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Abstract. Much ecological research involves identifying connections between
abiotic forcing and population densities or distributions. We present theory
that describes this relationship for populations in media with strong unidirec-
tional flow (e.g., aquatic organisms in streams and rivers). Typically, equi-
librium populations change in very different ways in response to changes in
demographic versus dispersal rates and to changes over local versus larger
spatial scales. For populations in a mildly heterogeneous environment, there
is a population “response length” that characterizes the distance downstream
over which the impact of a point source perturbation is felt. The response
length is also an important parameter for characterizing the response to non-
point source disturbances at different spatial scales. In the absence of density
dependence, the response length is close to the mean distance traveled by an
organism in its lifetime. Density-dependent demographic rates are likely to
increase the response length from this default value, and density-dependent
dispersal will reduce it. Indirect density dependence, mediated by predation,
may also change the response length, the direction of change depending on the
strength of the prey’s tendency to flee the predator.
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1. Introduction. Many questions in fundamental and applied ecology involve re-
lating biotic responses to abiotic forcing at multiple spatial and temporal scales.
Establishing such links empirically is commonly impossible, even when using large
quantities of data and sophisticated statistical approaches. Determining the un-
derlying ecological mechanisms is an essential prerequisite to understanding these
links, and simple mathematical models can help elucidate the broader implications
of mechanisms found to occur at one particular scale in space or time.

This paper presents a theoretical framework for investigating the response to abi-
otic forcing of populations of organisms that disperse in advective media, meaning
media with net unidirectional flow. Examples include drifting macroinvertebrates
in rivers and streams, marine organisms whose larvae are dispersed in local long-
shore currents, and plants with wind or waterborne seeds. Our work was motivated
by interest in the population dynamics of organisms living in streams and rivers,
as many aquatic ecologists have gathered data on demographic and behavioral pro-
cesses operating over small time scales in small stretches or in tiny patches within a
stretch of stream [7, 6, 33]. Such experiments can be interpreted, and rate processes
parameterized, with the aid of models that describe local dynamics [9, 25, 34]. A
major challenge is to determine the implication of these findings at larger spatial
and longer temporal scales [6, 11].

For populations in advective environments that are spatially homogeneous and
unchanging, there is currently in place theory that provides a conceptual framework
for understanding: (i) dynamics on small spatial and temporal scales, where immi-
gration and emigration are more important than demography [25]; (ii) population
persistence as it relates to flow regime [4, 17, 28, 31, 16]; and (iii) propagation
of invasion waves in advective environments [17, 28, 16]. However, populations in
streams and rivers, like those in many other ecological systems, typically experience
environments with spatial variability at many scales. This is because environmen-
tal factors that affect population vital rates such as temperature, nutrient supply
rates, or turbidity vary over spatial scales from microns to kilometers. We recently
developed methodology for characterizing the spatial extent or “response length”
of the steady-state response to a localized perturbation and showed that the re-
sponse length has a critical role in determining the circumstances under which a
population distribution “tracks” small spatial variations in its environment [1, 2].
In this paper, we present this theory in a mathematically compact form that allows
considerable generalization.

The take-home message is that characteristic lengths play an important role in
determining the population response to disturbances in the environment. These
complement the analogous quantities already in use in hydrology and in studies
of the transport and turnover of nutrients [24]. Our hope is that they will have
considerable practical value in the design of future ecological studies, as well as in
environmental management [3].

2. Population dynamics of a single species in an idealized river. We use
an integro-differential equation to describe the dynamics of a population of benthic
organisms, living in a long one-dimensional river represented by the x-axis [2, 17].
We denote the population density at location x and time t by N(x,t). Individuals
recruit to the population (e.g., through egg hatching) at a rate R(x) and experience
a per capita mortality rate m(x). Individuals occasionally leave their location by
“emigrating” or “jumping” into the stream, drifting some distance downstream, and
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then settling immediately at a new location. Describing this movement involves two
functions: e(x) is the per capita emigration rate,1 and h(x, y)is a dispersal kernel
with the interpretation that h(x−y)dx is the proportion of individuals entering the
drift at location y that settle in the interval (x, x + dx). For simplicity we assume
there is no mortality while drifting, implying

∫∞
0

h(u)du = 1. The assumption that
the kernel depends only on the downstream displacement, x−y, and not individually
on x and y is central to the approach taken in this paper; if this assumption is not
valid, many of the mathematical benefits from the integro-differential formation
are lost, and models with explicit representation of the dispersal mechanisms may
be more appropriate (see Appendix C of [2]). With these assumptions, population
change at a location x is described by the balance equation

∂N(x, t)
∂t

= R (x)︸ ︷︷ ︸
recruitment

− e (x) N(x, t)︸ ︷︷ ︸
emigration

−m (x) N(x, t)︸ ︷︷ ︸
mortality

+
∫ x

0
e (y)N(y, t)h(x− y)dy︸ ︷︷ ︸

immigration

.

(1)

2.1. Local and regional equilibrium States. The model has three functions de-
scribing rate processes, R(x), e(x) and m(x), whose spatial average values we denote
by R, e, and m. If the deviations from these averages are everywhere small, and un-
der the previous assumption of no mortality during dispersal (i.e.,

∫∞
0

h(u)du = 1),
the spatial average of the population is well approximated as

N = R/m. (2)

We shall refer to this as the regional equilibrium, where the term region refers to
the entire spatial domain on which the population is defined.

By contrast, ecologists studying rivers and streams measure local equilibrium
states. If the values of the rate processes vary spatially, and if I(x) denotes the
local value of the immigration term in equation (1), then the local equilibrium
density is

N(x) =
R(x) + I(x)
e(x) + m(x)

. (3)

There is a large literature (reviewed in [25]) describing empirical studies of how
population equilibria change in response to environmental changes. Examples in-
clude nutrient enrichment or addition of predators (both considered later in this
paper). To characterize such responses, we follow Gurney and Nisbet ( [13], page
142) and define for each model parameter θ, an equilibrium sensitivity index, σNθ,
by

σNθ =
fractional change in equilibrium population density, N

fractional change in parameter θ
=

∂ log N

∂ log θ
(4)

evaluated at the appropriate equilibrium (equation (2) or (3)). Sensitivies defined
this way represent regression coefficients that are potentially estimable from local
experiments.

For our basic model (1), the sensitivity index takes strikingly different values
when applied to the local and regional equilibria. To illustrate this, we consider
variation in the recruitment parameter R. If R changes only locally at a point well
downstream of the source, and if at all locations upstream of a point x the vital

1To avoid confusion, we use exp for the exponential function.
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rates have their average values and the population has the regional equilibrium
value NR = R

m , then I(x) = eR
m . The sensitivity of the local equilibrium is then

calculated from equation (3)and with a little algebra can be shown to take the
simple form

σNR =
1

1 + ē/m̄
=

1
1 + J

where J =
ē

m̄
. (5)

Since ē−1 is the mean time between downstream jumps, and m−1 is the mean
lifetime of a member of the population in the river, the quantity J is the mean
number of dispersal events in a lifetime. For many organisms, including the aquatic
insects that originally motivated our work, J À 1, and thus for local changes in
R, σNR ¿ 1; i.e. the local equilibria are insensitive to changes in local recruitment
rate. By contrast, if R changes everywhere (i.e., regionally), it follows immediately
from equation (2) that σNR = 1; i.e. changes in recruitment rate produce changes
in equilibrium population of proportional magnitude.

Table 1 shows the results from similar calculations of the equilibrium sensitiv-
ity index for other model parameters. The most striking feature is the contrast
between the sensitivity to changes in demographic rates (small for local changes,
large for regional changes) versus sensitivity to changes in the model parameter
characterizing dispersal (large for local changes, small for global changes).

Table 1: Summary of equilibrium sensitivities. The quantity
J (discussed in text) is the mean number of jumps made

by an individual in its lifetime. Typically J À 1.

Parameter Local sensitivity Index Regional sensitivity index
Recruitment rate R 1

1+J 1
Per capita mortality
rate m

− 1
1+J -1

Per capita emigra-
tion rate e

− J
J+1 0

2.2. Mildly spatially heterogeneous equilibrium states. The previous anal-
ysis covers two extreme situations-a uniform perturbation everywhere along the
entire domain, leading to changes in average conditions, or perturbations solely at
a single location. The vital rates for real populations of course fluctuate at multi-
ple scales (see below for a more precise definition of scale), not just these extremes;
consequently the steady-state population is typically non-uniform. For a spatially
inhomogeneous environment, we define small fractional deviations from the spatial
average values of the functions R(x), e(x), and m(x) by writing

R(x) = R(1 + r(x)); m(x) = m(1 + µ(x)); e(x) = e(1 + ε(x)). (6)

We characterize the resulting (non-uniform) steady state population distribution
by defining fractional deviations from the regional equilibrium value:

N(x) = NR (1 + n(x)) =
R

m
(1 + n(x)) . (7)

Our aim is to relate n(x) to the “forcing” terms-r(x), µ(x), and ε(x)-defined in
equation (6).
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We assume all perturbations to be sufficiently small that the dynamics can be
well described by linearizing equation (1) about the regional equilibrium with the
result

0 =
∂n

∂t
= mr(x)−e (n(x) + ε(x))−m (n(x) + µ(x))+e

∫ x

0
(n(y) + ε(y)) h(x−y)dy.

(8)
Further progress is facilitated by using Laplace transforms [18]. The Laplace trans-
form of (say) n(x) is defined as

ñ(s) =
∫ ∞

0

n(x)exp(−sx)dx, (9)

with analogous definitions for the forcing functions defined in equation (6). Eco-
logically, this Laplace transform can be interpreted as a “discounted” measure of
the total population change downstream of a perturbation. The discount factor, s,
determines the relative weighting given to perturbations at different downstream
distances, with the highest weighting coming from locations over a range whose
order of magnitude is 1/s (e.g. 63% of the weighting from a range 1/s; 95% from
a range 3/s). Thus the variable s in the transform can be viewed ecologically as a
measure inversely related to spatial scale.

Laplace transforming equation (8) and making use of the convolution theorem
[18] yields the result:

ñ(s) = TR(s)r̃(s) + Tm(s)µ̃(s) + Te(s)ε̃(s) with





TR(s) = 1

1+J(1−h̃(s))
Tm(s) = −1

1+J(1−h̃(s))

Te(s) =
−J(1−h̃(s))
1+J(1−h̃(s)) .

(10)

where J is defined by equation (5). The quantities TR(s), Tm(s), and Te(s) are
“transfer functions” that relate the proportional variation in the steady-state pop-
ulation distribution to variation in the forcing functions at arbitrary scales repre-
sented by the variable s.

The expressions in equation (10) for the transfer function involve the dispersal
kernel, whose form depends both on properties of the organism and of the physical
environment. However, ecologically, we are primarily concerned with scaling “up”
from smaller to larger scales, the large scales of interest being those much greater
than the typical distance traveled in a single jump. Thus we are primarily interested
in the form of the transfer function for small values of s, where “small” means

s−1 À LD =
∫ ∞

0

xh(x)dx= mean distance traveled per jump. (11)

Then,

h̃(s) =
∫ ∞

0

h(x) exp(−sx)dx ∼
∫ ∞

0

h(x) (1− sx) dx = 1− sLD. (12)

With this approximation,

TR(s) =
1

1 + sJLD
; Tm(s) =

−1
1 + sJLD

; Te(s) =
−sJLD

1 + sJLD
(13)

and equation (10) takes the simple form

ñ(s) =
r̃(s)− µ̃(s) + ε̃(s)

1 + sJLD
− ε̃(s). (14)
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In general, obtaining the population distribution from its transform involves an
inverse transform, numerical or (sometimes) analytical evaluation of which is of-
ten facilitated by routines in Mathematica. However, the form in equation (12)
is commonly encountered in engineering applications, and an application of the
convolution theorem [18] followed by a little routine algebra yields the result

n(x) =
1

JLD

∫ x

0

[r(y)− µ(y) + ε(y)] exp

(
− (x− y)

JLD

)
dy − ε(x). (15)

2.3. Impulse response and population response length. Much ecological in-
terest is directed at the effects of “point-source” disturbances in the environment.
For a river, examples would include discharge of nutrients and contaminants from
sewage treatment plants, or enhanced fish mortality at the intakes of water-cooled
utilities. Mathematically, point-source disturbances can be conveniently repre-
sented by the Dirac delta function (Appendix D of [26]). The “impulse response”[18]
of the population describes the steady-state response to such a localized perturba-
tion.

To describe a perturbation in recruitment rate at location x = x0 > 0, we assume
r(x) = Cδ(x− x0). Equation (15) then implies

n(x) =
C

LR
exp

(
−x− x0

LR

)
for x > x0 with LR = JLD. (16)

Thus, downstream of the perturbation, the steady state population density de-
cays exponentially, dropping by a factor exp(-1)≈ 37% over a distance LR which we
call the population response length[2]. Since J is the average number of dispersal
jumps (equation 5), and LD is the mean distance traveled downstream per jump
(equation 11), it follows that the response length is the mean distance traveled in
a lifetime [2].

A similar result holds for a point-source perturbation in mortality rate. A differ-
ent situation arises with a point-source perturbation in the emigration rate, since
equation (15) shows that the population density then has a singularity at x=0.

2.4. Frequency response: tracking and averaging. Point source disturbances
represent a very special situation, and variation in the environment is more typically
continuous. Fourier analysis allows us to represent an arbitrary pattern of spatial
variation in the environment as a sum (or integral) of simple sinusoids with different
(spatial) wavelengths LE . The linear form of equation (8) guarantees that far from
the source the population response to sinusoidal forcing is also sinusoidal, but with
a different amplitude and displaced by a “lag” LL from the original sinusoid because
of dispersal.

The frequency response is a powerful tool for characterizing the response to
continuous variation in the forcing functions. It is a complex2 function of spatial
wavelength whose modulus is the ratio of the amplitude of the sinusoidal variation
in population to that of the (forcing) environmental variable. Its argument is the
lag expressed in radians (i.e. 2πLL/LE). It can be derived by Fourier transforming
equation (8) (see chapter 5 of [26]), but because of the relationships between Fourier

2Here complex means involving
√−1
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and Laplace transforms, it can obtained more directly by substituting s = i2π/LE

in the transfer functions derived earlier [18]. Thus from eqs. (13) and (16):

TR

(
i
2π

LE

)
=

1
1 + i 2πLR

LE

; Tm

(
i
2π

LE

)
=

−1
1 + i 2πLR

LE

; Te

(
i
2π

LE

)
=

−i 2πLR

LE

1 + i2πLR

LE

(17)
These expressions demonstrate that the population response to environmental vari-
ability is determined by the ratio of the population response length to the wave-
length of the forcing function. An appropriate name for this ratio might be the
openness number as population dynamics is dominated by demography (recruit-
ment and death) when it is small, and by dispersal (immigration and emigration)
when it is large.

Figure 1 shows the variation with openness number of the amplification and
lag for the response to perturbations in recruitment rate and emigration rate. For
recruitment, the pattern is similar to that of a first-order dynamical system-small
scale (fast) perturbations in recruitment are strongly attenuated and there is a
significant downstream lag, whereas with large scale (slow) perturbations there is
little attenuation and the population fluctuations are almost in phase with the
forcing function. Roughgarden [30] has called these extreme situations “averaging”
and “tracking”, respectively. More interestingly, the pattern is reversed with spatial
variation in the per capita emigration rate; in that situation, rapid variation is
tracked and large scale variation averaged. These findings are consistent with, and
help interpretation of, the properties of local and regional equilibria summarized in
Table 1.

3. Biotic and abiotic forcing. The forcing functions used in the previous section
reflected exogenous variation in the rates of demographic and/or dispersal processes.
Ecologically, such variation may be due to either changes in the biotic or the abiotic
environment. Careful distinction of these components of the environment gives
further insight on the results obtained so far, and facilitates further extensions of
the theory.

3.1. Abiotic forcing. We characterize the abiotic and biotic environment by a
scalar function3 A(x), and assume that spatial variation in the rate processes, R,
e, and m is caused solely by changes in A. By analogy with equation (4), we define
measures of the sensitivity of the rates to this abiotic factor:

σRA =
[
∂ log R

∂ log A

]

A=Ā

; σmA =
[
∂ log m

∂ log A

]

A=Ā

; σeA =
[

∂ log e

∂ log A

]

A=Ā

. (18)

As before, we assume all perturbations from spatial average values to be sufficiently
small to allow local linearization. Then if A(x) = Ā (1 + α(x)), it follows that

r(x) = σRAα(x) ; µ(x) = σmAα(x) ; ε(x) = σeAα(x), (19)

and from eqs. (10), (13), and (18), it follows that

ñ(s) = TA (s)α̃(s) with TA(s) =
(σRA − σmA)− sσeAJLD

1 + sJLD
. (20)

3The multivariate extension is straightforward but the algebra is cumbersome.
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The new transfer function TA(s) relating population fluctuations to the abiotic
forcing factor has the form obtained in time series analysis for a mixed, first-order,
auto-regressive/moving-average (ARMA) model [5]. Thus ecologically, the simple
model implies that if the environmental forcing has no serial (spatial) correlation the
pattern of population fluctuations could be described statistically in this way with
the relative importance of the auto-regressive and moving-average terms depending
on the sensitivities to the abiotic forcing of demographic versus dispersal rates.

3.2. Biotic forcing. If there is no feedback from the population to a biotic factor,
it can be treated similarly to abiotic factors. However, the basic single-species model
(equation 1) is an extreme caricature of population dynamics, with recruitment rate
independent of population size and no density dependence of any other per capita
rate process. This may be appropriate for organisms such as aquatic insects, where
an aquatic juvenile (larval or nymph) stage is followed by a highly mobile, non-
aquatic adult stage so that eggs deposited in the river need not come from adults
that emerged from the same river. Typically however, populations exhibit more
complex forms of direct or indirect density dependence, and for closed populations,
this is a necessary condition for a stable equilibrium [20]. We now extend the
formalism of the previous section to cover such situations.

We characterize the biotic environment by a second scalar function, B(x), that
could represent a resource or predator population (indirect density dependence) or
the focal population itself (direct density dependence). Proceeding as above we
define deviations of the abiotic factor from its spatial average by setting B(x) =
B (1 + β(x)) and define sensitivities of the rate processes by equations exactly anal-
ogous to (17). Then

ñ(s) = TA (s)α̃(s) + TB(s)β̃(s) (21)
with TA(s) defined above, and

TB(s) =
(σRB − σmB)− sσeBJLD

1 + sJLD
. (22)

Further progress requires specifying the nature of the feedback from the population
to the biotic factor. The simplest situation-direct density dependence-is discussed
below. An example involving consumer resource interactions is given in section 4.

3.3. Direct density dependence. With direct density dependence we set
B(x) = N(x) implying β̃(s) = ñ(s). Then equation (19) implies

ñ(s) =
TA(s)

1− TB(s)
α̃(s) =

σRA − σmA − sJLDσeA

(1− σRN + σmN ) + sJLD (1 + σeN )
α̃(s). (23)

This has the same (ARMA) form as equation (20) but with different coefficients.
One immediate implication is a change in the impulse response, and hence in the
response length, which now takes the form

LR = JLD
1− σRN + σmN

1 + σeN
. (24)

A very similar result was derived in [2], where it was noted that “normal” density
dependence in demographic rates would cause σRN < 0, σmN > 0 and hence lead
to response lengths larger than the mean distance traveled in a lifetime. Density
dependent dispersal can be positive or negative, with many organisms having a
tendency to aggregate, while others move away from conspecifics. However, the
former situation is likely to lead to spatial instabilities [27, 32], so in situations
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where the current formalism is applicable, we expect σeN > 0, implying a response
length smaller than the default estimate. Again we see contrasting changes linked
to demographic and dispersal parameters.

4. Prey-predator interactions. We now give an example of a situation where
the biotic forcing comes from another species-a predator whose local density is
P (x). We consider three interactions: (i) predation, implying that per capita death
rate of the focal species depends on predator density; (ii) prey avoidance of the
predator, implying emigration rate depends on predator density; (iii) and predator
movement toward regions of higher prey density. We do not include population
dynamics for the predator and, for simplicity, assume the total predator population
to be constant.

The predator is assumed to move continuously (not in discrete jumps), with each
individual attempting to maximize its resource intake. This is the idea behind the
“ideal free” distribution [12], and several authors (e.g., [8] and unpublished work
by M. A. Lewis) have recently proposed that movement leading to the ideal free
distribution could be described by the Fokker-Planck equation [32]. Here we use
the model of Lewis (unpublished) that assumes the predator’s diffusivity, D, is a
decreasing function of local prey density. Thus we write

∂P

∂t
=

∂2

∂x2
(D (N (x)) P (x)) with

dD

dN
< 0. (25)

The prey dynamics are given by equation (1) with e and m both functions of P
and

de

dP
> 0 and

dm

dP
> 0. (26)

We define a local perturbation p(x) from the regional (spatial average) value by
setting P (x) = P (1 + p(x)) , and then linearizing equation (25) to obtain

0 =
∂2

∂x2
(p + σDNn) implying 0 = s2 (p̃(s) + σDN ñ(s)) . (27)

where σDN , the sensitivity of diffusivity to prey density, is defined similarly to
equation (17).

Now consider the effects of abiotic forcing A(x) as in Section 4. The biotic forcing
function β is now p, so by analogy with eqs. (28) and (20), we can write

ñ(s) = TA (s)α̃(s) + TP (s)p̃(s) (28)

with TA(s) defined above, and

TP (s) =
σmP − sσeP JLD

1 + sJLD
. (29)

Equation (27) provides a relationship between p̃(s) and ñ(s), valid for s 6= 0, so we
conclude

ñ(s) =
TA(s)

1 + σDNTP (s)
α̃(s) =

σRA − σmA − sJLDσeA

(1 + σDNσmP ) + sJLD (1 + σDNσeP )
α̃(s). (30)

Again we recover the ARMA form with response length given by

LR = JLD
(1 + σDNσeP )
(1 + σDNσmP )

. (31)

To interpret this result, we first note that unless predation is density-dependent,
σmP = 1. Thus the response length is greater than the value for the simple model
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if σeP > 1, and less if this inequality is reversed. This result generalizes a finding
based on an assumed (exponential) relationship in [2].

5. Discussion. Our primary aim in this paper was to provide a mathematically
compact account of theory for advective systems describing the sensitivity of equi-
librium states to abiotic forcing at multiple spatial scales. It complements the more
ecologically oriented, and slightly less general, presentations in previous papers [1,
2]. As noted in these papers, the population response length plays a central role
in determining the response to both point-source and distributed forcing. It is
thus particularly encouraging that much of the information required to estimate
its value (longevity, local emigration, and demographic rates and their functional
dependencies) is potentially available from traditional small scale experiments. The
missing link is typically the distribution of dispersal distances, which is likely to
vary strongly with flow conditions, though these measurements are still attainable
from small-scale field experiments [19, 10].

We are optimistic that the response length or the related dimensionless quan-
tity, openness number, will prove to be a useful measure that can complement the
analogous quantities already in use in hydrology and in studies of the transport
and turnover of nutrients. Figure 5 of [3] suggests a practical context where this
might be tested-population distributions downstream of a sewage treatment plant.
However, further work on more complex models will be necessary to more clearly
elucidate the characteristic length scales for cases that include both population and
nutrient dynamics. Response lengths are system properties (eigenvalues of a linear
operator), so in a system with multiple characteristic lengths, there is no a priori
reason to associate any particular one with populations or nutrients. One possibil-
ity is that by separating time scales and identifying “fast” and “slow” dynamics, it
may be possible to rigorously relate response lengths to ecological processes.

Our analysis of course has limitations. We assumed all movement was “down-
stream”, thereby obtaining an upper limit of x for the integral in equation (1) and
hence easy application of the convolution theorem for Laplace transforms. Relax-
ing this assumption (for example by allowing some upstream diffusion) leads to
linearized dynamics that are most conveniently investigated using Fourier trans-
forms (see [14, 26] for methods). The resulting frequency response functions have
a slightly more complicated form and the impulse response involves at least two
response lengths. But no new principles are involved.

A second limitation is the restriction to small deviations from a spatially homo-
geneous equilibrium. In practice, approximations derived from local linearization,
commonly hold for reasonably large deviations from equilibrium [26], but any ap-
plication of the theory developed here should include numerical studies of the full
non-linear system.

However, by far the most serious limitation of the work reported here is the
restriction to equilibrium situations. Populations in streams and rivers commonly
experience environments with high spatial and temporal variability, and many of the
most pressing environmental problems involve variations in flow regime [3, 29]. Yet
a striking gap in literature on advective systems is work on transient dynamics and
the population response to temporal variation in the environment. Transients can
be studied for linearized dynamics in ODEs using two concepts recently introduced
to ecology-reactivity and the amplification envelope [21, 22, 23]-together with a
more traditional metric, resilience, that describes the ultimate rate of approach
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Figure 1. Amplitude ratio (top panel) and lag in radians implied
by the frequency response (equation 17) for forcing in recruitment
ratio R(x) (continuous curves) and per capita emigration rate e(x)
(broken curve).

to equilibrium [15]. Reactivity is defined as the maximum possible growth rate
that could occur immediately following a perturbation. The amplification envelope
characterizes the complete time course of transients, including how big they can get
and how much time might elapse before asymptotic behavior sets in. Equation (8)
in the present paper implies that the linearized temporal dynamics of the Laplace-
transformed variable(s) involves one or more ODEs. This opens the possibility of
investigating the effects of spatial scale (represented, as in the present paper, by s)
on reactivity and the amplification envelope for advective systems. We shall report
on this work in a future publication.
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