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Abstract Matrix models are widely used for demographic analysis of age and stage
structured biological populations. Dynamic properties of the model can be summa-
rized by the net reproductive rate R0. In this paper, we introduce a new method to
calculate and analyze the net reproductive rate directly from the life cycle graph
of the matrix. We show, with examples, how our method of analysis of R0 can be
used in the design of strategies for controlling invasive species.
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1. Introduction

Matrix models are widely used for demographic analysis of age and stage struc-
tured population dynamics. Population dynamics of stage structured matrix mod-
els can be analyzed by calculating the population growth rate λ, the dominant
eigenvalue of the projection matrix, and the net reproductive rate R0, the mean
number of offspring per individual over its lifetime (Caswell, 2001). Here λ = 1
if and only if R0 = 1. The population grows when λ or R0 is greater than 1 and
shrinks when λ or R0 is less than 1.

One method for calculating the characteristic equation, and hence the popula-
tion growth rate λ, for a stage structured model, is directly from the graph rep-
resentation of a matrix model, known as the life cycle graph. In this approach,
a Z-transform is applied to the graph in order to use graph reduction rules and
Mason’s formula to compute the characteristic equation and corresponding eigen-
values and eigenvectors (Werner and Caswell, 1977; Caswell, 1982a, 1984). Graph
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reduction is used to simplify matrix operations that can be tedious on large and
complex matrices. Although these procedures have been well described for calcu-
lating λ (e.g Caswell, 2001), no procedure has been developed using this technique
to calculate R0.

Matrix models describe the life cycle of an organism and its effects on popula-
tion change over time. For matrix population models elasticity/sensitivity analysis
of the population growth rate λ, can establish events in the life cycle of the organ-
ism, when perturbed, have the most impact on population growth (Caswell, 2001).
Hence, those events should be the target of biocontrol efforts (e.g. Shea and Kelly,
1998; Krivan and Havelka, 2000; Parker, 2000). The net reproductive rate R0 can
also be used to determine population growth.

The net reproductive rate has been used as persistence parameter in epidemi-
ological literature (van den Driessche and Watmough, 2002). The biological rel-
evance of the net reproductive rate R0 in matrix models is widely known (see
Caswell, 2001). However, this quantity has rarely been used in the analysis of pop-
ulation control and persistence.

In this paper, we introduce a new method to calculate the net reproductive rate
directly from the life cycle graph. As far as we are aware, no such method has been
proposed previously. We then show how this method can be applied, with some
literature examples, to analyze the control of invading organisms. We also suggest
that the net reproductive rate in matrix population models can be use to study the
control of invading organisms.

1.1. Matrix models and life cycle graphs

An age or stage structured matrix model is defined as nt+1 = Ant , where nt is a
vector of ages/stages at time t and A is a nonnegative irreducible matrix, describing
transitions from one age/stage to another one (Caswell, 2001). Matrix models can
be represented by a life cycle graph, where each age/stage is represented as a node
in the graph, and transitions are arcs (directed edges) from node to node. More
formally, for an n × n transition matrix A = [ai j ], the associated graph GA is a
weighted, directed graph, whose nodes are V = {1, . . . , n}, such that if ai j �= 0 in A,
there is an arc from j to i with weight ai j in GA, for i, j = 1, . . . , n. As an example,
a matrix and its corresponding graph is shown in Fig. 1(A).

For a graph GA, a path is a sequence of arcs from one node to another. When
the starting and ending nodes of a path are the same, the path is a loop (including
a self loop at node i if aii �= 0). Two paths are disjoint when they have no nodes in
common.

1.2. Population growth λ and net reproductive rate R0

Typical stage structured matrix models have an additional property. The transition
matrix A is primitive. In other words, there exists a positive power of A whose
entries are component-wise positive. For a nonnegative primitive matrix A the
Perron-Frobenius theorem ensures that there is a positive and simple dominant
eigenvalue λ (Horn and Johnson, 1985). This dominant eigenvalue, or population
growth rate, can then be used as a parameter to establish the growth rate of the
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Fig. 1 A A simple 2 node graph. B The z-transformed graph GA(λ). C Self loop of node 2 is
eliminated using rule A of Fig. 2. D Node 2 is eliminated using rule E of Fig. 2. E Characteristic
equation is calculated from Eq. (2) applied to the single-node graph given in D: 1 − L(1) = 0,

where L(1) = a12a21λ−2

1−a22λ−1 .

system described by the matrix. For matrix A, when λ < 1 the extinction steady
state is stable, when λ = 1 the population is neutrally stable and when λ > 1 the
population grows (Caswell, 2001).

To calculate R0, the transition matrix is decomposed as A = T + F, where
T = [τi j ] (with τi j ∈ [0, 1] and

∑
j τi j ≤ 1) contains the survivorship transitions and

F = [ fi j ] (with fi j ≥ 0) the fecundities. Each entry in T describes the probability of
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an individual in stage j surviving to stage i in a single time step. Since individuals
in a population eventually die, it is further assumed that ρ(T) < 1 (Li and Schnei-
der, 2002). Once the transition and fecundity matrices are given, A is uniquely
determined. However, decomposition of A into transition and fecundity matrices
is not unique until information regarding the survivorship and reproduction com-
ponents of each entry ai j is given. This information is readily available as it is the
buildings blocks of the stage-structured model. This decomposition allows for the
calculation of the net reproductive rate, R0, defined mathematically as

R0 = ρ(F(I − T)−1), (1)

where I is the identity matrix and ρ denotes the spectral radius of the matrix
F(I − T)−1, referred to as the next generation matrix (Li and Schneider, 2002).
R0 is the strictly positive dominant eigenvalue of the matrix F(I − T)−1 (Appendix
A). It has been shown (Cushing and Zhou, 1994; Li and Schneider, 2002) that when
R0 < 1, the extinction state is stable, when R0 = 1, the extinction state is neutrally
stable and when R0 > 1 the population grows. In other words, λ > 1 ⇐⇒ R0 > 1,
where λ is the dominant eigenvalue of matrix A.

2. Graph reduction of matrix models and net reproductive rate

We now introduce our new approach to calculating R0 directly from a graph, with-
out the need for matrix calculations. First, we review an establish graph-based
method for the calculation of the characteristic polynomial for a matrix, and then
we show, in the following section, the related procedure that can be used to calcu-
late R0.

2.1. Established graph-based method for calculating the characteristic polynomial

To compute the dominant eigenvalue λ or any other eigenvalue from the graph
GA, Caswell’s formula (Caswell, 1982b) for the characteristic equation of the z-
transformed graph, denoted GA, can be used. A z-transformed graph GA(λ) is de-
fined as the graph obtained by replacing entries ai j in GA with ai jλ

−1 (Caswell,
2001). Hence, for a population matrix A, the characteristic equation, denoted
P(GA(λ)) = 0, yields n possible values for λ, the largest of which is the population
growth rate λ and the remaining n − 1 values are additional smaller eigenvalues.
The characteristic polynomial is defined as P(GA(λ)) = det(Aλ−1 − I). If λ = 1,
then P(GA(1)) = det(A − I). The formula for the characteristic equation, due to
Hubbell and Werner (1979) and Caswell (1982b), is given by

P(GA(λ)) = 1 −
∑

i

L(i) +
∗∑

i, j

L(i) L( j) −
∗∑

i, j,k

L(i) L( j) L(k) + · · · = 0, (2)

where L(i) is the product of arc coefficients in the ith loop in the graph GA(λ),
and the asterisk indicates that the sum is taken over the product of all pairs,
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triplets, . . . , n−tuples of disjoint loops. See Mason and Zimmermann (1960) and
Chen (1976) for a detailed derivation of the formula and Caswell (2001) for appli-
cations to life cycle graphs.

By way of example consider the life cycle graph shown in Fig. 1. From the graph
shown in Fig. 1A, there are two loops, L(1) = a22λ

−1 and L(2) = a12a21λ
−2. Apply-

ing Eq. (2), we get P(GA(λ)) = 1 − (a22λ
−1 + a21a12λ

−2) = 0.
For a complicated life cycle graph calculation using Eq. (2) can be onerous.

However, the same result can be obtained via graph reduction, a procedure that
allows for the elimination of paths and nodes from a graph. Since a graph is a repre-
sentation of a system of linear equations, graph reduction is equivalent to elimina-
tion of variables (nodes) by back-substitution. The application of graph reduction
simplifies the calculation of Eq. (2). A graph can be reduced using the rules shown
in Fig. 2. An important property of graph reduction is that the dynamic properties
of the system remain invariant under graph reduction (Caswell, 2001), that is, the
characteristic equation remains invariant (Chen, 1976; Lewis, 1977). As shown in
Fig. 1, a graph can be reduced completely to one node to obtain the characteristic

Fig. 2 Mason equivalence rules for graph reduction (modified from Caswell, 2001). A Self loop
elimination. B Parallel paths elimination. C, D and E Elimination of node x2.
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equation directly. From the previous example (Fig. 1), using graph reduction we
obtain the same result (Fig. 1E).

2.2. Calculating R0 from the graph

As mentioned earlier, given a projection matrix, the net reproductive rate can be
calculated using Eq. (1). To connect the calculation of R0 with graph reduction
methods we first observe that, the net reproductive rate is determined uniquely by

ρ(R0T + F) = R0, (3)

where ρ denotes the spectral radius. For detailed derivation of Eq. (3), see Ap-
pendix A.

Now, given Eq. (3), we can use the z-transform of the matrix B = R0T + F, to
calculate using Eq. (2), the characteristic polynomial of B, P(GB(R0)). Note that
GB(R0) can be related to the graph of A, GA, as follows: each entry ai j = ti j + fi j in
GA is replaced by bi j R−1

0 = (R0ti j + f )R−1
0 = ti j + f R−1

0 . In other words, GB(R0) is
found by multiplying the fecundity transitions in GA by R−1

0 .
As we did previously, we can again apply Mason’s rules for graph reduction now

to solve P(GB(R0)) = 0 for R0. According to Eq. (3), R0 is the dominant eigenvalue
of B, and hence satisfies P(GB(R0)) = 0.

As an example, consider a case where T and F are as shown in Fig. 3a. Figure 3
shows the graph reduction procedure to obtain the characteristic equation for this
example. Note that the rank of F is one and therefore the polynomial P(GB) is a
polynomial of degree 1; hence, there is only one possible value for R0.

Suppose that G̃B is the graph obtained from applying Mason’s rules to GB. We
can always apply Eq. (2) to obtain P(G̃B), and then solve for R0, or we can continue
with reduction until there is one node left. In either case, R0 remains invariant, but
the graph reduction method its easier to apply and the result yields a simplified
equation.

In most life cycles, expressions for R0 are given explicitly, vegetative reproduc-
tion (or clonal reproduction) can lead to more complex reduced graphs, such as the
one shown in Fig. 4. Note that all the fecundity transitions in Fig. 4A are multiplied
by R−1

0 , that in the reduced graph (Fig. 4C) fecundity paths contain the term R−1
0 ,

and that these fecundity loops are not disjoint. To calculate R0, we apply formula
(1) on the matrix corresponding to the remaining reduced graph to calculate R0.
This type of graph can occur when there is vegetative reproduction (see for exam-
ple Dinnetz and Nilsson, 2002), and fecundity pathways in the life cycle graph that
can reproduce independently from other pathways.

In summary, given the matrix B = R0T + F, and the corresponding graph GB,
the graph reduction algorithm to calculate R0 can be applied as follows: (1) Elim-
inate survivorship self-loops from GB, (2) Reduce the graph until only nodes with
fecundity self-loops are left, (3) If only one node is left, then eliminate the final
node and the result will be R0; otherwise solve the polynomial that comes from
applying Eq. (1) to the reduced graph.
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Fig. 3 a An example of a transition and fecundity matrix.b Graph reduction procedure. A The
full transformed graph (with associated matrices a). B Eliminating self-loop in node 1. C Elimi-
nating node 2. D Eliminating node 1. E Eliminating node 3 and solving for R0.

3. Applications

A fecundity pathway is a loop of any length where there is only one fecundity
transition involved. As we will demonstrate in this section, the graph reduction
method provides an expression for R0 as a sum of contributions from the different
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Fig. 4 Hypothetical life cycle graph with vegetative reproduction. This graph is the same as
Fig. 3A, except an additional self loop is added in node 2. A. full graph, B. Elimination of self
loop in node 1, C. Elimination of node 1, D. R0 equation.

possible fecundity pathways. Biologically, it is a sequence of steps in the life cycle
that lead to the production of new individuals.

3.1. Scentless chamomile (Matricaria perforata)

Scentless chamomile is an introduced annual, biennial or short-lived perennial
plant that has become a widely distributed weed in cultivated areas in North Amer-
ica (Hinz, 1996; Hinz and McClay, 2000). In Hinz (1996), a stage-structure model
is developed, and transition values are compared between different disturbance
treatments (soil disturbance and herbivory). The full life cycle is shown in Fig. 3A.
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Hinz (1996) showed, using elasticity matrices, that, in general, transition from
rosettes to flowering plants a32 and fecundity transitions a23 and a33 contributed
the most to population growth and would therefore be the most effective transi-
tions to control.

We calculate R0 by applying the graph reduction procedure (Fig. 3),

R0 = a31a13 + a13a21a32

1 − a11︸ ︷︷ ︸
new flowers from seeds

+ a32a23︸ ︷︷ ︸
new flowers from rosettes

+ a33︸︷︷︸
new flowers from flowers

(4)

The fecundity pathways are given below each term in the equation. Examination
of R0 gives additional insight into possible control strategies. The fecundity transi-
tions are a13, a23, a33. Note that, if transition a33 is larger than one, R0 > 1 regard-
less of the contributions of other transitions, and population increase will occur.
Similarly if the loop a32a23 > 1 then the population will increase regardless of the
other fecundity pathways. This is consistent with Hinz’s results (Hinz, 1996), which
based on numerical estimates of matrix transition entries, showed elasticity matri-
ces where a33, a32 and a23 affect population growth the most.

Our analyses suggests, that any control strategy must focus on reducing fecun-
dity below a critical level. However, this action alone would not ensure successful
control. For example, as seed bank survival a11 approaches 1, the term (1 − a11)−1

becomes large and the population will increase. Hinz (1996) found that transi-
tions a13, a31 and a21 to be of minor importance. However, it can be seen from
the R0 equation that this situation would probably change as a11 increases. With
this example, we have shown how the analysis of fecundity pathways using R0 can
complement the design of effective control strategies.

3.2. Nodding thistle (Carduus nutans)

Shea and Kelly (1998) derived a matrix model to study the control of nodding
thistle (Carduus nutans), a weed that causes economic damage to grazing lands in
New Zealand. The authors described the life cycle of C. nutans by the graph in
Fig. 5A. They concluded using elasticity analysis that seed to seedling and small-
plants to seeds transitions contribute the most to λ (g21 and r12 in the graph). Their
numerical results, based on numerical estimates of matrix transitions, indicate that
seed losses of 69% are required to reduce the weed populations. A 30%–40% re-
duction in seed production has been unsuccessful in New Zealand, but successful
in North America, which contradicts the numerical results and suggests regional
differences. Their general conclusion was that, to control C. nutans, a large reduc-
tion in seed bank and suppression of germination is needed. For comparison, using
graph reduction we obtained the 2 node graph in Fig. 5C, and further elimination
yields:

R0 = r22 + g42r24 + g32r23 + g32g43r24

+ g21r12 + g21g32r13 + g21g42r14 + g32g43g21r14

1 − s11
. (5)
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Fig. 5 Nodding thistle life cycle graph as described by Shea and Kelly (1998). Node 1, seed bank;
nodes 2, 3 and 4, small, medium, and large plants. Reproductive transitions are labelled ri j coming
out of three nodes (2, 3, 4). A Full transformed graph. B Elimination of node 1. C Elimination of
node 4. D Resulting net reproductive rate.
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It is evident from R0 that if only survivorship g21 is reduced by control, but small
plant fecundities (r12 and r22) are not, then since r22 > 1 the system is unstable
(R0 > 1). As with the previous example, as s11 approaches 1, the term (1 − s11)−1

becomes large, driving R0 above one. This is consistent with Shea and Kelly (1998),
with g21 included in all pathways involving a11, but it provides a more general result
because we do not require numerical analysis to get to this result.

Shea and Kelly (1998) suggest that grazing could contribute substantially to this-
tle control. We extend the graph reduction procedure to calculate R0 to explore the
combined effects of biocontrol and grazing. To simplify analysis further, we focus
on the reproductive pathways, denoting P1,2,...,n as a reproductive path that goes
through nodes 1, 2, . . . , n. Equation (5) can be rewritten as

R0 =
[

P2 + P2,3 + P2,4 + P2,3,4 +
(

P1,2 + P1,2,3 + P1,2,4 + P1,2,3,4

1 − s11

)]

(6)

where P2 = r22, P2,3 = g32r23, P2,4 = g42r24, P2,3,4 = g32g43r24, P1,2 = g21r12, P1,2,3

= g21g32r13, P1,2,4 = g21g42r14 and P1,2,3,4 = g32g43g21r14.
Suppose a biocontrol agent is used to control fecundity of reproductive plants

(transitions into node 1). The reduction in seed production is represented by scal-
ing variable u1. The level of grazing, which reduces germination and affects tran-
sition g21 , is represented by u2, where 0 ≤ ui ≤ 1 is the proportional reduction in
pathways. Note that all the fecundity paths go through node 2 or node 1. So, we
can rewrite Pk

i · as the pathways of length k that start and end in node i . The R0

equation can thus be rewritten as

R0 = (1 − u1)
∑

k

Pk
1·

1 − s11
+ (1 − u2)

∑

k

Pk
2· (7)

If u1 = 0, meaning no effort is applied to control germination (i.e. the only con-
trol of the path from node 1 to 2 is grazing), then we need a larger proportional
reduction in grazing to control the system. Note that in this case control u2 is cho-
sen based on the number of pathways where transition from 1, 2 is involved. This
method confirms analytically the suggestion of Shea and Kelly (1998) that grazing
could complement biological control.

4. Conclusion

While it is possible to calculate the net reproductive rate R0 directly from Eq. (1)
using matrix algebra, the resulting expression is no longer easily interpreted
in terms of fecundity pathways, unless extensive rearrangement is undertaken
(Appendix B).

Because of their dynamical properties, λ and R0 are demographic parameters
by which optimization can be applied to design a control strategy for unwanted
species. As we show here, with the new method given in this paper, it is straight-
forward to obtain an analytical formula for R0 using graph reduction methods. As
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far as we are aware, this method is entirely new and has not been used to calculate
R0 previously.

It is our understanding of the fecundity pathways in R0 that allows us to de-
rive and analyze control strategies for invasive species. As shown in the examples,
when the method is used, the expression for R0 is given as a sum of contributions
from different fecundity pathways (see for example Eq. (4)) The examples show
that some analysis of the R0 equation can aid in biocontrol target selection and
more generally in the design of control and conservation strategies. In some cases
perturbations in the transition matrix that decrease R0 may increase λ and vice
versa (Caswell, 2001). Nonetheless since R0 < 1 implies λ < 1, a control strategy
that guarantees R0 < 1 for biocontrol, or R0 > 1 for conservation, can be useful in
the first stages of planning and can be refined as more data are obtained. Analo-
gous to compartmental models of disease transmission, where the basic reproduc-
tive number determines a disease-free equilibrium (van den Driessche and Wat-
mough, 2002), in matrix population models of invading organisms, R0 determines
persistence of the invader, and this quantity can be used to determine control
strategies. In this way, the use of R0 is a useful alternative to numerical analysis
of λ for designing a general control strategy framework that can be customized to
accommodate different parameter values in different regions.
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Appendix: A Derivation of the R0 equation

Our goal is to show how to derive equation R0 = ρ(R0T + F). The projection ma-
trix A = T + F, can be decomposed into survivorship transitions T and fecundity
F. The survivorship matrix contains the probability of stage transitions T = [τi j ]
with 0 ≤ τi j ≤ 1, ρ(T) < 1, and

∑
j τi j ≤ 1. The fecundity matrix F has entries fi j ≥

0. We know that (I − T)−1 is nonnegative, because T is nonnegative, ρ(T) < 1
and limk→∞ Tk = 0 means (I − T)−1 = I + T + T2 + . . . is nonnegative. By defi-
nition F ≥ 0. Hence F(I − T)−1 is also nonnegative. Let λρ be the eigenvalue of
F(I − T)−1 with |λρ | = R0 (Eq. (1)). Since F(I − T)−1 is nonnegative, there is a
nonnegative left eigenvector (Perron vector) uT corresponding to λρ that satisfies
uTF(I − T)−1 = λρuT . The eigenvalue λρ is real and positive, hence λρ = R0 is the
dominant eigenvalue of F(I − T)−1. Now, uTF = R0uT(I − T) = R0uTI − R0uTT.
Therefore,

uT(F + R0T) = uTF + R0uTT = R0uT (A.1)
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The matrix A = T + F is irreducible, hence GA is strongly connected (see Horn
and Johnson, 1985). Since R0 > 0, then the graph corresponding to R0T + F is
also strongly connected, hence R0T + F is irreducible. By Theorem 2.1b in Li
and Schneider (2002), it follows that R0 is the unique dominant eigenvalue. From
Eq. (A.1) we can write the formula for R0 as, R0 = ρ(R0T + F). A similar argument
is used to prove Theorem 3.1 in Li and Schneider (2002).

B Algebraic and graph calculation of R0

Algebraic calculation of R0 is nontrivial. First the inverse of I − T must be com-
puted and then the eigenvalues of F(I − T)−1 must be solved. Usually this is done
using a symbolic programming language like Maple or Mathematica. As an exam-
ple, consider the transition and fecundity matrices for thistle,

T =

⎡

⎢
⎢
⎣

s11 0 0 0
g21 0 0 0
0 g32 0 0
0 g42 g43 0

⎤

⎥
⎥
⎦ , F =

⎡

⎢
⎢
⎣

0 r12 r13 r14

0 r22 r23 r24

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (B.1)

In Mathematica 5.2, once matrices T and F are specified, R0 is calculated using the
commands,

Eigenvalues[F. Inverse[IdentityMatrix[n]-T]] (B.2)

Asking Mathematica 5.2 to produce a simplified solution we get as an output,

R0 = 1
a11 − 1

[−a21r12 − a21a32r13 − a21a42r14 − a21a32a43r14

+ a11r22 − r22 + a11a32r23 − a32r23 + a11a42r24

− a42r24 + a11a32a43r24 − a32a43r24] (B.3)

By way of contrast, the calculation of R0 using the graph reduction method is
shown in Fig. 5. Note how terms represent fecundity pathways, pathways that start
in a reproducing stage and return to that stage after passing several transitions.
When reducing the graph, all these pathways are evident and operations yield a
simple equation expressed in terms of fecundity pathways, compared to the com-
puter output in Eq. (B.3).
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