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The concept of a one-way block, arising from a region of depressed tissue, has remained central
to theories for cardiac arrhythmias, We show thai both the geometry of a depressed region and
spatial heterogeneities in depression are key factors for inducing such a block. By using an
asymptotic approximation, known as the eikonal equation, to model qualitatively the movement
of a depolarization wave-front down a Purkinje fibre bundle, we show how a one-way block in
conduction may result from asymmetric constriction in the width of a depressed bundle. We
demonstrate that this theory is valid for biologically relevant parameters and simulate a one-way
block by numerically solving the eikonal approximation. We consider the case of non-uniform
depression, where the planar travelling wave speed is spatially dependent. Here, numerical
simulations indicate that such a spatial dependency may, in itself, be sufficient to produce a one-
way block.

1. Introduction. The cause of ventricular fibrillation has been of widespread
experimental and theoretical interest. One of the longest standing theories for
fibrillation is that it arises from the generation of one-way re-entrant excitable
waves, known as circus excitation waves. These waves are not usually present
in a healthy heart, but it is possible that the right physiological conditions
coupled with an appropriate stimulus would give rise to them. Once they were
initiated they would interrupt the normal rhythmic behaviour of the heart and
would eventually lead to fibrillation, or rapid chaotic contractions, and
ultimately death.

Ashman and Hull (1945) suggested how circus excitation might arise from a
myocardial infarct, or island of tissue which is damaged by anoxia or disease.
The tissue in this island would be less excitable than the surrounding
myocardium and would therefore conduct impulses more slowly. The island
would also have to sustain a one-way block; waves would only be able to enter
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the island from one side. A wave of excitation would reach the infarct and sweep
around it, to find an entrance only on one side. The impulse would then creep
through the island slowly before reaching the border and exiting through the
one-way block. The tissue would have had time to recover excitability and the
excitation wave would continue to circulate. Ashman and Hull recognized
clearly that re-entry cannot occur unless there is a partly isolated pathway in
which conduction is unidirectional.

Although one-way blocks have been experimentally observed in cardiac
tissue for many years (Schmitt and Erlanger, 1928), it was not until the work of
Wit and co-workers (1972a,b) that circus movements of excitation, arising
from slow conduction and a one-way block, were experimentally shown to
occur under conditions which might arise in situ in the heart; sustained
movements of excitation were observed around relatively short loops of
Purkinje fibre bundles exposed to high potassium and epinephrine.

The concept of a one-way block has remained central in recent theories for
cardiac arrythmias, although it is sometimes considered to be a dynamic
phenomenon which is due to time-dependent spatial gradients (Allessie et al.,
1977; Winfree, 1983; Chen et al., 1988). The question of how these blocks can
arise is crucial to understanding the theory of circus excitations and their
relation to cardiac arrythmias.

Cranefield (1975) indicates that asymmetry of conduction is a normally
occurring phenomenon in cardiac tissue; accurate measurements show that
even wholly normal fibre bundles exhibit some asymmetry of conduction.
However, depression of excitability magnifies this asymmetry until a one-way
block may eventually occur. This is supported by experimental results
(Cranefield et al., 1971), which show that the immersion of a Purkinje fibre
bundle in a high potassium chloride Tyrode’s solution can lead to depressed
excitability and thus to the slow conduction of characteristic depolarization
impulses. Conduction is not only slow but asymmetrical, conduction in one
direction being slower than in the other direction. Severe depression leads to a
one-way block, or the inability of the fibre bundle to transmit impulses in one
direction.

The movement of excitable waves through fibres of variable radius,
excitability or resistivity have been investigated numerically (Joyner, 1981;
Miller, 1979) and via phase plane arguments (Keener, 1984). Results indicate
that abrupt asymmetrical changes in such properties may result in one-way
transmission blocks.

A recent asymptotic result, known as the eikonal equation for reaction
diffusion systems (Keener, 1986), shows that the normal velocity of a wave of
excitation depends on the shape of the wave-front boundary layer (wave
boundary). The eikonal equation relates the normal velocity (N) to the planar
travelling wave speed (c) and the curvature (x) of the wave boundary. The



ONE-WAY BLOCKS IN CARDIAC TISSUE 883

normal velocity is decreased in regions of positive curvature, and is increased in
regions of negative curvature. Keener (1987) suggested that this velocity—
curvature relationship could be used in finding conditions for one-way
transmission blocks in excitable fibres.

In a region of slow conduction, the shape of a wave boundary depends
critically on the geometry of the region. Furthermore, curvature effects may act
differently for waves moving in different directions. These curvature effects
would be small (relative to the planar wave speed) for slightly depressed
regions, but would become significant in highly depressed regions with a slow
planar wave speed. This leads us to suggest that the geometry of the depressed
area is the key factor which makes conduction asymmetric. By way of an
example, we quantitatively model the effects of Purkinje fibre bundle geometry
on conduction speeds, with particular reference to the effect of small
asymmetric changes in fibre bundle diameter (Section 2). We also consider the
effect that a spatially non-uniform depression of cardiac tissue may have on the
formation of blocks (Section 3). In this case, the geometry of the non-uniform
depression causes the block.

2. One-way Blocks in Purkinje Fibre Bundles

2.1. The physiology of Purkinje fibre bundles. Purkinje fibre bundles make
up part of the electrical communication system in the heart. They are often
studied in cardiology experiments as they are easy to excise and isolate and can
be conveniently prepared for use in a tissue bath (Cranefield, 1975). Each fibre
bundle is made up of individual fibres, or cells approximately 100 u long and
10 1 wide (Sommer and Johnson, 1968).

Figure 1. Transverse section through a rabbit Purkinje fibre bundle. The strand is
surrounded by endocardium (E). Collagen (C) intermingled with fibrocytes and
Schwann cells make up the next layer. The interior is composed of the fibres
themselves (F). The horizontal bar represents 10 p. The drawing is based on a
photomicrograph from Johnson and Sommer (1967).
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A cross-section of the bundle will reveal that it is comprised of 10 or so fibres,
joined radially by nexus junctions (sometimes referred to as gap junctions;
Mobley and Page, 1972; Johnson and Sommer, 1967), and is surrounded by a
layer of endothelium (endocardium) (Fig. 1). Nexus junctions are regions
where the plasma membranes of adjacent cells come into close apposition,
leaving a 20 A gap which can be delineated with lanthanum (Mobley and Page,
1972). The fact that the bundle is comprised of fibre sub-units means that the
total membrane area is about 10 times that of the area of the surrounding
endocardium (McAllister et al., 1975).

These nexus junctions are generally assumed to be low resistance pathways
for current flow between cells and not pathways for the flow of current between
the inside and outside of cells (Mobley and Page, 1972). This is supported by
the careful mapping of nexus junctions in a length of rabbit Purkinje fibre
bundle (Sommer and Johnson, 1968). This mapping also indicates that the
bundle may vary longitudinally, both in the number of individual fibres or cells
and in the number of junctions between fibres. The fibre bundle radius depends
on the number of fibre sub-units, the individual fibre radii and the proximity of
adjacent fibres. In turn, the proximity of adjacent fibres in inter-junctional
regions depends on the type of fibre bundle; adjacent fibres are more tightly
packed in larger mammals, such as the sheep, goat and dog, and are less tightly
packed in smaller mammals, such as the rabbit, guinea-pig and cat (Sommer
and Johnson, 1968). However, the most commonly used value for the fibre
bundle radius is 40 y, which is suitable for sheep fibre bundles (Weidmann,
1952). Individual fibres are also joined longitudinally by nexus or similar
junctions.

2.2. Model for electrical activity in Purkinje fibres. The electrical activity in
Purkinje fibres is believed to arise from Hodgkin-Huxley-type voltage-
dependent gate mechanisms which regulate ionic flows across the encasing
membrane (McAllister er al., 1975; Noble, 1962). These gate mechanisms
regulate the ionic flows by voltage-dependent changes in membrane structure
(Jack et al., 1975). The resulting selective, voltage-dependent flows of sodium,
potassium, calcium and chloride ions lead to an ionic current, /,_,, across the
membrane. The voltage established across the membrane is proportional to the
amount of charge separation, so that a capacitive current flow, I, , determines
the rate at which the voltage changes, that is, V/ot.

The total current flow across the membrane, /., , is the sum of the ionic and
capacitive currents. Thus:

V
=1, +1 C ‘

ion = ma

I,

mem

+1

ion?

where C, is the membrane capacitance and V is the voltage (Jack et al., 1975).
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Application of Ohm’s Law and Kirchhoff’s Law gives the N-dimensional cable
equation:

L L v
jgl Rj asz _pfmcm_pcm ot +p1i0n! (1}
where x; is the jth space component, R;is the intracellular resistivity in the x;th
direction and p is a proportionality constant which gives the relation between
membrane area 4 and volume Vasd4=p dV. The choice of N=1, p=2/a and
I,,,=V/R, where R is the membrane resistance and a is fibre radius gives the
classical one-dimensional linear cable equation.

In the case of Purkinje fibres, however, experimental evidence shows that the
relationship between /,, and V' is both time-dependent and highly non-linear
(McAllister et al., 1975). These dynamics lead to an excitable action potential;
when the fibre is electrically stimulated a rapid depolarization, or upstroke, is
followed by a slow repolarization back to a negative potential. In a healthy
Purkinje fibre, the rapid depolarization takes less than 1 ms, while the
repolarization stage takes the order of a second (McAllister et al., 1975).
Hunter et al. (1975) suggested that, although the current-voltage relationship
in a Purkinje fibre is time-dependent, the essential characteristics of the rapid
depolarization upstroke could still be retained by dropping the time
dependency and choosing I, =f(V), where:

won

. V—v.\? V—V,\?
=025 -G @

where V, is the resting potential (—90 mV), ¥, is the threshold potential
(—67 mV), V, is the peak voltage attained during depolarization (47 mV) and
g is a scaling factor. This f (V') was substituted into the one-dimensional cable
equation [see equation (1)] and the speed of the rapid depolarization upstroke
was analytically estimated. Switching to a travelling wave coordinate system
gave an ordinary differential equation and the appropriate application of
boundary conditions determined the speed uniquely.

A single Purkinje fibre is typically considered to be a one-dimensional
system. Although the fibres are individually considered to be one-dimensional,
it is necessary to use a three-dimensional model when considering how
geometry affects the conduction velocity of a depolarization front moving
through a bundle of interconnected fibres. In this case we choose the ionic
current-voltage relationship in the depolarization front to be the appropriate
“N-shaped™ curve, given by /;,, =f(V), where f (V) has zeroes at V,, V;; and V,,
but is not explicitly given. Therefore our model retains a degree of robustness
by not stating (V) exactly. However, it is important that f(¥) is “N-shaped” so
as to give excitable dynamics. Thus,
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models the movement of the depolarization front through the three-
dimensional structure of the Purkinje bundle. Longitudinal depolarization is
effected by the action potential moving along the individual fibres and through
longitudinal nexus junctions (in the x-direction) and lateral depolarization (in
the y- and z-directions) is effected through the interconnecting lateral nexus
junctions. The fact that the exterior fibres of the Purkinje bundle are not
electrotonically connected to the extracellular fluid by nexus junctions suggests
zero-flux boundary conditions for V along the exterior of the bundle.

2.3. Curvature correction for bundle widening. Results from Sommer and
Johnson (1968) indicate that Purkinje fibre bundles are not longitudinally
uniform. The number of fibre sub-units varied between nine and 13 over an
observed length of 160 u. These variations are incorporated into the three-
dimensional model by an effective change in fibre bundle width. If we assume
that the bundle is radially symmetric, then the bundle radius can be given as
a(x), where x is the longitudinal axis and 0<./y?+z2<a(x).

To understand the effect of a bundle widening on the speed of the
depolarization wave in the x-direction, N,, we choose the simplest possible
geometry. This is given by a uniform bundle with radius a, which widens by an
angle o (Fig. 2). We assume radial isotropy (R,=R.=R), but longitudinal
anisotropy (R,# R).

We non-dimensionalize the model (3) to a form which is suitable for the
analysis of such a geometry by choosing:

*:i 5 v*——i Z*:__. r*— ¢
ag\ R’ ay’ a, a,C,R’
V—F, —R ) 1
Vi=v—v: F'=ov -’ Tap
= Ve p(Vy—V,) agp

This puts the anisotropic tissue in exact correspondence with isotropic media,
while f* is a familiar non-linear excitation curve with zeroes at V*=0,
V*=(Vyu—V)/(V,—V,) and V*=1 (Fig. 3). In this non-dimensional system,
the fibre bundle widens by the angle o*, given by:

\/REx tan(x)
1/2 '
(I+(R£x)lan2(a]) i

sin(a*) =

(4)
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Figure 2. Geometry of bundle widening. (a) A uniform bundle, with radius a,,

widens by an angle ». (b) The analogous widening in non-dimensional coordinates,

shown in the z* =0 longitudinal section. Movement of the wave boundary [given by

r*(0, i, A, 1)=0] is described in (7). N is the speed of the wave in the x*-direction,
measured at the point y¥=:z¥=0.

The fact that the total membrane area is about 10 times that of the external
surface of the bundle (Section 2.1) means that the non-dimensional scaling
variable £x0.05. Thus equation (3) can be rewritten as:

ov* RVE  pp* gy
& o™ =Ez(@x*2 -+ 8y*2 + 62*2)4_]*“/*), (5)

with zero-flux boundary conditions for V'* along the exterior of the bundle.

2.4. Eikonal formulation. We introduce the moving coordinate system:
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f*

v

Figure 3. Non-linear excitation curve for a Purkinje fibre bundle. The non-
dimensional current—voltage relationship for the rapid depolarization upstroke in a
Purkinje fibre bundle is shown [see (2) and (5)]. Based on Hunter et al. (1975).

x*(u, m, 4, 1)
r*=| y*u.n, 4, ¢t)
z*(u, 1, 4, t)

where {u, n, A} constitutes a triply orthogonal system of coordinates:
erl=0, k=0, =0, [rY=1;

ry=0r*/dp, and similarly for r¥and r}. At any time, t, the surface given by r*(0,
n, 4, t) is the wave boundary parameterized by # and A. Thus:

r*xr¥
i . i (6)
(e ]

is the unit vector normal to the wave boundary, and:
tX= N*r, (7)

where N* is the normal velocity of the wave boundary in the non-
dimensionalized system.

Following the procedure in Gomatam and Grindrod (1987), we use the
stretched coordinate & = p/e to find solutions of the form V' = V(&), and arrive at
an asymptotic approximation for N* in terms of the one-dimensional travelling
wave speed, denoted by c¢*, and twice the mean curvature of the wave
boundary, denoted by k*, in the non-dimensionalized system. This approxima-
tion is given by:

N*=c* —exc*, 8)

where:
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is referred to as the eikonal equation for reaction diffusion systems and is valid
to @(&?). Thus equations (6), (7). (8) and (9) predict the time evolution of the
wave boundary.

The specific form of the time evolution equation depends on the solution
domain. For example, if we solve over the infinite plane, then:

* ENETE I
x*—_-(c*+F Xy yg'ff“) I (10)
t % P

(k24 y¥2)>2 ) (xx2 4 yx2)ii2

y*= (('*—"E x;:!y:_y:ﬂx: —I: (1])
t {x:2+y:2)3fz (x:2+},:2)m

(Keener, 1986). This system can be conveniently solved by finite difference
methods (Grindrod et al., 1991). We use this two-dimensional form of the time
evolution equation for subsequent numerical simulations, rather than the full
three-dimensional system given by equations (6), (7), (8) and (9). Numerical
solution of the cylindrically symmetrical three-dimensional equations may also
be possible and will be the subject of further work.

The speed of the depolarization wave in the x*-direction, N*,, is given by the

x.'!
value of N*at y*=z*=0. We let x* denote the curvature correction term at this
point. In the dimensional system, the corresponding speed, N, , and curvature
correction term, k., have units cm/ms. When we evaluate (7) at yi=zy=0, we
have:
x,=N

[ § X

where:
N,=c,—exK,,
¢, is the planar travelling wave speed in the x-direction and:

k%

= JRR. 12)

This is the time evolution equation for a point on the wave boundary whose
normal vector points in the x-direction, and thereby models the speed of the
depolarization wave in the x-direction.

The symmetry of the asymptotic solution for ¥ along the wave boundary
means that the zero-flux boundary conditions in (5) constrain the wave
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boundary to intersect perpendicularly with the bundle wall. If we introduce a
scalar field, g(x*, y*, z*), which defines the bundle wall by g =0, then, provided
Vg is non-vanishing along the bundle wall, we can write this constraint as:

Vg ri=0

at g=0. It is evident that if such an intersection were non-orthogonal, then the
zero-flux boundary conditions would be violated at the point of intersection
(Grindrod et al., 1991). The effect of this orthogonality constraint is to cause an
increase in mean curvature and a subsequent slowing of the wave boundary as
it passes through the widening (Fig. 2). However, the value of k¥, is bounded
above by 2 sin(«*), which is realized only when o* is just large enough to stop
the wave front completely through curvature effects. Thus from equations (4)
and (12) we see that:

tan?(x)
qo(1+r, tan?(x))’

(k) <(ky)* = (13)
where g,=(C,R,)/2 and r,=R/R..

Approximate values for C,, and R, in Purkinje fibre bundles are 1 uF/cm?
and 0.1 kQ cm respectively (Weidmann, 1952; McAllister et al., 1975). Using
these values, g, is calculated to be approximately 0.05 ms/cm.

The value for R is much harder to determine. However, Freygang and
Trautwein (1970) give results which allow a very rough estimate. Based on
phase-angle response data, the effective radial resistance in a Purkinje fibre
bundle is roughly calculated to be R=60 kQ cm, thus making r, approxi-
mately 600. This means that the longitudinal speed of the impulse is ~ 25 times
the radial speed [see equation (3)]. This indicates a considerably larger degree
of anisotropy than in myocardial tissue, where the speed of the impulse is
approximately three times faster in the longitudinal direction than in the
transverse direction (Clerc, 1976). However, there is a fundamental structural
difference between myocardial and Purkinje fibres; ventricular myocardial
fibres have transverse tubule connections (T-tubules) which are absent in
Purkinje fibres. These effectively join the myoplasm of adjacent fibres (Sommer
and Johnson, 1968) and thereby electrotonically couple them in a manner
which is not found in Purkinje fibres.

The relationship between «, and «, given in equation (13), is shown in Fig. 4.
The relatively large degree of anisotropy (r,=600) means that x,_ quickly
asymptotes to approximately \/ﬁ c¢m/ms as o increases. Therefore we expect
the curvature correction term, ¢k, to be in the range —0.04 cm/ms <éek, <
0.04 cm/ms.

It is important to note that the curvature effects arising from variations in
bundle diameter only affect the wave speed over the short length where the
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Figure 4. The maximum curvature correction, x,,, given as a function of the
widening angle, o, for g, =0.05 ms/cm and r, =600 (13). The relatively large degree
of anisotropy means that x,, quickly asymptotes to /2/3 cm/ms.

diameter is actually changing; the remaining portion of bundle length supports
a wave with the planar travelling wave speed ¢ . The effect of a widening is to
slow the wave temporarily, while the effect of a narrowing is to increase the
wave speed temporarily. The average wave speed between the points a <x <b,
is given by:

1 [*dx\"!' (C./RR,([® dx \7! .
av_ Xy (SRR . 14
N (b—aL Nx) ( b—a L c*—mc:.) (14)

Typically, the effect of a symmetric narrowing and widening (constriction)
will decrease the average wave speed. This is clearly illustrated in the extreme
case where the widening is abrupt enough to stop the wave completely and the
average speed drops to zero. Contributions by the integrand in (14) are
directionally dependent because sgn(c*) changes with direction while sgn(x*)
does not. This means that asymmetric constrictions tend to reduce the average
wave speed asymmetrically. In other words, the average wave speed depends
on the direction in which it is measured. This is illustrated in Fig. 5, where the
non-dimensionalized planar system (10) and (11) is solved numerically for
waves moving through a constriction. Figure 6 shows how an asymmetric
constriction in a bundle may be sufficient to produce a one-way block.

The average wave speed in healthy Purkinje fibre bundles is approximately
0.2 cm/ms (Weidmann, 1952; Cranefield, 1975). This average wave speed
serves as a rough estimate for ¢, in healthy fibres, although in general it will be
an underestimate. Even in healthy fibre bundles, some asymmetry in average
wave speed is observed (Cranefield et al., 1971). We suggest that this reflects the
asymmetries in the variations in bundle width, as discussed above. These
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(a)

(b)

Figure 5. An asymmetric constriction in bundle width gives rise to directionally-
dependent wave speeds. Numerical solution of (10) and (11) with orthogonal
boundary conditions shows directionally-dependent slowing of the wave boundary
as it passes through an asymmetric constriction. The average wave speed in the
x*-direction [see (a)] is approximately 1.37 times the average wave speed in the
—x*-direction [see (b)]. The fibre bundle constricts from a non-dimensional width
of 1 to 0.5. The parameter values are ¢*=0.055 and £=0.05. Refer to the text and
equation (14) for further explanation.
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(a)

(b)

Figure 6. An asymmetric constriction in bundle width can be sufficient to produce a

one-way block. Numerical solution of (10) and (11) with orthogonal boundary

conditions shows how an asymmetric block may suffice in bringing the wave

boundary to a complete standstill. Here, blockage is one-way; the wave passes freely

through the constriction in the x*-direction (a), but is blocked in the — x*-direction

(b). The fibre bundle constrict from a non-dimensional width of 1 to 0.5. The
parameter values are ¢*=0.05 and £=0.05.

893
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become more pronounced in depressed fibres (Cranefield, 1975); asymmetric
wave speeds of 0.038 cm/ms vs 0.066 cm/ms have been observed in depressed
dog Purkinje fibre bundles (Cranefield et al., 1971), suggesting a pronounced
directional asymmetry in bundle width variations. Other experimental
evidence indicates that under certain conditions the average wave speed can be
depressed to as low as 0.005 cm/ms before one-way blocks occur (Cranefield,
1975). In these cases, variations may be either small or may have only a slight
directional asymmetry. These figures suggest that the range previously given
for ex, (—0.04 <&k, <0.04) is of the right order of magnitude.

3. Non-uniform Depression of Excitable Tissue. So far, we have implicitly
assumed that the depression of excitable tissue is spatially uniform. It is highly
unlikely that depressed tissue retains this uniformity. Cranefield et al. (1971)
suggest that the depression of dog Purkinje fibre bundles is more pronounced
on the bundle exterior than the interior when they are subjected to a Tyrode’s
solution with high potassium chloride concentration. One would expect that
any form of depression of cardiac tissue, whether through anoxia, disease or
temporary refractoriness, would have some spatial variation. The planar
travelling wave speed is thus, in turn, intrinsically a function of the depressed
excitation dynamics. For example, the one-dimensional version of (5) yields:

C*__féf*(V*)dV*
_—'—j.fu’- V?‘Z dé* ]

where &* = (x* + c*t*)/e. Therefore:

sgn(e*):ggn(ﬂ,f*(V*} dV*). (15)

In healthy tissue, (15) is positive (Fig. 2). However, severe depression may lead
to a sign change. Thus, both the sign and magnitude of ¢* depend on the
excitation dynamics, given by f*.

Here, we follow the approach of Tyson and Keener (1987) and use the
eikonal equation to model the movement depolarization waves through the
myocardium. Tyson and Keener’s eikonal approximation arose from a
reaction—diffusion caricature of the Beeler—Reuter (Beeler and Reuter, 1977)
model for the myocardium. However, we retain a degree of flexibility by not
linking the eikonal equation explicitly to its origins in a specific reaction—diffu-
sion system; the only parameters that the original reaction—diffusion system
yields are the planar travelling wave speed (¢) and the scaling parameter for the
dynamics (¢). Thus our eikonal equation model can be considered as an &x
refinement to modelling the myocardium with Huyghens principle (N =c; see
Auger et al., 1988). Based on our arguments for spatially non-uniform
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depression, we assume that the movement of the wave boundary can be
described qualitatively by a spatially dependent eikonal equation approxima-
tion:

N*=c*(x*, y*)—ex*, (16)

in a non-dimensional system which is chosen so as to put the anisotropic tissue
in exact correspondence with the isotropic media. Here, the planar travelling
wave speed, ¢*(x*, y*), depends on the spatial variation in the excitation
dynamics, given by the instantaneous current-voltage relationship, f*(V*).
Note that the spatial dependence of ¢*(x*, y*) precludes a rigorous derivation
of (16) from a reaction—diffusion system with spatially dependent excitation
dynamics. However, we feel that this is justified as we are using (16) as a model
rather than an asymptotic approximation.

By way of example, we numerically investigated an excitable system where
there are two adjacent regions of depressed conduction. Based upon our
analysis of directionally-dependent wave speeds in Purkinje fibres, we expect
that, as the wave boundary exists from the channel between the depressed
regions, its behaviour may be affected crucially by local spatial variations in the
wave speed. Whereas abrupt changes in the spatially-dependent wave speed
may retard or even stop the wave boundary, more gradual variations in the
wave speed should facilitate a smooth exit. With this in mind, we anticipate that
a one-way block may occur when ¢*(x*, y*)is chosen so that there is an abrupt
exit in one direction, but a gradual exit in the other direction. Such directional
asymmetry is exhibited by:

Ui y>0
.«;*:{* £ y=5 (17)

¥ otherwise,
where:

Fyrs
'}':4'—"_+Cmin*
Fyt+ry+rr,
T et T
ry=+/(x*—1)2 4 y*?
and c,;, <0 on the domain —1<x*, y*<1 (Fig. 7).

Zero-flux boundary conditions were applied to the eikonal time evolution
equations (10) and (11), which were then solved numerically (Fig. 7). Here, the
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(a)

(b)

Figure 7. Spatially non-uniform tissue depression may induce a one-way block.
Numerical solution of (10) and (11) with orthogonal boundary conditions on the
domain —1<x, y<1, where c*(x*, y*) is given by (17) and ¢,,,,= —0.25, shows
how waves starting at the top of the domain (y=1, —1<x<1) are blocked (a),
while waves starting at the bottom (y=—1, —1<x<1) sweep all the way up (b).
Solid lines show the time evolution of the wave boundary, while dashed lines show
constant ¢* isoclines. The isoclines range from —0.20 (on the far left and right of
centre) to +0.15 (at the top and bottom) by increments of 0.05.
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solid lines show the time evolution of the wave boundary. We see that waves
starting at the top of the domain (y=1, — 1 <x < 1)are blocked (Fig. 7a), while
waves starting at the bottom (y=—1, —1<x<1) sweep all the way up
(Fig. 7b). Thus, spatially non-uniform depression of tissue may, in itself, be
sufficient to induce a one-way block.

4. Discussion. Cranefield (1975) suggested that asymmetric conduction in
cardiac fibres arises from spatial inhomogeneities in active and passive
electrical properties of the fibres, from variations in the frequency and
distribution of junctions and from directional asymmetries in the electrical
pathway configurations in fibre networks. In terms of our eikonal equation
model, the spatial variations in electrical properties and nexus junction
locations suggest spatial dependence for the planar wave speed, ¢, while
asymmetries in electrical pathway configurations may be commensurate with
asymmetric domain geometry. Indicating that domain geometry (Section 2)
and spatial dependence for ¢ (Section 3) are key factors in causing asymmetric
and one-way conduction, our results thus provide a theoretical framework
which is in keeping with biological observations.

There are a number of auxiliary factors which may affect the depolarization
wave speed in Purkinje fibres that have not been included in our model. These
include time dependencies in the current-voltage relationship, the fact that the
Purkinje fibre ultrastructure is species specific, the possibilities that the zero-
flux boundary conditions on the system (3) may not be exact and that the fibre
bundle is, in fact, comprised of discrete fibres which are electrotonically
coupled in a manner which may be capacitive as well as resistive (Freygang and
Trautwein, 1970). The fact that the current-voltage relationship may be
changed substantially in Purkinje fibres which are depressed in a high K
solution (Cranefield, 1975) does not affect the basic theory so long as fibres
remain excitable, as no specific form was assumed for f*(V*) in (5).

We have used the eikonal equation approximation (8) both as a conceptual
and as a quantitative tool with which to model one-way blocks. Other
quantitative models and simulations have used Huyghens’ principle (see, for
example, Auger et al., 1988). In this case, N=c and so no boundary conditions
can be imposed. Here, the simulation of a one-way block requires the a priori
imposition of one-way transmission in a given region. In our analysis we have
shown that, in fact, it is the ek correction to Huyghens’ principle, given by the
eikonal equation approximation, which is instrumental in causing the one-way
block, thus rendering the artificial imposition of one-way transmission
unnecessary.

We are grateful to Professor J. D. Murray for his encouragement and helpful
comments.
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