Evaluating random search strategies in three mammals from distinct feeding guilds

Marie Auger-Méthé1*, Andrew E. Derocher1, Craig A. DeMars1, Michael J. Plank2, Edward A. Codling3 and Mark A. Lewis1,4

1Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; 2School of Mathematics and Statistics, University of Canterbury, Christchurch Private Bag 4800, New Zealand; 3Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK; and 4Department of Mathematical and Statistical Sciences, Centre for Mathematical Biology, University of Alberta, Edmonton, AB, Canada T6G 2G1

Summary

1. Searching allows animals to find food, mates, shelter and other resources essential for survival and reproduction and is thus among the most important activities performed by animals. Theory predicts that animals will use random search strategies in highly variable and unpredictable environments. Two prominent models have been suggested for animals searching in sparse and heterogeneous environments: (i) the Lévy walk and (ii) the composite correlated random walk (CCRW) and its associated area-restricted search behaviour. Until recently, it was difficult to differentiate between the movement patterns of these two strategies.

2. Using a new method that assesses whether movement patterns are consistent with these two strategies and two other common random search strategies, we investigated the movement behaviour of three species inhabiting sparse northern environments: woodland caribou (Rangifer tarandus caribou), barren-ground grizzly bear (Ursus arctos) and polar bear (Ursus maritimus). These three species vary widely in their diets and thus allow us to contrast the movement patterns of animals from different feeding guilds.

3. Our results showed that although more traditional methods would have found evidence for the Lévy walk for some individuals, a comparison of the Lévy walk to CCRWs showed stronger support for the latter. While a CCRW was the best model for most individuals, there was a range of support for its absolute fit. A CCRW was sufficient to explain the movement of nearly half of herbivorous caribou and a quarter of omnivorous grizzly bears, but was insufficient to explain the movement of all carnivorous polar bears.

4. Strong evidence for CCRW movement patterns suggests that many individuals may use a multiphasic movement strategy rather than one-behaviour strategies such as the Lévy walk. The fact that the best model was insufficient to describe the movement paths of many individuals suggests that some animals living in sparse environments may use strategies that are more complicated than those described by the standard random search models. Thus, our results indicate a need to develop movement models that incorporate factors such as the perceptual and cognitive capacities of animals.

Key-words: animal movement, Arctic, area-concentrated search, Hidden Markov model, Lévy flight, optimal foraging theory, telemetry

© 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society
fitness, and thus, we expect animals to use movement strategies that minimize the costs of locating resources (Zollner & Lima 1999; Conradt et al. 2003). The importance of this behaviour has driven ecologists to focus on animals’ search strategies (e.g. Bell 1991; Benhamou 1994; Viswanathan et al. 1999), and the recent increase in the availability of movement data has allowed this field to flourish (e.g. Fauchald & Tveraa 2003; Nevitt, Losekoot & Weimerskirch 2008; Humphries et al. 2010). One focus has been to assess whether animals use the search strategies that theory predicts will be optimal in their environments (e.g. Humphries et al. 2010; Sims et al. 2012). Using movement data for this assessment remains challenging because the efficiency of search strategies changes over environmental gradients and the movement patterns they produce can be difficult to differentiate (Zollner & Lima 1999; Bartumeus et al. 2002; Benhamou 2007; Plank & Codling 2009).

The efficacy of movement strategies is dependent on the variability and predictability of resource distributions. When resources are unpredictable in space and time, random search strategies are expected to emerge (Mueller & Fagan 2008). Although animals are known to use perceptual cues to detect nearby resources, empiricists have found support for the use of random search strategies (e.g. Humphries et al. 2010; Sims et al. 2012). Theorists have proposed a set of random search strategies that are thought to be optimal under different conditions. While simple Brownian motion may be sufficient in productive areas, the Lévy walk may be advantageous in sparse environments because its rare, extremely long steps enable animals to explore new areas (Bartumeus et al. 2002; Humphries et al. 2010; but see James, Plank & Edwards 2011; Benhamou & Collet 2015; Pyke 2015). Relative to Brownian motion, the Lévy walk is increasingly efficient with decreasing food density (Viswanathan et al. 1999; Bartumeus et al. 2002). When food density is low, the Lévy walk is also more efficient than a correlated random walk (CRW) (Bartumeus et al. 2005). The CRW is a search strategy characterized by nearly straight movement that was shown to be efficient at finding sparsely distributed patches (Zollner & Lima 1999). The composite correlated random walk (CCRW) is a two-behaviour strategy that is more efficient than single-behaviour models in heterogeneous landscapes (Knoppien & Reddingius 1985; Benhamou 1992; Plank & James 2008; Benhamou & Collet 2015). The ‘extensive’ phase of the CCRW uses the nearly straight movement that makes the CRW efficient at finding patches. The discovery of a food item triggers the ‘intensive’ phase, which is characterized by slower, more tortuous movement and sometimes referred to as area-restricted search. These two behavioural phases allow animals to adjust their movement according to local food density and the intensive phase enables them to stay within patches, even when patches have no perceptible boundaries (Knoppien & Reddingius 1985; Benhamou 1992). Many environments are sparse, heterogeneous and unpredictable. While Brownian motion and CRW might be insufficient in these instances, both the Lévy and CCRW may be advantageous random search strategies.

While the underlying searching behaviours of the Lévy and CCRW strategies differ, their movement patterns are similar and difficult to differentiate (Benhamou 2007; Plank & Codling 2009; Auger-Méthé, Plank & Codling 2014). However, new methods have been developed to distinguish between the movement patterns associated with these strategies (Plank, Auger-Méthé & Codling 2013; Auger-Méthé et al. 2015). Here, we investigated the movement of three mammals for evidence of patterns consistent with random search strategies. As detailed below, we chose these species because previous research or the nature of their environment suggests that they may use random search strategies. All are large and wide-ranging mammals inhabiting northern Canada. However, these species vary widely in their foraging behaviours, allowing us to contrast the movement behaviours of animals in different feeding guilds.

Our first study species is a large herbivore, the woodland caribou (Rangifer tarandus caribou). We studied them in winter, when resources are scarce and they may be more likely to use random search strategies (Adamczewski et al. 1987; Parker, Barboza & Stephenson 2005). The movement was shown to be consistent with a two-behaviour model similar to the CCRW (Johnson et al. 2002b), and a different subspecies was suggested to use the Lévy strategy (Marell, Ball & Hofgaard 2002). Thus, applying these newly available tools may help clarify how caribou search their environment.

Our second study organism is a large Arctic omnivore, the barren-ground grizzly bear (Ursus arctos). Our study population inhabits an area of low productivity, the Mackenzie Delta, Northwest Territories, Canada (McLoughlin et al. 1999). Unlike other grizzlies that rely on predictable sources of protein, such as salmon (Oncorhynchus spp.), the barren-ground grizzlies of the Mackenzie Delta have a small body size and drifting home ranges (Hilderbrand et al. 1999; Edwards, Nagy & Derocher 2009). The benefits of familiarity are limited in scarce, heterogeneous and unpredictable environments (Switzer 1993; Mueller & Fagan 2008); thus, site fidelity was suggested to be maladaptive for these bears (Edwards, Nagy & Derocher 2009). Thus, random search strategies may be effective for barren-ground grizzlies, making these bears good candidate for our study.

Our third species, the polar bear (Ursus maritimus), is a specialized marine carnivore. Polar bears, like many other predators that have been the focus of search strategy studies, exploit the unpredictable marine environment (e.g., Humphries et al. 2010, 2012; but see Regular, Hedd & Montevecchi 2013). Polar bears exhibit site fidelity (Mauritzen, Derocher & Wiig 2001), which could encourage the use of memory-based search strategies. However, other species that exhibit site fidelity are also thought to use random search strategies or a mixture of memory and
random search strategies (e.g. Humphries et al. 2012; Gautestad & Mysterud 2013). Polar bears use the sea ice as a platform to hunt seals (Stirling & Derrocher 2012). Sea ice extent changes seasonally and local ice concentration can vary drastically over short time-scales (Maslanik & Barry 1989; Johannessen et al. 2004), which may make random search strategies advantageous.

Using data collected when these three species were expected to be searching for food, we investigated whether their movement patterns were consistent with one of these four random search strategies. To do so, we compared the relative fit of a set of models, each representing the movement pattern of one of the search strategies. We then assessed the absolute fit of the best model to verify whether it described the observed movement well.

Materials and methods

MODELLING SEARCH STRATEGIES

We used the method described in Auger-Méthé et al. (2015) to assess whether the movement patterns of three species were consistent with a set of search strategies. This method defines likelihood functions that model the movement pattern of each of the four search strategies (Table 1), and can be considered a generalized and statistically rigorous extension of earlier methods. Each likelihood function was applied to the time series of step lengths, \(l \), and turning angles, \(\theta \), of each individual. The movement pattern of Lévy strategy was represented by a truncated Lévy walk (TLW), which used a truncated Pareto distribution for the step length, \(\psi(l) \), and a circular uniform distribution for the turning angle, \(\nu(\theta) \) (Table 2). The movement pattern of the Brownian motion was represented by a Brownian walk (BW), which used an exponential distribution for the step length, \(\psi(l) \), and a circular uniform distribution for the turning angle, \(\nu(\theta) \) (Table 2). The CRW also used an exponential distribution for the step length, \(\psi(l) \), but in combination with a von Mises distribution centred at 0 for the turning angle, \(\nu(\theta) \) (Table 2). The CCRW version from Auger-Méthé et al. (2015), which we refer to as CCRW \(_L\), used a Hidden Markov model with two movement behaviours (Table 1). The movement pattern of the intensive phase was represented by a BW with exponential distribution for the step length, \(\psi(l) \), and a circular uniform distribution for the turning angle, \(\nu(\theta) \) (Table 2). The movement pattern of the extensive phase was represented by a CRW with an exponential distribution for the step length, \(\psi(l) \), and a von Mises distribution centred at 0 for the turning angle, \(\nu(\theta) \) (Table 2). As we suggested in Auger-Méthé et al. (2015), we also explored an additional version of the CCRW based on the Hidden semi-Markov model presented in Langrock et al. (2012), which we refer to as CCRW \(_A\). For this version, we used the same step length and turning angle distributions as in the CCRW \(_L\). However, the CCRW \(_L\) used transition probabilities that depended on Poisson-distributed state dwell times rather than the fixed transition probabilities used in the CCRW \(_A\) (Table 2).

We used maximum-likelihood estimation to estimate the parameters of each model and the likelihood profile to estimate their confidence intervals (Bolker 2008). To identify the model that best fit the movement data of each individual, the relative fit of these likelihood functions was assessed using the second-order Akaike Information Criterion (AIC\(_C\)) and Akaike weights (Burnham & Anderson 2002). Because the CCRW \(_A\) and CCRW \(_L\) were two models representing the movement pattern of the same search strategy, we summed their Akaike weights (\(\sum w_{\text{CCRW}_A + \text{CCRW}_L} \)). We evaluated whether the best model adequately explained the movement data using a test of absolute fit, which consisted of a \(G \)-test on uniform pseudo-residuals (Sokal & Rohlf 1981; Zucchini & MacDonald 2009; Auger-Méthé et al. 2015). All analyses were completed in \(\texttt{R} \) (R Core Team 2015), and the code used to complete the analyses is available on \texttt{GITHUB} (https://github.com/MarieAugerMethe/CCRWvsLW/tree/v2.0).

DESCRIPTION OF MOVEMENT DATA

We used the movement data of three northern mammal species (data available on the University of Alberta Education & Research Archive: https://era.library.ualberta.ca/). To capture rare events, such as the long steps characteristic of the Lévy walk, we attempted to get time series representing close to a year of movement behaviour. However, we also tried to limit the time series to movement performed while searching. As detailed below, we removed all sections of the data sets known to be associated with reproduction and resting, as the changes in movement patterns associated with such behaviours could affect our analyses (e.g. DeMars et al. 2013). We also started each time series a minimum of 2 weeks after the collaring event because capturing procedures associated with collaring affect the movement of some species (e.g., Morellet et al. 2009; Thiemann et al. 2013). The time series of some individuals were further reduced by missing observations and collar failures.

The first data set included the movement paths of 22 female caribou from the boreal plains region of north-eastern British Columbia, Canada. These females were captured during February and March 2011 and fitted with G2110E collars from Advanced Telemetry Systems Inc. (Isanti, MN, USA). The collars provided daily Global Positioning System (GPS) locations. We removed the calving and rut periods, as well as the 2 weeks post-collaring, by limiting the time series to locations collected between 1 November 2011 and 30 April 2012 (Ferguson & Elkie 2004). The second data set included the movement paths of 20 grizzly bears from the Mackenzie Delta, Northwest Territories, Canada. These bears were collared in May and June (close to den emergence) 2003–2009. For each individual, we used locations collected during the first year after collaring, in the period between 1 July and 30 November (or den entrance). Starting 1 July excluded the peak of the mating season (MacHutchon 1996) and the 2 weeks following the collaring events. The third data set included the movement paths of 12 polar bears from the Beaufort Sea. These bears were collared in April and May 2008–2010. To exclude the 2 weeks after collaring, we started the time series 1 June. We used locations collected until the subsequent 1 June. As some pregnant females of the Beaufort Sea give birth in dens on the moving sea ice (Amstrup & Gardner 1994), it is difficult to identify den location. To exclude denning individuals, we included only juveniles and females accompanied with cubs-of-the-year or yearlings when collared. Restricting the analysis to these individuals also removed the potential for mating events in the time series. The locations of both the grizzly and polar bears are GPS locations taken every 4 h with Gen II–IV collars from Telonics Inc. (Mesa, AZ, USA).

Table 1. Likelihood functions and number of parameters to estimate \((k)\) for the five models. For a description of the probability density functions \(\psi_t(l)\), \(v_0(h)\), \(\phi(\theta)\) and \(v(\theta)\), see Table 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Likelihood function</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLW</td>
<td>(\prod_{t=1}^{n} \psi_t(l_t</td>
<td>\mu_t, a, b) v_0(\theta_t))</td>
</tr>
<tr>
<td>BW</td>
<td>(\prod_{t=1}^{n} \phi(l_t</td>
<td>\lambda, a) v_0(\theta_t))</td>
</tr>
<tr>
<td>CRW</td>
<td>(\prod_{t=1}^{n} \phi(l_t</td>
<td>\lambda, a) v(\theta_t</td>
</tr>
<tr>
<td>CCRW(_A)</td>
<td>(\prod_{t=1}^{n} \Gamma_t \left(\begin{array}{c} \phi(l_t</td>
<td>\lambda_A, a) v_0(\theta_t) \ 0 \end{array} \right) \left(\begin{array}{c} 1 \ 1 \end{array} \right))</td>
</tr>
<tr>
<td>CCRW(_L)</td>
<td>(\prod_{t=1}^{n} \Gamma_t \left(\begin{array}{c} \phi(l_t</td>
<td>\lambda_A, a) v_0(\theta_t) \ 0 \end{array} \right) \left(\begin{array}{c} 1 \ 1 \end{array} \right))</td>
</tr>
</tbody>
</table>

BW, Brownian walk; CCRW, composite correlated random walk; CRW, correlated random walk; TLW, truncated Lévy walk.

As in Langrock et al. (2012), we are using the stationary distribution for the initial values, \(\delta\), of the Markov chain for CCRW\(_L\).

As in Langrock et al. (2012), \(\gamma_t(r) = p_t(r)/(1 - \sum_{r=1}^{t-1} p_t(r))\) and \(\gamma_t(r) = \rho_t(r)/(1 - \sum_{r=1}^{t-1} \rho_t(r))\). For both phases, we are using a Poisson distribution, \(p_t(r)\) and \(\rho_t(r)\), for the state dwell time. See Table 2 for a description of the Poisson distribution \(p_t(r)\).
Table 2. Formulas for the probability density functions (PDFs) used in the models and the restrictions on their variables and parameters. The variables \(l \) and \(0 \) represent step length and turning angle, respectively.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Symbol</th>
<th>PDF</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>(\phi(l, \mu, \sigma))</td>
<td>(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(l-\mu)^2}{2\sigma^2}})</td>
<td>(l \geq 0), (\mu, \sigma > 0)</td>
</tr>
<tr>
<td>Truncated</td>
<td>(\psi(l, \mu, \sigma, b))</td>
<td>(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(l-b)^2}{2\sigma^2}}) for (l \leq b), (\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(l-b)^2}{2\sigma^2}}) for (l > b)</td>
<td>(l \geq 0), (\mu, \sigma, b > 0)</td>
</tr>
<tr>
<td>Pareto</td>
<td>(\nu(l))</td>
<td>(\frac{1}{\lambda \Gamma(\alpha)} l^{\alpha-1} e^{-l/\theta})</td>
<td>(l \geq 0), (\alpha, \lambda, \theta > 0)</td>
</tr>
<tr>
<td>Von Mises</td>
<td>(\nu(l))</td>
<td>(\frac{1}{\pi \lambda} \int_0^\pi \cos(l \cos \theta) \sin \theta d\theta)</td>
<td>(\lambda > 0), (\kappa > 0)</td>
</tr>
<tr>
<td>Uniform</td>
<td>(\rho(l))</td>
<td>(\frac{1}{\theta})</td>
<td>(l \geq 0)</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\rho(l))</td>
<td>(\frac{1}{\lambda} e^{-\lambda})</td>
<td>(\lambda > 0)</td>
</tr>
</tbody>
</table>

*Unlikely in Auger-Méthé et al. (2015), we are not placing restrictions on the estimated \(\mu \) values.
*This is a simplified and expanded equation of the von Mises PDF. The same equation is often written with a modified Bessel function of the first kind and of order 0.
*These simplified versions assume that the distribution is centred at 0; for full version, see Codling, Plank & Benhamou (2008).

The collars of all of these animals were programmed to collect locations at regular time intervals. Transforming sampled steps into biologically relevant steps is among the most difficult challenges of using GPS data in ecology (Hebblewhite & Hayden 2010), and various methods have been proposed (e.g. Codling & Plank 2011). We chose to use the local turn method, a technique that creates one step out of all consecutive sampled steps with a turning angle smaller than a threshold angle (see Codling & Plank 2011). We chose to use the local turn method, a technique that creates one step out of all consecutive sampled steps with a turning angle smaller than a threshold angle (see Codling & Plank 2011; Auger-Méthé et al. 2015). This technique, as well as other similar methods, can cause the misidentification of CCRWs for Lévy walks (Codling & Plank 2011; Plank, Auger-Méthé & Codling 2013). However, misidentifications are more likely to occur when high threshold angles are used (Codling & Plank 2011; Plank, Auger-Méthé & Codling 2013). We chose a threshold angle of 10° because this small value limited the potential for misidentification and interpreted movement in the same general direction (i.e. any sampled step within the 20° forward sector) as part of a biologically relevant step (Auger-Méthé et al. 2015). To verify that variations in threshold angles did not affect the results, we also explored a range of threshold angles. We show in Appendix S1 (Supporting information) that the results were broadly similar regardless of the threshold angle used. Note that this local turn method can impact the test of absolute fit based on turning angle distribution (Auger-Méthé et al. 2015), and we presented only the test of absolute fit for the step length distribution. Because missing locations can affect steps defined by the local turn method, we included only individuals that had a time series with <30% of the locations missing. We also limited the time series to those with a minimum of 50 steps (Appendix S2 presents the range of sample size). We applied the models to the data from each individual separately.

Results

According to AIC_c, one of the CCRWs (CCRW_A or CCRW_L) was the best model for more than 98% (53/54) of all movement paths and for at least 95% of the movement paths of each species (Table 3). For all species, the mean Akaike weight, \(w_{CCRW} \), of paths with a CCRW as best model was >0.94. According to the test of absolute fit, some of the movement paths best described by a CCRW were not different from it: 48% of caribou, 25% of grizzlies and 0% of polar bears (Table 3). While the TLW and CRW were never the best model of a movement path, the BW was the best model for one of the 22 movement paths of the caribou. The mean Akaike weight of this BW was 0.42 and this path was different from the BW. For a visual representation of the fit of the models, see Fig. 1, and for the results for each individual, see Appendix S2.

For comparative purposes, we also present the results when the CCRW_A, CCRW_L and CRW are excluded from the analysis and only the TLW and BW are considered as alternative hypotheses. Both the TLW and BW have a uniform probability density function to describe the turning angle frequency, and the same step length probability density functions as in Edwards et al. (2007). Thus, comparing the AIC_c of these two models can be considered equivalent to current methods used by others to find evidence for the Lévy walk. The TLW was better than the BW for 75% of the grizzly bears and 8% of polar bears (Table 4). The rest of the movement paths, including all caribou paths, were better described by the BW. While the BW was sufficient to explain the movement of half of the caribou and one grizzly bear, it was insufficient for all polar bears. All movement paths were different from the TLW according to the test of absolute fit.

Table 3. Relative and absolute fit of the five models on the movement paths of 22 caribou, 20 grizzlies and 12 polar bears. For each model, we present the number of movement paths selected as best model with AIC_c and the mean Akaike weight, \(w \), of these selected paths. Note that we used the summed Akaike weight of the CCRW_A and CCRW_L because these two models represent the movement pattern of the same search strategy. We also present how many of the selected paths are not different from the best model according to a test of absolute fit based on the step length distribution.

<table>
<thead>
<tr>
<th>Model</th>
<th>Caribou</th>
<th>Grizzly</th>
<th>Polar bear</th>
<th>Caribou</th>
<th>Grizzly</th>
<th>Polar bear</th>
<th>Caribou</th>
<th>Grizzly</th>
<th>Polar bear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N<sup>+</sup> as best model</td>
<td>w of best model</td>
<td>N<sup>+</sup> P-value > 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCRW<sub>A</sub></td>
<td>4</td>
<td>15</td>
<td>9</td>
<td>0.95</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CCRW<sub>L</sub></td>
<td>17</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TLW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BW, Brownian walk; CCRW, composite correlated random walk; CRW, correlated random walk; TLW, truncated Lévy walk.
Many of the parameter estimates for the CCRWs (CCRWA or CCRWL) indicated that the movement paths could be divided into two distinct phases (Table 5). First, the mean step length of the intensive phase was shorter than that of the extensive phase for all species ($k_I > k_E$; note that $1/k + \alpha$ represents the mean). Secondly, the extensive phase for the grizzly and polar bears had more directed movement than the intensive phase ($j_E > 0$).

However, we had weaker support for caribou, as the mean confidence interval for the scale parameter, k_E, overlapped with 0. A scale parameter, k_E, of 0 reduces the von Mises distribution to the same circular uniform distribution used for the intensive phase. In addition, the caribou, the 15 grizzly bears with the CCRWA as their best model, and the polar bears appeared to remain in the intensive phase for multiple steps. When modelled with the CCRWA, these animals had a >50% chance of remaining in the intensive phase ($c_{II} > 0/C_{15}$).

Fig. 1. Fit of the models on the movement path of each species: (a–c) caribou, (d–f) grizzly and (g–i) polar bear. (a, d, g) Black lines represent the movement path using the 10° threshold angle and the grey dashed line the missing data. (b, e, h) Step length frequency with the probability density function (PDF) of each model, on log–log axes. (c, f, i) Turning angle frequency with the PDF of each model. The best model for these three individuals was either the CCRWA or CCRWL with Akaike weight: $w_{CCR} > 0.99$. The P-value of the test of absolute fit for the step length and turning angle distributions of the best model are indicated in the legend. See Appendix S2 for the other individuals. CCRW, composite correlated random walk.
modelled with the CCRW\textsubscript{L}, they spent on average more than one step in the intensive phase ($a > 1$). However, we had weaker support for such behavioural persistence for the five grizzly bears with the CCRW\textsubscript{L}, as their best model because their mean number of steps in the intensive phase, a, was only 0.28.

Discussion

We found substantial support for the two versions of the CCRW. 98% of the movement paths had one of these CCRWs as best model. Of these movement paths, 28% were adequately described by the best CCRW version. In general, the estimated parameters from the CCRWs indicated that the movement patterns could be divided into two distinct movement behaviours, a directed extensive phase and a tortuous intensive phase, consistent with an area-restricted search. However, not all movement paths were consistent with a CCRW. According to the test of absolute fit, the movement paths of many caribou, grizzly bears and most polar bears were different from the best CCRW version, even though one of the CCRWs was, in almost all of these cases, the best model according to AIC\textsubscript{C}. In addition, the confidence intervals on some parameter estimates indicated that the evidence for directed movement and behavioural persistence in the intensive phase was not strong for some species. These discrepancies indicate that although our versions of the CCRW can approximate the movement better than the three other models we investigated, it might be an incomplete representation of the search strategy used by some of the animals we studied.

We found no movement patterns consistent with the Lévy strategy, which is in line with recent studies suggesting that Lévy movement may be less common than originally thought (Edwards \textit{et al.} 2007, 2012; James, Plank & Edwards 2011; Pyke 2015; but see Humphries \textit{et al.} 2012; Sims \textit{et al.} 2012; Gautestad & Mysterud 2013). Although no movement paths had the TLW as its best model when all models were considered, support for the TLW increased when the CCRWs were excluded from the set of alternative models. When the TLW was compared only to the BW, 75% of the grizzly bears and one polar bear had the TLW as their best model. This re-emphasizes the importance of comparing Lévy walk models to strong alternatives such as the CCRW (Auger-Méthé \textit{et al.} 2011; Jansen, Mashanova & Petrovskii 2012; Plank, Auger-Méthé & Codling 2013). It also supports the contention that some Lévy walk movement patterns might emerge from multiphasic movement or other mechanisms rather than providing evidence for the Lévy search strategy per se (Benhamou 2007; Plank & James 2008; Breed, Severs & Edwards 2015; Reynolds 2015). Finally, the fact that all empirical movement paths differed from the TLW further indicates that it was likely an inappropriate model for our data. This reiterates the importance of testing the

Table 4. Relative and absolute fit of the two models generally used in Lévy walk analysis. For each model, we present the number of movement paths selected as best model with AIC\textsubscript{C} and the mean Akaike weight of these selected paths. We also present how many of the overall paths are not statistically different from the TLW and BW when only the step lengths are considered

<table>
<thead>
<tr>
<th>Model</th>
<th>N^a as best model</th>
<th>w of best model</th>
<th>N^a P-value > 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caribou</td>
<td>Grizzly</td>
<td>Polar bear</td>
</tr>
<tr>
<td>TLW</td>
<td>0</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>BW</td>
<td>22</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

BW, Brownian walk; TLW, truncated Lévy walk.

Table 5. Parameter estimates for the best models. The mean parameter estimates and associated confidence intervals (CIs) are presented for each species. Only the movement paths of individuals that had the model as its best are used. The locations of caribou were taken daily, and those of grizzly and polar bears were taken every 4 h

<table>
<thead>
<tr>
<th>Symbol (unit)</th>
<th>Description</th>
<th>Caribou</th>
<th>Grizzly</th>
<th>Polar bear</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (km)</td>
<td>Minimum step length of the BW, CCRW\textsubscript{L} and CCRW\textsubscript{L}</td>
<td>0.053</td>
<td>0.0030</td>
<td>0.022</td>
</tr>
<tr>
<td>γ_1</td>
<td>Probability of remaining in the CCRW\textsubscript{L}'s intensive phase</td>
<td>1.00 (0.98–1.00)</td>
<td>0.54 (0.44–0.64)</td>
<td>0.83 (0.78–0.88)</td>
</tr>
<tr>
<td>γ_{EE}</td>
<td>Probability of remaining in the CCRW\textsubscript{L}'s extensive phase</td>
<td>0.97 (0.89–1.00)</td>
<td>0.85 (0.80–0.90)</td>
<td>0.96 (0.96–0.97)</td>
</tr>
<tr>
<td>k_E</td>
<td>Scale parameter of the directional correlation of the CCRWs' extensive phase</td>
<td>0.22 (0.00–1.14)</td>
<td>0.41 (0.22–0.62)</td>
<td>1.1 (1.0–1.3)</td>
</tr>
<tr>
<td>λ (km$^{-1}$)</td>
<td>Rate parameter of the exponential distribution of the BW</td>
<td>0.43 (0.36–0.50)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>λ_1 (km$^{-1}$)</td>
<td>Rate parameter of the CCRWs' intensive phase</td>
<td>7.7 (1.2–18.1)</td>
<td>53 (35–82)</td>
<td>16 (13–21)</td>
</tr>
<tr>
<td>λ_E (km$^{-1}$)</td>
<td>Rate parameter of the CCRWs' extensive phase</td>
<td>0.37 (0.25–0.54)</td>
<td>0.56 (0.49–0.63)</td>
<td>0.19 (0.18–0.21)</td>
</tr>
<tr>
<td>α</td>
<td>Mean of the Poisson for CCRW\textsubscript{L}'s intensive phase</td>
<td>15 (10–19)</td>
<td>0.28 (0.13–0.53)</td>
<td>13 (9–16)</td>
</tr>
<tr>
<td>α_E</td>
<td>Mean of the Poisson for CCRW\textsubscript{L}'s extensive phase</td>
<td>14 (9–19)</td>
<td>4.0 (3.3–5.2)</td>
<td>17 (15–19)</td>
</tr>
</tbody>
</table>

BW, Brownian walk; CCRW, composite correlated random walk.

The fact that we found support for CCRWs is unsurprising given that there is ample evidence of species showing similar biphasic movement behaviour (e.g. Morales et al. 2004; Jonsen, Myers & James 2007; Dragon et al. 2012), including caribou (Johnson et al. 2002a, b; Tyson, Wilson & Lane 2011). However, our results contrast with previous research on semi-domesticated reindeer (R. t. tarandus), a Eurasian subspecies of caribou. We found that CCRWs and the two null models were better than the TLW for the winter movement of all caribou (Appendix S2). In contrast, previous studies found that the movement of reindeer in spring and early summer was more consistent with the Lévy walk than with null models (Marell, Ball & Hofgaard 2002; Edwards 2011). These differences might be due to behavioural variation between subspecies or between wild and semi-domesticated animals. They may also result from differences in the sampling scale, habitat and season examined in the studies. Marell, Ball & Hofgaard (2002) showed that reindeer changed their movement strategies over the course of the summer. For caribou, Johnson et al. (2002a) showed stronger support for a two-behaviour model in winter than in summer and attributed the difference to increased patch heterogeneity due to snow conditions and lichen distributions. Thus, it is possible that caribou exhibit CCRW movement patterns in winter but not during the summer.

Unlike grizzlies and polar bears, one caribou had the BW as their best model. In addition, many caribou movement paths were not statistically different from the BW and the parameter estimates indicated that the distinction between the two behaviours of CCRWs was not strong. Our caribou movement paths had the coarsest sampling scale and the smallest sample sizes (see Appendix S2). This sampling scheme may have favoured finding evidence for a simpler model in this species, and the small sample size might have contributed to the relatively low rate of rejection for caribou. However, Edwards (2011) also found that null models similar to the BW explained the movement of this species during part of the year, supporting our results that the BW is sufficient to explain the movement of some caribou. A single-behaviour search strategy may be sufficient for large herbivores, which often rely on widely dispersed low-quality food rather than patches of highly nutritional items (Senft et al. 1987).

Composite correlated random walks were the best model for all grizzlies and were sufficient to explain the movement paths of some individuals. We anticipated movement patterns consistent with a random search strategy because the bears in this population inhabit sparse and unpredictable environments and display home range drift (Edwards, Nagy & Derocher 2009). Bears in this population vary in their foraging behaviours from a spectrum of near complete herbivory to carnivory (Edwards et al. 2011). Such specialization was related to changes in movement behaviours, with carnivores moving faster than herbivores (Edwards et al. 2011). Indeed, we would expect carnivores and herbivores to use different search strategies, and such individual variation might explain why the movement of only some individuals is adequately represented by CCRWs. We might expect the intensive movement associated with the area-restricted search to be more effective for the herbivorous bears exploiting immobile berry patches than for carnivores preying on agile animals. Further research could investigate how differences in diet are reflected in the search strategies used by grizzlies.

Composite correlated random walks were the best model for all polar bears, but were insufficient to explain the movement paths of all individuals. The parameter estimates indicate that there is a strong differentiation in both step length and directional persistence between the behavioural phases, suggesting that there is evidence for two movement phases even though the movement is not adequately described by the CCRWs. Difference in these phases could be driven by a variety of factors, including alterations in movement according to sea ice condition. Since the movement behaviour of polar bears is associated with the high levels of sea ice drift they experience (Mauritzen et al. 2003; Auger-Méthé, Lewis & Derocher 2016), neglecting sea ice drift may partially explain why our models were insufficient to explain their movement. Although studies have found movement consistent with random search strategies in animals experiencing drift from ocean and wind currents (e.g. Fauchald & Tveraa 2003; Humphries et al. 2012; Sims et al. 2012), neglecting currents can distort inference made from foraging movement models (Gaspar et al. 2006). This distortion may be attributed to the difficulty of distinguishing between voluntary movement and drift, but it may also arise from the fact that many species use currents strategically when travelling (e.g. Weimerskirch et al. 2000).

The test of absolute fit revealed that the models we explored failed to accurately represent 72% of the movement paths. There are multiple potential reasons for the high rejection rate of this test, the first three of which are methodological in nature. First, animals are unlikely to move exactly as modelled by our idealized representation of search strategies, and with large sample sizes, any small deviation could result in rejection. While we explored two CCRW versions that differed in how we modelled the number of steps made in a movement phase, varying step length and turning angle distributions can further increase the absolute fit of the CCRWs (see Appendix S3). Secondly, although the models are good representations of a movement path composed of biologically relevant steps, they are not necessarily good representations of observed movement. To estimate biologically relevant steps from sampled steps, we used the local turn method. Such procedures can distort movement paths and bias results in favour of Lévy walk models (Codling & Plank 2011;
Plank, Auger-Méthé & Codling 2013). In particular, the test of absolute fit we used has a slightly inflated rejection rate when a 10° local turn threshold is used (Auger-Méthé et al. 2015). However, the method’s ability to distinguish between the CCRW and TLW is robust to use of a 10° threshold (Auger-Méthé et al. 2015), and we found consistent results over a range of threshold angles. The only noteworthy exceptions are that up to three grizzly bear movement paths had the TLW as best model when high threshold angles were used (e.g. 40°) and that when a threshold angle of 50° was used one grizzly bear movement path with a TLW as best model was not statistically different from it (see Appendix S1). Thirdly, sampling scale can affect the observed movement pattern and thus behavioural inference (e.g. Codling & Hill 2005; Andersen et al. 2008; Plank & Codling 2009). The data we used were sampled at a coarse temporal scale (daily for caribou or every 4 h for bears). Thus, investigating movement paths with locations taken at a more frequent interval could potentially increase the absolute fit of CCRWs. However, we showed previously that for polar bears, movement paths with locations taken every 30 min gave similar results: the CCRW AIC was better than the TLW, BW and CRW, but was insufficient to explain the observed movement (Auger-Méthé et al. 2015). Across sampling scales and species, we generally found stronger support for CCRWs compared to the BW and CRW, but in some cases these simpler models were favoured or had strong enough support to be kept as potential alternatives (see also Auger-Méthé et al. 2015). In contrast, the stronger support for CCRWs over the TLW was constant across the three species studied and the three different sampling scales (locations taken every 30 min, 4 h, 1 day), indicating that this finding is relatively robust to sampling scale.

In addition to these methodological reasons, there are at least four potential biological reasons for the lack of fit of these movement models. First, the Lévy walk and the area-restricted search strategy associated with CCRWs were developed for animals with scant knowledge of their environment (Knoppen & Reddingius 1985; James, Plank & Edwards 2011). Species like the caribou and polar bears exhibit some degree of site fidelity (Mauritzer, Derocher & Wiig 2001; Faille et al. 2010; Tracz et al. 2010); thus, we can expect them to be at least moderately familiar with their environment. As many species display site fidelity and are capable of storing information on their habitat, there is increasing interest in memory-based movement models (Börger, Dalziel & Fryxell 2008; Smouse et al. 2010; Fagan et al. 2013). Ignoring memory may distort analyses of random search strategies (Gautestad & Mysterud 2013), and some memory-based search strategies have similar movement patterns to CCRWs with area-restricted search (e.g. Fronhofer, Hovestadt & Poethke 2013). Thus, accounting for memory in movement analysis may help understand the search strategies used by animals with knowledge of their environment (e.g. Regular, Hedg & Montvecchi 2013). Secondly, random search strategies were developed for animal searching outside of their perceptual range (Benhamou 1992; James, Plank & Edwards 2011). Many species have an acute sense of smell and are thought to use olfactory cues to find their prey (Conover 2007). Such species include the grizzly and polar bear (Stirling 1999; Conover 2007), as well as species that have been suggested to follow a random search strategy (e.g. wandering albatross, Diomedea exulans, Nevitt, Losekoot & Weimerskirch 2008; Humphries et al. 2012). As with knowledge of the environment, the use of sensory cues and the extent of the perceptual range are likely to affect the type of search strategies used by animals (Nevitt, Losekoot & Weimerskirch 2008; Fronhofer, Hovestadt & Poethke 2013). Thirdly, landscape features can alter animal movement patterns and affect their search strategy. In particular, ignoring resource density levels can distort analysis of random search strategies (Gautestad & Mysterud 2013), and including landscape features in movement models can enhance our understanding of animals’ foraging success (McKenzie et al. 2012). Fourthly, animals have an extensive behavioural repertoire and their movement paths often include behaviours other than searching for food. Neglecting to remove other behaviours is known to distort analysis of search strategies (Edwards et al. 2007). We removed two types of resting periods, the denning period of bears and all steps where locations remained constant. In addition, we removed the main reproductive and mating periods of all species. However, given that our sampling interval was coarse and that the movement paths encompassed months, it is likely that many behaviours, including nursing, predator avoidance and socializing, are still present in the movement paths. These four explanations for the lack of fit of simple movement models emphasize how difficult it is to understand how animals search for food, and echo the calls for more mechanistic movement models (Nathan et al. 2008; Schick et al. 2008).

While we have movement patterns consistent with CCRWs and Brownian motion, there is likely no universal search strategy. Both species and individuals differ. Thus, we will only be able to accurately represent how animals search for food once we incorporate into movement models aspects such as memory, landscape features and the effects of sampling on observed movement paths.

Acknowledgements

We thank Devin Lyons and anonymous reviewers for improving the manuscript and Stan Boutin, Mark Edwards, Inuvialuit Game Council, Inuvik Hunters and Trappers Committee and Tuktoyaktuk Hunters and Trappers Committee for support. We received funding from Alberta Cooperative Conservation Research Unit, Alberta Innovates-Technology Futures, Alberta Upstream Petroleum Research Fund, Aquarium du Québec, ArcticNet, Bureau of Ocean Energy Management, Canada Research Chairs Program, Canadian Association of Zoos and Aquariums, Canadian Circumpolar Institute, Canadian Wildlife Federation, Conoco-Phillips (North) Canada Limited, Environment Canada, Inuvialuit Land...
Auger-M
Animal
Benhamou, S. (2007) How many animals really do the L
Bell, W.J. (1991)
References
archive: For caribou: https://era.library.ualberta.ca/files/bv405s9467#.V1xs
For grizzly: https://era.library.ualberta.ca/files/b4b29b605j#.V1sxl9cZ5lQ.
For polar bear: https://era.library.ualberta.ca/files/ms35tc50t#.V1sx
Data accessibility
All time series of step lengths and turning angles used in this manuscript are available from the University of Alberta Education & Research Archive: For caribou: https://era.library.ualberta.ca/files/bv405s9467#.V1xs
Auger-M
1420
Cambridge University Press, Cambridge, UK.
distributions in animal movements can arise from intraspecific interac-
tions. Journal of the Royal Society Interface, 12, 20140927.
Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer,
New York, NY, USA.

Mammalian search strategies

Received 2 November 2015; accepted 29 May 2016

Handling Editor: John Fryxell

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Appendix S1. Variation in threshold angle.

Appendix S2. Model fit for each individual.

Appendix S3. Additional CCRW model.