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Abstract This work presents an example of a cooperative system of truncated
linear recursions in which the interaction between species causes one of the spe-
cies to have an anomalous spreading speed. By this we mean that this species
spreads at a speed which is strictly greater than its spreading speed in isolation
from the other species and the speeds at which all the other species actually
spread. An ecological implication of this example is discussed in Sect. 5. Our
example shows that the formula for the fastest spreading speed given in Lemma
2.3 of our paper (Weinberger et al. in J Math Biol 45:183-218, 2002) is incor-
rect. However, we find an extra hypothesis under which the formula for the
faster spreading speed given in (Weinberger et al. in J Math Biol 45:183-218,
2002) is valid. We also show that the hypotheses of all but one of the theorems
of (Weinberger et al. in J Math Biol 45:183-218, 2002) whose proofs rely on
Lemma 2.3 imply this extra hypothesis, so that all but one of the theorems of
(Weinberger et al. in J Math Biol 45:183-218, 2002) and all the examples given
there are valid as they stand.
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208 H. F. Weinberger et al.

1 Introduction

The authors’ paper [4] presents sufficient conditions for a cooperative system
of discrete-time recursions

u, 1 = Qluy,] (1.1)

to be linearly determinate. By this we mean that the spreading speeds are the
same as those of the truncated linear recursion

U, = min{w, L[u,]}, (1.2)

where  is a constant vector with positive entries, and L is the linearization of
the operator Q[u] about u = 0.! Such a statement is, of course, only useful if
the spreading speeds of a truncated linear recursion (1.2) can be found with
relative ease.

It was shown in [4] that, under a few hypotheses, any recursion of the form
(1.1), and, in particular, the recursion (1.2), has a slowest spreading speed c*
with the following property: If ug < g where B is the smallest positive constant
solution of the equilibrium equation 8 = Q[B], and if up(x) = 0 for all suffi-
ciently large |x|, all components of u, spread toward positive values at speeds
which are at least ¢*, and at least one component spreads at no higher speed. It
was shown in [2] that there is also a fastest speed c; with the properties that no

component of u, spreads at a speed higher than c} and at least one component

spreads no more slowly.? y
When the linear operator L is irreducible, an earlier work of Lui [3] showed
this result with ¢* = c; for the recursion (1.2), and gave a simple formula for

the common value. The existence of two distinct values ¢* and c; can only arise

in the non-generic case when L is reducible. In this case, the set of coordinates
is broken into blocks. Lui’s formula gives speeds ¢, with which the components
of the pth block would spread if all components except for one in this block
were initially zero. It is natural to define the individual speed of a component
(species) as the speed at which this component spreads when the initial values
of all the other components are zero. It is not difficult to show that the speed
at which a component of the system spreads is at least as large as its individual
speed. Therefore, the maximum ¢(® of the individual speeds is certainly a lower
bound for the fastest spreading speed c}f of (1.2). Lemma 2.3 of [4] claims that

c;Z = ¢©. This statement seems intuitively obvious. However, Angela Stevens
and Frauke Albrecht have kindly pointed out a gap in the proof of this Lemma.

' The minimum of two vector-valued functions is that vector-valued function whose ith component
at x is the smaller of the ith components of the two functions at x.

2 The earlier paper [4] claimed a similar result, but with c; replaced by a number c¢% , which was
defined in a different manner. It is easily seen that ¢ > c;, but, as pointed out in [2], the proof

in [4] of the property that at least one component spreads at a speed no smaller than ¢, turned out
to be incomplete.
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Anomalous spreading speeds of cooperative recursion systems 209

Our exploration of this gap has led to the discovery of a new phenomenon.
In Sect. 3 we shall give a counterexample in which all the hypotheses of [4]
are satisfied, but for which ¢} > ¢ This counter-intuitive fact seems to occur
because spreading speeds are only asymptotic speeds. That is, a particular com-
ponent v,(x) need not be zero ahead of its front, but may have a small positive
tail. If v,, appears as a driving (in-migration) term in the recursion for another
component wy,, the small value of v, at a point x well beyond the front of either
variable alone can lead to an appreciable value of wy,(x). This phenomenon is
interesting, because it is a property of a reaction—diffusion system which cannot
occur for a hyperbolic system.

Section 2 presents the fundamental ideas and hypotheses. The counterexam-
ple which shows that c}‘ may be greater than ¢ is presented in Sect. 3. Section 4
contains positive results. Proposition 4.1 shows what actually follows from the
proof which was supposed to establish Lemma 2.3 in [4]. It produces a pair
of bounds ¢®® < c; < ¢ rather than a formula for c?. Theorem 4.1 adds an

Extra Hypothesis which forces the equality ¢ = ¢©), and thereby permits one
to obtain the statement of Lemma 2.3 of [4]. We then show that almost all of
results of [4] and all the results in its companion paper [1] follow by replacing
Lemma 2.3 there by our Theorem 4.1, while the few remaining results of [4]
can be justified by the addition of the Extra Hypothesis.

Section 5 gives an application of our counterexample to a reaction—diffusion
model in population ecology. Section 6 summarizes our results. The Appendix
present the proofs of the Propositions and the Theorem.

2 Hypotheses and Lemma 2.3 of [5]

We are dealing with vector-valued functions. We shall think of such a function
as a function of both the space variable x and the component index. For exam-
ple, u > v means that at each x every component of u is at least as large as
the corresponding component of v. However, we shall use the usual notation
u > v to mean that at every x each component of u(x) is strictly greater than
the corresponding component of v(x). We shall deal with the class of truncated
linear recursions (1.2) for which L and w satisfy the following hypotheses:

Hypotheses 2.1

(i) L is a linear operator which takes the class of k-vector valued functions
whose components are continuous and nonnegative and grow at most
exponentially at oo into the same class of functions. (In particular, L is
order-preserving, so that the recursion (1.2) is cooperative.)

(ii) L is translation invariant in the sense that L{u(- + h)](x) = L{u(-)](x + h).
That is, the habitat is homogeneous.

(iii) If a sequence w, converges to a bounded function w, uniformly on each
bounded interval, then L[uy,] convergesto Liu] uniformly on each bounded
interval.
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210 H. F. Weinberger et al.

(iv) Llw] > @ > 0. That is, 0 is an unstable equilibrium and @ is a stable
equilibrium of (1.2).

The following Lemma shows that w is a global attractor in a very strong sense.

Lemma 2.1 Ifall the components of ug(x) are uniformly positive and w, (x) is the
solution of the recursion (1.2), then w,, = w for all sufficiently large n.

Proof The hypothesis (iv) above shows that there is a number p > 1 such that
Liw] > ue. Because uy is uniformly positive, there is an integer ¢ so large that
uy > u’zw. A simple induction argument shows that u,, > ,u”’zw forn < ¢.
Since u,, < o, it follows that u, = @ for n > ¢, which proves the Lemma.

It follows from the Hypotheses (i) and (ii) above that for each nonnegative
number u there is a matrix B, with nonnegative entries such that

Lle " a)(y) = e "B,a 2.1)

for all nonnegative constant vectors o.

The operator L is said to be reducible if there is a nonempty subset s with
nonempty complement of the set of components {1,2,. .., k} such that if all the
components of the function u(x) with indices in s are zero, then the function
L[u] has the same property. If this is not the case, then L is said to be irreducible.
It is easily seen that L is irreducible if and only if its restriction to the constant
vectors, which is defined by By, is irreducible.

Lui [3] has shown that if L is irreducible, then the recursion (1.2) has a single
speed ¢* with which all the components of u, spread. Lui also gave a formula
for this spreading speed. If A(1) denotes the principal eigenvalue of B, that is,
the eigenvalue whose eigenvector has positive components, then

¢ = inf p InA(w).
u=>0

The case when L is not irreducible has been studied in [4]. In this case, B,, is
a reducible matrix, and a theorem of Frobenius shows that after a permutation
of the vector coordinates, the matrix is block lower triangular, with the diagonal
blocks square and irreducible. That is,

{Bﬂ}ll 0 R . . 0
{Bulat {Bul2 O - .- 0
B, = . . . . . 0 , (2.2)
. ) . ) . 0
{Bu}ml ' : ' ' {Bu}mm

where each diagonal block is square and irreducible. Because L is order-
preserving, all the entries of B, are nonnegative, and the zero entries of B,
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Anomalous spreading speeds of cooperative recursion systems 211

are the same for all x. Therefore, a single permutation of coordinates puts all
the matrices B, into the Frobenius form (2.2). We shall always assume that this
permutation of coordinates has been made.

Each of the diagonal blocks {B,},, has a principal eigenvalue X ,(u), and one
can define the numbers

¢y = inf wHina, (). (2.3)
n>

It was shown in [4], and, under weaker hypotheses, in [2] that, in general,
there are two spreading speeds: a slowest spreading speed ¢* and a fastest
spreading speed c;. The slowest speed is characterized by the properties that
for any solution of (1.2) for which ug(x) is nondecreasing with ugp = 0 for all
sufficiently large x and 0 < u(—o00) < w and for any positive €

lim i sup [@ —un(x)]} =0,

n—00 x<n(c*—e)

while for some index i

lim sup {u,(x)};it =0.
=0 | x>n(c*+e)

The fastest speed is similarly characterized by the fact that, under the same
conditions,

lim sup u,(x) ¢t =0, (2.4)
n—00 xzn(c;+e)
while for some index j
lim sup { inf {un(x)}j} > 0. (2.5)
n—o00 XS'Z(C;—G)

By using Lemma 2.1, one easily checks that Hypotheses 2.1 imply all the hypoth-
eses of [2] with 8 = w, except for the last hypothesis. One sees from [2] that the
latter is not used in proving the above spreading results, so that these results
are valid for the truncated recursion (1.2).

Remarks

1. One can easily verify that the spreading speeds ¢* and c;f. do not depend
upon the truncation vector .

2. It is easily seen from the recursion (1.2) and the results of Lui [3] that
if all components but the ith one of up(x) are identically zero, and if i
belongs to the pth block of the matrix (2.2) then {u,(x)}; = 0 when j is
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212 H. F. Weinberger et al.

in a block ¢ < p, and all the components of the pth block, including the
ith component, spread at the speed ¢,. Thus, every individual component
speed is one of the ¢,, so that ¢! is also the largest of these block speeds.
That is,

c® = max Cp. (2.6)

3 A counterexample

We give a counterexample to show that the fastest spreading speed of a trun-
cated linear recursion may be larger than ¢(). Consider the recursion

Up+1 1 . Up
Vpyr1 | =min{ [ 1), L | | va , (3.1)
Wni1 1 Wn

where L[(ug, vo, wo)](x) is defined to be the value at time ¢ = 1 of the solution
(u(x,0),v(x, 1), w(x, 1)) of the cooperative linear system

ur = (1/32)uyy + 16u
Vi= Ve +u+v
wr = (1/Hwyy + v+ 12w (3.2)

with the initial conditions
u(x,0) =uo(x), v(x,0 =vo(x), w(x,0) =wo(x).

The linearization of the recursion (3.1) is obtained by replacing the right-hand
Un

side by L vn | |. Because the coefficients of the system (3.2) are constant,
Wn

we can write an explicit solution when the initial values are given by e™#* times

a constant vector «. From this fact we find that

2
e(1/32)u +16 0 0
(/3% +16 _ o2 +1 (241
B = | Wy io-na+ L ¢ 0 ; (3.3)
{B }31 e+ _p(1/Hpu+12 6(1/4)M2+12
® w2H1-[(1/Hu?+12]
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Anomalous spreading speeds of cooperative recursion systems 213

where
e(1/32)17+16
B =
Bubst = 11322 716 — 2 + A /320% + 16 — [/ + 12])
ol +1
U2 T 1 (/322 + 16012 + 1 — [(1/4ym? + 12)
e(1/HuP+12

T B2 1 12— [(/322 + 16/ + 12— G2+ 11)

B, is in the Frobenius form (2.2) with 1 x 1 diagonal blocks. Thus

2 2 2
A () = e13D7H16 5o () = e as(p) = e/HHHIZ

so that
& = inf {jLIn /321416y _ /7
n>0
Gy =2,
&3 =24/3,
and

O =243 (3.4)

Because 4 > 2+/3 = ¢(©, the following Proposition shows that for this exam-
ple the fastest spreading speed ¢} is strictly greater than c®,

Proposition 3.1 The fastest spreading speed c}f of the recursion (3.1) satisfies the
inequality
c}“ >4 > 0, (3.5)

The proof of this Proposition will be presented in the Appendix.

Remarks

1. Applying Theorem 4.1 in the next section to the recursion for the u and
v components alone shows that the u-component in this example has the
asymptotic spreading speed ¢; = +/2 and the v-component has the spread-
ing speed ¢, = 2. These two components force the w-component to spread
at a speed which is not only greater than the spreading speed of w in their
absence, but also greater than the speeds at which these two components
actually spread. This apparently paradoxical behavior is caused by the fact
that although v is small ahead of the front which travels at speed 2, it is
positive there.

2. Intherecursion (3.1), A1 (0) is strictly larger than the other two eigenvalues
at u = 0. This is Hypothesis 2.1.v.c of [4]. It is easily verified that the recur-
sion (3.1) satisfies the remainder of Hypothesis 2.1 of [4] as well. Therefore,
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214 H. F. Weinberger et al.

Lemma 2.3 of [4] asserts that ¢; = ¢, and the above proposition shows
that this is not correct.

3. The only reason we have included the first equation in the system (3.1) is
to make the system satisfy the hypotheses of [4]. The proof is carried out
with # = 0. For this reason, the statement of Proposition 3.1 is also valid
for the 2-component system obtained by eliminating the u-equation, and
replacing u by 0 in the other two equations.

4 Results on the fastest spreading speed

The counterexample of the preceding section showed that, contrary to Lemma
2.3 of [4], the fastest spreading speed can be larger than the number ¢© defined
by (2.6). A look at the proof of this lemma on p. 214 of [4] shows that the inequal-
ity (6.3) does not follow from Eq. (6.4) unless it is known that X (1) < A2(fi1).
Similar problems arise with the other w,, in the proof. One can, however, adapt
the ideas of the proof to obtain an upper bound for the fastest spreading speed.
As will be shown in the Appendix, the following Proposition is valid.

Proposition 4.1 The fastest spreading speed c}k of the recursion (1.2) satisfies the
inequalities
C(e) < C; < C(u), (41)

where c©) is defined by (2.6) and

() ._ : -1
c = inf max InA . 4.2
M= p2> > >0 I P Ho o(Ho) (42)

Example To compute the upper bound ¢® for the counterexample problem
(3.2), we note that the eigenvalues A, are the diagonal elements of the matrix
B, in (3.3). We write g, (1) := u~!Ini,(u) for the functions which appear in
the definition (4.2) of ¢™. We observe that this definition is equivalent to the
iterated form

™ = inf [maX [613(M3), { inf [max iqz(uz), inf 611(#1)} ] ] ” . (43)
n3 H2=[3 H1=H2

In order to evaluate this quantity, we first observe that the function g (u1) =
(/321 + 16p~ 1 is decreasing to the left of its minimizer i1 = 16+/2 and
increasing to the right of it. It is easily seen that inf ,, >, g1(141) is obtained by
replacing the decreasing part by the minimum value +/2. That is,

inf gqi(u1) =

1= p2

V2 for pp <16v2
gi1(u2) for o > 164/2.
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Anomalous spreading speeds of cooperative recursion systems 215

A simple calculation shows that this function is less than g2 (u2) 1= u2 + 1, 1
everywhere. Thus, the maximum of the two functions of u, in (4.3) is ¢, and
hence the infimum for py > pu3 is given by

2 for puz=<l1

inf _
M;rzlua 92(142) [qz(u3) for w3z >1.

Because ji3 = 44/3 > 1 = iz, there is a point jio3 = +/44/3 between /i and fi3
at which g3 (u3) and this function coincide. That s, g2 (fi23) = g3(jix23). Moreover
the maximum of the two functions is the decreasing function g3 (u3) to the left of
123, and the increasing function g (43) to the right. This shows that the infimum
with respect to 3 in (4.3) is equal to the common value g»(fiz3) = 47/+/132.
We conclude that for the problem (3.2)

™ = 47/5/132 ~ 4.091.

This upper bound is quite close to the lower bound 4 for c}" in Proposition 3.1

It is possible that cf = ¢®, but we do not know how to prove this.

Proposition 4.1 gives bounds but not a formula for c;. It obviously does give

a formula if one makes the extra assumption that ¢c® = ¢, This gives the
following result.

Theorem 4.1 The equation
f = c® (4.4)

is satisfied if, in addition to Hypotheses 2.1, the principal eigenvalues of B, satisfy
the
Extra Hypothesis: There exist numbers

1> o> (4.5)
on the extended interval [0, 0o] such that
A~ d (4 © _
Ay Indp(ty) <™ forp=1,2,... (4.6)
(If np is 0 or oo, the expression /l;l InX,(fLp) is to be understood as a limit.)

Remarks

1. If there is an index pg with the property that

ho(fpg) < Apy(fLy,) forall p,

the Extra Hypothesis is satisfied with i, = fi,, for all p.
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216 H. F. Weinberger et al.

2. If there is a pg such that ¢,, = ¢©, 1,(0) < 1forall p > pp, and ji, > fi,
forallo < p < po, then the Extra Hypothesis is satisfied with {1, = fi,.

3. The counterexample of Sect. 3 shows that the formula (4.4) is not, in gen-
eral, valid when the Extra Hypothesis is not satisfied.

We need to assess the effect of the error in Lemma 2.3 of [4]. The proofs of
Theorems 3.1, 3.2, 4.1, and 4.2 of [4] do not use Lemma 2.3, so that they are
valid. On the other hand, Lemma 3.3 depends upon Lemma 2.3, so it can only
be carried out by assuming the Extra Hypothesis. The same is then true of The-
orem 3.3, which depends on Lemma 2.3. On the other hand, Remark 1 shows
that the assumption on Theorem 3.1 of [4] implies the Extra Hypothesis, so
that this theorem is established by replacing Lemma 2.3 of [4] by Theorem 4.1.
The 2-species systems treated in Theorems 3.4 and 4.4 and in all the examples
of [4] have the property that A;1(0) > 1 > A2(0), so that Remark 2 shows that
the Extra hypothesis is valid in these cases. Therefore, Lemma 2.3 of [4] can
be replaced by Theorem 4.1 of the present work to show that these results are
valid. This makes all the examples in [4] and all the results of the companion
paper [1] valid.

5 An ecological model with anomalous speed

The counterexample in Sect. 3 can be used to obtain properties of some systems
of ecological interest. Consider for instance, a two-allele, one-gene-locus model
of a diploid species. We suppose that the three genotypes aa, aA, and AA occupy
different niches. In particular, we assume that there is neither competition nor
cooperation between different genotypes. We also assume that the gametes of
the AA homozygotes do not pair with those of the other two genotypes. This
means that the time evolutions of the population density v(x, ) of the hetero-
zygotes and w(x, t) of the aa homozygotes do not depend on the density of the
AA heterozygotes. Asis usual in population models, we shall assume that a large
proportion of the gametes produced by the heterozygotes find mates among the
other gametes from the heterozygotes, and that the same is true of the gametes
produced by the aa homozygotes. This means that when v and w are small, the
growth rates due to gametes coming from the same genotype behave linearly in
v and w, respectively. Because 1/4 of the matings of the gametes coming from
the heterozygotes produce aa homozygotes, this also gives a term proportional
to v in the growth rate of the homozygote. We assume that pairings between
gametes produced by the heterozygotes and the aa homozygotes are rare when
the populations are small, so that they produce growth terms proportional to
v2w?. Then the following system can serve as a model for this situation:

Vi =V +v(1L —2v) + vw?

5.1
we = (1/8)wex + v + w12 — 14w) + 12w, 1)

This system has the globally stable coexistence equilibrium v = w = 1, and is
cooperative on the invariantset0 < v < 1,0 < w < 1. On this set the right-hand
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Anomalous spreading speeds of cooperative recursion systems 217

side of (5.2) is bounded above by that of its linearization. It is easily verified that
the proofs of Theorems 3.4, and 3.5, and their Corollary in the paper [3] of Lui
still show that the system (5.2) has the same spreading speeds as the truncated
linear recursion (3.1), even though not all the hypotheses of [3] are satisfied.
That is, the system (5.2) is linearly determinate.

Finally, we observe that the linearization of the system (5.2) is the system
(3.2) with the first equation removed and u replaced by O in the other two
equations. Thus, Remark 3 after Proposition 3.1 shows that the homozygotes
spread at a speed which is not only greater than the speed at which they spread
in the absence of the heterozygotes, but also greater than the speed at which the
heterozygotes, which trigger this faster speed, actually spread. As in the case
of the truncated linear recursion, the explanation of this apparent paradox lies
in the fact that ¢* = 2 is only the asymptotic spreading speed of the hetero-
zygotes. v(x,t) has an exponential tail beyond the front, and this small density
of heterozygotes is able to produce the anomalous speedup in the spreading of
the homozygotes.

We observe that the two genotypes spread as what Fife and McLeod called
a stacked front. That is, there is a front of speed c]’ﬁ in which (v, w) rises to the
monoculture equilibrium (0,12/14), which is followed by a slower front of speed
c* in which (v, w) rises to the coexistence equilibrium (1,1).

A slight variant of this example shows that one can obtain the anomalous
speed without assuming the complete segregation of the AA homozygotes. If
z(x, t) denotes the density of these homozygotes, if interbreeding between these
homozygotes and the heterozygotes occurs at the rate 0.1v?z> but there is no
interbreeding between the two homozygote populations, we obtain a three-
equation model of the form

Vi = Ve +v(1 —2.1v) + vw? 4 0.1v2 72
wr = (1/Hwyx + v+ w(12 — 14w) + v w? (5.2)
2t =22 +v + 2(1 — 2.12) + 0.1v?2%,

which has the global attractor (1,1,1) and is linearly determinate. Because the
last two equations of the linearized system

Vi = Vxx +V
W = (1/4)Wxx +V+ 12W
=2z +Vv+z,

are not coupled to each other, we can apply Remark 1 after Theorem 4.1 to the
system which consists of the first and third equation to find that v spreads with
speed 2 and z spreads with speed 2+/2. On the other hand, applying Remark 3
after Proposition 3.1 to the first two equations shows that w again spreads at an
anomalous speed which is at least 4.

If the two homozygotes interbreed, one must add a growth term which is
positive even when v = 0 to the right-hand side of the first equation. Because
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218 H. F. Weinberger et al.

this term cannot be bounded by a function of v which vanishes when v = 0, we
can no longer prove that a system of this form is linearly determinate. Thus, it
is possible that all the genotypes spread at the faster speed, so that no anomaly
occurs.

6 Discussion

We have shown that there are both linear truncated and nonlinear coopera-
tive recursions with anomalous spreading speeds. Such a system must have the
property that its linearization is reducible. We observe that a reducible order-
preserving linear operator L lies on the boundary of the class of all irreducible
order-preserving linear operators in the following sense: If M is any bounded
irreducible order preserving linear operator, then for any positive €, no matter
how small, L + €M is irreducible. On the other hand, L — €M is not order-
preserving, because the matrix which describes the action of this operator on
constant vectors must have some negative entries to the right of the diagonal
blocks of the Frobenius form (2.2) of By. By the result of Lui, the truncated
recursion of L + €M has a single spreading speed c*(¢). It is easy to show that
the limit of this speed as € decreases to 0 is at least ¢, Thus if ¢; < ¢®, then
the spreading speed of the first component jumps downward at e = 0.

The existence of anomalous spreading speeds shows that Lemma 2.3 of [4]
is incorrect as it stands. However, Theorem 4.1 shows that the statement of this
Lemma becomes true when the Extra Hypothesis in this Theorem is added to
the other hypotheses. We have also shown that one can obtain all but one of
the theorems of [4] and all the results of [1] by replacing Lemma 2.3 of [4] with
Theorem 4.1.

The examples of Sect. 5 show that anomalous spreading speeds are not sim-
ply mathematical curiosities of no biological significance. They can arise from
models of two-allele, one-gene-locus diploid species with segregation of the
homozygous classes. Here a small density of heterozygotes at the well ahead
of the front produces a corresponding anomalous speedup in the spreading of
one of the homozygotes. We anticipate that this kind of anomalous spreading
speed phenomenon will be found in other similar reaction—diffusion models.

Appendix: Proofs

Proof of Proposition 3.1 To prove the inequality (3.5), we need a lower bound
for the solution of the recursion (3.1). To obtain such a bound, we take the
particular initial values

up(x) =0

1/2 forx <0
Vo) = [0 forx >0

wo(x) = 0.
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Anomalous spreading speeds of cooperative recursion systems 219

The first equation of the system (3.2) shows that u(x,f) = 0. By the maximum
principle the second equation then shows that the solution v of the second
equation of (3.2) is bounded below by the solution of the heat equation with
the same initial values. That is,

0
v(x, ) > V(x,0) = (1/2) (4~ 12 / e~ /@0 gy (6.1)

—00

for ¢ < 1. Since V is bounded above by 1/2, its values at the integers n are not
affected by truncation by 1, so that V (x, n) is a subsolution of the recursion (3.1)
as well.

Suppose now for the sake of contradiction that

¢ <4 (6.2)
Then we may choose two positive constants ¢; and ¢ such that
max{2+/3, c}"-} <c <o <4 (6.3)

By the definition of spreading speed, the first inequality shows that for any
positive § there is a number #; such that

v+w<3d inSs, (6.4)
where
Ss = {(x,1) : x > cqt, t > ts}.

We choose § < 1, so that we can find the values w,,(x) of the solution of the
recursion by using the differential equation in S5 without any truncation.

We choose a point (x, ) in Ss, and integrate w(y, 7) — (1/4)wy, — 12w times
the fundamental solution [ (t — 7)]~1/2e~=Y*/1t=01+12G=7) with respect to T
and y over the set {(y,7) : y > c17, t5 < t < t}. Integration by parts then shows
that

w(x,t) = [ (x, 1) + I(x,0) + [3(x,1), (6.5)

where

9]
L(x,0) = / [t = )] /2= W00y )y,

cits
t
2
L(x,t) = /[n(t — ) e =D R20=D) 0 yp(eT, T)
ts

—1/Hwy(crT, 1) +2((x — 1)/t — D))w(ciT, T)}dT,  (6.6)

@ Springer



220 H. F. Weinberger et al.

and

t oo
I3(x,1) == / [ (- 7:)]71/zef(x*y)z/[(tfr)]“Z(Z*T)v(y, T)dydr. (6.7)

ts C1T

We shall find a lower bound for w by finding lower bounds for these three
integrals. Because w > 0, we can immediately write

I > 0. (6.8)

Because the initial data are all nonincreasing, it follows from the translation
invariance of the recursion (3.1) and the maximum principle that the functions
u,v,and w are all nonincreasing in x for each ¢. In particular, we see that w, < 0,
so that the term involving wy in the integral in (6.6) gives a nonnegative contri-
bution to the integral. Because x — ¢t > ¢ (t — ) > 0 and w is nonnegative,
the same is true of the term which involves (x — ¢y 7). Thus the only term of
the integral for /> which may make a negative contribution is the one which
involves —cyw. To bound this term below, we use the inequality (6.4) to find
that

t
L(x,t) > —c18 / [t — 1) V2e =D 1a=D)1+126-7) (6.9)
ts

Itis easily seen that since x > c1t, the exponent in the integral is bounded above
by

—(c] = 12)(t — 7).

We make the change of variable of integration o = ¢t — 7 to see that integral in
the right-hand side of (6.9) can be bounded by a constant multiple of

t—ts

2
/ o2~ @120 4
0

Because c% > (24/3)? = 12, we conclude that there is a positive constant K>
such that
L(x,t) > —K>. (6.10)

By inserting the lower bound (6.1) into (6.7), see that for (x,¢) in Ss

t 0 oo
Bn = / / / /Dt — T Pldm e

ts —ooC|T

x e~ =YW= H12=0)= 0=/ 147 gy 7 g (6.11)
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A little manipulation shows that because z < 0, the exponent in the integrand
takes its maximum at the point (y, z, T) where

y=4(x—-20/3,z=0, T = (x —20)/6.

Because 2 < ¢y < 8 we see that when ¢t <x <8,y > citand0 < 7 < ¢,
so that this point is in the range of integration. At (y,z,7) the exponent has
the value 4(4t — x) > 4(4 — cp)t when x < c»t. We recall that ¢ < 4 so that
the coefficient of ¢ is positive. By bounding the first and second derivatives of the
exponent, we can find a neighborhood of (y, Z, 7) of a volume which is bounded
below by a negative power of ¢ on which the value of the exponential on the
right of (6.11) is at least (1/2)e*#=2) and we obtain a lower bound for I3 by
integrating only over this neighborhood. In this way we find positive constants
o and K3 such that

Iz(cot, t) > th_ae4(4_62)[.

By combining this inequality with the lower bounds (6.8) and (6.9) and using
(6.5), we conclude that w(cyt,t) approaches infinity as ¢ goes to infinity. This
clearly contradicts the inequality (6.4), which implies that w(cyt,f) < 8. Since
this contradiction followed directly from the assumption (6.2), we conclude that
this assumption cannot be valid. That is, c; > 4, which is the statement of the

Proposition.

Proof of Proposition 4.1 We first note that by the result of Lui, the components
of the pth block must spread with at least the speed ¢,. Therefore, c; > ¢,

To prove the inequality c; < ¢®, we shall construct a supersolutibn of (1.2).

The definition (4.2) of ¢® and the definition of an infimum show that for any
positive § there are finite positive numbers i, such that

H1 = pu2 =

and
u;1 InA,(up) < c® +s forall p. (6.12)

We now define the block lower triangular matrix B by the equation
{B}po =By, }po-

That is, the pth block row of B is equal to the pth block row of B,,. By (6.12),

the spectral radius of {B,},, is strictly less than et +®_ Because B is lower
triangular, we can solve the system

f}, = e By 4+ (@}, (6.13)

for {a}1, then for {«},, and so forth, by the method of successive approximation.
We find that @ > ® >> 0. We now define the function w by
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(W)}, = min{{o},,e " {a},}

Since ¢ > w, the components of w are exponential functions only for nonneg-
ative values of x. Because the u, are nonincreasing in p, we see that the expo-

nential factors e"#»* are then nonincreasing in p. Since {L[w]}, only depends
on the components {w}, with o < p, we see that
{LIwl}, < {Lle™"*al}, = e ** (B, a}, = e "**{Bal},.
We see from (6.13) that
{Ba}p < ele(C(H)+5) {a}p
Thus we have shown that
{i[w]}p < e—up(x—(c(u)+5)){a}p.

Therefore,

min{{w}p, e—ltp(x—(c(“)-i-é)){a}p}

= (w(x — (¢ +8))},.

{min{w, L[W]},

IA

We have shown that w(x — n(c® + §)) is a supersolution of the truncated recur-
sion (1.2). We see from the fact that & > 0 that if wg(x) is any nonnegative
function which is zero for all large x and is uniformly below w, then there is a
translation constant y such that uy < w(x — y). Induction shows that if u,, satis-
fies the recursion (1.2), then u, (x) < w(x —y —n(c™ +34)). Since w(co) = 0, this
shows that cj}" is bounded above by ¢™ + §. Because § is any positive number,

we have ¢} < ¢® which proves Proposition 3.1. This inequality, together with

the lower bound ¢} > ¢, proves Theorem 4.1.
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