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Abstract

Linking dispersal and range expansion of invasive species has long challenged theoretical and quantitative ecologists. Subtle
differences in dispersal can yield large differences in geographic spread, with speeds ranging from constant to rapidly increasing. We
developed a stage-structured integrodifference equation (IDE) model of the California sea otter range expansion that occurred between
1914 and 1986. The non-spatial model, a linear matrix population model, was coupled to a suite of candidate dispersal kernels to form
stage-structured IDEs. Demographic and dispersal parameters were estimated independent of range expansion data. Using a single
dispersal parameter, o, we examined how well these stage-structured IDEs related small scale demographic and dispersal processes with
geographic population expansion. The parameter o was estimated by fitting the kernels to dispersal data and by fitting the IDE model to
range expansion data. For all kernels, the « estimate from range expansion data fell within the 95% confidence intervals of the o estimate
from dispersal data. The IDE models with exponentially bounded kernels predicted invasion velocities that were captured within the
95% confidence bounds on the observed northbound invasion velocity. However, the exponentially bounded kernels yielded range
expansions that were in poor qualitative agreement with range expansion data. An IDE model with fat (exponentially unbounded) tails
and accelerating spatial spread yielded the best qualitative match. This model explained 94% and 97% of the variation in northbound
and southbound range expansions when fit to range expansion data. These otters may have been fat-tailed accelerating invaders or they
may have followed a piece-wise linear spread first over kelp forests and then over sandy habitats. Further, habitat-specific dispersal data
could resolve these explanations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Ecologists have long struggled to relate small scale
dispersal and demographic processes with geographic
population expansion, both for explaining and predicting
the spread of invasive species. Demographic parameters
often vary across life-history stages, with stage-specific
survivorships, fecundities, and density dependencies. These
differences can be captured by matrix population models
when reproduction occurs seasonally or in discrete events
(Caswell, 2001). Dispersal may also differ among life-
history stages and this can be captured by stage-structured
integrodifference equations (IDEs). These models couple a
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matrix population model with stage specific dispersal
kernels that redistribute individuals in space according to
the dispersal propensity specific to each population stage
(Neubert and Caswell, 2000). In this way a detailed
description of the dispersal behaviour and demography
of a population can be captured in a single model.
Testing models of range expansion require independence
between data used to estimate dispersal and demographic
parameters and data used to test predictions of geographic
range expansion. While traditional reaction—diffusion
models have received many empirical tests (Lubina and
Levin, 1988; Andow et al., 1990; Shigesada and Kawasaki,
1997; Ortega-Cejas et al., 2004), there are few examples
where fat-tailed integrodifference models are tested (Scho-
field, 2002; Gilbert et al., 2004). This seems surprising, since
many invasions are marked by non-linear or accelerating
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spatial spread (Shigesada and Kawasaki, 1997). We
developed stage-structured IDE modes to relate dispersal
and rang expansion of California sea otters (Enhydra lutris
nereis). We examine how subtleties in dispersal scale to
divergent patterns of geographic range expansion by
comparing dispersal kernels that predict constant and
accelerating invasion speeds. We then compare our results
with those of Lubina and Levin (1988) and offer an
alternate explanation for the observed patterns of spread—
that otters may have been fat-tailed invaders.

1.1. Models of spread

The earliest models of population spread were reac-

tion—diffusion equations of the type
2

% =m+D % , (1)
which are the spatial counterparts of the exponential
growth model dn/dt = rn, where r is the intrinsic rate of
growth. The diffusion term, D@zn/ Ox?, captures the spatial
movement of individuals (Fisher, 1937; Skellam, 1951).
This model assumes dispersal data are normally distrib-
uted, that individuals reproduce and disperse continually,
and predicts that invading populations will spread at an
asymptotically constant velocity

¢ =2vDr 2)

(Skellam, 1951).

The discrete-time analog of the exponential growth
model is n,y; = Rn,;, where R is the net reproductive rate.
To add spatial movements to this linear population growth
model a dispersal kernel, k(x —z), is introduced that
defines the probability an individual will move from
location z to location x in one time step. Since individuals
can move from many locations, z, we must take the sum of
all these possibilities. This yields a linear unstructured IDE
of the form

[ee]
ma(0 =R [ neker =z 3
—0oQ0

This model assumes discrete, non-overlapping generations
with separate reproductive and dispersal phases (Kot et al.,
1996). An advantage of IDEs is that they can utilize
dispersal kernels of varying shapes. Thus, the assumption
of normally distributed dispersal data underlying reac-
tion—diffusion equations can be relaxed.

When the tails of the dispersal kernel are exponentially
bounded, Eq. (3) yields an asymptotically constant inva-
sion velocity

1

¢ = min [— In RM (s)} , 4)
0<s<s|S

which exists on the interval 0 <s<s§ and where M(s) is the

moment generating function of the kernel k£ defined on [0, 5)
(Kot et al., 1996). When the dispersal kernel in Eq. (3) is

the Gaussian with variance, 0%, we recover Eq. (2) with
D =16% and r = In(R) (Kot et al., 1996).

Differences in dispersal and demographic parameters
across life-history stages can be captured by structuring the
population. The non-spatial discrete-time model of this
type is a linear matrix population model of the form
N; = AN,;, where N is the vector of abundances (or
densities) of life-history stages and A is the population
projection matrix (Caswell, 2001). To add spatial move-
ments of each population stage a redistribution matrix, K,
is used that has the same dimensions as A and is composed
of stage-specific dispersal kernels that correspond to the
stage transition elements in A. Stage-structured IDEs have
the form

Nt () = / [A o K(x — 2)N,(2) d=. 5)

(Neubert and Caswell, 2000). The symbol o is the
Hadamard product, and indicates element-by-element
multiplication; each stage transition is coupled to its own
unique dispersal kernel. A detailed derivation of Eq. (5) is
given in Section 2 and also in Neubert and Caswell (2000).
When all kernels in K have exponentially bounded tails,
Eq. (5) yields constant invasion speeds given by

¢ = min F In pl(s)}, (6)
0<s<§|S

where p,(s) is the leading eigenvalue of the matrix

H(s) = Ao M(s), and M(s) is a matrix containing the

moment generating functions of the kernels comprising K

(Neubert and Caswell, 2000).

Leptokurtosis pervades most dispersal data. Leptokurtic
dispersal kernels have more long-distance and short-
distance dispersal events than would be seen with a
Gaussian dispersal kernel with the same variance. Com-
parisons between leptokurtic and Gaussian dispersal
kernels using unstructured IDEs have shown that the
Gaussian assumption underestimates spread rates (Kot et
al., 1996). Spread rates increase as the tails of the kernel
become fatter, and in particular, Eq. (4) fails when the
kernel has exponentially unbounded tails (Kot et al., 1996).
These kernels are called fat tailed and they yield accelerat-
ing rates of spread. The same result holds when the IDE is
stage structured and at least one stage transition disperses
according to a fat-tailed kernel. In that case Eq. (6) fails
and range expansion accelerates with time.

1.2. California sea otters

The California sea otter was hunted to near extinction in
the early 1900s. In 1914 a remnant population of
approximately 50 otters was discovered and protected,
and then subsequently reinvaded its previous range. The
population ceased expanding around 1982. Range expan-
sion was well documented from 1938 onwards and those
data and survey techniques are summarized in Lubina and
Levin (1988).
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Otters reproduce only once a year, typically in late
winter or early spring. They have three distinct life-history
stages: pups, juveniles, and adults. Pups, or newborn
otters, are weaned after 6-8 months. The juvenile stage
persists three to four years, after which individuals reach
reproductive maturity. Otters inhabit near-shore habitats
and aggregate in social groups of 440 individuals called
rafts (Riedman and Estes, 1990).

Otter movement is characterized by sustained periods of
localized movement punctuated by rare long-distance
events (Ralls et al., 1996). Males disperse further than
females, and juvenile males the farthest (Ralls et al., 1996).
The population is spatially structured by age—sex classes:
the outermost rafts are composed predominantly of
juvenile males, whereas females occupy the central portion
of the range (Riedman and Estes, 1990). For more
information see Riedman and Estes (1990), Riedman
et al. (1994), Ralls et al. (1996), Monnett and Rotterman
(2000), and Laidre et al. (2001).

2. Model

We begin by constructing a linear stage-structured
matrix population model, with three stages: pups (Y),
juveniles (J), and adults (4). Then we add spatial move-
ments by coupling each stage transition in the matrix
model to a dispersal kernel that redistributes individuals in
space for each time step. We do not include density
dependencies in the population projection matrix since
population density is low at the leading edge of the
invasion wave. The validity of this approximation, relies on
the linear conjecture (Mollison, 1991), which states that the
asymptotic speed of invasion of the non-linear model is the
same as at that of its linearization at low population
density. It is expected to hold if there are no Allee effects
and no long-distance density dependence (van den Bosch
et al., 1990; Mollison, 1991). Allee effects were unlikely to
slow the range expansion of sea otters since population
expansion is limited by females (the reproductive unit) and
there was an excess of males at the edges of the species
range (Riedman and Estes, 1990).

The population vector is

Y

N=|J )
A

and the projection matrix is
0 0 suf

A= sy s 0 ®)

0 s ja  Saa

which relates population size of each stage at time 7 to time
t + 1 by the matrix equation
N1 = AN, )

(Caswell, 2001). Here, f is the average number of pups
produced per adult otter per year, s,; is the proportion of

pups that survive to the juvenile stage each year, s; is the
proportion of juveniles that survive to remain as a juvenile
per year, s, is the proportion of juveniles that survive to
become adults each year, and s, is the proportion of adults
that survive each year.

The coastline can be modelled as an infinite one-
dimensional homogenous habitat. It is appropriate for
California sea otters since the scale of range expansion
along the coast far exceeds the width of their nearshore
habitat. That is, the sea otter population only expands
along the coast, not out to sea. Habitat hererogeneities are
not modelled, though they are undoubtedly important,
since we are interested if knowledge of dispersal and
demographic parameters alone is sufficient to account for
population spread.

To incorporate spatial movements of otters we must
track the movement of individuals through each stage of
transition. The annual spatial movement of an individual
can be modelled by a dispersal kernel, k, which defines the
probability an individual will move a certain directional
distance in a year. An individual located at z in year ¢ will
be found at location x at year ¢+ 1 with probability
k(x — z). For sea otters, the number of pups found in a
subsequent year at location x that were produced by adults
located at y is fA,(z)k,(x — z). Since pups can arrive at
location x from throughout the entire domain, the total
number of pups arriving at location x must account for all
sources z in the domain:

Vi = [ Ak - (10)

Similarly, the total number of juveniles and adults in a
subsequent year at location x is

Jii(x) = [ [s; Y ((2)k ) (x — 2) + 550 (2)kj(x — 2)] dz

) (11)
and
Apr1(x) = /Oo[sjaJ,(z)kj(x — 2) + Saa A2k y(x — 2)]dz.
B (12
If we define the redistribution matrix, K, as
k() K@) k(o)
K(x)= | () Kki(x) k() |, (13)

ky(x)  kj(x)  ka(x)

where k), k;, and k, are the stage specific dispersal kernels
for pups, juveniles, and adults, respectively, we can write
the stage-structured IDE that concisely captures all of the
above information:

S / TIA 0 K(x — 9IN() d. (14)

where o is the Hadamard product that indicates element by
element multiplication.
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3. Parameter estimation and analysis

We calculated demographic parameters from the current
literature, with estimates given in Table 1. Note that these
estimates are independent of range expansion data.
Dispersal kernels with exponentially bounded and un-
bounded tails were fit to annual dispersal data using
maximum likelihood (Tables 2 and 3). Annual net
displacements of otters were calculated from a long-term
telemetry study of California sea otters (Ralls et al., 1996).
Males were excluded since females are the limiting
reproductive unit, and therefore the rate-limiting step in
the invasion process. Juvenile and adult females were
included together due to the small sample size (22
individuals). No data were available on pups so we
assumed that pups do not disperse and approximated their
movement by the delta function, §(x). That is, pups remain
in the same location with probability 1. Combining

dispersal and demographic parameters into a stage

Table 1

Sea otter demographic parameters

Parameter Description Value

f Offspring per otter® 0.45

8y Proportion of pups becoming juveniles per 0.60

b

year

Sjj Proportion of juveniles remaining in juvenile 0.631
stage per year®

Sja Proportion of juveniles becoming adults per 0.269
year®

Saa Annual adult survivorshipd 0.90

Survivorship values were taken from post-invasion studies and adjusted to
account for the temporal length of each stage.

“Riedman et al. (1994).

®Monnett and Rotterman (2000).

“Eberhardt (1995).

dSiniff and Ralls (1991).

Table 2

Redistribution kernels fit to California sea otter dispersal data

Model Spread rate  k(x) L L3/L,

1 Constant . —x?]  1.2398 x 1073 3.365 x 10*
Vo P (222

2 Constant 1 {—|x|} 9.7010 x 1073° 430
—exp|——
20 o

3 Accelerating | \/m 41718 x 10727 1
kel Vi

4 Accelerating 20 8.0101 x 1073° 520

n(o? + x2)

Maximum likelihood was used to estimate the parameter, o, and
likelihood ratios to compare fits among redistribution kernels to dispersal
data (see also Table 3 and Fig. 1). Dispersal distances for 22 radio tagged
female otters were calculated from Ralls et al. (1996).

Table 3

Estimates for the dispersal parameter, o, and the initial population size N
Model Dispersal North South Radius N

1 8.49 (6.41, 12.00) 5.8 13.7 9.8 13

2 5.19 (3.45, 8.33) 4.1 9.8 7.0 13

3 0.71 (0.39, 1.35) 0.6 1.2 1.0 12

4 2.10 (0.89, 4.43) 0.3 1.2 1.1 19

The dispersal column shows the maximum likelihood estimates (+£95%
C]) by fitting the dispersal kernels to dispersal data. The north, south, and
radius columns show the estimate for o from least-square regression of the
numerical solution of the full IDE model to sea otter range expansion
data. Radius is the range radius—the mean of the northern and southern
expanding fronts. The Ny column is the estimated initial population size
by fitting the model parameterized by dispersal data through the starting
point in 1914 and the average between northern and southern fronts in
1938 (the first reliable data).

structured IDE we have Eq. (14) as our model with
o(x) k(x) k(x)

o(x) k(x) k(x) |. (15)
o(x) k(x) k(x)

K(x) =

After fitting each kernel we explored how well each model
related dispersal and range expansion data. The dispersal
parameter, o, was estimated directly from dispersal data and
indirectly by fitting the full IDE solution to range expansion
data. The IDE was solved numerically using a fast Fourier
transform algorithm in Matlab. This allowed us to compare
estimates of o and differences in kernel shapes between fits
to dispersal data and range expansion data. Using maximum
likelihood methods we could assess whether the estimate
from range expansion data fell within the 95% confidence
intervals of the dispersal estimate. In addition, we asked
whether the predicted invasion velocities of models 1 and 2
(by Eq. (4)) were captured within the 95% confidence
intervals of the observed invasion velocities. Finally, by
comparing fits of the models to range expansion data, we
could evaluate the capacity of each model to capture the
pattern of spread observed in the range expansion data.

There are uncertainties in the initial population size in
1914 (Lubina and Levin, 1988). Therefore, with the
dispersal kernels estimated by dispersal data, we left this
as a free parameter (integer values only) and forced the
solution to connect (as closely as possible) the source
location in 1914 with the average distance between the
northern and southern fronts in 1938 (the first reliable
data). The remaining range expansion data then served as
an independent test of how well each model performed. We
used these same initial conditions to fit the models to range
expansion data with o from the underlying kernel as a free
parameter (Table 3).

4. Results

Parameter estimates of survivorship and fecundity for
each sea otter stage were estimated from the literature
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(Table 1). These estimates were used to parameterize a
linear matrix model for sea otter population growth. The
net reproductive rate can be calculated from the linear
population projection matrix by finding the leading
eigenvalue of A (Caswell, 2001). We calculated the net
reproductive rate was A = 1.06, which translates into an
intrinsic rate of growth, r = In(4) = 0.058.

There was a clear ranking of dispersal kernels fit to the
dispersal data (Table 2): model 3 was statistically the best
fit, while the Gaussian (model 1) was the poorest. In Fig. 1
we illustrate the relationship between dispersal and range
expansion for each model. Differences in kernel shape
among fits to dispersal and range expansion data ranged
from slight deviations for model 3 to dramatic changes in
shape for model 1. The shapes of the fat-tailed kernels
(models 3 and 4) were well preserved across fits to dispersal
and range expansion data. Estimates for o calculated from

dispersal data and range expansion data were in close
correspondence. When fit to range expansion data, all
models yielded estimates for o, based on range radius, that
were within the 95% confidence intervals of the observed o
value (Table 3). Only model 3 yielded estimates for o from
both northern and southern expanding fronts that fell
within the 95% confidence intervals, while other models
had one or no estimates from northern and southern
expanding fronts that fell within these intervals.

Using Eq. (6), the predicted invasion speed from model 1
(containing the Gaussian kernel), was 2.75km yr~!, slightly
greater than 2.41kmyr~! predicted by model 2. The
observed velocities of range expansion were calculated
as the slope of the linear regression of range expansion
vs. time data for the northern and southern fronts,
excluding the initial data in 1914. Observed velocities
were 2.63kmyr~' (95%CI: 2.22, 3.03) for the north,

A B C
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=
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0 6 12 18 24 -10 0 10 1920 1950 1980
Distance (km) Distance (km) Year

Fig. 1. The relationships between dispersal and range expansion for the California sea otter. Column (A) shows the frequency distributions of dispersal
distances per juvenile and adult female otter per year (black bars) and the frequency distributions of the corresponding best-fit kernels given in Table 2
(grey bars) (distances were not binned in the maximum likelihood estimation). Column (C) shows the range expansion of otters moving south (filled
circles) and north (open circles) in kilometers. Thick grey lines show the predicted range expansion based on numerical simulations of the sea otter
integrodifference model with dispersal kernels from Table 2 and column (A). Thin black lines are the least-square best fits of the model to the southern and
northern fronts, obtained by leaving « in the corresponding kernel as a free parameter. Column (B) shows the relationships among kernels fit from
dispersal data (thick grey lines), the southern expanding front (thin black lines; S), and the northern expanding front (thin black lines; N). Simulations were
conducted on a domain length of 1000 km with 32,768 grid points using a fast Fourier transform algorithm and detection threshold of 0.5 otters per

kilometer.
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435kmyr~! (95%CI: 3.97, 4.74) for the south, and
3.49kmyr~! (95% CI: 3.11, 3.87) for the range width.
The predicted velocities of range expansion from both
models 1 and 2 both fell within the 95% confidence limits
for the northern expanding front, but not the southern
front or the range width.

Although models 1 and 2 had good agreement between
predicted and observed invasion velocities, these models
were qualitatively lacking (Fig. 1). Models 1-3 showed a
period of zero range width followed by sudden linear (or
near linear) spatial spread. The period of zero range width
occurred because the local population density fell below the
detection threshold across the entire domain. However, the
data show a more continuously accelerating invasion
speed. Only model 4 was able to capture the accelerating
nature of the sea otter invasion and adequately fit the entire
range expansion data set. The fit of model 4 to range
expansion data was excellent (north R>=0.94, south
R?> =0.97) and the predicted range expansion agreed well
with the southern expanding front (Fig. 1). Overall, all
models performed similarly in the quantitative tests despite
the ranking of kernels by likelihood ratios. However, there
was a clear accelerating feature in the range expansion data
and models 1-3 failed to capture this. Only model 4 had a
quantitative capacity to capture this feature and the
predicted range expansion by model 4 captured this feature
better than the other models.

5. Discussion

Relating dispersal and range expansion of invasive
species remains one of the central challenges facing
theoretical and quantitative ecologists. Small differences
in dispersal can scale to large differences in geographic
range expansion ranging from linear to accelerating spread
rates (Kot et al.,, 1996). It follows that mathematical
models used to predict and explain the spread of invasive
species need to be tested to evaluate their utility and
improve their predictive power. However, there are few
data sets which have sufficient independence between small
scale dispersal and demographic processes and geographic
range expansion to allow such a test. With the recent
publication of dispersal and demographic data for Cali-
fornia sea otters we were able to meet the independence
criteria and test a suit of invasion models in their ability to
relate dispersal and range expansion. To our knowledge,
this is the first rigorous empirical test of a suite of models
that range in their predictions from linear to accelerating
spread. All models were successful at predicting range
expansion but there were subtleties in the quality of their
predictions that correspond to uncertainty in dispersal
data. There is a capacity for very high predictive power but
this is challenged by the quantity and quality of dispersal
data—especially in the tails of the distribution.

We began by deriving a linear matrix population model
for California sea otters. From the population projection
matrix we calculated the intrinsic rate of growth to be

r = 0.058. This agrees well with estimates from Lubina and
Levin (1988): r = 0.056 for California sea otters and r =
0.054 for Alaskan sea otters (calculated from the linear
regression of log-transformed times series’ of population
abundances). The close correspondence of these estimates
is encouraging—without considering any spatial data we
have confidence in the demographic parameter estimates of
the non-spatial matrix model. Thus, let us examine the
spatial data—dispersal and range expansion—by focusing
on a single parameter («) that defines the shape of the
dispersal kernel. By coupling a suit of dispersal kernels to
the matrix model we formed a set of integrodifference
models to relate dispersal and range expansion. Though
similar, these models departed from each other in their
predictions of range expansion—which ranged from linear
to rapidly accelerating spread.

By fitting o to both dispersal and range expansion data we
examined how well each model related small scale demo-
graphic and dispersal processes with emergent large scale
population level patterns. There was a clear ranking of
dispersal kernels by likelihood ratios, but, regardless, all
models did a reasonable job of predicting the course of range
expansion. Both models 1 and 2 predicted invasion velocities
within the 95% confidence intervals of the observed spread
rate of the northern moving front. All models estimated
from range radius data to be within the 95% confidence
intervals of the o estimate from dispersal data. Only model 3
captured the estimated o from both northern and southern
expanding fronts to be within the 95% confidence intervals,
all other models captured either only one front or none.
There was substantial variation among models in the
qualitative agreement between predicted and observed range
expansion. Only model 4 (the third ranked kernel) was able to
capture the accelerating nature of the range expansion data.
This model explained 94% and 97% of the variation in the
range expansion data, indicating that this model had the
capacity to predict range expansion with high accuracy.
However, this model did not rank high when fit to dispersal
data. Thus, the ranking of models by dispersal data and range
expansion data do not correspond. This highlights the
challenges facing ecologists when using these models as
predictive tools but also highlights their capacity to provide
interesting insights into mechanisms underlying patterns of
invasive spread—such as non-linearities.

The range expansion data reveal an interesting non-
linear feature: range expansion was initially slow and then
rapidly accelerated. Our results suggest that this can be
explained with a model of dispersal that allows for a
relatively high frequency of long-distance dispersers. This
model, model 4, has a dispersal kernel with exponentially
unbounded tails and predicts an accelerating rate of spread
that matches nearly exactly the observed pattern of spread.
This suggests that long-distance dispersal may have driven
this non-linear feature in sea otter spread. Accelerating
spread could be also be produced by an Allee effect but we
think this is not the case for sea otters. Males dominate the
outer limits of the population but females drive the
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population expansion through reproduction. Because of
this it is unlikely that females would have difficulty finding
mates or be more susceptible to predation at the edge of
their range. An alternative explanation for non-linear
range expansion was proposed by Lubina and Levin (1988)
in their analysis of the same range expansion data.
Although they lacked the independence between dispersal
and range expansion data that we enjoy, they achieved
excellent piece-wise linear fits of a reaction—diffusion model
to the California sea otter spread. They argued that range
expansion was initially slow (but constant), corresponding
to reduced dispersal behaviour in kelp forest habitats and
then suddenly switched to fast (but still constant) dispersal
over sandy bottom habitats. We did not consider habitat
heterogeneities in our model since we were interested if
knowledge of dispersal data alone was sufficient to account
for the observed patterns of spread. Both explanations
seem possible and could easily be resolved if detailed
habitat-specific dispersal data became available.
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