding of cytoplasmic operation. Current theory
points to a sol-gel phase change as the crucial feature governing contractile activity
(Taylor et al., 1979; Condeelis, 1983). This theory has been successfully incorpo-
rated into mechanochemical models for sol-gel dynamics which have been applied
to subjects as diverse as the formation of hexagonal microvilli patterns (Oster et al.,
1985), amoeboid movement (Oster, 1984) and plasmodial oscillations in Physarium
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(Oster and Odell, 1984). Such models use a system of partial differential equations
to describe quantitatively the sol-gel chemical kinetics and stress-strain mechanical
relationships within an element of cytogel. Investigations have been primarily quali-
tative in nature; the two-dimensional nature of the evolving patterns has not yet been
addressed mathematically, nor has the evolution of stable heterogeneous steady state
solutions. This analysis is, however, essential for a full understanding of the long-
term pattern formation potential of mechanochemical sol-gel models. The fact that
contractile actomyosin systems play a central role in the generation of intracellular
forces for movement and pattern formation is justification for a detailed analysis.

In this paper we consider a slightly modified version of the Oster et al. (1985)
model for microvilli pattern formation (see Lewis, 1990). Our model has a wider
application in the context of pattern formation in the cortex of Paramecium (Lewis,
1990) and possibly can explain a mechanism for the generation of hair cell patterns
in the inner ear (Oster et al., 1985). It is assumed that, within the cell, mechanisms
adhere to Newtonian dynamics. At the intracellular level inertial terms are negligible
compared to viscous and elastic forces; motions cease as soon as the forces are turned
off (see, for example, Purcell, 1977). Thus the cytogel system is described by two
equations, the first of which reflects the fact that, at any given time, the mechanical
forces acting upon the cytogel must balance while the second describes the chemical
dynamics for the gel. The model is

V:(oy + 6 + 64+ G9os) = 0, €))
Z—Gt +V. (Gg—l?l)_ DGAG — k+(0)So + k-(0)G = 0, 2

where G is the concentration of gel, So is a constant sol concentration, D¢ is a dif-
fusion coefficient for the gel, u is a vector denoting the displacement of the stable
elements (noncontractile microtubules and intermediate filaments) from their original
unstrained position, and § = V - u is the dilation. The dilation-dependent conver-
sion rates from gel to sol (k+(8)) and from sol to gel (k—(6)) are shown qualitatively
in Figure 1. The viscous, elastic, active traction, and osmotic stress components of (1)

s k_

)

Fig. 1. The sol-gel dynamics as a function of dilation. The
gelation rate (k) and solation rate (k-) are given as qualita-
tive functions of the dilation, 6.
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are given by

G
o, = —(p1€ + p26,0), 3)

Co

G Y

o = 'yc—o [e — BAe + ¥ (6 — BAO)I], 4)
oy = £;f'r(t‘J) L &)

Co
oos = —mw(O)], 6)

where € = %(Vu + uV) is the strain tensor, ¢ is the density of cytogel at @ = 0, u;
and p, are the shear and bulk viscosities of the gel, respectively, y = E/(1 + v) and
P = v/(1 — 2v) are given in terms of the Young’s modulus (E) and the Poisson ratio
(v), and B > 0 is a measure of long-range elastic effects. The dilation-dependent
traction (7(6)) and osmotic stress (7(@)) terms are shown qualitatively in Figure 2.
The reader is referred to Oster et al. (1985) and Lewis (1990) for a detailed derivation
of the model (1)-(2).

Under the assumption of a time-independent boundary stress oy the force balance
equation (1) can be integrated in one dimension to give a pair of reaction-diffusion-

Fig. 2. Stress-strain relationship for actin gel. Ignoring sol-gel
dynamics, the relationship is shown for a constant gel concentra-
tion.
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convection equations, namely

2
23_0 - gﬂ + flgGo + 27(0) —mw@) +op =0, @)
codt co dx? €o Co
G 9 [ .ou 3*G -
%) reG - hem e @a =0 @

where w = p; + o, ¥ = 'y(1+i>),and[3 = 7.

The dilation () plays the role of reactant in (7). Reaction-diffusion systems of this
form have been widely studied and, given appropriate dynamics, are known to yield
spatial patterns (see, for example, Murray, 1989) although a convection term, such as
the one in (8), is usually not present. Linear analysis (reviewed in Section 2) about
the homogeneous steady state solution indicates that this system exhibits instabilities
with a wave number k. when the diffusion coefficient for the gel (Dg) exceeds a
critical value (Lewis, 1990; see also Oster et al., 1985). In Section 3 we show that,
over a long time scale, the growth of linear instabilities is bounded by nonlinear
terms to yield a stable stationary steady state solution. Through numerical simulation
of the resulting patterns, we show how the analytical theory predicts their evolution.
Section 4 considers the stationary pattern formation potential that the cytogel model
[(1)—(2)] exhibits in two spatial dimensions through a two-dimensional analysis of the
linear behavior of small perturbations away from the steady state. We show how, for
certain gels, the two-dimensional tensor equation which describes the force balance (1)
can be reduced to a reaction-diffusion equation. The full nonlinear system is solved
numerically and the stability of resulting two-dimensional patterns is numerically
investigated. Periodic boundary conditions (that are applicable to the cytogel cortex
of a free-moving cell such as Paramecium) are considered although results can be
easily generalised to other cases.

2. Nondimensionalization and Linear Analysis

We nondimensionalize the system (7)—(8) so as to reduce the number of parameters
and facilitate the relative assessment of essential physical processes. Our new variables
are

* G v * t~
=2, w=uls =12
So B M
v k k-
x=x |, k=B g 2R e DGR
B v v B
Tt._ Z ﬂ_m phiad m (f* _ g0Co
P’ So?’ o So¥
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Substituting these quantities into (7)~(8), and dropping the asterisks for notational
simplicity, we obtain

a0 %0
Ga—t - Gm - ®(G,0) =0, )
oG 3 (_du %G
% . E(G‘;—t—)— p2S -1c.0 =0, (10)
where
P(G,0) = —GO — G7(0) + w(6) — 0o, (11)
I'(G,0) = k+(0) — k_(0)G. (12)

We consider the behavior of small perturbations of the state variables away from
their steady state,

o0 = (252, o) (13)

where 6, is the solution to
k+(60) [60 + 7(60)]1 / k—(60) — 7(Bo) + 0p = O.

Linearization of (9)—(10) gives rise to a homogeneous system of linear equations
describing the behavior of these small disturbances. This system yields a dispersion
relation between the temporal and spatial components of the perturbations to the
parameters in the model, thereby determining when and how the steady state can
become linearly unstable.

The linearized form of (9)—(10) is

d &

Gol5; — 5720~ Dy -®g 6 — 6o
=0, (14)
d d 92
—_ - ——-D— — G-G
Gogy ~Te gt - Pamtle ¢
where
o b
Dy = E(Go. 6), P = 56(60’ 6o),
ar ar
[y = 56(00,00), I = E(GO’ 6o).
We use the principle of superposition and assume
0 — 6, G — Gy xexp(ot + ikx). (15)

Substitution into (14) gives a dispersion relation between o and k? that must be
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satisfied for nontrivial solutions. This is

Goo? + b(k} o + c(k?) = 0, (16)

where
b(k?) = ®cGy — I'cGo — Py + Go(1 + D)2, a7
c(k?) = Tg®y — ®cTy — (DB + GoI')k? + GoDk*. (18)

For the uniform steady state to be stable to perturbations with a spatial component,
we require that the roots of (16) have a negative real part for all positive k2. If there
is a root with a positive real part for some k2, then the linear theory predicts that
small random perturbations away from the steady state will grow exponentially with
a spatial wavelength of 27/ k.

2.1 Conditions for Bifurcation to Spatial Pattern

Necessary and sufficient conditions for the roots of (16) to have negative real parts
are

b(k*) >0 and c(k?) >0 (19)

for all positive k2. To ensure that spatial pattern bifurcations have finite wave numbers
k, where 0 < k? < %, we must meet (19) for very large and very small k2. Because
Go > 0 and D > 0, the criterion (19) is satisfied as k> — . For (19) to be satisfied
as k2 — 0%, we require that

b(0) = PGy —T'¢Gy — Dy > 0, (20)
c(0) =T'gdy — &I > 0. @n

The first condition in (19) is always met by (20) as b(k?) = b(0). However,
violation of the second condition in (19) results in a & = 0 root for (16). This leads
to a bifurcation to the exponential growth of unstable stationary modes.

We consider the case where a bifurcation to linear instability occurs for a critical
wave number k. as an eigenvalue of the linear system passes through zero. In terms
of the stability criterion (19), the bifurcation point is given by b(k?) > 0 for all k

and
=0, if k =k,
c(k?)
>0, if k # k..
The minimum for c(k?2) is found when
2GoDk* — D®y — GoI'g = 0. (22)
Thus we require that

D®y + GoI'g > 0. (23)



Analysis of Stable Two-Dimensional Patterns in Contractile Cytogel 295

We define the critical diffusion value D, as the value of D which yields a critical
sign change for the maximum root of (16). This bifurcation occurs when the minimum
for c(k?) passes through zero. Thus D = D, satisfies

(D®s — GoI'g)* + 4GoD®GTy = 0 (24)
and the corresponding critical wave number k. is given by (22) as
kZ = (D.®p + Gol')/ (2GoD.). (25)

Given the qualitative forms of k(@) and k_(@) (Figure 1), the constraints (20),
(21), and (23) require that ®9 > 0 and P < 0. This is typically the case when
oo < 0. We choose D, as the largest root of (24) so as to meet the constraint (23).
Thus, as D increases through D, the maximum root for (16) passes through zero and
linear analysis (15) predicts a corresponding bifurcation to the growth of unstable,
stationary modes with wave number k..

3. Nonlinear Analysis

In this section we analyze the nonlinear behavior of exponentially growing stationary
modes, predicted by linear analysis (Section 2) as occurring when the maximum
eigenvalue for (16) increases through zero. Provided that (20), (21), and (23) are met,
this bifurcation to linearly unstable modes takes place as D increases through D, the
larger root of (24). The resulting wavelength of the growing pattern is 27/ k., where
k. is given by (25). Using standard nonlinear methods, we derive a Landau equation
for the amplitude of these perturbations and show that they grow until nonlinear
terms bound the linear growth terms. This results in the evolution of stationary spatial
patterns.
We make an &? perturbation away from the critical value for D,

D =D.+¢&%v, where 0<eg<<1 and v = *1, (26)

and use this as the basis for a series expansion of o,
o(k?,D) = o (k3,D,) + Z—g(kﬁ, D.)e*v + O(s*). 27

The O(&?) term in (27) can be calculated from (16) as

kX(@y — Gok?)
[®c + (D + 1)k2 —TglGo — ®p

do

Introduction of a slow time scale, T = &2¢, ensures that exponential growth terms,
predicted by the linear analysis (15), can be written as a(T)exp(*ik.x), where

a(T) = exp (j—g(kg,Dc)vT), (29)

and do/dD(k2, D.) is given in (28).
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With the new expressions for D (26) and T, we use (9)—(10) to write a vector
equation for the perturbed system:

L(g:g’o)+N+E=0, (30)
where
62
_Goa_xZ ) —-bg
L = N @31
32
—T Do - I'g
2
-G - Go);%z(o — 80) — @9 (6 — B)(G — Go) — Pyg(0 — 6p)2/2
N= —®g96(0 — 00)*(G — Go)/2 — Dggs(0 — 6)°/6 h.o.t.,

—T96(0 — 60)(G — Go) — T'e(8 — 60)*/2
—T966(0 — 00)*(G — Go)/2 — Tgp0(8 — 60)%/6

\ (32)
T
Go-Z2-(8 — ;)
0(9T 0
E = ¢’ , + h.o.t., (33)
d a_ Dy o0 _
Goa—T(O 6o) + 37 (G — Go) VW(G Go)

b
D = E(oo, Go)

and @y, Py, Poo, Posc, Poss, I's, T'og, Fee» Teec and Tgg are defined in a similar
way to ®¢, and h.o.t. indicates higher-order terms.
We assume asymptotic representations for @ and G, in the form

G=Go+> &Gi(x,T), 6=0+> ¢6;(x,T) (34)
j=1 j=1

Substitution into (30) results in a hierarchy of linear equations which are evaluated
for increasing powers of €.
The first such equation is

0 \_ o
L(Gl ) =0, 35)
while the equation for the j’ h power of ¢ is
L(gi)+ N; +E; =0, (36)
where N; and E; are calculated from the terms 6;_,, Gj-1,...,01,G,. Since (35)

possesses nontrivial solutions, a necessary and sufficient condition for a solution to
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(36) is given by the orthogonality relation

1 2w/ k.
lim —J J @*,G"- (Nj +E;)dxdT = 0, 37
0o Jo

T—o

where (0%, G*)" is a bounded solution of the adjoint problem

A
L (G,)—O,

and L* is the adjoint of L. This relation, given by the Fredholm Alternative, suppresses
secular terms which arise if solutions to (35) are present in N; + E;.

Application of (37) to the hierarchy linear equations indicates that no secular terms
arise in the first two powers of &. The O(g) solution is

( gll ) = Ula, cos(kx) + b sin(k.x)],

where u; = 1, u; = Ty/(Dck? —Tg), ay = aoa(T), and by = boa(T), and the
constants ao and b are determined by the boundary conditions. The O(g2) solution is

(222) = Ula;cos(k.x) + b, sin(k.x)]
+ VO [( 2)cos(2kex) + arby s1n(2kcx)] +VO (“’*” ). (38)
where the complex forms for v(ll), vgl), v?’, and v(z) are given in the appendix.
At O(&%) the orthogonality constraint (37) yxelds a Landau equation for the maxi-
mum amplitude |a| of 6;, namely

1d

2dT(a1+b2) = vX(a,+b)—Y(a1+b), (39)
where

k2(®y — Gokz)
[q)G + (D, + 1)k2 -T'61Go —

[as predicted by (28) and (29)], and

(40)

Y ={2k2uv? + k205 +v2/2) = @oo v + v /2) + v +v2/2)

— Do (v§” + v{?/2) — Poocur/2 — Poge/ 6 — [Tacua(v" + v?/2)
+ ) +v52/2) — Tog(Y + v®/2) — Tpoguz/2 — Togs/ 6]

X [®g/(Dck? — Te))}/ {2[G0(1 + ®g/(Dck? — Tg)) + usPg/ (D k2 — Tg)]}
41

Periodic boundary conditions for G and 6 mean that a and b, are determined by
Fourier series analysis of the initial infinitesimal perturbations about the steady state.
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(Recall that a; = aoa(T) and by = boa(T).) Therefore, provided v = +1 an
Y > 0, the Landau equation (39) predicts that the large time solution evolves to

0 = 0o+ &X/Y)?sin(k (x + ) + O(&?),
G = k+(60)/k—(60) + £X/Y¥)"?us sin(k.(x + @)) + O(c?),

where 6y = (ur — uo)/L and k.o = tan"!(ao/ bo). Thus ao and by only determin
a shift in phase which does not affect the qualitative form of the solution when th
boundary conditions are periodic.

3.1 Numerical Simulation of Stationary Pattern Formation

In the last section we showed that there is a bifurcation to the growth of unstabl
modes, of wavelength 27/ k., as the gel-diffusion constant increases through a critica
value, D.. Provided the Landau constant, Y, is positive, these modes grow unti
the nonlinear and linear terms balance. In this section we numerically simulate thy
resulting stable pattern.

In preparation for the numerics, we give exact forms for (11) and (12) and shov
the resulting dispersion relation (16). We choose k +(6) and k(@) as smooth function
given by

_ ko362
ke = ki + T, (42
nE k2
k-0 = ki + g 43

Thus k; = k4(0), k2 = k-(0) — k+(0), and k3 scales the #-dependencies for k(0
and k_(0). Noting that k. (0)+k_(8) = 2k, +k,, we observe that the f-derivatives o
k+(0) and k_(8) are equal in magnitude but opposite in sign. Using similar function
as Oster et al. (1985), we choose 7(0) and 7(0) as

.

O = e (44
o™

77(0) = m (45

Here 7 and 7 are constants denoting the magnitudes of the 7(6) and (@), respectively
and —m is the dilation at which the contractile elements are strongest.

Sample calculation parameters, which meet the constraints (20), (21), and (23)
are chosen as

Cpo = l, (DG = —3, Fg = — FG = —4, Go = 2, Dc = 32.

These are satisfied by

=1 =w=4 7=4 7 =0, k =3.623, ky =4.754, k3 = 11.6(
(46
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maxi)t
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Fig. 3. The dispersion relation shows a critical bi-
furcation at D = D,.. The dispersion relation (16)
is shown as D increases from D = 28 (subcritical,
lower dashed line), through D = D, = 32 (critical,
solid line) to D = 36 (supercritical, upper dashed
line). The quantity c(k?) is also shown for D = 28
(upper dotted line), D = D, = 32 (solid line) and
D = 36 (lower dotted line). The range of unsta-
ble modes (where max;-,R(o;) > 0) is glven by
c(k?) < 0. Model parameter values are given in the
text.

Thus (25), (40), and (41) give
k? = 0.1875, wu; = 0.2083, X = 0.008762, Y = 0.3821,

thereby indicating the potential for formation of stable patterns (¥ > 0) which have a
wave length of 27r/k. = 14.51. The resulting dispersion relation (16) goes through
a critical bifurcation as D is increased through D.. Figure 3 demonstrates this.

Using these parameter values and D = 33, a Crank-Nicholson-type finite difference
scheme is used to numerically solve the model equations (9)—~(10). Periodic boundary
conditions for G and 6 are used. Initial conditions are given by small (< 0.001)
random perturbations of 6 and G about their steady states (13). The resulting large-
time solution is shown in Figure 4. By varying the set of random initial conditions,
the numerical solutions shift to the right or left, although 6 and G always remain in
phase with each other (see Figure 4).

4. Two-dimensional Pattern-forming Capabilities

In this section we consider the two-dimensional pattern-forming capabilities of (1)—
(2). We initially consider a simplification of the model which is valid for cytogels
that have a very small shear modulus and whose viscous response is dominated by
the energy dissipation which occurs during the sol-gel phase change. Experimental
evidence supports this simplification: collagen gels are characterised by very high
Poisson ratios (v) (Oster et al., 1983). The Poisson ratio, given in terms of the bulk
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Fig. 4. Numerical solution of sol-gel equa-
tions. Shown is the large time (¢t = 2000),
finite-difference, numerical solution of the
model equations (9)—(10). Periodic boundary
conditions for G and @ are used. Initial con-
ditions are given by small (< 0.001) pertur-
bations of @ and G about their steady states
(13). Model parameter values are given in the
text.

modulus K and the shear modulus g, is v = (3K — 2g)/(6K + 2g), (Lur’e, 196
indicating that for these gels, the bulk modulus is far larger than the shear modulu
Thus, the elastic response to stretching is characterised by bulk movements. We expe
that the viscous stress term will be dominated by the energy dissipation which occu
in the sol-gel phase change during bulk movements; because of the energy requirt
to restructure the cross-linked cytogel in response to compression or dilation, the ne
equilibrium is not found quickly. Hence, if the relaxation time for this process is lor
compared to the time constant for the equilibration of shear stresses, the bulk viscosi
m2 will dominate (see, for example, Landau and Lifshitz, 1979).

We show how the simplifying assumptions reduce the tensor force balance equatic
(1) to a reaction-diffusion equation. Two-dimensional linear analysis of the resultir
reaction-diffusion system shows analogous pattern-forming capabilities to those of tl
one-dimensional model, studied in Sections 2 and 3.

Analysis of the full, two-dimensional tensor equation model reveals that, when tl
shear modulus increases and becomes significant, requirements for a bifurcation
spatial patterning become more stringent because the critical diffusion parameter al
increases. If this critical diffusion coefficient is exceeded, an increased shear modul
means a longer wavelength for the resulting spatial pattern.

When the shear modulus (g) tends to zero, E = 9gK /(3K + g) (Lur’e, 196
tends to zero and the Poisson ratio (v) becomes % Thus the constants y = E/(1 +
and 1/# = (1 — 2v)/ v tend to zero and the product y# = K. We choose a nonc
mensionalization for (1)«(2) which remains valid as g — 0, thereby adopting



Analysis of Stable Two-Dimensional Patterns in Contractile Cytogel 301

form which has fewer parameters but which remains amenable to analysis:

G u v tdy
G* = iy AR , PV = 2 Jemsnith
So JB JB M2
X* - L y* — _)’_ * mCo * i
ﬁ, J’B—’ f)‘ySO’ f}‘y’
I"* - & D* = DGF’Z P k+”’2 vk k—MZ
n2’ pyB' T vy T T by

Again, dropping asterisks for notational simplicity, we write the nondimensionalized
system as

V(G lpe + 0,0+ (e — Ae)/ 9 + (8 — AO)I + (O] - m@®I} = 0, (47)
T4 (GZ—‘:)— DAG - k4+(8) + k-(6)G = 0. (48)

4.1 Analysis of Model with Zero Shear Modulus

We consider a simplification of the model (47)—(48) which is valid for gels with a
small shear modulus and a small ratio of shear viscosity to bulk viscosity. As described
in the previous section, w, 1/% — 0. This simplifies (47) to

V-{G[6: + 06— A6+1(0)] - 7@6)} I =0. 49)

Assuming a constant time-independent boundary stress, gy lets us integrate (49).
We rewrite (49) and (48) as

G% ~ GAO — ®(G,0) =0, (50)
G Ju 3
T v (Ga—t)— DAG -T(G,6) = 0, 51

where ®(G, 6) and I'(G, 6) are given by (11) and (12). Thus the model is again sim-
plified to a pair of reaction-diffusion equations which are two-dimensional analogues
of (9) and (10).

As in the one-dimensional case, the steady state values for 6 and G are given by
(13). Linear analysis of (50) and (51) reveals an identical dispersion relation to that
of the one-dimensional model (16). However, in this case, k2 = k? + k2, as the
two-dimensional solutions to the linear system are of the form

0 — 00, G — Go xexplot + i(k;x + kay)].

Thus, linear behavior of the two-dimensional reaction-diffusion model (50)—(51) is
analogous to that of its one-dimensional version (9)—(10). We expect a similar bifur-
cation pattern formation, with a wave number k% (25), as D increases through D (24).
In this case, however, two-dimensional spatial patterns result. These are numerically
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simulated in Section 4.3. Before turning to these numerical simulations, however, we
employ linear theory to suggest the possible spectrum of spatial patterns. In Section
4.2.2. we consider linear predictions for the geometry of patterns resulting from the
general situation where there may be a non-zero shear modulus. The patterns which
result as the shear modulus tends to zero are included within the context of this more
general analysis.

4.2 Analysis of Model with Nonzero Shear Modulus

We now analyze the two-dimensional model (47)—(48), assuming that 1/ # and u may
be nonzero. Steady state values are given by

We assume that, at the steady state, there is a constant boundary stress, oy, so that
0o is given by

k+(B0)((1 + 1/(29)80 + T(80))/ k-(80) — 7(Bo) + 00 = 0. (52)

To analyze the linear behavior of infinitesimal perturbations about the steady state,
we require two state variables in addition to G. We choose 8 and y = dv/dx—du/dy;
both of these are spatially homogeneous at the steady state (9 = 6y and % = 0) and
invariant to rotations of the axes, reflecting the physical state of the system rather
than the choice of coordinates.

We use the tensor identity

e = 1 (—oy/ay
V e—V0+§(a¢/ax)

in writing the linearized system:
2

2Go[% -V

- ®y/Go + pi

+(1 = V3)/ 9]

_ 4 a
»Colng+

LD + 00/ (2D)] 60— 6
(1 = V5] /2 =[P + 6o/ (2D o

%GO %—vz _&G [ 3.+' ) =0,

#Golug+. .
— ®9/Go + ui "(1 —vzf;a]/z L[~ + 00/ || ¥ - o
+(1 = V3)/9] '

Go(%—ro 0 %—DVZ—FG G—GO

where @g, ®g, I'y, and I'; are as given for (14).
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Looking for solutions of the form
60— 60, ¥ —to, G — Goxexplot+i(kix + kay)l, (54)

we determine the resulting dispersion relation to be

2
%Go[ua + (1 + k¥/ 91{Goa? + b(kHa + c(k?)

+ Golpo + (1 + k2)/ 9} + Dk? — Tg) — (Goo — T)8o/29)} = 0. &
where b(k?) and c(k?) are given by (17) and (18). Our previous analysis in Section
4.1 leads us to expect that when u, 1/# — 0, solutions to (55) coincide with those
of (16). This is indeed the case.

4.2.1 Conditions for Bifurcation te Spatial Pattern. We now compare linear results
from this model [(47)—(48)], which has a nonzero shear modulus, to those from the
model of Section 4.1 [(50)~(51)], in which the shear modulus is zero. Following the
procedure used in Section 3.1.1, we derive constraints for a bifurcation to spatial
pattern and compare them to (20), (21), and (23). The resulting critical diffusion
value D, is compared to the solution of (24).

The dispersion relation (55) is rewritten as

(1+ p)Goa? + by(k*) o + c1(k*) = 0, (56)
where
bi(k?) = b(k?) + Go[u(Dk? = Tg) + (1 + k* — 60/2)/ ], (57
c1(k?) = c(k?) + Go(1 + k®)(Dk? — T)/ d + T/ (29) (58)
= aik* — Bik* + ,,
for !
a; = GoD(1 + 1/9), (59)
B1 = D@y — Go/9) + GoTs(1 + 1/ ), (60)
Y1 = T(@ — Go/ #) — Ty[®c — 60/ 29)]. (61)

Using identical arguments to those in Section 3.1.1, we write the conditions for
stability when k2 — 0 as

b1(0) = b(0) — GouIl'g + (1 — 60/2)/ D >0, (62)
100) = ¢(0) — GoT'g/» + Tyf/ (25) > 0. - (63)

Provided that 6y = 2, the constraints (62) and (63) are satisfied whenever (20) and
(21) are met because I'9 > 0 and ' < 0 (see (12)).

I
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2
2 1/ v
C'(k ) increasing
1
0.4 kz
-1°

Fig. 5. Increasing the shear modulus decreases the
range and magnitude of the unstable wave numbers.
Unstable wave numbers are given by c;(k?) < 0. As
1/ ¥ increases from O (lower graph) by increments
of 0.015, the range and magnitude of these unsta-
ble wave numbers decreases until there are no unsta-
ble wave numbers for 1/9 = 0.045 (upper graph).
Parameter values are as given in Section 3.3, with
D = 40.

Bifurcation to the growth of unstable modes occurs when D = D,, is the larger
root of

[D(@6 — Go/?) — Gol'(1 + 1/ ))* + 4Tp[dg — 60/ 29)]1GoD(1 + 1/9) = 0.

64
Comparison with (24) indicates that D., > D.. 64)

Provided that D > D.,, unstable wave numbers k are given by cak?) < o.
We observe that, when the shear modulus increases, 1/# increases and therefore
the quantities B;/(2a,) and (/B? — 4a;71)/(2a;) both decrease (see (58)). These
reductions affect the range of unstable wave numbers. The former indicates that the
range of unstable wave numbers is shifted to the left and the latter indicates that the
size of the range is decreased (Figure 5). As shown in Figure 5, D = 40 goes from
supercritical to subcritical as 1/ # increases from 0.030 to 0.045. Therefore the upper
graph in Figure 5 has no unstable wave numbers [c;(k?) > 0 everywhere].

In summary, increasing the shear modulus raises the critical diffusion coefficient
and thereby tends to stabilize the system. When this critical diffusion coefficient is
exceeded, an increased shear modulus results in a longer wavelength for the resulting
spatial pattern.

4.2.2 Linear Predictions for Spatial Patterns. Linear analysis [see (54)] predicts
that as D increases through D, [see (64)], there is a supercritical bifurcation to the
growth of unstable modes. These modes have a wavelength of k2 = k2, = k3, +kZ,,
which equals B,/(2a;) when D = D, (see (58)). The spatial component of these
modes is given by the time-independent eigenfunctions of (53). These eigenfunctions
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have the form
Uexp(kicx + kacy),
where Ly U = 0, and

—ik1Golk? — ®9/Go  ik2Go(1 -k [-Pg
41+ kY)/D) +k2)/(29) 460/ (29)]

Ly = | —ik2Golk? — ®4/Go —ikiGo(1 —iko[—Dg |, (65)
+(1 + kz)/ ?] +k2)/(2f!) +6o/(29)]
—T 0 D k*—-Tg

arises from the action of the linear operator in (53) on terms of the form exp(k,x +

kyy). This gives
1
U=| 0],
uz

uy = To/(Derk?, = To). (66)

where

From this analysis we expect that the unstable modes are irrotational (y = 0) and,
as in the case when the shear modulus was zero, that the gel (G) and dilation (8)
fluctuations are in phase with each other (u, > 0).

When D > D,,, the model is unstable (o(k2) > 0) for a range of wave numbers,
Kk} < k? < k;, where k2, and kf, are the smaller and larger roots of c;(k?) = 0
respectively [see (58)]. Application of zero-gradient boundary conditions at x = y =
0 constrains linear solutions to take the form

0 — 6o
( ¥ — ) « Uexp(ot) cos(kyx)cos(kay). 67
G -Gy

Analysis of the potential patterns quickly becomes complicated; there is a multitude of
wave number combinations where k{ + k3 = k?, k2 < k* < k2, and by the principle
of superposition, each of these may contribute to the perturbation in (67). However,
domain geometry severely restricts the number of possibilities. For example, if the
domain is rectangular, 0 < x < L;,0 < y < L, then the application of zero-gradient
boundary conditions at x = L; and y = L, requires that

2 2
n m
k2 < 1r2<— + —)< k2
2
" L? L2 P
for integers n and m.
On nonrectangular domains, analysis can be far more complicated. We simplify the
situation, however, by considering regular solutions for symmetric domains that tes-
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(-1/2,4/372) (cosd,sin

(1,0)

(~1/2,-/372)

Fig. 6. Hexagonal and rhombic cell solutions tessellate the plane. The entire plane can be tilec
either of these elementary polygonal units. Each cell satisfies (67) with zero-gradient condit
on its boundary. Other solutions include square and roll cells (see text).

sellate the plane. This type of patterning is discussed in Murray and Oster (1984) ar
is briefly reviewed here (see also Murray (1989)). Patterns include squares, hexagon
rhombi, and triangles. Thus the entire plane can be tiled by any one of these elementa
polygonal units (or “cells”), which satisfy zero-gradient boundary conditions on the
boundaries.

Square tessellation solutions are given by

0—6), G-—Gyx % [cos(kcrx) + cos(kery)] . (6

This solution is invariant under a square rotation, in other words, a rotation of T/
radians.

The square cell solution is a special case of the rhombic solution (Figure 6) whi
is given by

1 .
0—60, G-—Gox 5 {cos(kc,x) + cos[k.,(x cos(a’) + y sin(a")]} , (6
where a' is the rhombus angle. This solution is invariant under a rhombic rotatio:
in other words, a rotation of 7 radians. An illustrative pattern is shown in Figure ¢

The choice of @' = /2 yields (68).
The solution for a hexagon (Figure 6) is

0—-6, G—Gox %{cos{kcr(—xﬂ - ﬁy/2)]

+cos[ker (—x/2 + /3y/2)] + cos(kc,x)} . (7

This solution is invariant under a hexagonal rotation, in other words, a rotation
7/ 3 radians. Again, Figure 6 illustrates this pattern. Triangles arise as subunits of tl
hexagonal pattern. ‘
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An additional cell-periodic solution is that of a one-dimensional roll pattern, given
by

0 — 00, G — Go xcos(k.,x). 71)

In summary, possible linear growth patterns include those which tessellate the plane

with square (68), rhombic (69), hexagonal (70), or roll (71) cells. These give some
~ indication of the possible pattern diversity to expect when the full, nonlinear system
is solved, but they by no means represent the total pattern formation potential.

4.3 Numerical Simulation of Model with Zero Shear Modulus

In the last section, we saw how domain geometry and boundary conditions play
a crucial role in determining two-dimensional, patterned solutions to (47)—(48). We
considered cell-periodic solutions which satisfied zero-gradient boundary conditions on
their perimeter and tessellated the plane. However, exact numerical simulation of these
cell-periodic solutions requires the application of zero-gradient boundary conditions
on the perimeter of a domain which can contain a group of juxtapositioned cells. This
poses no difficulty for square cells and rolls, but results in irregularly shaped domains
for hexagonal and rhombic cells. For example, one cannot fit an exact number of
hexagonal cells into a rectangular domain. Hexagonal and rhombic cells, however,
yield repeating rectangular patterns, which satisfy periodic, rather than zero-gradient,
boundary conditions on the perimeter of the rectangle.

In this section we discuss the numerical simulation of large-time solutions to equa-
~ tions (50)—(51). We use a Crank-Nicholson-type finite difference method and rectan-
gular solution domains with periodic boundary conditions. These solutions indicate
that the hexagonal pattern has a higher degree of structural stability than the square
pattern.

Reaction kinetics are chosen which are identical to those used for the one-
dimensional numerical simulation in Section 3.3. Thus k(6), k_(8), 7(8), and m(6)
are given by (42), (43), (44), and (45) respectively. The sample calculation parameters
are shown in (46). The critical diffusion coefficient, given by (24), is D, = 32. The
corresponding critical wave number k. satisfies k2 = 0.1875 (25). As a result of
choosing D = 34, the range of unstable modes, given by c(k?) < 0 [see (18) and
Figure 3], is 0.1324 < k? < 0.25.

We first consider a solution domain which supports hexagonal cells. Equation
(70) indicates that hexagonal cells yield a repeating periodic pattern over the domain
0=x=<4n/k.,, 0=y = 87/( \/Ekc). The model equations [(50)—(51)] were nu-
merically solved over this domain for the parameter values described above. Boundary
conditions were periodic, and initial conditions were given by small (< 0.001) random
perturbations of § and G about their steady states (13) (see Figure 7).

Equation (68) indicates that the solution domain, 0 < x < 4w /k., 0 < y <
4w/ k., could support a repeating, periodic pattern of square cells. However, numerlcal
simulations do not produce square cells; quasi-hexagonal patterns result (Figure 8).
There are three major linear components to the solution, with angles 7 —aq, 7+, and
3m/2, where periodicity constraints gives ap = tan~!(1/2). This compares favorably
with the measured angle of ap = 26.5 degrees (0 463 radians) (Figure 8). The pattern
would be truly hexagonal if a equaled 77/6 = 0.52 radians.
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) NS

D @
) Q

Gel Concentration (G)

Dilation (4)

Fig. 7. Numerical solution
yields hexagonal patterns.
Shown is the large time
(t = 2000), finite differ-
ence numerical solution of the
model equations [(50)—(51)].
The domain size is given by
0 = x = 4n/k.,, 0 =
y =< 8w/(/3k.), where k.
and the model parameter val-
ues are given in the text.
Boundary conditions are peri-
odic and initial conditions are
given by small (< 0.001) ran-
dom perturbations of § and G
about their steady states.

M. A. Lewis and J. D. Murr:

Gel Concentration (G)

Dilation (6)

Fig. 8. Numerical solution yields
quasi-hexagonal patterns. Shown is the
large time (¢ = 2000), finite differ-
ence numerical solution of the model
equations [(50)—(51)]. The domain size
is given by 0 < x =< 4w/k., 0 <
y =< 4w /k., where k. and the model
parameter values are given in the text.
Boundary conditions are periodic and
initial conditions are given by small
(< 0.001) random perturbations of 6
and G about their steady states. There
are three major linear components to
the solution, with angles 7 — aq,
7 + ao and 37/2, where a = 26.5
degrees.
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The component which has an angle of 37/2 has a periodicity of two and the tw
other components have a periodicity of four. In other words, moving through two
four spatial cycles takes one back to the starting point (Figure 8). Using the periodici
and the domain size, we calculate that

k = sin(w/2)k, = k.
for the component which has an angle of 37/2, and
k = 2sin(ag)k, = 0.894k,

for the components with angle 7 — a and 7 + ag. The ratio of these wave numbe
is confirmed by measuring the distances between nodes in Figure 8. Thus for t
components with angle 7 — &g and 7 + @, k? = 0.8k2 = 0.15, which is within t
range previously calculated as 0.1324 < k? < 0.25.

The preference for hexagonal patterns is demonstrated in Figure 9. Here nonrandc
“square cell” perturbations rearrange into a quasi-hexagonal pattern. These numeric
results suggest that while many patterns are possible, hexagonal patterns may occ
preferentially. On larger domains the quasi-hexagonal patterns could more nearly a
proximate truly hexagonal patterns. This is in keeping with biological observatior
hexagons typically dominate the geometry of biological pattern formation, wheth
giving rise to microvilli (see Oster et al., 1985) or to such patterns as feather a
scale primordia (see, for example, Murray, 1989).
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Appendix

Substitution of (34) into (30) results in a hierarchy of linear equations for increasing
orders of £. The solution to the O(e?) equation is given by (38) where

SO _ (54DkE + Do) (4urk? — ua®oc — Poo/2) + Po(ualos + roo/2)
! (4D k% — T)(4Gok2 — ®4) — DTy

L, _ “Lo(4uzk? — us®og — Poo/2) + (4Gok? — Po)(usToc + I“0‘9/2)
2 (4D k2 — T)(4Gok2 — @g) — DTy

RO —L(u2®Poc + Pog/2) + Pg(u2l'ec + oo/ 2)
l - "

DI’ — BTy
@ _ Loa®os + Po/2) = Bo(usloG + Loo/2)
2 @yl — DTy



