The Joy of Sweave: A Beginner’s Guide to Reproducible Research with Sweave

Mario Pineda-Krch

Centre for Mathematical Biology, University of Alberta

http://pineda-krch.com

January 17, 2011
Reproducible Research

"An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures.” — Jon Claerbout

- Reproducibility is one of the cornerstones of the modern scientific method

- Traditionally papers publishing experimental and mathematical results contain sufficient information to reproduce the results, e.g. empirical methods or mathematical proofs

- Reproducible Research in computational sciences is about reproducible computational results, e.g. simulation and analysis results (not reproducing experimental results), using the same methods (algorithms, seed) as in the paper

- The majority of computational research is not easily reproducible because
 - Algorithms are typically not described in published papers
- Journals do not require computer code to be deposited in a repository (see e.g. Dryad (http://datadryad.org/), KNB (http://knb.ecoinformatics.org/), and GenBank (http://www.ncbi.nlm.nih.gov/genbank/))

- The code/documentation mismatch fallacy

- Sweave provides a solution to this problem
Online resources for RR

- Wave lab at Stanford (http://www-stat.stanford.edu/~wavelab/): Real world RR using MatLab
- Reproducible Research (http://reproducibleresearch.net/): web site is intended to collect information and useful links about reproducible research
Selected Papers
*
*
*

THE JOURNAL
of
IRREPRODUCIBLE
RESULTS

THIRD EDITION

A selection of superb and irreproducible research from the illustrious and irreproducible archives of the Society for Basic Irreproducible Research

Microarrays: retracing steps

To the editor: Potti et al. published an article in Nature Medicine reporting an approach predicting whether a tumor will respond to chemotherapy. Using publicly available data, they derived signatures from microarray profiles of the NCI-60 human cancer cell lines with known in vitro sensitivity or resistance to a particular drug. They used these profiles to predict in vivo chemotherapeutic response to seven different drugs. In order to help investigators at our institution use similar approaches, we tried to reproduce their results. We used the same published data and additional information generously supplied by the authors regarding methods, lists of cell lines called sensitive or resistant, and the software used to perform their analysis.

We report here our inability to reproduce their findings. Details of our methods and results are described in the supplementary information (Supplementary Reports 0–9) and are summarized here.

1. We cannot reproduce their selection of cell lines. The most sensitive and resistant lines should be used to focus on drug effects. However, the GI50 (the concentration needed to reduce the growth of treated cells to half that of untreated cells) concentrations for their sensitive and resistant lines overlap (Supplementary Report 3). Our analyses used both their cell lines and ones we selected independently.

2. The lists of genes initially reported in the supplementary information on the Nature Medicine website are wrong because of an off-

...complexity of many bioinformatics analyses. This complexity requires extensive double-checking and documentation to ensure both data validity and analysis reproducibility. We believe that this situation may be improved by an approach that allows a complete, auditable trail of data handling and statistical analysis. We use Sweave, a package that allows analysts to combine source code (in R) and documentation (in LaTeX) in the same file. Our Sweave files are available at (http://bioinformatics.mdanderson.org/Supplements/ReproSch-Chemo/). Running them reproduces our results and generates figures, tables and a complete PDF manuscript.

The idea of using the NCI-60 cell lines to predict patient response to chemotherapy is exciting. Our analysis, however, suggests that it did not work here.

Kevin R Coombes, Jing Wang & Keith A Baggerly
Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
e-mail: kcoombes@mdanderson.org

Note: Supplementary information is available on the Nature Medicine website.
Signal in Noise: Evaluating Reported Reproducibility of Serum Proteomic Tests for Ovarian Cancer

Keith A. Baggerly, Jeffrey S. Morris, Sarah R. Edmonson, Kevin R. Coombes

Proteomic profiling of serum initially appeared to be dramatically effective for diagnosis of early-stage ovarian cancer, but these results have proven difficult to reproduce. A recent publication reported good classification in one dataset using results from training on a much earlier dataset, but the authors have since reported that they did not perform the analysis as described. We examined the reproducibility of the proteomic patterns across datasets in more detail. Our analysis reveals that the pattern that enabled successful classification is biologically implausible and that the method, properly applied, does not classify the data accurately. We show that the method used in previously published studies does not establish reproducibility and performs no better than chance for classifying the second dataset, in part because the second dataset is easy to classify correctly. We conclude that the reproducibility of the proteomic profiling approach has yet to be established. [J Natl Cancer Inst 2005;97:307-9]

of empirical data and the corresponding predictions of Adaptive Dynamics. Lastly, we note that quite a lot of the work in the literature on Adaptive Dynamics relies on numerical simulation of the behaviour of populations. We observe that there is often a somewhat sketchy description of the computational procedures adopted. To enable later workers to reproduce computational work, we would like to see clearer descriptions of this important aspect of the research, which should be viewed as being as important as an experimental protocol.
Don’t do stats or simulations? No problem!

- Mathematical biologists doing numerics are not out of the woodwork
- Numerics also needs to be reproducible
What is \LaTeX?

"Is \LaTeX hard to use? It’s easy to use if you’re one of the 2% of the population who thinks logically and can read an instructional manual. The other 98% of the population would find it very hard or impossible to use.” — Leslie Lamport

- A document preparation system for high-quality typesetting.

- First developed in 1985 by Leslie Lamport and based on Donald E. Knuth’s TeX typesetting language.

- Designed for the production of technical and scientific documentation.

- Based on the idea that it is better to leave document design to document designers, and to let authors get on with writing documents.

- Automatic generation of bibliographies and indexes.

- Pronounced "Lah-tech" or "Lay-tech".
Online resources for \LaTeX

• The Comprehensive T\TeX{} Archive Network aka CTAN: the authoritative collection of materials related to the TeX typesetting system. (http://www.ctan.org/)

• \LaTeX{} at Wikibooks: wiki guide to the \LaTeX{} markup language. (http://en.wikibooks.org/wiki/LaTeX)

• \LaTeX{} symbol list: lists 2826 symbols and the corresponding \LaTeX{} commands and packages necessary to produce them. (http://statweb.calpoly.edu/jdoi/web/reference/symbols-a4.pdf)
The Hastings & Powell model

The non-dimensional version of the Hastings \& Powell (1991) model is given by,

\begin{equation}
\begin{array}{lcl}
\frac{dx}{dt} &=& x(1-x) - \frac{a_1 x}{1+b_1 x}y \\
\frac{dy}{dt} &=& \frac{a_1 x}{1+b_1 x}y - \frac{a_2 y}{1+b_2 y}z - d_1 y \\
\frac{dz}{dt} &=& \frac{a_2 y}{1+b_2 y}z - d_2 z \\
\end{array}
\end{equation}
The Hastings & Powell model

The non-dimensional version of the Hastings & Powell (1991) model is given by,

\[
\begin{align*}
\frac{dx}{dt} &= x(1 - x) - \frac{a_1 x}{1 + b_2 y} \\
\frac{dy}{dt} &= \frac{a_1 x}{1 + b_2 y} - \frac{a_2 y}{1 + b_2 y} z - d_1 y \\
\frac{dz}{dt} &= \frac{a_2 y}{1 + b_2 y} z - d_2 z
\end{align*}
\]

(1)
What is R?

"R is a language and environment for statistical computing, computational research and graphics." — Freely adapted from http://www.r-project.org/about.html

- Highly extensible via user-developed packages; 2751 of packages (only at CRAN) and counting.

- Much of R is written in R.

- Command line interface and scriptable.

- Easily integrates with low-level languages (e.g. C/C++ and Fortran).

- Source code freely available allowing for algorithm transparency and modification.

- Free as in freedom and priceless.

- Compiles and runs on a wide variety of UNIX platforms and similar systems (including FreeBSD and Linux), Windows and MacOS.
Online resources for R

- The Comprehensive R Archive Network aka CRAN (http://cran.r-project.org/): a network of ftp and web servers around the world that store identical, up-to-date, versions of code and documentation for R

- R-blogger (http://www.r-bloggers.com/): R news contributed by (147, and counting) R bloggers

- R-Forge (https://r-forge.r-project.org/): central platform for the development of R packages, R-related software and further projects.

- Stack Overflow (http://stackoverflow.com/questions/tagged/r): collaboratively built and maintained programming Q&A site.

• The R Journal (http://journal.r-project.org/): peer reviewed journal focusing on introduction and review of packages, R programming tips and tricks, etc.

• GillespieSSA (http://pineda-krch.com/gillespiessa/): a package providing an interface to several stochastic simulation algorithms for generating simulated trajectories of finite population continuous-time model.
A first (non-statistical) R example

```r
# First line
require(deSolve)
> out <- as.data.frame(ode(x0, time, hp, parms))
>
> # chunk number 6:
> # line 55 "Foo.Rnw"
> str(out)
'
[...]
'data.frame': 5001 obs. of 4 variables:
  $ time: num  1.2 3.4 5.6 7.8 9 ...
  $ x  : num  0.75 0.732 0.696 0.644 0.578 ...
  $ y  : num  0.15 0.173 0.201 0.234 0.267 ...
  $ z  : num  10 18 18.1 10.1 10.2 ...

> # chunk number 7:
> # line 61 "Foo.Rnw"
> head(out)
  time x  y  z
1  0.75 0.15 10.00
2  1.2  0.73 17.00
3  3.4  0.69 20.00
4  5.6  0.64 10.00
5  7.8  0.58 10.20
6  9.0  0.50 12.50

> # chunk number 8:
> # line 67 "Foo.Rnw"
> plot(y~x, data=out, cex=.5, pch=19, xlab=expression(italic(x)), ylab=expression(italic(y)))

> # chunk number 9:
>
> # line 76 "Foo.Rnw"
> \begin{verbatim}
> R version 2.12.0 (2010-10-15), 
> Copyright (C) 2010 The R Foundation for Statistical Computing
> This is free software; you can redistribute it and/or modify it
> under the terms of the GNU General Public License as published
> by the Free Software Foundation; either version 2, or (at your
> option) any later version.
> 
> R is free software distributed in the hope that it will be useful,
> but WITHOUT ANY WARRANTY, including without limitation the
> implied warranties of MERCHANTABILITY or FITNESS FOR A PARTICULAR
> PURPOSE. See the GNU General Public License for more details.
> 
> You should have received a copy of the GNU General Public License
> along with R; see the file COPYING. If not, see
> http://www.r-project.org
> \end{verbatim}
```

"Sweave provides a flexible framework for mixing text and S code for automatic document generation. A single source file contains both documentation text and S code, which are then woven into a final document containing the documentation text together with the S code and/or the output of the code (text, graphs)" — Freidrich Leisch

- A function in R
- Allows for integration of code (R) with prose (\LaTeX)
- A simple text file consisting of a sequence of code and documentation segment, aka *chunks*
- Extremely simple syntax— once you know R and \LaTeX learning Sweave is trivial
- Enables the creation of dynamic documents
- R code is executed and the results (output, graphics) incorporated when the document is generated
• Leverages \LaTeX typesetting capabilities and R’s computational strengths

• Easy to regenerate the re-run the code and regenerate the documentation if the input changes

• Can make computational research more transparent and reproducible — to others and to oneself
Online resources for Sweave

- The Sweave Homepage (http://www.stat.uni-muenchen.de/~leisch/Sweave/): The official home of Sweave by its father, Freidrich Leisch

- Sweave Demo (http://www.stat.umn.edu/~charlie/Sweave/): short introduction to Literate Programming, Reproducible Research and Sweave
(The no sweat) Sweave in \(\approx 20 \) seconds

- Create a file `foo.Rnw`
- Enter your prose (\LaTeX) the good old fashioned \LaTeX way
- Enclose R code chunks between `<<>>=` (on a line of its own) and `@` (on a line of its own)
- To produce the documentation weave the source like so:
 - `R CMD Sweave foo.Rnw` from the shell
 - `Sweave('foo.Rnw')` from within R.
A first Sweave example

\documentclass[12pt]{article}
\newcommand{\dsfrac}[2]{\frac{\textstyle #1}{\textstyle #2}}
\author{Mario Pineda-Krch}
\title{Just another tritrophic model}
\begin{document}
\maketitle
\section{The Hastings \& Powell model}
The non-dimensional version of the Hastings \& Powell (1991) model is given by,
\begin{equation}
\begin{array}{lcl}
\dsfrac{dx}{dt} & = & x(1-x) - \dsfrac{a_1 x}{1+ b_1 x}y \\
\dsfrac{dy}{dt} & = & \dsfrac{a_1 x}{1+ b_1 x}y - \dsfrac{a_2 y}{1+ b_2 y}z - d_1 y \\
\dsfrac{dz}{dt} & = & \dsfrac{a_2 y}{1+ b_2 y}z - d_2 z \\
\end{array}
\end{equation}

Define the nondimensional system in R,
\begin{verbatim}
<<>>= hp = function(time, population, parms){
\end{verbatim}
\begin{verbatim}
 dx = x*(1-x) - (a1*x)/(1+b1*x)*y
dy = (a1*x)/(1+b1*x)*y - (a2*y)/(1+b2*y)*z - d1*y
dz = (a2*y)/(1+b2*y)*z - d2*z
out = c(dx, dy, dz)
list(out)
})
}
I eyeballed the initial conditions from Figure 2 in HP91.

\begin{verbatim}
x0 <- c(x=0.75, y=0.15, z=10)

Declare the time vector,
\begin{verbatim}
time <- seq(0, 5000)
\end{verbatim}
\end{verbatim}
Here I am using the same parameters as in Figure 2 in HP91 (which is identical to Figure 2 in KH94),

```r
parms <- c(a1 = 5.0, b1 = 2.5, a2 = 0.1, b2 = 2.0, d1 = 0.4, d2 = 0.01)
```

Solve the system numerically,

```r
require(deSolve)
out <- as.data.frame(ode(x0, time, hp, parms))
```

Look at the structure of the result object,

```r
str(out)
```

and the beginning of the time series,

```r
head(out)
```
\end{document}
1 The Hastings & Powell model

The non-dimensional version of the Hastings & Powell (1991) model is given by,

\[
\begin{align*}
\frac{dx}{dt} &= x(1-x) - \frac{a_1 x}{1+b_1 x} y \\
\frac{dy}{dt} &= \frac{a_1 x}{1+b_1 x} y - \frac{a_2 y}{1+b_2 y} z - d_1 y \\
\frac{dz}{dt} &= \frac{a_2 y}{1+b_2 y} z - d_2 z
\end{align*}
\]

Define the nondimensional system in R,

```r
> hp = function(time, population, parms) {
+   x <- population[1]
+   y <- population[2]
+   z <- population[3]
+   with(as.list parms), {
+     dx = x * (1 - x) - (a1 * x)/(1 + b1 * x) * y
+     dy = (a1 * x)/(1 + b1 * x) * y - (a2 * y)/(1 + b2 * y) * z
+     dz = (a2 * y)/(1 + b2 * y) * z - d2 * z
+     out = c(dx, dy, dz)
+     list(out)
+   }
+}
```

I eyeballed the initial conditions from Figure 2 in HP91.
> x0 <- c(x = 0.75, y = 0.15, z = 10)

Declare the time vector,
> time <- seq(0, 5000)

Here I am using the same parameters as in Figure 2 in HP91 (which is identical to Figure 2 in KH94),
> parms <- c(a1 = 5, b1 = 2.5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01)

Solve the system numerically,
> require(deSolve)
> out <- as.data.frame(ode(x0, time, hp, parms))

Look at the structure of the result object,
> str(out)

'data.frame': 5001 obs. of 4 variables:
$ time: num 0 1 2 3 4 5 6 7 8 9 ...
$ x : num 0.75 0.73 0.696 0.644 0.578 ...
$ y : num 0.15 0.173 0.201 0.234 0.267 ...
$ z : num 10 10.1 10.1 10.1 10.2 ...

and the beginning of the time series,
> head(out)

 time x y z
1 0.7500000 0.150000 10.00000
2 0.7318531 0.172983 10.02179
3 0.6959543 0.201325 10.05784
4 0.6441029 0.233950 10.10971
5 0.5779474 0.267447 10.17767
6 0.5021714 0.294232 10.25963

2
Stangle('foo.Rnw') produces the R code

```r
hp = function (time , population , parms ){
  x <- population [1]
  y <- population [2]
  z <- population [3]
  with (as. list ( parms ) ,{
    dx = x*(1-x) - (a1*x)/(1+b1*x)*y
    dy = (a1*x)/(1+b1*x)*y - (a2*y)/(1+b2*y)*z - d1*y
    dz = (a2*y)/(1+b2*y)*z - d2*z
    out = c(dx, dy, dz)
    list(out)
  })
}
```

The Joy of Sweave by Mario Pineda-Krch
chunk number 2:

```r
x0 <- c(x=0.75, y=0.15, z=10)
```

chunk number 3:

```r
time <- seq(0, 5000)
```

chunk number 4:

```r
parms <- c(a1=5.0, b1=2.5, a2=0.1, b2=2.0, d1=0.4, d2=0.01)
```

chunk number 5:
require(deSolve)
out <- as.data.frame(ode(x0, time, hp, parms))

str(out)

head(out)
Adding figures

\begin{figure}[!h]
\begin{center}
<<fig=TRUE, width=7, height=7>>=
plot(y~x, data=out, cex=.5, pch=19, xlab=expression(italic(x)), ylab =expression(italic(y)))
@
\end{center}
\caption{Phase plane plot of the resource (x) and the predator y}
\end{figure}
Just another tritrophic model

Mario Pineda-Krch

January 17, 2011

1 The Hastings & Powell model

The non-dimensional version of the Hastings & Powell (1991) model is given by,

\[
\frac{dx}{dt} = x(1-x) - \frac{a_1 x}{1+b_1 x} y \\
\frac{dy}{dt} = \frac{a_1 x}{1+b_1 x} y - \frac{a_2 y}{1+b_2 y} z - d_1 y \\
\frac{dz}{dt} = \frac{a_2 y}{1+b_2 y} z - d_2 z
\]

(1)

Define the nondimensional system in R,

```r
> hp = function(time, population, params) { 
+ x <- population[1] 
+ y <- population[2] 
+ z <- population[3] 
+ with(as.list(params), { 
+ dx = x * (1 - x) - (a1 * x)/(1 + b1 * x) * y 
+ dy = (a1 * x)/(1 + b1 * x) * y - (a2 * y)/(1 + b2 * y) * 
+ z - d1 * y 
+ dz = (a2 * y)/(1 + b2 * y) * z - d2 * z 
+ out = c(dx, dy, dz) 
+ list(out) 
+ }) 
+ }
```

I eyeballed the initial conditions from Figure 2 in HP91.

The Joy of Sweave by Mario Pineda-Krch
> x0 <- c(x = 0.75, y = 0.15, z = 10)

Declare the time vector,

> time <- seq(0, 5000)

Here I am using the same parameters as in Figure 2 in HP91 (which is identical to Figure 2 in KH94),

> parms <- c(a1 = 5, b1 = 2.5, a2 = 0.1, b2 = 2, d1 = 0.4, d2 = 0.01)

Solve the system numerically,

> require(deSolve)
> out <- as.data.frame(ode(x0, time, hp, parms))

Look at the structure of the result object,

> str(out)

'data.frame': 5001 obs. of 4 variables:
$ time: num 0 1 2 3 4 5 6 7 8 9 ...
$ x : num 0.75 0.732 0.696 0.644 0.578 ...
$ y : num 0.15 0.173 0.201 0.234 0.267 ...
$ z : num 10 10 10 10.1 10.1 10.2 10.2 ...

and the beginning of the time series,

> head(out)

 time x y z
1 0.0000000 0.7500000 0.1500000 10.00000
2 1.0000000 0.7318531 0.1729883 10.02179
3 2.0000000 0.6959543 0.2013125 10.05784
4 3.0000000 0.6441029 0.2339504 10.10971
5 4.0000000 0.5779474 0.2674447 10.17767
6 5.0000000 0.5021714 0.2942321 10.25963
> plot(y ~ x, data = out, cex = 0.5, pch = 19, xlab = expression(italic(x)),
+ ylab = expression(italic(y)))

Figure 1: Phase plane plot of the resource \(x\) and the predator \(y\).
Congratulations you have now reproduced the result in Hastings & Powell (1991)

Eh? What’s going on Alan?
Try setting $z = 0$ (left as an exercise for the reader)
Inline evaluations

```r
<<>>=
a <- a
@
We can print parameter values like this, \$a=\texttt{Sexpr\{a\}}\$.
```

We can print parameter values like this, \(a = 1\).

We can also evaluate expressions inline, e.g. \(\texttt{Sexpr\{sqrt(12)\}}\) and \(\texttt{Sexpr\{sd(rnorm(100))\}}\).

We can also evaluate expressions inline, e.g. \(3.46410161513775\) and \(1.04714290778536\).
Dealing with big data sets

- R memory hungry beast (typically limited to data sets much smaller than the available RAM)

- The OS can only access 4GB of memory on a 32 bit system, R will give you an error message at around 2GB

- Packages for dealing with big data: ff and bigmemory

- Saving large data sets as .Rdata objects will often result in smaller files (compared to ASCII files)
Dealing with time consuming computations

- A few simple approaches:
 - Get a faster computer!
 - Use C/C++ for the time consuming parts
 - Cache (intermediate) data

Caching data,

```r
file.name <- "foo.data"
if (!file.exists(file.name)) {
    # Perform time consuming computations and record results in object 'out'
    save(out, file=file.name)
} else load(file.name)
```

Caveat: do not forget to remove `foo.data` if you intend to recreate it (e.g. if the time consuming algorithm has changed).
Dealing with complex projects

“You must understand, young Hobbit R apprentice, it takes a long time to say anything in Old Entish Sweave. And we never say anything unless it is worth taking a long time to say.” — Freely adapted from Treebeard, LOTR

- Avoid monolithic Sweave files — split into smaller logical components
- Use a Makefile for build a project that consists of multiple Sweave files (http://www.stat.auckland.ac.nz/~stat782/downloads/make-tutorial.pdf)
An embarrassingly trivial Makefile,

```
foo.pdf : foo.tex
    pdflatex foo.tex ; pdflatex foo.tex

foo.tex : foo.Rnw
    R CMD Sweave foo.Rnw

foo.R : foo.Rnw
    R CMD Stangle foo.Rnw

clean :
```

Why is `pdflatex` invoked twice? (left as an exercise for the reader)
To generate documentation run,

```
make
```

To weave (generate \LaTeX source) run,

```
make foo.tex
```

To tangle (generate R code) run,

```
make foo.R
```

To remove junk run,

```
make clean
```
2 Session information

> toLatex(sessionInfo())

- R version 2.12.0 (2010-10-15), x86_64-apple-darwin9.8.0
- Locale: C
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: deSolve 1.8.1
Acknowledgements

- Alan Hastings for pointing out the virtues of $z = 0$
- The Lewis Research Group for feedback and discussion
- Thank you for your time!

These slides, foo.Rnw and the associated Makefile are available at http://pineda-krch.com/2011/01/17/the-joy-of-sweave/

The Joy of Sweave: A Beginner’s Guide to Reproducible Research with Sweave by Mario Pineda-Krch is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.