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ABSTRACT: The process of nonindigenous species (NIS) arrival has
received limited theoretical consideration despite importance in pre-
dicting and preventing the establishment of NIS. We formulate a
mechanistically based hierarchical model of NIS arrival and dem-
onstrate simplifications leading to a marginal distribution of the
number of surviving introduced individuals from parameters of sur-
vival probability and propagule pressure. The marginal distribution
is extended as a stochastic process from which establishment emerges
with a waiting time distribution. This provides a probability of NIS
establishment within a specified period and may be useful for iden-
tifying patterns of successful invaders. However, estimates of both
the propagule pressure and the individual survival probability are
rarely available for NIS, making estimates of the probability of es-
tablishment difficult. Alternatively, researchers are able to measure
proportional estimates of propagule pressure through models of NIS
transport, such as gravity models, or of survival probability through
habitat-matching indexes measuring the similarity between poten-
tially occupied and native NIS ranges. Therefore, we formulate the
relative waiting time between two locations and the probability of
one location being invaded before the other.

Keywords: nonindigenous species, hierarchical modeling, waiting
time, establishment, stochasticity, propagule pressure.

The invasion of nonindigenous species (NIS) into new
locations can be divided into three stages: arrival, estab-

* Corresponding author; e-mail: cjerde@ualberta.ca.
" E-mail: mlewis@math.ualberta.ca.

Am. Nat. 2007. Vol. 170, pp. 1-9. © 2007 by The University of Chicago.
0003-0147/2007/17001-41698%15.00. All rights reserved.

lishment, and spread (Vermeij 1996; Sakai et al. 2001). The
establishment and spread stages garner considerable the-
oretical attention, but the arrival stage receives propor-
tionally little consideration (Puth and Post 2005), even
though it represents a critical phase for preventing the
establishment and potential impacts of new invaders (Par-
ker et al. 1999). Arrival is the process by which individuals
are transported from a source, through a dispersal path-
way, to a destination where the NIS are introduced and
attempt to establish (Carlton 1996).

Many studies have attempted to identify the character-
istics of successful invaders to predict future invaders
(Richardson and Rejmanek 2004), while other studies sug-
gest that propagule pressure is the primary predictor of
invasion success (Lockwood et al. 2005), but these studies
are often limited to case-by-case assessments of invasion
risk (Gilpin 1990; Williamson 1996). Such assessments are
effectively tactical approaches for a particular system or a
specific species (Godfray and Rees 2002). By way of con-
trast, strategic models can provide a more general ap-
proach indicative of the invasion process rather than a
specific case. The absence of a general framework for NIS
arrival limits one to a tactical approach to predicting in-
vasion that is potentially insufficient for developing a gen-
eral foundation for predicting invasions. It has been sug-
gested that by following a tactical approach to NIS arrival,
“we are never going to have a scheme to predict the success
of invading species” (Gilpin 1990, p. 89), and this is likely
one reason why an arrival framework for predicting in-
vasions remains elusive (Carlton 1996). However, Gilpin
(1990) advocates a strategic approach to develop a frame-
work that includes stochastic elements for predicting the
arrival of NIS. This is the approach we adopt in this article.

Throughout the arrival process, stochasticity influences
the eventual establishment success or failure of the NIS.
Stochastic events include abiotic changes in the source
region, modifying the number of individuals available for
transport, establishment of new dispersal pathways, and
variable environmental conditions of the destination in-
fluencing survival (Carlton 1996). Also, some biological
invasions occur with only a few introduced individuals.
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Therefore, demographic stochasticity, including Allee ef-
fects, is likely a contributor to the establishment or failure
of new NIS populations (Shaffer 1981; Lande 1993; Leung
et al. 2004). Taken in total, stochasticity leads to uncer-
tainty in our spatial and temporal predictions of invasion
(Kolar and Lodge 2001; Drake and Bossenbroek 2004) and
is likely one reason why tactical approaches have been
emphasized previously (Gilpin 1990; Carlton 1996).

Here we develop a strategic, probabilistic framework for
the arrival process of NIS from source to destination. Being
a contingent process (Puth and Post 2005), arrival emerges
with a hierarchical model. We show that the model can
be simplified to a marginal distribution, describing the
number of surviving individuals introduced into the des-
tination as a function of the propagule pressure and the
individual probability of survival.

The hierarchical structure is suitable to estimate the
probability of establishment for one time step. The time
step formulation is flexible and may consider seasonal or
yearly patterns of arrival. The increasing number of es-
tablished invaders is likely linked to repeated introductions
(Cohen and Carlton 1998), so we examine the marginal
distribution of establishment as a stochastic process (time-
to-event model) and produce invasion waiting time dis-
tributions. The results of the hierarchical modeling and
the time-to-event modeling produce the probability of es-
tablishment at the next time step and the probability of
establishment within a defined period of time, respectively.
While providing a theoretical framework from which to
study the arrival process, the framework is also directly
related to ecological risk assessment for NIS (Suter 1993).
We demonstrate how to estimate the waiting time risk
(probability) and relative risk (odds) of two locations being
invaded.

The Arrival Process

Conceptualizations of the arrival stage of the invasion pro-
cess take many forms (Wonham et al. 2000; Sakai et al.
2001; Lockwood et al. 2005). Here we adopt Carlton’s
(1996) description of source, dispersal, and destination
pools (fig. 1). All parameters and variables are defined in
table 1. Throughout, we refer to individuals, populations,
and pools for a single species unless otherwise noted. First,
individuals at the source site are subject to environmental
conditions such that the source population, N,, is a ran-
dom variable. The individuals are then transported from
the source, N,, to the dispersal pool, N,,. Transported NIS
constitute a dispersal pool of individuals. From the dis-
persal pool, individuals are then introduced into the des-
tination. The process from source to destination represents
one unique pathway of introduction. However, as the box
in figure 1 demonstrates, there are likely many pathways,
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Figure 1: Flow diagram of the arrival process from source to destination.
Variables and parameters are defined in table 1.

such as multiple ships (Drake and Lodge 2004). The input
of individuals to a destination from all pathways is the
propagule pressure (XN,) of a species to a destination
(Lockwood et al. 2005). Last, we consider survival of the
introduced individuals (p,). This does not capture the
growth and spread but simply the physiological tolerance
of the organism to the new environment (Spidle et al.
1995), also called inoculant survival (Smith et al. 1999).
Additionally, p, includes properties of habitat invasibility.
Biotic and abiotic interactions at any new location have
the potential to increase or decrease the probability of
surviving and establishing (Jules et al. 2002; Von Holle
2005).

The entire arrival process, from all pathways, occurs
over time. For example, the arrival of aquatic NIS may be
the number of introductions occurring over 1 year or the
arrival of seeds into a location during a particular season.
Generally, we refer to the period of time considered in the
arrival model as a time step. Hereafter, “establishment”
refers to the event of an organism surviving in the new
system beyond the arrival time step. More complexity, such
as source population dynamics, population dynamics dur-
ing transport, or different types of release mechanisms,
may be significant for a given species or pathway, but our
simplified process is a reasonable, strategic skeleton of
arrival.

A Hierarchical Model of NIS Arrival

The usefulness of hierarchical modeling comes by reducing
the larger process to a collection of simple processes. In
its simplest form, a hierarchical model is a random variable
with a distribution that is conditional on a random variable
(Casella and Berger 2002; Clark 2003). We assume that
individuals act independently from each other, and by fol-
lowing individuals, the model captures demographic sto-
chasticity (Shaffer 1981; Lande 1993). In a probabilistic
framework, an individual has a Bernoulli trial of being
transported from one pool to another (such as being trans-
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Table 1: Definitions for the hierarchical model and arrival waiting time

Parameter or
variable

Description

N, Number of established nonindigenous species (NIS)

E
IN,

2 > zzz

Z~NR = 6™ ™™

>~ B2}

Propagule pressure into a destination

Number of introduced NIS into the destination from a single pathway
Number of NIS in the dispersal pool

Number of NIS in the source population

Central tendency of the source population

Index of introduction pathways

Number of introduction pathways

Probability an individual survives introduction into a destination
Probability an individual is introduced from the dispersal pool
Probability an individual is transported

Expectation of propagule pressure from k pathways

Probability at least one individual establishes

Shape parameter for considering Allee effects

Waiting time random variable

Expected surviving propagule pressure

Constant of proportionality

Ratio of expected waiting times for two locations

ported from the source to the dispersal pool). Indepen-
dent, identically distributed (i.i.d.) Bernoulli trials for a
group of individuals yield a binomial or Poisson distri-
bution for the transition (Casella and Berger 2002). Link-
ing the transitions between source and destination with
the use of the binomial and Poisson distributions leads to
a hierarchical model of the contingent arrival process:

N; | Ny ~ binomial(Ny, p,), 1
N, | N, ~ binomial(N,,, p)), )
N,, | N, ~ binomial(N,, p,), (3)

N, ~ Poisson(\). 4)

The Poisson distribution describes the number of in-
dividuals entering the arrival pathway, while the binomial
distributions are used as transition processes. Future in-
vestigations may consider alternative distributions both for
the number of individuals entering the system and for the
transition processes. The binomial and Poisson distribu-
tions follow the probability mass functions found in most
statistical texts (e.g., Casella and Berger 2002) and are also
found in “Simplifications of the Hierarchial Model” in the
appendix in the online edition of the American Naturalist.

From the arrival process, we can write a random variable
for the population size at the source location (N,) with a
parameter, A, describing the central tendency (eq. [4]). We
use a constant-only model (A\) of the source population
dynamics for simplicity, but future considerations may
investigate the influence of alternative source population
dynamic models such as autoregressive processes. A hi-

erarchy emerges when the random variable for the number
of individuals entering the dispersal pool (N,; eq. [3]) is
formulated as a binomial distribution with the parameter
Do capturing the probability of an individual being trans-
ported, and is conditional on the random variable N,.
Similarly, the random variable for the number of individ-
uals being introduced into the destination (N eq. [2])
can be written as a binomial process, with the probability
of being introduced (p;) to a particular source and con-
ditional on the contribution of individuals from the dis-
persal pool (eq. [2]). Last, the probability of survival (p,)
parameterizes the distribution of the number of individ-
uals introduced into the destination that survive to estab-
lish. Again, we model this as a random variable, N;, con-
ditional on the number of individuals released into the
destination (eq. [1]).

Equations (1)—(4) are a hierarchical system describing
the transfer of individuals from a single source to a single
destination, but for purposes of inference, we are inter-
ested in the marginal (unconditional) distribution of Nj
and not the mixture distribution of N; | N, (Casella and
Berger 2002). In order to find the marginal distribution
of Nj, it is necessary to simplify the process.

Hierarchal processes can sometimes be simplified using
conditional probability,

PriX=x=2Pr(X=x|Y=pPr(Y=y.

From our formulation, a hierarchy is the number of trans-
ported individuals (eq. [3]) defined by the probability of
being transported, p, and the number of individuals in
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the source population, where N, is a random variable from
a Poisson distribution. Using conditional probability, the
hierarchical statements can be reduced to a marginal dis-
tribution of N,

N, ~ Poisson(Ap,). ©6)

The details of this simplification can be found in “Sim-
plifications of the Hierarchical Model.”

Similarly, we can use the marginal distribution of N,
and the conditional statement of the number of introduced
individuals (eq. [2]) to formulate the marginal distribution
of the number of introduced individuals,

N, ~ Poisson(\p, p,), (7)

following the same procedure as demonstrated in “Sim-
plifications of the Hierarchical Model.” The marginal dis-
tribution of Nj is the number of individuals introduced
to the destination from a single source.

To consider n independent pathways, we assume the
input of multiple Poisson random variables. A useful
mathematical result is that the sum of independent Poisson
distributions is also Poisson distributed,

2 Ny~ ;Poisson()\,‘phkpi,k) = Poisson(¢), (8)

where > N, is the distribution of the propagule pressure
into the destination from n pathways and ¢ =
Sy MDD x is the expectation of the propagule pressure.
The last hierarchical simplification is to collapse the prop-
agule pressure (eq. [8]) into the conditional survival pro-
cess (eq. [1]) to find the marginal distribution of the num-
ber of surviving individuals, N;. Because the propagule
pressure is Poisson distributed, we have the same simpli-
fication as observed with both the transport and the in-
troduction hierarchical statements. This leads to

N; ~ Poisson(p.¢). ©)

The distribution of N; captures the process variability of
transporting individuals from multiple sources to a single
destination and the demographic stochasticity of the in-
dividual probability of survival.

Estimating the probability of establishment of NIS may
require consideration of the underlying population dy-
namics at the destination (Drake et al. 2005). Leung et al.
(2004) have formulated the establishment process for two
models, one that assumes independence in the arriving
propagules and one that contains a shape parameter to
test for the presence of Allee effects. The independence
model of NIS establishment used by Leung et al. (2004)

can be formulated from the arrival process modeled here
by first considering the probability of not observing an
establishment event. Using the marginal distribution for
N;, this is

Pr(N, = 0) = e (10)
Its complement, the probability of observing at least one
established individual,

Yy=Pr(N;>21) =1-¢e? (11)
is similar to the independence model of establishment pro-
posed by Leung et al. (2004).

The difference between the two formulations is that here
we have justified a Poisson distributed random variable,
N;, and Leung et al. (2004) used a binomial random var-
iable where y = Pr(N; > 1) = 1 — (1 — p,)*. The Poisson
is an approximation of the binomial when ¢ is large and
p, is small (Casella and Berger 2002). The effect of small
p, on v can be found by expanding e * in equation (11)
as 1 — p,+ (p*/2) .... Keeping the first two terms in this
expansion yields vy for the binomial distribution. Thus, the
arrival framework resulting from hierarchical modeling is
a link to the establishment phase of biological invasions
and justifies the independence model of Leung et al.
(2004).

Leung et al. (2004) assess the presence of Allee effects
by testing for the significance of a shape parameter, o (¢
in their formulation), on the independence model. Equa-
tion (11) of NIS arrival may be modified to include a
shape coefficient test developed by Leung et al. (2004),
v = 1— e ®" but the Allee model formulation for NIS
establishment is not further justified here, and we continue
our investigation of NIS arrival following the indepen-
dence model.

Suter (1993) refers to equations (10) and (11) as an
endpoint. The endpoint terminology comes from ecolog-
ical risk assessment and is used to define a formal ex-
pression of the environmental values to be protected. In
this case, the value to be protected is the absence of the
NIS from a particular location (eq. [10]), and the risk
(probability) associated with failure of this objective is the
complement (eq. [11]). The endpoint is flexible and could
be adjusted to monitor for the successful establishment of
10, 100, or more individuals. We use the endpoint defined
by equations (10) and (11) hereafter.

Time-to-Event Stochastic Processes

Given that the probability of the event that at least one
individual establishes is =, it is possible to extend the dy-
namics of this system through time as a series of Bernoulli



trials (Taylor and Karlin 1998) to consider the contribution
of repeated introductions. This assumes that over discrete
time steps, the arrival process can be modeled as an in-
dependent Bernoulli random variable. A property of i.i.d.
Bernoulli trials is the geometric distribution of the waiting
time, T, to the first event (establishment),

T ~ geometric(y),
with probability mass function

Pr(T'=1=~0-v"", (12)
where v is defined by equation (11). Consider three lo-
cations with different propagule pressures (¢ = 100, 50,
and 10 individuals) and the same probability of survival,
p, = 0.001. Equation (11) yields v = 0.10, 0.05, and 0.01.
The waiting time distributions for the three realizations,
following equation (12), are illustrated in figure 2. The
geometric distribution has a mean, 1/y, and a variance,
(1 = y)/y> This results in the property that as the prob-
ability of at least one establishing individual becomes
small, the mean and variance become large. Thus, by at-
tempting to reduce NIS establishment events, we are in-
creasing the uncertainty of when the NIS will establish.
However, there is a trade-off in that we can now accurately
state that an invasion is unlikely to occur. Yet, this never
precludes the possibility of an invasion occurring in the
next time step if y > 0. Given the waiting time distribution,
we can analytically determine the probability of an estab-
lishment by time t according to

Pr (establishment by ) = Pr(T'<1)

=1—(010—v" (13)

Using figure 2 as an example and setting t = 10 time
steps, we find that the risk of establishment would be the
sum, from 1 to 10, of the geometric distributions for
v = 0.10, 0.05, and 0.01. This results in probabilities of
an establishment event (eq. [13]) within the next 10 time
steps equal to 0.65, 0.40, and 0.10, respectively.

The probability of at least one individual establishing
in a single time step, 7, and the probability of invasion
by time tare two different, albeit closely related, endpoints.
When ¢ = 1, the two probabilities are equal (i.e., eq. [13]
yields 7). Thus, vy provides one-time-step predictions of
invasion, while the probability of invasion by time ¢ allows
for prediction over a longer time frame.

Patterns of Invasion

There are many reasons why estimating the individual
survival probability, p,, and the propagule pressure, ¢, may
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Figure 2: Geometric probability mass function for the time to estab-
lishment, where y = 0.1 (circles), 0.05 (triangles), and 0.01 (squares).
Using the geometric waiting time distribution, as y goes to 0, the dis-
tribution becomes flat. Thus, by reducing the propagule pressure, ¢, or
the survival probability, p,, we increase the uncertainty of when an in-
vasion will occur. However, there is a reduced probability (eq. [13]) that
invasion will occur in the near future (i.e., if t = 3).

be difficult. It may be economically infeasible to monitor
continuously for the introduction of NIS, whose detection
is furthermore complicated when only a few individuals
are introduced. This is the dilemma community ecologists
face when accounting for rare species (Longino and Col-
well 1997). Estimating individual survival probabilities
faces another set of difficulties in that uninvaded locations
likely require not only the standard experimental efforts
and logistics (e.g., Von Holle and Simberloff 2005) but
also substantial security measures to prevent the experi-
ment from being the source of an NIS establishment event.
However, possibly the most limiting factor for all of these
estimation considerations is time. Experiments and ob-
servations take time to conduct and collect, while inaction
in preventing establishment may allow the invasion to oc-
cur (Simberloff 2003).

The approach many ecologists have taken is to use rel-
ative measures of individual survival or propagule pressure
to assess invasion risk in a timely manner. For example,
gravity models that describe the movement rates of people
with a formulation analogous to Newton’s laws of attrac-
tion are useful in estimating relative abundance of aquatic
NIS transported through recreational boater traffic
(Schneider et al. 1998; Bossenbroek et al. 2001; Muirhead
and Maclsaac 2005). Relative measures of survival come
from habitat matching studies between source and des-
tinations (e.g., Drake and Bossenbroek 2004; Herborg et
al. 2007). Therefore, applying relative measures of prop-
agule pressure and survival probability would be useful
for uncovering the patterns of successful invasions from
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the arrival framework. The hierarchical model for the ar-
rival process provides a mechanistic basis for comparing
invasion waiting times for locations with different prop-
agule pressures and probabilities of survival. Here we show
how relative measures can be used to calculate relative
waiting times and predict the order of invasion into two
locations.

We refer to the expected surviving propagule pressure
as N, = p¢ (see eq. [9]), and it can be interpreted as the
expected number of establishing individuals from the in-
dependence model of Leung et al. (2004). Suppose that
two locations have different pressures, where we denote
NEA as the expected surviving propagule pressure in lo-
cation A and N;, = cN;, as the expected surviving prop-
agule pressure in location B. Intuitively, we would expect
that ¢< 1 would lead to location A, on average, being
invaded before location B, as a result of reduced expected
surviving propagule pressure, and that ¢> 1 would lead
to location B, on average, being invaded before location
A, as a result of increased expected surviving propagule
pressure in B. These are the arguments used to justify
ranked risk assessments of locations found in the gravity
model literature (Schneider et al. 1998; Bossenbroek et al.
2001; Leung et al. 2004). However, although ranks may
be useful in determining which locations are more likely
to be invaded, they do not reveal the probability of in-
vasion (probabilistic risk) or the relative odds that one
location will be invaded over another (relative risk).

The time-to-event extension of the hierarchical model
allows us to forecast probabilities and relative risk asso-
ciated with the outcomes regarding invasion times for
specified locations. We define T, ~ geometric(y,) (see eq.
[12]) to be the random variable describing the waiting
time that location A is first invaded, where v, = 1 —
e Ne) (see eqq. [10], [11]). Likewise, T, ~ geometric(y;)
is defined as the random variable describing the waiting
time that location B is first invaded, where y, =1 —
e The ratio R of expected time for invasion of lo-
cation B to expected time for invasion of location A is

N

1—¢
E[T; 1/ Ea
R = [B]=j=ﬁ=77ﬁ. (14)
E[T,] 1y, Vs I —e

Ify, = 04 and v, = 0.1, then we should expect to wait,
on average, R = 4 times longer for location B to be in-
vaded than location A. This ratio, R, is a decreasing func-
tion of the absolute risk of invasion, as given by the ex-
pected surviving propagule pressures NEA and NEB =
cN;, when c¢<1 and an increasing function when ¢>1
(fig. 3). In the case where v becomes small, N;, —0, and
c¢> 1, the ratio of expected times in equation (14) con-
verges to ¢ ' = NEA/NEB, a measure of relative risk. Hence,

i
o

—_
6)}
I
1

Ratio of expected
waiting time (R)
o
|

|

1 2 3 4 5
Expected surviving propagule pressure (N—E)

o
o

o

Figure 3: Ratio R of expected time for invasion of location B to expected
time for invasion of location A as a function of N . The region above

the dashed line is for c < 1 and the region below for ¢ > 1. As N, becomes

large, the ratio becomes 1. As NEA goes to 0, the ratio converges to ¢ .

Two realizations, ¢ = 2 and ¢ = 0.5, are shown.

relative risk provides a useful measure for the ratio of
expected invasion waiting times when the expected sur-
viving propagule pressure is small.

Empirical evidence suggests that propagule pressure is
often a predictor of invasions (Lockwood et al. 2005; Von
Holle and Simberloff 2005). If we compare two locations
with the same, but unknown, p,, then the expected prop-
agule pressure, ¢, can give estimates of the relative waiting
times such that we should, on average, expect to wait
¢! = ¢,/¢, times longer for location B to be invaded than
location A.

Bossenbroek et al. (2001), using a gravity model of
boater traffic, provide estimates of zebra mussel (Dreissena
polymorpha) dispersal, Q,, of the relative number of in-
fested boats visiting uninvaded lake u per year. Assuming
that the zebra mussel propagule pressure is proportional
to infected boater traffic and that the expected surviving
propagule pressure, N, for both locations is small, the
ratio of boater traffic is an estimate of the relative expected
waiting time of invasion. For example, if lake A has
Q, = 100 and lake B has Q; = 5, then we should expect
to wait, on average, 20 times longer for lake B to be invaded
than lake A. Thus, estimates of relative propagule pressure,
such as Q,, provide an estimate of the relative waiting time
that is more informative than ranks currently provided.

Additionally, it is possible to estimate the probabilities
of ordered invasion into two locations. There are three
possible outcomes: location A is invaded before location
B, location A and location B are invaded at the same time,
and location B is invaded before location A. The derivation
of these probabilities are presented in “Order of Invasion—



Derived Distribution” in the appendix in the online edition
of the American Naturalist, and the results are

Pr (B before A) = M,
Yot Y~ YAYs

Pr(B and A) = — A (15)
Yat Y5~ YiYs
Pr (A before B) = M.
Yat Y5~ YiVs

Again, v, and vy, are the probabilities of at least one
individual establishing in location A and location B, re-
spectively, and the vy estimates are functions of the prop-
agule pressure and individual probability of survival (eq.
[11]). When the product of the probability of at least one
establishing individual for both locations is small
(v4v5 = 0), the probability of location B being invaded
before location A is 1/(1 + R), and the probability of lo-
cation A being invaded before location Bis R/(1 + R) (for-
mulations shown in “Order of Invasion—Derived Distri-
bution”). The probability of both locations being invaded
at the same time step is approximately 0.

The waiting time, relative waiting time, and order of
invasions are temporal patterns resulting from the hier-
archical model of NIS arrival. Therefore, parameters of
propagule pressure (N, p, and p;) and individual proba-
bilities of survival (p,) will determine these patterns. In
“Examples” in the appendix in the online edition of the
American Naturalist, we provide two examples of param-
eter estimation and the resulting patterns of invasion. The
first is an example of the agricultural nuisance species
scentless chamomile (Matricaria perforata). This example
shows the calculation of vy for two locations with exper-
imentally manipulated levels of propagule pressure. The
result of this experiment shows the waiting time distri-
bution and the limitations of using relative formulations
(propagule pressure only) on the patterns of invasion. The
second example comes from Herborg et al. (2007), re-
garding the arrival of Chinese mitten crab (Eriocheir si-
nensis). We show how relative waiting times and order of
invasion for five U.S. shipping ports can be calculated
using relative measures of ballast water discharge. From
this formulation, we identify the port of Norfolk, Virginia,
as being the most susceptible to mitten crab invasion, while
the remaining four ports have probabilities of 0.17, 0.15,
0.05, and 0.03 of being invaded before Norfolk. These
probabilities may be useful for designing monitoring and
control strategies of mitten crab invasion but are not fur-
ther developed. The relative formulations presented here
are focused on propagule pressure; however, it should be
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noted that similar relative approaches may be useful for
the survival probability.

Discussion

Two approaches have emerged for predicting the arrival
and successful establishment of NIS. The first approach
emphasizes characteristics of the invader or the location
allowing for the NIS to survive and establish (Richardson
and Rejmanek 2004). The second approach argues that
propagule pressure alone is a sufficient indicator to predict
successful invasions (Lockwood et al. 2005). However, nei-
ther approach is general enough to move beyond a pri-
marily case-by-case treatment of NIS arrival (Gilpin 1990).
The hierarchical probability model highlights the limita-
tion of these approaches for predicting invasions. Consider
two species entering a location. The first has p, = 0.01 and
¢ = 10, while the second has p, = 0.0001 and ¢ =
1,000. Strict adherence to either approach would identify
one invader as likely to be more successful than the other,
yet v, and the resulting waiting time for both species, is
the same. Therefore, a strategic approach to predicting
successful invasions should consider both the propagule
pressure and the mechanisms influencing the individual
probability of survival.

When there is very little propagule pressure and a small
probability of survival, the invasion risk is likely negligible,
and when there is overwhelming propagule pressure, the
invasion dynamics are essentially deterministic. Our results
regarding invasion waiting time distributions and order of
invasions are applicable to levels of intermediate propagule
pressure where there is appreciable invasion risk but un-
certainty as to whether and when the invasion will occur.
Explicit incorporation of survivorship, p,, in the expected
surviving propagule pressure means that the hierarchical
framework allows for investigation of the influences of
changes in survivorship on NIS establishment and has the
advantage of being connected to the influences of prop-
agule pressure. For example, Simberloff and Von Holle
(1999) proposed the concept of invasional meltdown,
whereby the presence of NIS in a location increases the p,
for an arriving NIS. Similarly, hypotheses about such issues
as the role of fluctuating resources (Davis et al. 2000),
enemy release (Keane and Crawley 2002), and biotic re-
sistance (Levine et al. 2004) may also be formulated as a
change in p, leading to increases or decreases in the prob-
abilities of establishment, v, and the resulting waiting time
distributions. Likewise, the natural history of the NIS or
the location being invaded may change the individual
probability of survival.

Our modeling approach suggests strategies for control-
ling invasion even when a location is overwhelmed by
propagule pressure (Von Holle and Simberloff 2005). In-
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deed, the arrival of NIS in such abundances that v ap-
proaches 1 essentially guarantees that invasion will occur
in the near future. In such cases, attempting to reduce
invasion success will consist of evaluating the contribution
of parameters A, p,, p, and p, to the probability of estab-
lishment, ~. It may be that because p, is large, even a few
individuals are enough to overwhelm the system. Alter-
natively, if p, is small, then it may take orders of magnitude
more propagule pressure to overwhelm the system. In this
situation, evaluating the parameters of the arrival process
may lead to more effective targeting of management ac-
tions, such as reducing the mean abundance of individuals
available for transport, A. Additionally, when comparing
the risk of establishment for multiple locations, if p, is
sensitive to difference or changes in biotic and abiotic
conditions, then the amount of propagule pressure needed
to overwhelm the system will also be sensitive to the biotic
and abiotic conditions.

The invasion waiting time is a pattern of the invasion
process resulting from the arrival and establishment stages.
Strategically, both the propagule pressure and the individ-
ual probability of survival will determine the distribution
of the waiting time and the order of invaded locations
through the parameter y. However, many tactical ap-
proaches to predicting invasion have used relative mea-
sures to rank locations most likely to be invaded. Two
assumptions should be emphasized that are used to esti-
mate the relative waiting time, R, and the order of invasion
for two locations, R/(1 + R) and 1/(1 + R). First, N, is
assumed to be small. If N, is even moderately large, then
both locations are likely overwhelmed by propagule pres-
sure, and both locations are deterministically invaded at
the next time step. However, in systems such as that of
the Great Lakes zebra mussel, where it is known that in-
dividuals have been introduced to inland lakes that remain
uninvaded, this assumption seems reasonable (Bossen-
broek et al. 2001; Johnson et al. 2001). Second, p, is as-
sumed to be the same between locations, though un-
known. A violation of this assumption would potentially
result in a similar misleading conclusion, as demonstrated
at the beginning of this discussion, and would influence
not only the relative waiting time but also the ranks that
are commonly present in the invasion literature.

Tactical approaches to biological invasion are undoubt-
edly useful for performing risk assessments and making
management decisions, but a strategic approach may help
us reveal the mechanisms of biological invasions that more
generally allow NIS to eventually establish or fail. We be-
lieve this framework is a skeleton on which to model the
NIS arrival process and strategically identify patterns of
successful invasion.
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