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A geometrical approach to wave-type solutions of
excitable reaction—diffusion systems

By P. GrRiNDRODYT, M. A. LEWIS] AND J. D. MURRA Y]

Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles’,
Oxford OX1 3LB, UK.

We formulate the eikonal equation approximation for travelling waves in excitable
reaction—diffusion systems, which have been proposed as models for a large number
of biomedical situations. This formulation is particularly suited, in a natural way, to
numerical solution by finite difference methods. We show how this solution is
independent of the parametric variable used for expressing the eikonal equation, and
how a reduction of dimensionality implies a major saving over the time taken to
solve the original reaction—diffusion system. Neumann boundary conditions on
reactants in the original system translate into a geometric constraint on the wave
boundary itself. We show how this leads to geometrically stable stationary wave
boundaries in appropriately shaped non-convex domains. This analytical prediction
is verified by numerical solution of the eikonal equation on a domain which supports
geometrically stable stationary wave boundary configurations. We show how the
concepts of geometrical stability and wave-front stability relate to a problem where
a bi-stable reaction—diffusion system has a stable stationary wave-front con-
figuration.

1. Introduction

Much analytical research into reaction—diffusion systems is concerned with their
plane wave solutions (see, for example, Murray 1989). Even for small systems, the
existence and stability problems for these travelling waves are challenging. In this
paper, we shall consider three-dimensional waves that propagate over surfaces which
do not necessarily have planar symmetry.

A plane travelling wave front has constant velocity at all points in the forward,
normal direction. If the plane geometry of the wave is distorted, the normal velocity
will now vary locally across the wave front.

As background we need a general idea as to what constitutes a wave or wave-like
structure. We shall use these terms to refer to solutions which cause the state of the
system to be changed qualitatively and successively in adjacent neighbourhoods in
the domain. For example, a wave-front changes the state of the system from one
steady state to another as it passes over. By choosing an intermediate state, we can
define a surface of points in the domain at which this specific state is obtained. As
time evolves, the progress of this surface represents the progress of the wave-front,
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152 P. Grindrod, M. A. Lewis and J. D. Murray

and the normal velocity and curvature of this surface will vary with space and time.
Of course, had we chosen an alternative intermediate state, we would have obtained
a different surface, probably propagating according to slightly different rules. A full
knowledge of the behaviour of each and every such surface would require a complete
knowledge of the solution to the original reaction—diffusion problem.

We now wish to exploit the notion of a surface of points, representing the location
of a wave-front, in our analysis. We do this by restricting the nature of the systems
that are under consideration. Specifically, we consider those systems with excitable
dynamics. These systems possess a fast variable which dominates the behaviour of
the system. Small subthreshold perturbations of this fast variable from the unique
steady state are rapidly damped out, but larger suprathreshold perturbations trigger
an abrupt and substantial wave-like excursion from the steady state to an excited
state, after which there is an eventual return to the steady state. This excursion is
characterized by a transition-layer or wave boundary in which the dominant
variable shifts rapidly from the steady state to the excited state. This leads to two
major analytical advantages.

First, it suggests that we try to solve the problems by a transition-layer approach,
which often proves successful for problems involving travelling waves. As it turns
out, it is the behaviour of the solution within the transition-layer that is important
in describing the spreading of the wave.

Secondly, since the state is changing rapidly across the transition-layer, the
surfaces at which the solution achieves specific intermediate states are all very close
together, and hence must exhibit a similar geometry and normal speed of
propagation. Thus we avoid the complexities involved in the general situation
indicated earlier.

Assuming that the waves are quiescent away from the transition layers, the
problem reduces to the following: to describe how the solution varies across the
transition-layer, and to describe how the geometry and motion of the transition-
layer (wave boundary) evolves in time.

A number of authors, including Zykov (see, for example, Zykov 1987), Keener &
Tyson (see, for example, Keener 1986 ; Keener & Tyson 1986) have shown how wave
boundary motion depends crucially upon its curvature. Following Gomatam &
srindrod (1987), we indicate how the problem of two- and three-dimensional wave
propagation can be compared with that for wave propagation in one dimension by
requiring that the wave boundary is located on a surface which propagates according
to N+ex =c,
where NV is normal velocity, « is twice the mean curvature, and ¢ and ¢ are constants
obtained independently from the original reaction—diffusion equation. We refer to
this as the eikonal equation (see Keener 1986).

We shall show that solutions to the eikonal equation exhibit stability and
threshold behaviours which are analogous to the same concepts when applied to the
original reaction diffusion system. That such behaviour has been inherited by the
eikonal equation suggests the fundamental nature of the eikonal equation as a model
for solutions of reaction—diffusion systems.

If a wave is in contact with a boundary (that is, a boundary of the domain of the
original reaction—diffusion system), we impose boundary conditions which are
consistent with Neumann boundary conditions for the original reaction—diffusion
system. For a wave meeting the boundary, this simply requires that the edge of the
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wave-front must propagate so that the wave always meets the boundary
orthogonally (that is, the normal vectors to the surface locating the wave front and
the boundary surface are orthogonal).

We shall show how the application of orthogonal boundary conditions to the
eikonal equation may result in stable stationary solutions as a wave exits, for
example, from a narrow slit into a larger reservoir (see also Grindrod 1991). This is
used to give a simple explanation of the result that homogenous reaction—diffusion
systems with two or more stable rest states possess stable non-homogenous steady
state solutions in certain non-convex domains. The classic example is a steady state
solution in a dumb-bell shaped region, a narrow bridge between two large convex
sub-domains (Matano 1979). Here, the bridge is a small slit in our present
terminology. We shall show that, even though plane waves propagate down the slit,
changing the system from one rest state to another, they can cap the slit at one end
by a circular arc which is a stable stationary configuration.

The main motivation for studying excitable reaction—diffusion equations lies in
their applicability to problems in physiology, biology and chemistry (Murray 1989).
Excitable behaviour is typically exhibited by nerve axons (Hodgkin & Huxley 1952;
FitzHugh 1961 ; Nagumo ef al. 1962), neuromuscular tissues (Winfree 1987 ; Shibata
& Bures 1974 ; Gorelova & Bures 1983 ; Muira & Plant 1981 ; Lewis & Grindrod 1991),
select chemical reactions in non-convecting liquid phase, such as the Belousov—
Zhabotinskii reaction (Keener & Tyson 1986) and some biological aggregates
such as slime molds (Tyson et al. 1989; Tyson & Murray 1989). For example, the
Hodgkin—Huxley equations provide an important model for the electrical activity in
membranes of living organisms. One of the state variables represents the potential
difference across the membrane. This is subject to the electrical currents conducted
tangentially to the membrane in both the external and internal ionic fluids, as well
as trans-membrane currents due to the gating of specific charged ions through active
channels, as well as the capacitance of the membrane itself. In one dimension, the
Hodgkin—-Huxley equations are used as a model for the propagation of action
potentials along an unmyelinated nerve axon: this was the original problem for
which the equations were derived (Hodgkin & Huxley 1952). The FitzHugh—Nagumo
(FitzHugh 1961; Nagumo et al. 1962) equations constitute a similar, but more
qualitative, model.

Our aim is to use the eikonal equation approximation to investigate analytically
and numerically the behaviour of wave boundaries on two-dimensional surfaces. In
§2 we formulate the eikonal equation approximation in a parametric form and show
how, in certain instances, the parametric variables can be dispensed with. In §3 we
introduce a simplified time evolution equation for the movement of waves on two-
dimensional surfaces. In §4 we show that, in fact, this equation can be solved
numerically, even though it is expressed in a parametric form. This is a new result,
and is significant in that it yields a remarkable computational advantage over
solving the original reaction—diffusion system. In §5 we predict the configurations
and geometric stabilities of waves passing through narrow slits. Here the wave
boundaries are constrained to be highly curved due to the combined effects of the
boundary conditions and domain geometry present in the original reaction-diffusion
system.

Proc. R. Soc. Lond. A (1991)
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2. The eikonal equation
We consider the excitable reaction—diffusion system
w, =D, Au+f(u,v), v, =D, Av+eg(u,v), (1)

where ¢ is time, A is the laplacian operator with respect to the space vector xe R?, f
and ¢ define the excitable reaction kinetics and 0 < ¢ < 1. Here u is the ‘fast’ variable
and v is the ‘slow’ variable. By rescaling

x—>ex/Di, t->el, 8->D,/D,
we change (1) to a form suitable for our analysis:
eu, = €2 Au+ flu,v), v, = edAv+g(u,v). (2)
We introduce the moving coordinate system
r=rip ), A l),
where {g, 5, A} constitutes a triply orthogonal system of coordinates
ror=0, ror,=0, ror,=0, |r|=1,

r, = 0r/0u and similarly for r, and r,. At any time, ¢, the surface given by r(0,7,
A, t) is the wave boundary, or wave-front boundary layer, parametrized by # and A.
Thus

X 3)

r =
e lirl
is the unit vector normal to the wave boundary, and
r,=Nr, (4)

where NV is the normal velocity of the wave boundary.

Following the procedure in Gomatam & Grindrod (1987), we use the stretched
coordinate £ = p1/e to find solutions for the fast variable of the form u = U(£), and
arrive at an asymptotic approximation for N in terms of the one-dimensional
travelling wave speed, denoted by ¢, and twice the mean curvature of the wave
boundary, denoted by «. This approximation, given by

N = c—ex, 5)

where K:_"w'("ﬂxr/\)_r,u'(rnxr/\)
AN Ir, | Ir)°

; (6)

is referred to as the eikonal equation for reaction diffusion systems and is valid to
O(e). Thus (3), (4), (5) and (6) describe the time evolution of the wave boundary.

If the wave boundary #(0, 7, A, t) can be expressed as a single-valued function, then
the dummy coordinates # and A can be dispensed with. For example, if the wave
boundary can be written in the form x = x(, A, t) = X(y, z,t), then the time evolution
equation becomes

X, X2+1)—-2X, X X, +X_ (X2+ 1)).

X, :(,-(1+X§+X§)%+e( S, (7)
1+ X2+ X2
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1()): The Wave

Figure 1. The wave meets 0% in 8. Zero-flux boundary conditions constrain r, to be
perpendicular to 082.

3. Waves on two-dimensional surfaces

If we restrict our attention to waves propagating over some oriented smooth
surface, S, we can choose r*€S and n(r*) to be the oriented unit normal to S and set

r = r¥(n,t)+ An(r*(y,t)).

This is equivalent to seeking three-dimensional waves that intersect S orthogonally
along r*(5,t). The time evolution of the wave boundary, given by (3), (4), (5) and (6),
now simplifies to yield an equation for the propagation of waves on the surface S,
namely

¥ Xn ¥ ¥ XR\F¥ Xn
r,=(c—ex)m = (e e T )1 T2 (8)
‘ I, I, I? I,

where re§ and we have omitted the asterisk for notational simplicity.
The specific form of the time evolution equation depends on the geometry of S. For
example, if S is an infinite plane, we choose r = (x,y,0) and » = (0,0, 1) so that

Ty Yy =Yy @ Y
X, = |42 ”) 1T, 9)
‘ ( (@2+y2) ) (@2+y2)

Ty Yy = Y%\ X,
Y =<C+€ L/ ’I’I§ n) L. (10)
' (@2 +y2) ) (a2 4y2)2

These equations were given by Keener (1986) and used to analyse spiral wave
boundaries arising from the Belousov—Zhabotinskii reaction (Keener 1986 ; Keener &
Tyson 1986). In polar coordinates, they are

. <C+€70”(7w—762)—rﬂ(702”+2rﬂ01)) r0, iy (1)
! (r2 472 02)2 (r2 412 02):
0 — (C_I_erﬁ,,(?ml—-ﬂij)—rn(rﬁg,]+27,] 0.7)) -7, iy (12)
‘ (re+r205) r(ri+1267)
If S is a sphere of unit radius we choose r = n = e, where |e| = 1 so that
et=(0+6—1L—be".e3xe)—”——e xe. (13)
le,| le,|

By use of this last equation, Grindrod & Gomatam (1987) were able to make
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Figure 2. Temporal evolution of a spiral wave pattern. Numerical solution of (9), (10) on the infinite
plane by an implicit second order finite difference scheme and fixed wave boundary end points
results in the evolution of familiar spiral wave patterns (¢ = 1.0, ¢ = 0.1). The location of the wave
boundary at ¢ = 0 is indicated by a solid line.

theoretical predictions for double spirals rotating on spheres, before the experimental
discovery of them by Maselko & Showalter (1989).

3.1. Zero-flux boundary conditions

The symmetries of the asymptotic solutions for  and v along the wave boundary
in the y-direction mean that when Neumann boundary conditions are imposed on the
original reaction—diffusion system (1), the corresponding constraint on (8) is the
orthogonal intersection of r, with the domain boundary, d€2. It is evident that if such
an intersection were non-orthogonal then the zero-flux boundary conditions would
be violated at the point of intersection.

We define a scalar field g such that 0Q2 = {reS:g(r) = 0} where Vg # 0 when
g = 0. Using ¢, the zero-flux boundary conditions can be written as

g(r(0,1) =0, (14)
Vg(r(0,1)) x r,(0,1) = 0, (15)
)
1

where r, intersects the boundary at 5 = 0 (figure 1). Note that the vector system (8
for waves propagating over surfaces is a pair of coupled second-order partia
differential equations. Thus two conditions must be imposed at each end-point.
Clearly, (15) is in agreement with this.

It is less clear what constraints to impose on each tip of an open wave boundary
which does not approach the domain boundary. This is because the eikonal
approximation is no longer valid at this interior wave boundary end-point; the
concept of the curvature («) of the wave front makes little sense here. Zykov (1986)
has shown that the behaviour depends on the local reaction kinetics in (1); tips
remain essentially fixed for small €, but begin to meander, in a small neighbourhood
about the fixed point, as ¢ is increased. Meandering tips have been shown to move in
small circles, sometimes with a secondary circular component, producing flower-like
patterns (Lugosi 1989). The application of orthogonal (zero-flux) boundary
conditions to small circular boundaries, excised from the solution domain at the
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wave tips, may emulate this meandering, at least when there is no secondary circular
component. As ¢ decreases, the radius of these imaginary circular excisions is
decreased, until the wave tips eventually become fixed. However, the wave tips are
essentially stationary over long periods of time as they remain within a small
neighbourhood of the fixed point. This leads us to suggest that by fixing the wave
boundary end points, we retain the essential qualitative behaviour of the wave
boundary movement.

4. Numerical solutions

The parametric form of the time-evolution equation for waves on surfaces (8) can
be solved numerically by standard finite difference methods. This is facilitated by the
fact that all the ‘0%’ terms in the finite difference approximations for the » partial
derivatives cancel. Thus we are conveniently precluded from explicitly stating the
7-parametrization of the wave boundary. The discretization points chosen along
the wave boundary at ¢t =0 define equal increments of 7, and thereby the #-
parametrization is defined for { =0 (modulo a constant). The wave boundary
movement is determined by the fact that points of fixed 5 are constrained to move
perpendicularly to the wave boundary in the direction of x ((3) an (4)). Thus the #-
parametrization is defined for all time (modulo a constant), but is never given
explicitly.

The application of a second-order implicit finite difference scheme to (9) and (10)
yields a system of non-linear equations

F(x’ﬂ, xn+1’yn’yn+1 ; C, 6) — O’

where x™ and y" give the coordinates of the wave boundary at time step n. The
unknowns, x"*! and y"*1, can be solved for by using Newton’s Method at each time
step. Figure 2 shows the temporal evolution of spiral wave patterns that result from
solving the system (9) and (10) by this method while fixing the wave boundary end-
points. The solution of the eikonal equation on a sphere (13) with fixed wave
boundary end-points is shown in figure 3. Here, the secant method was used to solve
the nonlinear system resulting from the application of a second order implicit finite
difference scheme where e = (x,7,2) and z = (1 —22—y?): with 0 < 22+y2 < 1.

Numerical solution of the eikonal equation approximation (8) takes an order of
magnitude less time than the numerical solution of the reaction-diffusion system (2);
the cPU time to solve (9) and (10) was approximately 1/60 times the cPU time to solve
(2), where the fast variable (») had FitzHugh—Nagumo dynamics and explicit finite
difference methods were used for both equations. The case tested was for a radially
expanding wave boundary which was square at { = 0. Superimposition of the wave
boundary predicted by (9) and (10) and the v = 0.5 contour given by (2) indicated a
very close correlation for various es. These results show that the numerical solution
of the eikonal equation approximation is substantially faster and almost as accurate
as the numerical solution of the reaction-diffusion system. However, further
numerical comparisons of the accuracy are needed for various other reaction
dynamics.

5. Geometric stability

Wave boundary solutions of the eikonal equation (5) which are stable as a family
are referred to as being geometrically stable (Gomatam & Grindrod 1987). Geometric
theory suggests that waves taking these forms may be stable solutions of the original
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Figure 3. Solution of the eikonal equation on a unit sphere. Numerical solution of (13) by an
implicit second-order finite difference scheme and fixed wave boundary end points yields the
temporal evolution of spiral wave patterns on a sphere. (a) ‘Birds-eye’ view, (b) viewed from the
front, (¢) viewed from the right-hand side. (¢ = 1.0, ¢ = 0.1).

reaction diffusion system (1). On the other hand, waves which are not geometrically
stable are unlikely to be stable solutions of the original system, particularly in the
limit of ¢ being very small.

Dispensing with the dummy coordinates 5 and A helps in the analysis of geometric
stability (although this simplification was not used in Gomatam & Grindrod (1987)).
As in the three-dimensional case, this can be done when the wave boundary is
expressible as a single-valued function. Suppose we consider a wave propagating over
the infinite plane, and that for each ¢ fixed, y(7,t) is invertible with y, <0. In
cartesian coordinates, x(y,t) = X(y.t), so equations (9) and (10) yield

qu 3
=€ - +(1 2)2 3
X, ((]+X§)+(( +X3), (16)

a simple quasi-linear evolution equation which is the two-dimensional analogue of
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Figure 4. Threshold behaviour for radially expanding waves. Disturbances must exceed the critical
radius R, = ¢/c to initiate a radially expanding wave. Numerical solutions of (9), (10), with
e/c = 0.5, show how subthreshold disturbances (R(0)=0.44) collapse while suprathreshold
disturbances (R(0) = 0.8) initiate a radially expanding wave.

(7). The solution X = ct represents a planar wave propagating over the (2, y)-plane in
the z-direction. Linearizing about this solution by setting X = c¢t+w(t, ) and keeping
leading order terms yields
W, = €Wy,

These planar wave solutions are geometrically stable because w-—>0 uniformly as
t—>o00 provided [w(0,y)dy is finite.

We consider the use of polar coordinates. If, for each ¢ fixed, 0(y,t) is invertible
with 6, > 0, then by writing 7(y,t) = R(0,{), equations (11) and (12) yield

(Byg—=2R5/R—R)  (R+R*:

R, = :
N 7 ) TR

(17)

Simple solutions are obtained by assuming £ is independent of # and have the form
R, =c—e/R(t). (18)

Hence we obtain a spherical wave, centred at the origin, which exhibits threshold
behaviour; disturbances must exceed a certain radius R(0) > ¢/c to initiate a radially
expanding wave (figure 4).

In Gomatam & Grindrod (1987) it was shown that (5) admits spherical waves in
R?® which are geometrically stable. The same result can be obtained here for spherical
waves in R? by linearizing (17). Setting R(¢) = p(¢) +s(t, 8) and linearizing yields

8, = S+, (19)

¢ edr
where z = 20
fOpZ(T) (20)

and s(6) = s(2n+6). The solution s = 0 is unstable in the first eigenmode spanned by
the function ¢ = 1. However, the perturbation in this mode can be assumed to be
zero if we permit the resetting of p(0) so that [s(0,8)d6 = 0. The second eigen-mode
spanned by the functions ¢, = cos(0) and ¢, = sin(0) is neutrally stable. The
perturbation in this mode can also be assumed to be zero if we allow a shift in the
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Figure 5. The domain, 2, for analysis of stable stationary waves. Here, 0€2 is given by ¢ = 0 (below)
and ¢g(r, #) = 0 (above). The wave boundary is depicted by the arc of a circle with radius €/c, centred
at the point O. Thus, in the polar coordinate system, 4 = (¢/c,a*) and B = (¢/c, 0).

origin of the spherical wave so that [s(0,0) sin () df = 0 and [s(0,0) cos (6) dd = 0.
The origin for (19) is stable in the higher eigen-modes (= 2). Thus the three-
parameter family of spherical waves defined by an arbitrary initial radius and origin
shift is stable.

5.1. Stable stationary waves

We consider stationary waves that satisfy (5) in the plane. By definition N = 0, so
such waves have constant curvature and must lie in arcs of circles of radius ¢/c. Here
the rest point, r = ¢/c is unstable in the first eigen-mode as we do not allow an
arbitrary resetting of the initial radius. However, by considering some simple
problems involving bounded domains we shall show that geometrically stable
stationary waves are possible.

Consider a wave propagating through the domain 2 < R? shown in figure 5. The
curve AB represents the wave boundary for an excitable system with zero-flux
boundary conditions, and is depicted by the arc of a circle with the radius ¢/c,
centred at the point O. We introduce the polar coordinates (r, ) centred at the origin
O, thereby making A = (¢/c,a*). We assume that the boundary curve PAQ is given
by g(r,n) = 0 for some smooth function g, with a non-vanishing gradient in the
neighbourhood of A. We write (8) in polar coordinates with r = r(6,t). Thus
perturbations of this stationary wave must satisfy

_ (g =2r3/r=r) (347

= 21
T, =€ (T?;-H’z) +c ; , (21)

for 0 < 0 < o and ¢ > 0, together with the boundary conditions

g=0, (22)
12, = 1pgp (23)
at (r,0) = (r(a,t),) and ry =0 (24)

at 6 = 0.

The conditions (22)—(24) ensure that the wave boundary meets 022 orthogonally at
the points A and B. Thus (21)—(24) represents a moving boundary problem with o(¢)
being dependent on the solution r.

Perturbing the stationary wave solution, (r,0) = (¢/c,a*) to

(r,0) = (e/c+s(t,0),0*+ )
Proc. R. Soc. Lond. A (1991)
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and linearizing (21)—(24) yields

8, = (8g9+ ) (c*/€) (25)
for 0 < 0 < a* and ¢ = 0 together with the boundary conditions
grS+g€ﬂ = O’ (26)
(62/02) (grr8+gr0ﬂ) =S990 (27)
at (r,0) = (¢/c,a*) and
s5=0 (28)
at 6 = 0. However, g,(¢/c, a*) = 0 means that = 0 by (26). Thus (27) becomes
(62/02)(grr/g6) § =38 (29)
at (r,0) = (¢/c,a*).

Elgcnfunctlons of the resulting stability problem defined by (25), (28) and (29) are
of the form
s = exp ((1—A2%)et/c?) cos AG, (30)

where A is real, non-negative, and satisfies
— A tan Aa* = (€*/¢*)(g,,/9,)

at (r,0) = (¢/c, a*). Thus for stability we require that A > 1 in (30), which is true for
0 < a* < im if and only if
(€%/¢*)(grr/95) ¢ [ —tan (), 0] (31)
at (r,0) = (e/c,a*).

By choosing
g(r,0) = y—h(),

with #'(x) > 0 (see figure 5) we can put the stability criterion (31) in a simpler form.
Note that the origin in these (,y) coordinates is not necessarily coincident with our
origin, O, introduced for the polar coordinates. If the z-coordinate of A is a*, then
the stationary wave solution is given by

k' (x*) = tan (a¥)
and
h(x*) = (e/c) sin (a*)

1o
= (/o))

(R ) %2

The stability criterion (31) now becomes
R#[0, (c/e) ' (L+ R (33)

at x = x*. For concave domains, such as the one shown in figure 5, we have
R’ (x*) > 0. Thus if A”(x*) is large enough, the wave is stable.

By way of an example, we consider the case where the curve PQ in figure 5 is given
by the arc of a circle with radius p. Here

h(x) = 8+p—(p*—2*)}
and 0 < x < p. By using (32) we see that there are two standing wave solutions for
e>e,=c(8(8+2p)) (34)

Proc. R. Soc. Lond. A (1991)
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@ (b)

Figure 6. Geometrically stable standing wave. Numerical solution of (9), (10) with orthogonal
boundary conditions on a non-convex domain reveals a geometrically stable wave for ¢ > ¢,.
Here, the solution domain is the infinite plane, with two circular excisions of radius p which are
separated by the distance 20. By choosing p = 28 and ¢ = 1 we have ¢, = §4/5 (34). A geometri-
cally stable standing wave results when ¢ = 2.36 > ¢, (a). This standing solution disappears when
e=218<e¢, (b).

which coalesce and then disappear at
v = x, = p(8(5+2p))/(5+p)

as € passes through e,. The stability criterion (33) indicates that the inner standing
wave is locally stable while the outer standing wave is unstable. Thus if a wave is
initiated in the domain

Q={x>0 and 0<y<d+p—(p2—a2)}

atx = 0,0 <y < J,it tends towards the stationary wave x* = x, provided ¢ > ¢,. The
behaviour for ¢ less than and greater than ¢, is numerically simulated in figure 6.

Having demonstrated one possible situation where a standing wave is stable, we
forego the opportunity to construct more elaborate examples and briefly focus on the
consequences of such behaviour. The point to note is that reaction-diffusion waves
cannot propagate out of thin slits. Figure 7 shows the stable stationary steady state
configuration assumed by a planar travelling wave as it exits from a narrow slit into
a larger reservoir. In this numerical simulation we solved the bistable reaction—
diffusion system with cubic dynamics, given by

eu, = e Au+u(l —u)(u—a). (35)

while applying zero-flux conditions at the domain boundary. Thus the rest state of
the reaction—diffusion system is numerically shown to exist as a stable configuration,
which is what the geometric theory predicts.

6. Discussion

We have demonstrated stability behaviour, threshold results and stationary waves
for the eikonal equation approximation (5). We have shown that this approximation
can be solved numerically, yielding a significant computational advantage over
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Figure 7. The rest state of a bistable reaction—diffusion system is shown to exist as a stable
configuration. The numerical solution of (35) with zero-flux boundary conditions by finite
difference methods reveals a stable stationary configuration as the wave is exiting from the mouth
of the channel. Here, the channel width is 1.0 and ¢ = 0.08, while @ = 0.4 yields an effective planar
travelling wave speed of ¢ = 4/2(1/2—0.4) = 0.1414. Isoclines are shown for 0.1 increments of u.

solving the original reaction—diffusion equation. There is also an important
conceptual advantage to be gained by working with the eikonal equation ; modellers
can understand the concepts of threshold behaviour and stationary waves with an
insight which is not afforded by consideration of the original reaction—diffusion
system (1). We hope that this will encourage more experimental and theoretical work
in a number of areas which previously were held back by the complexity or
intractability of large systems of excitable reaction—diffusion equations.

Our analysis of the stationary waves, arising from an excitable system with
Neumann boundary conditions on a non-convex domain, suggests new experimental
situations which may yield stationary waves. For example, by placing two
impervious disks adjacent to each other in reagent, one could emulate a small slit
which should block a wave of excitation in the Belousov—Zhabotinskii reaction.
Alternatively, applications to the theory of neuromuscular systems may lead to a
better understanding of the underlying causes of abnormalities such as one-way
blocks in cardiac tissue (Lewis & Grindrod 1991).

This work (J.D.M.) was supported in part by a Grant (DMS-8902878) from the U.S. National
Science Foundation.
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