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Abstract

River ecosystems are the prime example of environments where unidirectional flow influences the dispersal of individuals. Spatial

patterns of community composition and species replacement emerge from complex interplays of hydrological, geochemical, biological,

and ecological factors. Local processes affecting algal dynamics are well understood, but a mechanistic basis for large scale emerging

patterns is lacking. To understand how these patterns could emerge in rivers, we analyze a reaction–advection–diffusion model for two

competitors in heterogeneous environments. The model supports waves that invade upstream up to a well-defined ‘‘upstream invasion

limit’’. We discuss how these waves are produced and present their key properties. We suggest that patterns of species replacement and

coexistence along spatial axes reflect stalled waves, produced from diffusion, advection, and species interactions. Emergent spatial scales

are plausible given parameter estimates for periphyton. Our results apply to other systems with unidirectional flow such as prevailing

winds or climate-change scenarios.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One defining feature of river ecosystems is the presence
of a strongly unidirectional flow. This flow induces a heavy
bias in the dispersal of individuals such as algae,
invertebrates, and stream insects. The question how a
population can persist in rivers despite the flow-induced
washout has been termed the ‘‘drift paradox’’ (Müller,
1982), and has been addressed in recent modeling papers
(Lutscher et al., 2005; Pachepsky et al., 2005; Speirs and
Gurney, 2001). In this paper, we address the question where

in a river a species can persist, given natural spatial
variation in resource levels. We also study how unidirec-
e front matter r 2006 Elsevier Inc. All rights reserved.
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tional flow influences the outcome of competition, and
in particular how it may mediate coexistence of two
competitors.
We formulate our model for algal communities in rivers,

however, our results apply to many other scenarios of flow-
through systems. Coastlines with long-shore currents
present a similar environment (Gaylord and Gaines,
2000), as do plug-flow reactors, which have been used as
models for the gut (Ballyk and Smith, 1999). Plants with
windborn seeds in valleys with prevailing wind directions
face a similar ‘‘wash-out’’ problem. Finally, the pole-ward
movement of temperature isoclines due to global warming
induces unidirectional ‘‘flow’’ by a change of reference
frame (Potapov and Lewis, 2004).
Algal communities in river ecosystems are highly

dynamic. Species composition changes significantly over
time at a particular spatial location in response to temporal
variation in local nutrient concentrations and herbivore
levels (Alvarez and Peckarsky, 2005; Hillebrand, 2002;
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Henry and Fisher, 2003; Lamberti et al., 1989; Pringle,
1990), and physical disturbances (McCormick and Steven-
son, 1991; Peterson and Stevenson, 1992; Robinson and
Minshall, 1986). Larger scale spatial patterns in commu-
nity composition and species replacement emerge from
these local interactions, and some general features of these
patterns have been catalogued (Hill et al., 2000; Lavoie et
al., 2003; Snyder et al., 2002; Wright and Li, 2002). While
there has been extensive work done to understand
processes at local spatial scales (e.g. Hillebrand, 2002 and
citations above), there has been little work testing ideas as
to how larger-scale spatial patterns are produced. For
example, larger-scale empirical patterns based on the
‘‘River Continuum’’ (RCC) (Vannote et al., 1980) or
‘‘Serial Discontinuity Concepts’’ (SDC) (Ward and Stan-
ford, 1983) have been compiled. The RCC is often used to
predict the community composition of biotic groups as one
moves down from headwater streams to larger rivers. It
assumes that benthic community composition reflects the
relative contribution of carbon loading from terrestrial
versus in stream sources. The SDC modifies the RCC by
explicitly considering the direct (e.g. flow modification) and
indirect (nutrient cycling) hydrological effects of dams on
modifying the relationship between external and internal
loading, as well as the environmental influences on
community composition. However, the mechanistic basis
for these patterns is poorly understood. Important linkages
among hydrology, biogeochemistry, ecological interac-
tions, and population processes have been established
(Biggs et al., 1998; Dent et al., 2002; Fisher et al., 1998;
Woodward and Hildrew, 2002), but general explanations
for both the temporal and spatial dynamics of algal species
need to be elucidated and tested in river systems.

Recent experimental work investigating mechanisms
producing basin-scale patterns in algal community dy-
namics (Peterson, 1996; Cardinale et al., 2005) highlights
the role of dispersal mechanisms interacting with local
processes, either following disturbance or along nutrient
gradients. To understand how these mechanisms give rise
to spatial patterns and temporal dynamics, we need a
framework that incorporates ecological interactions and
dispersal, along with advective flow down river. Table 1
summarizes the models used to understand periphyton
(benthic algae) dynamics in streams and rivers and their
biological and physical assumptions. These models typi-
cally include ecological interactions and the effect of
advective flow but not dispersal. The situation is different
for terrestrial systems where extensive work on spatial
coexistence mechanisms has been undertaken (Amarase-
kare et al., 2004) involving diffusion, but advective flow
was not considered for obvious reasons.

In this paper, we use a strategic approach to understand
how spatial competitive outcomes among algal species are
influenced by environmental heterogeneity in the presence
of advection and diffusion. Our goal is to understand how
competing species invade and coexist in space under
different environmental scenarios. The mathematical
formalism we use abstracts much of the biology of the
competitors into a phenomenological description of the
effects of changes in species density on growth rates of
competitors.
In the next section, we present our model that consists of

two reaction–advection–diffusion equations coupled by
Lotka–Volterra interaction terms. The analysis proceeds in
three steps. At first, we consider only a single species in a
heterogeneous environment. We introduce the notion of an
upstream invasion limit. This point in space can be
computed explicitly from the model parameters. Numerical
simulations reveal that an upstream-invading wave gets
stalled at this point. Secondly, we investigate numerically
how two competitors can coexist in a homogeneous
environment. It turns out that boundary effects at the
upstream boundary may lead to coexistence. Finally, we
extend the definition of upstream invasion limits to the
two-competitor case and show that coexistence can occur if
the better competitor has its invasion limit downstream
from that of the weaker competitor. In the discussion, we
use published data to show that the spatial scales over
which we expect coexistence to occur are reasonably large.
2. Model description

We start by focusing on the effect of competition on the
abundance and distribution of species in rivers. While
competitive dynamics are well studied in ecology, the
interaction of competitive dynamics between species and
the physical flow in a river, via diffusion and advection in
the river is complex. As we will show in this paper, this can
produce a rich and biologically interesting set of compe-
titive outcomes that relate directly to river ecosystems.
While recognizing that competitive interactions in rivers

are typically mediated via resource limitations (Son and
Fujino, 2003), our approach is to take the simplest possible
model for competition that remains biologically interest-
ing, that of Lotka–Volterra competition. To this we add
diffusive (random) and advective (directed) flow, as well
spatial variation in intrinsic growth rates (reflecting
changing conditions for growth in the river system).
We consider two competing species in a river and denote

N1;2ðt;xÞ as their respective densities at time tX0 and
downstream location x. The equations read

qN1

qt
¼ D1

q2N1

qx2
� V1

qN1

qx
þN1ðR1ðxÞ � A11N1 � A12N2Þ,

qN2

qt
¼ D2

q2N2

qx2
� V2

qN2

qx
þN2ðR2ðxÞ � A21N1 � A22N2Þ,

ð1Þ

where RiðxÞ are the respective growth rates, Aij the inter-
and intraspecific competition coefficients, Di are the
diffusion coefficients and Vi the flow speeds. We assume
that V 1;V 240 so that the flow is from left to right.
Whereas flow speed might remain constant downstream or
increase slightly in natural systems (Leopold, 1962), it is
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Table 1

Modeling approaches for periphyton

Modeling area

reference

Approach State variables Processes considered Major results

Lotic ecosystems Single-reach model Biomass of several

functional groups

Production, respiration,

grazing, shredding,

collecting, (in-) vertebrate

predation

Maximum biomass at intermediate flow

velocities

McIntire et al.

(1996)

Ordinary diff. Eq. Nutrients, dissolved

organic matter

Light, flow, temperature Consumer biomass is indicator for productivity

of the system

Difference Eq. Complex processes lead to some counterintuitive

outcomes

Diatom migration Water column

sampling

Biomass of each species Emigration, immigration,

growth, temperature

Emigration and immigration quantified for each

species

Stevenson and

Peterson (1991)

Difference Eq. Variation of abundance in water column

explained

Nutrient-

periphyton

dynamics

Single-reach model Nutrient concentration in

each compartment

Uptake, growth,

remineralization, flow,

export

Algal grow is self-limited

Mulholland and

DeAngelis (2000)

Flow and benthos Hyporheic zone is important factor

Ordinary diff. Eq. Nutrient uptake length calculated

Downstream

coupling

Periphyton mat

dynamics

Complex

simulation model

Biomass of algae Uptake, growth,

mortality, detachment,

respiration, shading,

temperature

Succession from non-filamentous to filamentous

Son and Fujino

(2003)

Ordinary diff. Eq. Length of filaments Light and detachment quantified

Partial diff. Eq. External and internal

Nutrient concentration

River-scale

modeling

Complex

simulation model,

40 km reach

Biomass of

phytoplankton and

periphyton

Carbon-, nutrient-, and

oxygen cycling, transport,

diffusion of nutrients and

phytoplankton

Integrative model of highly complex processes

Flipo et al. (2005) Ordinary diff. Eq. Concentration of

nutrients and oxygen

Periphyton is predominant in nitrification and

contributed greatly to carbon standing stock and

downstream export

Partial diff. Eq.

In each category we only list the most recent reference for the model type or author group. All models contain population dynamics of periphyton and are

parameterized from experiments. Flow is included as an additional loss term. Only the model by Stevenson and Peterson (1991) considers emigration and

immigration explicitly, none of the others contains spatial movement of periphyton. The models by McIntire et al. (1996) and Stevenson and Peterson

(1991) are non-spatial, Mulholland and DeAngelis (2000) and Son and Fujino (2003) consider both, non-spatial and spatial models, the approach by Flipo

et al. (2004) is explicitly spatial and, as the only one in the list, includes hydrodynamics.
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unclear whether the same holds when large amounts of
water are extracted from rivers for agricultural use or
human consumption. For simplicity, we consider a
spatially constant speed here.

We would like to point out that the interaction terms in
the model formulation are somewhat different from the
standard notation. Usually, the growth rates Rj are
factored out of the brackets and the interaction coefficients
have dimension ðdensityÞ�1, whereas in our case the Aij

have dimension ðdensity � timeÞ�1. Mathematically, the
two formulations are, of course, equivalent, but the one
presented here and elsewhere (Potapov and Lewis, 2004;
Shigesada et al., 1986) has certain advantages for our
purposes. For example, the formulation is consistent with
Rjo0. More importantly, for a logistic equation in a
spatially varying environment, one has the choice of
varying the intrinsic growth rate, or the carrying capacity
or both. Since we aim for a simple model, we link the two
and thereby reduce the number of parameters, because the
carrying capacities are now given by Kj ¼ Rj=Ajj . For
convenience, we can rewrite the reaction term in (1) of
species 1, say, as

R1N1 1�
N1 þ aN2

K1

� �
, (2)

where a ¼ A12=A11, which relates our choice of parameters
to the more commonly used form of the equations. In
particular, the parameters Aij ; iaj are simply multiples of
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the commonly used competition coefficients (Britton,
2003).

The case where growth rates R1;2 are constant was
studied mathematically by Potapov and Lewis (2004), in
particular when the river is very long (mathematically
speaking, an unbounded domain). There, the coupled
growth and dispersal can lead to population spread in
space. The invasion speed at which the population spreads
is a key quantity that will play a role later in this paper.
It is easiest to first consider the case for (1) with a single
species and no advective flow (N2 ¼ 0 and V1 ¼ 0). This is
simply logistic growth with random dispersal, or the so-
called Fisher equation, which has invasion speed 2

ffiffiffiffiffiffiffiffiffiffiffi
D1R1

p

(Fisher, 1937). If V 1a0 the invasion speed in the direction
of the flow is given by 2

ffiffiffiffiffiffiffiffiffiffiffi
D1R1

p
þ V1, whereas the speed

in the opposite direction is given by 2
ffiffiffiffiffiffiffiffiffiffiffi
D1R1

p
� V 1. In

particular, the invasion does not move against the flow
when V 142

ffiffiffiffiffiffiffiffiffiffiffi
D1R1

p
(Pachepsky et al., 2005).

In two-species competition models, one can study the
case where a superior competitor (say species 1) out-
competes the other competitor, and spreads spatially into
the (infinite) region previously occupied by species 2. For
Lotka–Volterra competition as above, with V1;2 ¼ 0, the
speed at which the weaker competitor retreats is identical
to the speed at which the stronger one advances. This
replacement process occurs at speed

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1ðR1 � R2A12=A22Þ

p
(3)

provided the following two conditions are satisfied (Lewis
et al., 2002)

D2

D1
p2;

ðA12A21=A11A22Þ � 1

1� ðA12R2=A22R1Þ
p

R1

R2
2�

D2

D1

� �
. (4)

These conditions are sufficient but not necessary as
numerical simulations show. However, the spreading speed
can be much larger if the conditions are violated (Lewis
et al., 2002). In all simulations presented below, conditions
(4) are satisfied, and hence the spreading speed of the
better competitor into the domain occupied by the weaker
competitor is given by (3).

A more accurate depiction of a river is a body of water of
finite length L. We can consider Eqs. (1) on a bounded
domain ½0;L� where, of course, population spread cannot
continually happen at constant speed. We consider x ¼ 0
to be the top of the river where individuals neither leave
nor enter (zero flux). In contrast to previous modeling
approaches (Speirs and Gurney, 2001; Pachepsky et al.,
2005) we consider a river where the downstream boundary
at x ¼ L is ‘‘far away,’’ i.e., has no influence on upstream
processes. These two assumptions are encapsulated in the
so-called Danckwerts boundary conditions (Ballyk et al.,
1998)

Di

qNi

qx
� V iNi ¼ 0; x ¼ 0,

qNi

qx
¼ 0; x ¼ L; i ¼ 1; 2. ð5Þ
The first of these boundary conditions describes zero flux at
the top of the river, and the second describes zero variation
in population density with space at the downstream
boundary. For a derivation and discussion of these
boundary conditions from a random-walk perspective,
see Lutscher et al. (2006). From here on, we make the
following simplifying assumptions:
1.
 Diffusion and flow speeds are the same for both species,
D1 ¼ D2 ¼ D;V 1 ¼ V 2 ¼ V .
2.
 Growth rates are linear and non-decreasing, and
R2=R1 ¼ r ¼ const:, i.e.,

R1ðxÞ ¼ RU þ ðRL � RU Þx; RUpRL,

R2ðxÞ ¼ rR1ðxÞ, ð6Þ

where the indices U ;L stand for the upper and lower end
of the river section.

The main focus in Sections 3 and 4 below is on numerical
results, their biological interpretation and significance. Here
we briefly give some background on analytical results and
the numerical methods used. In the case of a single equation
(e.g., N2 ¼ 0) and positive initial data, all solutions converge
to a unique stable equilibrium. Depending on parameter
values, this equilibrium is either zero (if zero is locally stable)
or positive (if zero is unstable). This result follows from the
shape of the reaction term (logistic growth) and the fact that
the equation satisfies a maximum principle. As a conse-
quence, the outcome of numerical simulations is indepen-
dent of the chosen initial conditions. The 2-species system is
a so-called ‘‘monotone system’’ (Smith, 1995). When
parameters are chosen such that either species can invade
the other at equilibrium, the theory of monotone systems
predicts that there is a coexistence equilibrium, but it may
not be unique (Smith, 1995). Therefore, the final outcome of
simulations might depend on initial values, however, we
studied the full system (1) numerically for a wide range of
initial data, and found again that the final outcome is
independent of initial values. (The outcome does, of course,
depend on parameter values.) For monotone initial values,
solutions formed invading or retreating waves. Since neither
the qualitative behavior nor the final outcome of the
simulations depends on the initial location of the species,
we chose to illustrate the results using initial conditions that
allowed most clearly to observe the different processes and
time scales involved. For numerical simulations, we chose
an unconditionally stable implicit finite-difference scheme.
Derivatives were approximated by finite differences, back-
ward in time, central in space for the diffusion term, and
upwind for the advection term (Strickwerda, 1989).
For numerical simulations we introduced the non-

dimensional quantities

t0 ¼ t max
x

R1ðxÞ ¼ tRL; x0 ¼
x

L
,

di ¼
Di

L2RL

; vi ¼
V i

LRL

; ni ¼
AiiNi

RL

. ð7Þ
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Then the non-dimensionalized system is then given by

qn1

qt
¼ d1

q2n1

qx2
� v1

qn1

qx
þ n1ðr1 � n1 � a12n2Þ,

qn2

qt
¼ d2

q2n2

qx2
� v2

qn2

qx
þ n2ðr2 � a21n1 � n2Þ, ð8Þ

where now

riðxÞ ¼
RiðxÞ

RL

; aij ¼
Aij

Ajj

. (9)

We used some analytical and some numerical methods to
compare the effects of the downstream boundary condi-
tions (5) chosen here to the ‘‘hostile’’ boundary conditions
Niðt;LÞ ¼ 0 used elsewhere (Speirs and Gurney, 2001;
Pachepsky et al., 2005). The qualitative differences occur
only at the downstream end for long enough domains,
where the solutions are forced to zero with hostile
conditions. If the domain is long enough to support the
populations, then the upstream end is not affected by the
downstream boundary conditions. The critical domain size
for hostile conditions is larger than for the Danckwerts
conditions.

3. Results

3.1. Single species

If only one species is present, and growth is constant in
space, i.e., RðxÞ ¼ R, Eqs. (1) reduce to a single equation
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Fig. 1. Invasion process and steady state for a single species in a resource gra

downstream. The profile of the invasion front is plotted every 100 time units. As

comes to a halt. Upstream the density is almost zero, downstream the density is

steep, much steeper than the gradient in the carrying capacity. The unscaled

densities are scaled to unity.
that was analyzed by Speirs and Gurney (2001) and
Pachepsky et al. (2005), see also Murray and Sperb (1983)
for a more general mathematical treatment in higher space
dimension. Their main results in the present context are
that, if the stream is arbitrarily long, the species can invade
in the upstream direction if and only if the invasion

condition Vo2
ffiffiffiffiffiffiffiffi
DR
p

is satisfied. Upstream invasion occurs
in the form of a traveling wave, moving against the flow at
constant speed. When the river becomes shorter, the total
amount of habitat available to the species is reduced. Speirs
and Gurney (2001) showed that there is a critical domain

size, a length of river that is so short that the species cannot
survive any further reduction of habitat.
We investigate the case when the growth rate varies

spatially. We shall not be concerned whether the species can
persist at all but rather where it will be present. We consider
a river long enough to exceed the critical domain size where
the growth rate varies spatially in such a way that the
invasion condition holds at the bottom of the stream but is
violated at the top. Then the monotonic increase in growth
rate with increasing distance downstream implies that there
is a unique point x� in the domain where

V ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRðx�Þ

p
. (10)

The resulting behavior is summarized in the following points
and illustrated in Fig. 1.
1.
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ost the carrying capacity. The transition between the two states is very

ameters are L ¼ 100;D ¼ 1;RU ¼ 1;RL ¼ 2;V ¼ 2:2. In the plot, the
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limit x�.

3.
 If the species is initially located at the downstream end,

then it spreads upstream in a wavefront that stalls at the
invasion limit.
The steepness of the transition between the two states
depends on the parameters. The steepness increases as D

decreases provided the product DRðx�Þ is held constant so
that the invasion limit is fixed. We explored several shapes
of non-linear spatially varying growth rates RðxÞ, all
monotone increasing so that the upstream invasion limit
x� is well-defined. In all cases, we observed the same
qualitative behavior as in the case for linearly increasing
growth rates described above.
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f of the domain at equal density, but the final outcome is independent of the

within the first 50 time units, species 2 forms an upstream moving front w

ws how subsequently species 1 invades upstream, but much slower than

tributions for the two species for two different values of flow speeds where c

lid line). The parameters are L ¼ 100;D ¼ 1;RU ¼ RL ¼ 1; r ¼ 1:4;A11 ¼ A

els), the smaller one is V ¼ 0:8.
3.2. Competing species

The non-spatial competition model allows for three
different outcomes (coexistence, competitive exclusion,
founder control), depending on parameters. We concen-
trate on the case where species 1 outcompetes species 2 in
the non-spatial model, but species 2 has the higher growth
rate at low densities, i.e., R2=R1 ¼ r41;A12roA22;
A214rA11. These conditions depend only on the ratio r
of the growth rates and are therefore independent of spatial
location.
In the homogeneous spatial model with constant growth

rates, the outcome of spatial movement and competition
depends on the magnitude of the flow speed. For small flow
speed, species 1 invades all the way to the upstream
boundary, x ¼ 0, at a density close to carrying capacity.
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oexistence is possible. For larger flow speed, species 2 occupies more space

22 ¼ 1;A12 ¼ 0:5;A21 ¼ 1:5. The larger flow speed if V ¼ 1:2 (also upper
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Species 2 goes extinct as predicted by the non-spatial
model. At intermediate speeds, coexistence is possible in a
boundary layer near the upstream boundary, because the
density of species 1 and hence its effect on species 2 is small
near the upstream boundary. The coexistence region grows
with increasing flow speed. For higher speeds, the
competitive outcome is reversed as species 2 persists in
the whole domain whereas species 1 gets washed down-
stream, even though the flow speed would allow persistence
in the absence of species 2. If the speed is so large that the
invasion condition for species 2 is violated, then both
species go extinct.

Fig. 2 depicts how in the case of intermediate flow speeds
both species invade upstream. Species 2 spreads faster
initially but is being outcompeted downstream by species 1.
The upstream spread of species 1 is slower, but the
population reaches the upper end of the stream eventually
and allows only a small region of coexistence with the
inferior competitor near the boundary. Potapov and Lewis
(2004) investigated the steady states of a similar system in
much more detail.

When growth rates vary spatially, each species has its
invasion limit in the absence of the competitor, denoted by
x�1;2 and given implicitly by (10). Due to the higher growth
rate for species 2, the invasion limit of species 2 is upstream
of that of species 1, i.e., x�2ox�1. There is a second invasion
limit for each species, obtained by fixing the density of the
competitor at its single-species carrying capacity to find a
reduced growth rate Ri � AijN̄j, with N̄j ¼ Rj=Ajj. This
second invasion limit is denoted by x��i and defined
implicitly by

V ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½Riðx

��
i Þ � AijN̄jðx

��
i Þ�

q
. (11)
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species spread upstream from their initial downstream location. As in Fig. 2, the

takes a long time to invade and partially replace its opponent. These two diffe

steady state in the right panel shows that even though the single-species inv

established upstream. The better competitor reaches its reduced invasion limit

competition parameters as above.
This definition reduces to (10) in the absence of the other
species ðAijN̄j ¼ 0Þ. Because competition has the effect of
reducing net growth rates, the single-species invasion limit
is upstream of the invasion limit with the competitor at
carrying capacity, i.e. x�i ox��i .
Fig. 3 shows the resulting behavior of the two competing

species under such heterogeneous environmental condi-
tions. Initially, both species are located downstream. The
weaker competitor develops a fast moving front that stalls
at its invasion limit, x�2, as in the single species case.
Downstream, the better competitor drives the weaker one
to extinction and slowly moves upstream in a monotone
wave. This wave stalls far downstream from the single-
species invasion limit, x�1, namely at the competition-
reduced invasion limit, x��1 . At the resulting steady state,
there is a spatial zone of coexistence of the two species. In
contrast to the coexistence zone in the homogeneous
environment above, this zone is not a boundary effect
but occurs around the reduced invasion limit of species 1.
To summarize:
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2.
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reaches the reduced limit x��1 .

The question of what controls the steepness of the
transitions between the states becomes more difficult to
answer in this case since more locations and parameters are
involved. We concentrate on the front of species 1, where
we vary parameters in such a way as to fix the invasion
limit x��1 . For increasing D (and therefore decreasing R) the
front becomes less steep. Varying the gradient of R while
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keeping D fixed has no visible effect on the steepness of the
front.

4. Discussion

By integrating local growth and interaction with long-
itudinal transport and diffusion, we identify a novel
approach to understanding processes and patterns in
stream ecology. We illustrate this approach using a simple
model for one single or two competing species. The major
results are the emergence of an upstream invasion limit of a
species and two mechanisms of coexistence of competitors
along the spatial domain.

4.1. Invasion limits and stalled waves

The model not only predicts under which conditions on
diffusion, flow and growth rates a species can persist in a
certain stream reach as was done before (Speirs and
Gurney, 2001; Pachepsky et al., 2005), but it also predicts
the location of the upstream limit where a species can
persist in a heterogeneous environment. This limit is
defined formally as the spatial location where the upstream
invasion speed in a corresponding homogeneous environ-
ment is zero. Numerical simulations reveal that at this limit
there is a sharp transition from almost zero to high density
that emerges from a stalled wave. Analytical investigations
on the steepness of the transition and the rate at which zero
and the positive steady state are approached spatially are
currently underway. Since the model is based on the
diffusion equation, the steady state is everywhere positive
unless it is identically zero. For ecological purposes,
however, the density above the invasion limit is effectively
zero.

Our model explicitly considers how colonization and
local processes combine to produce spatial dynamics.
There are few studies that consider ‘‘open systems’’ (Nisbet
et al., 1997) and even fewer that explicitly consider the
importance of a colonizer pool (Stevenson and Peterson,
1991). While the idea of an upstream invasion might sound
strange at first, given that species such as algae and
invertebrates are subject to water currents, we want to
point out that advection–diffusion equations appear to
capture the process of particle transport in flow environ-
ments reasonably well (Bencala and Walters, 1983).

4.2. Coexistence mechanisms

The analysis of the spatial Lotka–Volterra competition
model in homogeneous and heterogeneous environments
reveals two inherently spatial mechanisms for coexistence
in the case where the competition coefficients indicate
competitive exclusion in the corresponding non-spatial
system. As in the previous section, we always refer to
species 1 as the better competitor whereas species 2 has the
higher growth rate.
The first mechanism occurs in the homogeneous
environment and is identified as a boundary effect. The
flow at the upstream boundary pushes both competitors
downstream and decreases their density near the boundary.
The small density of species 1 has only a small effect on
species 2. This boundary layer is small for small flow
velocities so that species 1 still excludes species 2. For
intermediate velocities, however, species 2 can coexist at
the upstream boundary, and for higher velocities the
competitive outcome is even reversed so that species 2
alone persists. Conversely, this suggests that decreasing
flow rates, e.g. due to water extraction, may lead to
changes in species composition through upstream invasion
of superior competitors. This effect may be compounded
by concomitant changes in nutrient concentration with
decreased flow rate. Potapov and Lewis (2004) present an
in-depth analysis of similar phenomena in the context of
population spread under climate shift.
This boundary effect described above depends on the

presence of flow and is therefore different from previously
established results where diffusion induced boundary loss
facilitates coexistence (Fagan et al., 1999).
The second mechanism for coexistence occurs in hetero-

geneous environments where the growth rate increases
downstream. This is a common feature in many river
systems where nutrient load and/or temperature, which
limit primary production upstream, increase downstream.
This heterogeneity creates an upstream invasion limit
where the invasion wave of a single species is stalled. Since
species 2 has its invasion limit upstream of that of species 1,
it is able to establish there. Because the weaker competitor
(species 2) becomes established further upstream, it has the
advantage of a pool of potential colonizers upstream of the
dominant competitor (species 1). Downstream of this
colonizer pool of species 2, flow removes individuals of
both species but delivers only colonizers of species 2. The
combined result of these processes is that the competitive
superiority of species 1 is lost in some region downstream.
Species 1 is not able to persist at its single-species invasion
limit but only further downstream at the invasion limit
predicted with the competitor at carrying capacity.
This second mechanisms depends on the gradient of the

growth rate and is clearly not a boundary effect. It creates
spatial areas dominated by only one species and some
transition zone in between. Depending on the flow velocity
and the steepness of the gradient in growth rate, this
coexistence zone can vary in size. Ballyk et al. (1998)
modeled resource-mediated competition in a plug-flow
reactor and found parameter regimes of spatially mediated
coexistence. Whereas the resource in their model is
supplied at the top end of the reactor and decreases
downstream, we consider the case where the growth rate
increases downstream. Cantrell and Cosner (1998) showed
how spatially varying growth and interaction rates in a
diffusive Lotka–Volterra system can create spatial segrega-
tion of competitors and thereby facilitate coexistence.
Again, the mechanism here is induced by the advective



ARTICLE IN PRESS
F. Lutscher et al. / Theoretical Population Biology 71 (2007) 267–277 275
flow and therefore fundamentally different from the pure
diffusive system.
4.3. Spatial scales

Above, we described several possible mechanisms that
lead to spatial patterns in population distribution. Our
initial investigation was general with respect to the
parameter values. Now we explore the spatial scales at
which we expect to observe these patterns for realistic
parameter values.

Typical growth rates of periphyton (benthic algae) range
0:122 d�1 (DeAngelis et al., 1995; Son and Fujino, 2003).
Diffusion rates of 0:120:5m2 s�1, and average flow speeds
of 0:0120:03m s�1 were obtained from fitting advection–
diffusion equations to data from conservative tracer
injection experiments (Bencala and Walters, 1983; Kim
et al., 1992). Speirs and Gurney (2001) already concluded
for their model that populations cannot persist in a well-
mixed water column when individuals are assumed to
experience the average flow speed. However, most plank-
tonic or invertebrate species in rivers are not purely pelagic
but have benthic stages (Allan, 1995). In that case, the
effective flow speed experienced by the population is
reduced considerably. First, the flow speed is much reduced
near the benthos. According to formula (13) by Speirs and
Gurney (2001), the flow speed in the lowest 4% of the river
depth is only 10% of the average flow speed. Secondly,
relative abundance estimates of benthic and flow popula-
tions indicate that for some species individuals spend only
as little as 0.01% of the time in the flow (Speirs and
Gurney, 2001). When individuals are exposed to the flow
only for a fraction of the time, then the effective flow speed
that these individuals experience is reduced by the same
factor, i.e., by approximately 10�4. Pachepsky et al. (2005)
have modeled this transition between benthic and pelagic
stages explicitly.

The invasion condition requires that the effective flow
speed be bounded by

V effp2
ffiffiffiffiffiffiffiffi
DR
p

�6:8� 10�4 � 6:8� 10�3 m s�1

¼ 0:058� 0:58 kmd�1.

This requires an effective flow speed that is 10–100
fold lower than the average flow speed of 0:012

0:03m s�1. This reduction clearly falls in the range
discussed above.

At first, we turn to the width of the transition zone at the
upstream invasion limit for a single species as illustrated in
Fig. 1. Setting D ¼ 0:1m2 s�1 to its lowest value, we set the
growth rate to vary R ¼ 0:120:3 d�1 over a spatial scale of
100 km. An average effective flow speed of V ¼ 10�3 m s�1

puts the invasion limit at x� ¼ 58 km (10). The steady state
distribution increases from zero to R over a region of 4 km
near the invasion limit. Doubling D and reducing R to half
its value leaves the invasion limit unchanged but widens the
transition zone to a 6 km region.
Next, we look at the case of boundary coexistence. We
fix D ¼ 0:1m2 s�1 as above and set R ¼ 0:2 d�1. The
interaction coefficients are as in Section 3. For flow
speeds smaller than 2� 10�4 m s�1, species 1 outcompetes
species 2. At flow speeds above 7� 10�4 m s�1 species 2
takes over and species 1 goes extinct. In between, both
species are present in a range of 5–10 km below the
upstream boundary.
Finally, we examine the size of the coexistence region in

a heterogeneous habitat. We fix a flow speed of
V ¼ 10�3 m s�1. Interaction coefficients are as in Section
3. We set up the diffusion rate and the variation in growth
rates over a stream reach of 100 km in such a way that the
weaker competitor can invade all the way to the top of the
stream and the reduced invasion limit for the superior
competitor lies in the 0–100 km region of space. For D ¼

0:1m2 s�1 and a range of R ¼ 0:320:9 d�1 the coexistence
zone extends approximately 10 km. Increasing diffusion to
D ¼ 0:3m2 s�1 while reducing growth to R ¼ 0:220:4 d�1

expands the coexistence region to nearly 20 km. For even
higher diffusion of D ¼ 0:5m2 s�1 and lower growth
R ¼ 0:120:2 d�1, together with increased r ¼ 1:45 the
coexistence region spans almost 50 km.
These examples demonstrate that the mechanisms

presented above, and illustrated in Figs. 1–3, can produce
patterns on relevant scales of several hundred meters to
tens of kilometers. We want to note that the diffusion rates
used above only reflect the physical conditions in the flow.
We conjecture that biological processes such as grazing and
movement by grazers can produce a larger effective
diffusion rate, which in turn has the potential to increase
the coexistence regions to the order of hundreds of
kilometers. Future work will also focus on the effect of
the competition coefficients on these patterns.

4.4. Extensions

We chose the Lotka–Volterra equations as the simplest
representation of competitive interactions. In reality, these
interactions are often mediated though resources, which
follow their own dynamics. We recognize the importance of
this complexity and plan to incorporate more mechanistic
descriptions of competitive processes (e.g. light and
nutrient-based algal growth) in future work. Similarly, it
will be necessary to compare the results obtained here to
models that incorporate more explicit environmental
properties of rivers (e.g. hydraulic features (pool-riffle
structures), storage zones, spatially explicit nutrient per-
turbations (point-source versus non-point source inputs)).
Whereas we focused the model and discussion on

riverine systems, they may apply to terrestrial systems as
well. For example, Potapov and Lewis (2004) use a similar
model to study the impact of moving temperature isoclines
on competitors. More generally, the coexistence of two or
more competitors on a few limiting resources has been and
still is a very active field in spatial ecology (Lehmann and
Tilman, 1997). The most widely accepted explanation for
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this paradox is an assumed trade-off between competition
and colonization, where frequently colonization ability is
related to dispersal ability (Lehmann and Tilman, 1997),
for example via seed size (Levin and Muller-Landau, 2000).

In contrast to this, both competitors in our system have
exactly the same dispersal ability, indicating that coloniza-
tion should be thought of as the combination of two
processes, namely dispersal ability and growth rate at low
density. We conjecture that by allowing the diffusion rates
and/or flow speeds to vary between the species, the effects
observed above can change in spatial extend, and new
effects may appear as in Potapov and Lewis (2004).
Diffusion as well as effective flow speed are partly
determined by the dynamics of the water (e.g. turbulence,
flow) and partly by behavioral factors (e.g. active dispersal,
adherence to benthos). Benthic stages have been incorpo-
rated into single-species models for river ecosystems
(Lutscher et al., 2005; Pachepsky et al., 2005), and it is
part of our ongoing research efforts to explore the effects
of these stages on competitive systems.

We have concentrated on the spatial mechanisms by
which coexistence or competitive reversal can be achieved
from a case where the non-spatial model predicts
competitive exclusion. We conjecture that the results
qualitatively still hold when we replace Lotka–Volterra
competition with resource-mediated competition. These
models typically predict competitive exclusion as the only
outcome in a non-spatial setting (Smith and Waltman,
1995). The non-spatial Lotka–Volterra model also predicts
coexistence and founder control in certain regions of
parameter space. Future work will assess the effect of
diffusion and flow on these outcomes. Neuhauser and
Pacala (1999) have shown in a stochastic interacting-
particle system that both these regions in parameter space
may decrease in size in favor of competitive exclusion when
symmetric dispersal is considered. We speculate that in
systems with advection, new effects will appear. It may be
possible that the ‘‘founder control’’-scenario becomes and
‘‘upstream control’’-scenario, in which the species that
invades further upstream dominates the other.
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