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Abstract

This review synthesizes the conflicting outbreak predictions generated by different

biological assumptions in host–vector disease models. It is motivated by the North

American outbreak of West Nile virus, an emerging infectious disease that has prompted

at least five dynamical modelling studies. Mathematical models have long proven

successful in investigating the dynamics and control of infectious disease systems. The

underlying assumptions in these epidemiological models determine their mathematical

structure, and therefore influence their predictions. A crucial assumption is the host–

vector interaction encapsulated in the disease-transmission term, and a key prediction is

the basic reproduction number, R0. We connect these two model elements by

demonstrating how the choice of transmission term qualitatively and quantitatively alters

R0 and therefore alters predicted disease dynamics and control implications. Whereas

some transmission terms predict that reducing the host population will reduce disease

outbreaks, others predict that this will exacerbate infection risk. These conflicting

predictions are reconciled by understanding that different transmission terms apply

biologically only at certain population densities, outside which they can generate

erroneous predictions. For West Nile virus, R0 estimates for six common North

American bird species indicate that all would be effective outbreak hosts.
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I N TRODUCT ION

Mathematical models have long provided important insight

into disease dynamics and control (e.g. Anderson & May

1991; Hethcote 2000). As emerging and re-emerging

infectious diseases increase in outbreak frequency, there is

a compelling interest in understanding their dynamics

(Daszak et al. 2000; Dobson & Foufopoulos 2001;

Castillo-Chavez et al. 2002; Gubler 2002; Chomel 2003;

Enserink 2004). In all disease modelling, a model’s

mathematical structure is determined by its underlying

biological assumptions, which therefore influence the

model’s predictions. Here, we show how a central assump-

tion in epidemiological modelling, the form of the disease-

transmission term, affects a central prediction, the basic

reproduction number. We also illustrate the effects of other

epidemiological features on model predictions.

The disease-transmission term represents the contact

between host individuals in directly transmitted diseases, or

between host and vector individuals in host–vector diseases

(see Fig. 1a). The choice of which transmission term to use

has been extensively discussed, particularly for directly

transmitted diseases (Getz & Pickering 1983; Anderson &

May 1991; Thrall et al. 1993; McCallum et al. 2001; Begon

et al. 2002; Keeling 2005; Rudolf & Antonovics 2005).

However, the implications of this choice for disease

prediction and control have received much less attention

(e.g. Wood & Thomas 1999; McCallum et al. 2001).

A dynamical disease model generates the basic reproduc-

tion number, R0, which represents the average number of
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secondary infections caused by the introduction of a typical

infected individual into an otherwise entirely susceptible

population (Anderson & May 1991; Heesterbeek 2002). This

number serves as an invasion threshold both for predicting

outbreaks and for evaluating control strategies. In recent

epidemiological modelling, uncertainty and sensitivity analy-

ses have been used to evaluate the effect of different model

parameters on R0 for directly transmitted diseases (e.g.

Blower & Dowlatabadi 1994; Sanchez & Blower 1997;

Chowell et al. 2004). Again, however, the effect of transmis-

sion-term assumptions on R0 has only briefly been

mentioned (McCallum et al. 2001), and has not been

quantitatively assessed. We connect these central two ele-

ments of disease modelling by showing how different trans-

mission terms influence R0, both qualitatively and quanti-

tatively. We focus on host–vector disease systems, in which

the added complexity of two interacting populations intro-

duces a wider range of model features. We also show how a

range of assumptions about epidemiological features, spe-

cies� parameter values, and life-history features influenceR0.

Our analysis is motivated by a particular emerging

infectious disease system, the North American outbreak of

West Nile virus. This arboviral encephalitis amplifies in a

transmission cycle between vector mosquitoes and reser-

voir birds, and is secondarily transmitted to mammals,

including humans (Gubler et al. 2000; Bernard et al. 2001;

Peterson et al. 2004). Since its initial North American

report in New York City in 1999, West Nile virus has

spread across the continent and prompted at least five

dynamical mathematical modelling studies (Table 1).

Although these models share a common structure, they

differ in their biological assumptions and therefore in their

predictions. To compare the effects of these different

assumptions, we first develop a core model that contains

the elements common to all the published models. We

then systematically alter the core model to consider the

qualitative and quantitative effects of different assumptions

on R0. To gain further insight into this type of disease

dynamic, we include in our review two similar models of

other mosquito-borne pathogens, Japanese encephalitis and

Ross River virus (Table 1).

West Nile virus models

All seven arboviral models reviewed here share a standard

susceptible–infectious (S–I ) structure for vector and host

populations. Table 1 summarizes their key features, and the

Appendix presents their equations and R0 expressions in a

common notation. For simplicity, we abbreviate the models

as follows: West Nile virus, WN1–5, Japanese encephalitis,

JE, and Ross River virus, RR (Table 1). In an additional

series of studies, Japanese and Murray Valley encephalitis

and RR virus are modelled using a cyclic representation of

vector feeding behaviour (Kay et al. 1987; Saul et al. 1990;

Saul 2003; Glass 2005). However, as these models cannot

readily be converted to a system of ordinary differential

equations for comparison with the other seven, they are not

included in our review.

CORE MODEL

The three central populations of an arboviral encephalitis

system like West Nile virus are the arthropod vectors,

reservoir hosts and secondary hosts (Gubler 2002). The

dynamical behaviour of the disease is determined by the

(a)

(b)

(c)

Figure 1 Flow diagrams of (a) the core West Nile virus model,

(b) the core model with added epidemiological dynamics, and

(c) the core model with added vital dynamics and population

stage structure. Shaded boxes highlight the core model; solid

lines indicate movement of individuals in and out of classes; dashed

lines indicate disease transmission by mosquito bite. Variables

and parameters are defined in Table 2.
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vector and reservoir populations alone, from which the risk

to secondary hosts may be inferred (but see Higgs et al. 2005).

The core vector–reservoir structure common to all seven

arboviral models comprises four compartments: susceptible

vectors (SV) infectious vectors (IV), susceptible reservoirs

(SR), and infectious reservoirs (IR) (Fig. 1a). The vector

equations describe the dynamics of adult female mosqui-

toes; the reservoir equations describe the dynamics

primarily of birds for West Nile virus, and mammals for

JE and RR virus. Cross-infection occurs when an infectious

vector bites a susceptible reservoir or a susceptible vector

bites an infectious reservoir. The mosquito lifecycle, which

is on the order of 1 month, is represented by birth and

death rates. For the bird lifecycle, which is one to two

orders of magnitude longer, the birth and death rates are

correspondingly lower and can reasonably be omitted for a

single-season model. However, as the model requires at

least one reservoir loss parameter, we begin with the

natural death rate, which is used in all but two of the

original models. (WN3 and RR use other loss terms.) The

core model can be expressed as a system of four ordinary

differential equations,

dSV

dt|{z}
Susceptible vectors

¼ bV NV|fflfflffl{zfflfflffl}
birth

� bR
IR

NR

SV|fflfflfflfflffl{zfflfflfflfflffl}
disease transmission

� dV SV|fflffl{zfflffl}
death

dIV

dt|{z}
Infectious vectors

¼ bR
IR

NR

SV|fflfflfflfflffl{zfflfflfflfflffl}
disease transmission

� dV IV|ffl{zffl}
death

dSR

dt|{z}
Susceptible reservoirs

¼ � bR
SR

NR

IV|fflfflfflfflffl{zfflfflfflfflffl}
disease transmission

� dRSR|ffl{zffl}
death

;

dIR

dt|{z}
Infectious reservoirs

¼ bR
SR

NR

IV|fflfflfflfflffl{zfflfflfflfflffl}
disease transmission

� dRIR|{z}
death

ð1Þ

where the total adult female vector population densityNV ¼
SV + IV, and the total reservoir population density NR ¼
SR + IR. See Table 2 for parameter definitions. At the disease-

free equilibrium (DFE), the vector and reservoir population

densities are denotedN �
V andN �

R respectively. In this model

(eqn 1) we assume reservoir frequency-dependent disease

transmission (after Anderson & May 1991); the choice of

transmission terms is treated in the following section.

Table 1 Comparison of seven dynamical models of mosquito-borne virus transmission

Disease system West Nile virus

Japanese

encephalitis Ross River virus

Model WN11 WN22 WN33 WN44 WN55 JE6 RR7

No. equations 8 (4) 6 (3) 7 (3) 4 (2) 5 (2) 5 (2) 11 (5)

Disease classes

Vector SV, EV, IV SV, EV, IV LV, SV,

EV, IV

SV, IV SV, IV SV, IV SV1, EV1, IV1, RV1, SV2,

EV2, IV2, RV2

Reservoir SR, Sr , IR, Ir , RR SR, IR, RR SR, IR, RR SR, IR SR, IR, RR SR, IR, RR SR, IR, RR

Transmission dynamics FR MA FR FR FR FS MA, C

Epidemiological features

Transmission probabilities Y Æ Y Y Y Y Æ
V viral incubation period Y Y Y Æ Æ Æ Y

V loss of infectivity Æ Æ Æ Æ Æ Y Æ
V vertical transmission Æ Y Æ Æ Y Æ Æ
R death from virus Y Æ Y Y Y Æ Æ
R recovery to immune Y Y Y Æ Y Y Y

R loss of immunity Æ Æ Æ Æ Æ Y Æ
Vital dynamics

Vector Y Y Y Y Y Y Y

Reservoir Y Y Æ Y Y Y Æ
Age structure

Vector Æ Æ Y Æ Æ Æ Æ
Reservoir Y Æ Æ Æ Æ Æ Æ

Classes for vectors (V) and reservoirs (adult R, juvenile r) determine the number of model equations, of which only the subset in parentheses

contribute to the calculation of R0. Disease transmission functions are reservoir frequency dependence (FR), mass action (MA), susceptible

frequency dependence (FS), and a constant rate from hosts outside the model (C). Inclusion of epidemiological and vital dynamics features

indicated as Y, yes or Æ, no.
Sources: 1Lord & Day (2001a,b); 2Thomas & Urena (2001) as converted to continuous time ODEs in Lewis et al. (2006b); 3Wonham et al.

(2004); 4Bowman et al. (2005); 5Cruz-Pacheco et al. (2005); 6Tapaswi et al. (1995); 7Choi et al. (2002).
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TRANSM I S S ION TERMS

Disease transmission between vectors and reservoirs in

arbovirus systems depends at its simplest on the mosquito

biting rate. The term used to capture the biting rate in an S–I

model may take one of several forms. We compare the

assumptions and effects of three forms that have been used

in these seven models: reservoir frequency dependence,

mass action, and susceptible frequency dependence. The

dynamics of reservoir frequency dependence can be thought

of as intermediate between the extremes captured by the

other two terms.

We will examine the biting rate from two perspectives: the

number of bites per unit time by an individual vector, and the

number of bites per unit time on an individual reservoir. We

show how each transmission term is valid only within a range

of vector and reservoir population densities, beyond which it

assumes an unrealistically high or low biting rate. We

introduce notation for the vector and reservoir population

densities at the DFE, at which the biting rates, and therefore

the R0 values, coincide for the different transmission terms.

Reservoir frequency dependence coincides with mass action

at ~N �
R and ~N �

V , the two forms of frequency dependence

coincide at �N �
R and �N �

V , and mass action coincides with

susceptible frequency dependence at N̂ �
R and N̂

�
V (Fig. 2). The

implications for the disease reproduction number, R0, are

treated in the following sections.

Reservoir frequency dependence

The commonly used reservoir frequency-dependent trans-

mission (eqn 1) follows Anderson & May (1991) in

assuming that the vector biting rate is saturated, and not

limited by reservoir density. In other words, the biting rate

Table 2 Common notation for the arboviral encephalitis models reviewed here

Parameter Symbol Mean Range Sources* or equation

Vector

Recruitment rate aV – – –

Maturation rate mL 0.07 0.05–0.09 9, 12

Natural death rate, adults dV 0.03 0.02–0.07 13, 15, 20

Natural death rate, larvae dL 0.02 0.01–0.06 13, 15, 20

Birth rate assuming no larval class bV Calc Calc bV ¼ dV
Birth rate assuming larval class bL Calc Calc bL ¼ dV(mL + dL)/mL

Infected proportion of births qV 0.001 0.000–0.002 1, 4, 7, 18

Probability of virus transmission to vector aV 0.69 0.23–1.00 2, 7, 14, 16, 17, 18, 21

Virus incubation rate jV 0.10 0.09–0.12 14

Proportion surviving viral incubation period uV Calc Calc uV ¼ jV/(dV + jV)
Loss of infectivity gV 0.05 – 19

Biting rate bR 0.44 0.34–0.53 8

Biting rate per unit reservoir density b0R Calc Calc b0R ¼ bR= ~NR (see text)

Reservoirs

Recruitment rate aR – – –

Maturation rate mR – – –

Natural death rate� dR 0.0015 0.001–0.002 3, 5, 10, 11

Birth rate bR ¼ dR bR Calc Calc –

Probability of virus transmission to reservoir aR 0.74 0.27–1.00 2, 6, 16, 17, 18, 19

Death rate from virus dR Calc Calc dR ¼ � lnðpRÞ=sR for pR > 0

1=sR for pR ¼ 0

�
Recovery rate to immunity cR Calc Calc cR ¼ � lnð1 � pRÞ=rR for pR < 1

1=rR for pR ¼ 1

�
Loss of immunity rate gR – – –

Subscript V refers to vectors, and R to reservoirs. All rates are per capita per day, except for the mosquito biting parameter for mass action

b0R , which is bites per day per unit density birds. Values indicated with – not used in R0 calculations. Species-specific values for three

additional reservoir parameters, pR, sR, and rR, shown in Table 3.

*Sources: 1, Bugbee & Forte (2004); 2, Colton et al. (2005); 3, Cornell Lab of Ornithology, http://www.birds.cornell.edu/; 4, Dohm et al.

(2002); 5, Dyer et al. (1977); 6, Goddard et al. (2002); 7, Goddard et al. (2003); 8, Griffith & Turner (1996); 9, Hayes & Hsi (1975); 10, Hickey

& Brittingham (1991); 11, Milby & Wright (1976); 12, Mpho et al. (2002); 13, Oda et al. (1999); 14, Sardelis & Turell (2001); 15, Suleman &

Reisen (1979); 16, Tiawsirisup et al. (2004, 2005); 17, Turell et al. (2000); 18, Turell et al. (2001); 19, Vanlandingham et al. (2004); 20, Walter &

Hacker (1974); 21, Work et al. (1955).

�Approximated from a range of rates reported for passerines.
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by vectors is constant across reservoir densities, and the

biting rate experienced by reservoirs increases with vector

density (Fig. 2a,c). Over the same range of vector densities,

the biting rate on reservoirs increases faster for a lower

reservoir density than for a higher one (Fig. 2c).

These biological assumptions are evident in the

mathematical formulation of the transmission terms, in

which the proportional susceptible and infectious reservoir

densities appear (eqn 1). At the DFE, both populations

are entirely susceptible, i.e. SR ¼ NR and SV ¼ NV. Thus,

at the DFE, the vector-to-reservoir transmission rate

bRIVSR/NR depends only on the vector biting rate, while

the reservoir-to-vector transmission rate bRSVIR/NR

depends also on the ratio of vector and reservoir densities

(eqn 1).

Under reservoir frequency dependence, the biting rate by

vector mosquitoes is taken to be the maximal rate allowed

by the gonotrophic cycle, i.e. the minimum time required

between blood meals for a female to produce and lay eggs.

This biting rate, bR, has units per time, and can be thought

of as the maximum possible number of bites per day made

by a single mosquito. In contrast, the biting parameter for

mass-action transmission has different dimensions. (See

Begon et al. 2002 for further explanation of transmission

term units.) Reservoir frequency dependence is used in

models WN1, WN3, WN4 and WN5.

Mass action

A second common disease transmission term is mass action

(e.g. McCallum et al. 2001). Mass action assumes that biting

rates are limited by the densities of both vectors and

reservoirs (Fig. 2a,c). At the DFE, the vector-to-reservoir

transmission rate b0RIV SR is thus a function of reservoir

density, whereas the reservoir-to-vector transmission rate

b0RSV IR is a function of vector density (Fig. 2a,c).

Although the assumption of mass action is widely used, it

is valid only up to the threshold reservoir density denoted
~N �
R . We can understand this limit by examining the

transmission term, in which the biting parameter b0R has

units per time per density, and can be thought of as the

number of bites per day made by a single vector, per unit

(a) (b)

(c) (d)

Figure 2 Different disease-transmission terms assume different biting rates (a,c) and lead to different reproduction numbers, R0 (b,d) in

arboviral models. Each transmission term (FR, reservoir frequency dependence; MA, mass action; FS, susceptible frequency dependence) can

appropriately be applied only at the population densities indicated by the solid lines. If a term is applied to populations in the dotted line

regions, it will give misleadingly high or low R0 values. The number of bites per day by a single vector mosquito is shown as a function of

reservoir density in (a), and the number of bites per day on a single reservoir is shown as a function of vector density in (c). The reproduction

number R0 is shown as a function of reservoir density in (b) and vector density in (d). Threshold densities marked on the x-axes indicate

intersection points for the three transmission terms. At mid-reservoir densities ðN �
R ¼ ~N �

RÞ, the biting rates (a,c) and theR0 (b,d) of MA and

FR coincide. At high reservoir densities ðN �
R > ~N �

RÞ, the biting rate on reservoirs for FR lies below that of MA, whereas at low reservoir

densities ðN �
R < ~N �

RÞ, it lies above (c). At high reservoir densities, R0 for MA lies above that of FR (d); at low reservoir densities the relative

positions of the two curves are swapped (not shown).
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density of reservoirs. It is calculated as b0R ¼ bR= ~N
�
R .

Above ~N �
R , the vector biting rate in units of bites per time,

b0RN
�
R , would exceed bR, and therefore by definition would

exceed the physiological capacity of the vector (Fig. 2a). The

vector biting rates under mass action and reservoir

frequency dependence coincide when N �
R ¼ ~N �

R (Fig. 2a).

At lower reservoir densities where N �
R < ~N �

R , the biting

rate of reservoir frequency dependence is unrealistically

high. At higher densities where N �
R > ~N �

R , the biting rate

of mass action is unrealistically high. Mass action is used in

models WN2 and RR.

Susceptible frequency dependence

A third type of transmission, susceptible frequency depend-

ence, assumes that the biting rate is not limited by either

reservoir or vector density. The resulting vector biting rate

bR is the same as for reservoir frequency dependence (Fig.

2a). However, the biting rate on reservoirs is assumed to be

at some maximum, denoted b�R, which is reached at a

threshold vector density (Fig. 2c). Even if the vector density

exceeds this threshold, the biting rate experienced by

reservoirs does not exceed b�R. We consider this latter

assumption unlikely to hold in an ecological system.

However, as it is used in model JE and subsequent analyses

(Tapaswi et al. 1995, Ghosh & Tapaswi 1999), we examine

its structure and implications.

Mathematically, the transmission terms for susceptible

frequency dependence are formulated as a function of the

proportional susceptible population, whether reservoir or

vector. The vector-to-reservoir term, bRIVSR/NR, is the

same as for reservoir frequency dependence, but the

reservoir-to-vector term bRIRSV/NV is not. Under suscept-

ible frequency dependence, the vector biting rate bR
intersects that of mass action at N̂ �

R (Fig. 2a). The biting

rate on reservoirs, b�R, intersects that of mass action at the

threshold vector density N̂ �
V , and that of reservoir frequency

dependence at �N �
V (Fig. 2c). Susceptible frequency depend-

ence would clearly overestimate the biting rates below these

threshold population densities (Fig. 2a,c). In the absence of

empirical evidence for a vector-density threshold, this is

probably not a biologically applicable transmission term.

Each model in this review uses one of these three

transmission terms (Table 1). More complex models could

incorporate saturating or other transmission functions to

capture a range of spatial and temporal variation in host and

vector population densities (e.g. McCallum et al. 2001;

Keeling 2005).

E F F EC T OF TRANSM I S S ION TERMS ON R0

The disease basic reproduction number, R0, provides key

insights into disease outbreak and control (Anderson &

May 1991; Hethcote 2000; Dobson & Foufopoulos 2001;

Heesterbeek 2002; Heffernan et al. 2005). It represents the

average number of secondary infections deriving from

the introduction of an infected individual into an

otherwise susceptible population. Quantitatively, it has a

threshold value of 1: when R0 > 1 a disease outbreak can

occur, and when R0 < 1 it will not. Qualitatively, the

expression for R0 indicates which elements of the disease

system can be manipulated to reduce the chance of an

outbreak.

To evaluate the effects of different model features onR0,

we first determine analytical expressions for R0 using the

next generation matrix method (Diekmann & Heesterbeek

2000; van den Driessche & Watmough 2002). For details,

see the Appendix. The three disease-transmission terms,

reservoir frequency dependence, mass action and suscep-

tible frequency dependence, generate different expressions

for R0, with different implications for disease outbreak

prediction and control (Fig. 2c,d).

Reservoir frequency dependence

The core model with reservoir frequency-dependent trans-

mission (eqn 1; Fig. 1a) has the basic reproduction number

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bR
dV|{z}

vector to reservoir

bRN
�
V

dRN
�
R|fflffl{zfflffl}

reservoir to vector

vuuut : ð2Þ

This expression consists of two elements under the

square root sign. The first represents the number of

secondary reservoir infections caused by one infected

vector. The second represents the number of secondary

vector infections caused by one infected reservoir. Taking

the square root gives the geometric mean of these two

terms, which can be interpreted as R0 for the addition of an

average infected individual, whether vector or reservoir, to

an otherwise susceptible system.

This R0 expression (eqn 2) with frequency-dependent

transmission is notable in that it contains the ratio of the

susceptible vector and reservoir densities at the DFE. By

inspection, we can see that reducing the vector density N �
V

will reduce R0 and therefore help prevent an outbreak (Fig.

2d). In contrast, reducing the reservoir density N �
R will

increase R0 and therefore increase the chance of outbreak

(Fig. 2b). Although this latter result may seem initially

counterintuitive, it follows directly from the biological

assumption that the vector biting rate is not affected by

reservoir density (Fig. 2a). Consequently, a reduction in

reservoir density means the remaining individuals are bitten

more frequently. This focuses disease transmission on a few

highly bitten individuals that are more likely to become

infected and more likely to re-infect the vectors. Setting

Assumptions and predictions of host–vector models 711
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R0 ¼ 1 under reservoir frequency dependence gives the

threshold vector density for a disease outbreak,

N �
VT ¼ dV dRN

�
R=b

2
R , which is an increasing function of

reservoir density.

Mass action

Using mass-action transmission in the core model gives a

different reproduction number, namely

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0R
dV

b0RN
�
VN �

R

dR

s
: ð3Þ

In this case, R0 is sensitive not to the ratio, but to the

absolute densities of vectors and hosts. Thus, the model

predicts that reducing either vector or reservoir density will

reduce R0 and reduce the chance of disease outbreak (Fig.

2b,d). In terms of the reservoir population, this prediction is

opposite to that of reservoir frequency dependence.

The R0 for mass action and reservoir frequency

dependence are equal when the reservoir density

N �
R ¼ ~NR (Fig. 2b,d). The consequence of misapplying

mass action at higher reservoir density is that R0 is

artificially high (Fig. 2b). In contrast, the R0 of reservoir

frequency dependence is artificially high at lower reservoir

density (Fig. 2b). With respect to vector density, the R0

curves for both transmission terms overlap when

N �
R ¼ ~NR (Fig. 2d). When N �

R > ~NR, the curve for mass

action is higher and that for reservoir frequency dependence

is lower (Fig. 2d). In the opposite case of N �
R < ~NR , the

relative positions of the two curves are reversed.

Setting R0 ¼ 1 under mass action gives the threshold

vector density N �
VT ¼ dV dR=b

02
RN

�
R , which is a decreasing

function of reservoir density. This threshold for vector–host

models can be compared with that resulting from mass-

action transmission in directly transmitted disease models

(McCallum et al. 2001).

Susceptible frequency dependence

When disease transmission is assumed to be susceptible

frequency dependent, the vector and host densities cancel

out during the calculation of R0. The resulting reproduction

number is a constant value that does not vary with the

density of either species,

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
bR
dV

bR
dR

s
: ð4Þ

This formulation differs importantly from the previous

two, in that it predicts that the chance of disease outbreak is

not influenced by controlling either reservoir or vector

densities (Fig. 2b,d). The lack of density threshold for

disease outbreak in susceptible frequency-dependent trans-

mission can be compared with the case for frequency

dependence in a directly transmitted disease model (McCal-

lum et al. 2001).

With respect to the reservoir density, R0 for susceptible

frequency dependence intersects that of mass action at N̂ �
R

(Fig. 2b), which is also when the densities N �
VN �

R ¼ 1

(compare eqns 3 and 4). The R0 values for the two

frequency-dependent terms intersect at �N �
R (Fig. 2b), which

is also when the densities N �
V =N �

R ¼ 1 (compare eqns 2

and 4). With respect to vector density, R0 for susceptible

frequency dependence intersects that of mass action at N̂ �
V ,

and that of reservoir frequency dependence at �N �
V (Fig. 2c).

When N �
R ¼ ~N �

R , the vector density thresholds coincide for

all three transmission terms (Fig. 2d).

If the assumptions of susceptible frequency dependence

held in a natural system, mass action and reservoir frequency

dependence would give an artificially high R0 if misapplied

above the threshold vector density (Fig. 2d). However, since

these assumptions seem unlikely to hold, we anticipate that

susceptible frequency dependence will almost always give an

incorrect R0.

The appropriate choice of disease-transmission term is

clearly determined by the vector and host population

densities. For a given vector density, it is appropriate to

assume mass-action transmission when low reservoir

densities limit the biting rate, and reservoir frequency

dependence at higher reservoir densities where the biting

rate is saturated (Fig. 2a). For a given reservoir density, it

seems appropriate to assume mass action or reservoir

frequency dependence across all vector densities (Fig. 2c).

Choosing an inappropriate transmission term can lead to a

misleadingly high or lowR0, and correspondingly inaccurate

disease predictions (Fig. 2b,d).

Numerical values of R0

The qualitative analysis above illustrates how different

transmission terms alter the expressions and interpretations

ofR0. Do these results translate into significant differences in

the numerical estimates of R0? To address this question, we

generate quantitative R0 estimates that incorporate the

underlying variation in the constituent model parameters.

We follow a standard methodology of constructing a

triangular distribution for each parameter, based on reported

minimum,mean andmaximumestimates.We then use 10 000

Monte Carlo realizations from each triangular distribution to

generate an estimated distribution of R0 (e.g. Blower &

Dowlatabadi 1994; Sanchez & Blower 1997; Chowell et al.

2004). Distributions that do not overlap at the fifth or 95th

percentiles are taken to be significantly different.

For parameter estimates from a single study, we used the

minimum, mean, and maximum values reported in that

study. When more than one study was available, we took the
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overall mean of the average values across studies, and the

minimum and maximum from all studies combined (Tables 2

and 3). For parameters with only a single point estimate, we

used that value as a constant. The reported values for most

parameters were based on small sample sizes, so we consider

the estimates and distributions used here to be preliminary.

For vectors, we preferentially used parameter values from

the mosquitoes Culex pipiens sspp., and used related species

(Culex quinquefasciatus and Culex tritaeniorhynchus) when

necessary. Most reservoir data, including virus transfer

estimates between vectors and reservoirs, were based on

experiments with domestic chickens (Gallus gallus), but in

some cases multiple species were used. To compare R0 for

different model structures, we used mortality and recovery

rates for house sparrows Passer domesticus. We later compare

a single model using mortality and recovery rates for six

North American reservoir species.

Different transmission functions in the core model led to

significantly different numerical estimates of R0, ranging

over an order of magnitude or more (Fig. 3). At low

reservoir density where mass action applies, the R0 of

reservoir frequency dependence was significantly higher, and

that of susceptible frequency dependence significantly lower

(Fig. 3a). At the threshold reservoir density where both mass

action and reservoir frequency dependence apply, the R0 of

susceptible frequency dependence remained significantly

lower. At higher reservoir density where only reservoir

frequency dependence applies, the R0 of mass action was

significantly higher, and that of susceptible frequency

dependence significantly lower (Fig. 3a).

At lower vector densities where mass action and reservoir

frequency dependence apply, the R0 of susceptible fre-

quency dependence tended to be higher (Fig. 3b). At the

intermediate threshold vector density where all three

transmission terms are equivalent, the R0 distributions

overlapped substantially. In the hypothetical case of

susceptible frequency dependence, the R0 of mass action

and reservoir frequency dependence were significantly

higher when N �
V > ~N �

V (Fig. 3b). These numerical results

show that, for these parameter values, a transmission term

applied to an inappropriate host or vector population

density can over- or underestimate R0 by an order of

magnitude or more.

E F F EC T S OF OTHER MODEL F EATURES

We now return to the core model (eqn 1) and investigate

the effects on R0 of different epidemiological features,

species parameter values and life history features.

Table 3 Mean (and range) of infection and mortality parameter

values for six West Nile virus bird reservoir species

Parameter

Probability

of surviving

infection

Days

infectious

Days to

death

Symbol pR rR sR
American crow 0.00 3.25 (3–5) 5.1 (4–6)

American robin 1.00 3 (4–5) n.a.

Blue jay 0.25 3.75 (3–5) 4.7 (4–5)

House sparrow 0.47 (0.16–0.90) 3 (2–6) 4.7 (3–6)

Northern mockingbird 1.00 1.25 (1–2)* n.a.

Northern cardinal 0.78 1.5 (1–3)* 4

Sources: Komar et al. (2003, 2005); Brault et al. (2004); Langevin

et al. 2005; Reisen et al. 2005; Work et al. (1955).

*Mean and maximum values from Komar et al. (2005); minimum

value of 1 day selected for simulation purposes.

(a)

(b)

Figure 3 Numerical estimates of R0 differ significantly for the

core arboviral model under three different transmission assump-

tions: MA, mass action; FR, reservoir frequency dependence; FS,

susceptible frequency dependence. Vertical dotted lines separate

regions of low ðN �
R < ~N �

RÞ, medium ðN �
R ¼ ~N �

RÞ, and high

ðN �
R > ~N �

RÞ reservoir densities in (a) and low ðN �
V < N̂ �

V Þ,
medium ðN �

V ¼ ~N �
V Þ, and high ðN �

V > �N �
V Þ vector densities in

(b). Shaded boxes indicate the biologically appropriate transmission

terms for each population density range (all FS boxes in (a) are

unshaded). Sample population densities chosen to illustrate

different regions of R0 curves, expressed as number km)2, are

(a) N �
V ¼ 1000; ~N �

R ¼ 100, and N �
R ¼ 50 (low), 100 (mid), and

500 (high), and (b) ~N �
R ¼ 500, N �

R ¼; 550, and N �
V

¼ 100 (low),

450 (mid), and 5000 (high). Parameter values as in Tables 2 and 3,

using disease mortality and recovery rates for house sparrows.

Boxes show median and 25th and 75th percentiles, bars show 10th

and 90th percentiles, and dots show fifth and 95th percentiles.
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Epidemiological features

The seven arboviral models include a range of epidemio-

logical parameters (Table 1, Fig. 1b). For vectors, some

models add an exposed class (EV) with an associated

transition rate to account for the observed viral incubation

period in mosquitoes. Additional vector modifications

include a return rate from infectious to susceptible, and a

vertical (transovarial) transmission probability from infected

vectors EV and IV to their offspring (Table 1, Fig. 1b).

For reservoirs, most models add a recovered reservoir

class (RR), which allows immune reservoirs to remain in the

disease system. Most models also incorporate disease-

induced mortality in infectious individuals, and one adds

loss of immunity in recovered individuals (Table 1, Fig. 1b).

Horizontal transmission among reservoir hosts has been

reported empirically (Kuno 2001), but its scale and

importance remain to be determined and we have not yet

seen it incorporated in a published model. The above

epidemiological features can be added to the core model

by using the following system of ordinary differential

equations:

dSV

dt|{z}
Susceptible vectors

¼ bV ½SV þð1�qV ÞðEV þ IV Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
birth of susceptibles

� aV bR
IR

NR

SV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
disease transmission

þ gV IV|fflffl{zfflffl}
loss of infectivity

�dV SV|fflffl{zfflffl}
death

dEV

dt|ffl{zffl}
Exposedvectors

¼bV qV ðEV þIV Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
birth of infecteds

þ aV bR
IR

NR

SV|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
disease transmission

�ðdV þjV ÞEV|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
death and incubation

dIV

dt|{z}
Infectious vectors

¼ jV EV|fflfflffl{zfflfflffl}
incubation

� ðdV þgV ÞIV|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
death and loss of infectivity

dSR

dt|{z}
Susceptible reservoirs

¼� aRbR
SR

NR

IV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
disease transmission

� dRSR|ffl{zffl}
death

þ gRRR|fflffl{zfflffl}
loss of immunity

dIR

dt|{z}
Infectious reservoirs

¼ aRbR
SR

NR

IV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
disease transmission

� ðdRþdRþcRÞIR|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
death;diseasemortality and recovery

dRR

dt|{z}
Recovered reservoirs

¼ cRIR|ffl{zffl}
recovery

� ðdRþgRÞRR|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
death and loss of immunity

:

ð5Þ
This expanded model (eqn 5) incorporates the exposed

vector class as in models WN1, WN2, WN3 and RR, vector

vertical transmission as in WN2 and WN5, reservoir disease

mortality as in WN1, WN3, WN4 and WN5, reservoir

recovery as in all but WN4, and reservoir loss of immunity

and vector loss of infectivity as in JE.

The basic reproduction number for this model, in the

absence of vector vertical disease transmission, is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV aRbR

ðdV þ gV Þ
aV bRN

�
V

ðdR þ dR þ cRÞN �
R

s
: ð6Þ

With vertical disease transmission, i.e. with qV > 0,

R0 ¼
cV qV
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cV qV
2

� �2

þ uV aRbR
ðdV þgV Þ

aV bRN
�
V

ðdR þ dR þ cRÞN �
R

s
;

ð7Þ

where

cV ¼ bV
uV

ðdV þ gV Þ þ
1

ðdV þ jV Þ

� �
: ð8Þ

As R0 is a disease outbreak threshold, we can assess the

role of each model element in eqn 7 in contributing to the

chance of an outbreak. Only the probability of vertical

transmission from female vectors to their offspring, qV > 0,

increasesR0. All the other epidemiological features decrease

R0. The exposed vector compartment reduces R0 by

introducing into the numerator the proportion of vectors

surviving the viral incubation period to become infectious

(uV). The virus transmission probabilities in the numerator

(aV, aR), and the added vector and reservoir loss rates in the

denominator (gV, dR, cR), also reduce R0.

An additional term that might intuitively be expected to

increase the chance of disease outbreak is reservoir loss of

immunity, gR. However, this term does not appear inR0. Its

absence results from the definition ofR0, which is calculated

at the DFE using only the equations for infected individuals,

and is valid only during the earliest stages of an outbreak.

Terms such as gR that do not appear in the equations for

infected individuals will not appear inR0, although they may

still influence the predicted long-term disease trajectory.

These different epidemiological features also affect the

numerical estimate of R0. For the sample parameter values

used here, R0 values ranged over two orders of magnitude

(Fig. 4a). The two parameters with the greatest individual

influence on R0 were the added reservoir loss terms: the

disease-induced death rate dR and the recovery rate cR (Fig.

4a). Both rates are two to three orders of magnitude greater

than the natural death rate dR (Table 3). Among the seven

arboviral models, these three loss rates are incorporated in

different combinations: two models use all three terms, but

the others use subsets (dR + dR), (dR + cR), (dR + cR), and
cR alone (Table 1). For the sample parameter values used
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here, the choice of loss terms clearly has a significant effect

on a model’s R0. The individual addition of the remaining

five epidemiological parameters generated R0 distributions

overlapping that of the core model (Fig. 4a). The model

with all features combined had the lowest R0 (Fig. 4a).

Variation among reservoir species

The quantitative effects of adding these different epidemi-

ological features depend to some extent on the species

chosen for model parameterization. We illustrate this effect

by estimating R0 values for six common North American

bird species, American crows Corvus brachyrhynchos, American

robins Turdus migratorius, blue jays Cyanocitta cristata, house

sparrows Passer domesticus, Northern mockingbirds Mimus

polyglottos and Northern cardinals Cardinalis cardinalis. We first

estimate R0 assuming each species constitutes simulta-

neously the entire blood meal source population for mosqui-

toes, and the entire disease reservoir population (Fig. 4b). We

then estimate a more ecologically informative R0 index that

assumes all species are available for blood meals, but only

one species can act as a disease reservoir (Fig. 4c).

For each bird, we used species-specific values of dR and

cR (Table 3). An additional species-specific parameter

reported in the empirical literature is the mean infectious-

ness rate, i (Komar et al. 2003), which would correspond to

the transition rate from exposed to infectious classes if

reservoirs were modelled with an S–E–I–R structure. As this

approach has not yet been taken in these models, we did not

incorporate it here. The resultingR0 distributions for the six

species are all significantly above the threshold value of 1,

illustrating that each species could serve as a reservoir for a

West Nile virus outbreak (Fig. 4b). Under the assumption

that each bird species was the only mosquito blood meal

source, the R0 for American crows is highest, and that of

Northern cardinals the lowest.

Realistically, of course, multiple reservoir species are

simultaneously present, and the biting rates they experience

vary according to their abundance and to vector prefer-

ence. When this is taken into consideration, the reservoir

species� relative contributions to disease outbreak alter. We

explore these factors by introducing an R0 index to give a

relative ranking for each reservoir species that incorporates

its contribution to the proportion of mosquito blood meals

in a natural system. To do this, we multiply the mosquito

biting rate by the reported proportion of blood meals for

each species, and calculate R0 according to the same

formula as above. The resulting R0 index values will

always be lower than the true R0 for each species, and

cannot be used to predict a disease outbreak. They do,

however, allow a relative rank comparison of reservoir

species in a fuller ecological context.

In this example, we constructed triangular parameter

distributions based on the mean and approximate range of

Cx. pipiens spp. blood meal proportions reported for the

same six bird species in one study in Tennessee: crows 2.8%,

0–8.2%; robins 11.1%, 0.8–21.4%, jays 8.3%, 0–17.3%;

sparrows 2.8%, 0–8.2%; mockingbirds 30.6%, 15.6–45.6%;

cardinals 19.4%, 6.5–32.3% (Apperson et al. 2004). We then

multiplied the biting rate by this proportion, and calculated

R0 as before. We emphasize that since these blood meal

data are drawn only from a single case study, the index

values calculated here are specific to this Tennessee season

and locale.

(a)

(b)

(c)

Figure 4 The reproduction number R0 differs for different

epidemiological features added to the arboviral core model (a),

and for different reservoir bird species (b,c). In (a), R0 shown for

(1) the core model, and the core model with added parameters;

(2) qV ; (3) uV ; (4) gV ; (5) aV and aR; (6) cR; (7) dR; (8) the
core model with all additional parameters. Parameter values as in

Tables 2 and 3, using disease mortality and recovery rates for house

sparrows. In (b), R0 as in eqn 6 shown for different reservoir bird

species: (1) American crows; (2) American robins; (3) house

sparrows; (4) blue jays; (5) Northern mockingbirds; (6) Northern

cardinals. In (c) the R0 index indicates relative reservoir capacity of

the same species, accounting for their relative abundances and

vector feeding preferences. Parameter values as in Tables 2 and 3;

population densities (N �
V , N �

RÞ ¼ (10 000 km)2, 1000 km)2).

Boxes show median and 25th and 75th percentiles, bars show 10th

and 90th percentiles, and dots show fifth and 95th percentiles.
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The R0 index distributions indicate that the six reservoir

species are comparable in their potential contribution to a

disease outbreak (Fig. 4c). The difference between species

ranks in Fig 4a,b arises because species with a higher R0 in

Fig. 4b had a lower proportion of blood meals (e.g. crows)

and those with a lower R0 in Fig. 4b had a higher

proportion of blood meals (e.g. cardinals). The advantage of

using this R0 index is that it incorporates both disease

transmission and blood meal data, providing a more realistic

assessment of the relative role each reservoir species would

be likely to play in a natural disease outbreak.

Life history features

We return again to the core arboviral model to consider

the effects of adding vital dynamics and stage structure on

R0 (Table 1, Fig. 1c). The vital rates for vector

mosquitoes, which have a relatively short lifecycle on

the order of 1 month, are already incorporated in the core

model. More complex seasonal or density-dependent

recruitment functions can also be used (e.g. WN1 and

JE) but limit the model’s analytical tractability. Larval and

pupal stages, which may represent up to a quarter of the

vector lifespan, but are not involved in vector–host

disease transmission, may be added as an additional class

(as in WN3).

For reservoirs, a birth rate must be considered if the

model is to apply beyond a single season. Again, this may be

added as a constant term or as a more complex function.

Reservoir stage structure can be used to account for

different disease susceptibilities of, for example, juveniles

and adults (e.g. WN1). The core model can be modified to

include these vital dynamics and stage structures as follows

(Fig. 1c):

dLV

dt|ffl{zffl}
Larval vectors

¼ bLNV|fflffl{zfflffl}
birth

� ðdLþmLÞLV|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
death andmaturation

dSV

dt|{z}
Susceptible vectors

¼ mLLV|fflffl{zfflffl}
maturation

�aV br
Ir

Nr

þbR
IR

NR

� �
SV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

disease transmission

� dV SV|fflffl{zfflffl}
death

dIV

dt|{z}
Infectiousvectors

¼aV br
Ir

Nr

þbR
IR

NR

� �
SV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

disease transmission

�dV IV|ffl{zffl}
death

dSr

dt|{z}
Susceptible juvenile reservoirs

¼ brNR|ffl{zffl}
birth

� arbr
Sr

Nr

IV|fflfflfflfflfflffl{zfflfflfflfflfflffl}
disease transmission

� ðdr þmr ÞSr|fflfflfflfflfflffl{zfflfflfflfflfflffl}
death andmaturation

dSR

dt|{z}
Susceptible adult reservoirs

¼ mrSr|{z}
maturation

� aRbR
SR

NR

IV|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
disease transmission

� dRSR|ffl{zffl}
death

dIi

dt|{z}
Infectious reservoirs

¼ aibi
Si

Ni

IV|fflfflfflfflfflffl{zfflfflfflfflfflffl}
disease transmission

� ðdi þdi þciÞIi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
death; disease mortality and recovery

; i¼ r ;R

dRR

dt|{z}
Recovered reservoirs

¼ cr Ir þcRIR|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
recovery

� dRRR|ffl{zffl}
death

ð9Þ
This model (eqn 9) incorporates a vector larval stage LV

with associated birth rate bL and maturation rate mL, as in

WN3. It also includes a simplified reservoir stage structure

based on WN1, where the population is divided into

younger and older stages denoted with subscripts r and R

respectively. Equation 9 also includes parameters from

eqn 5 that may differ between the two reservoir stages

(ai , bi , di , di , ci ; i ¼ r, R ), and includes the parameter aV
for symmetry in disease transmission. It has the basic

reproduction number

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aVN �

V

dV

arb
2
r

dr þ dr þ crð ÞN �
r

þ aRb
2
R

dR þ dR þ cRð ÞN �
R

� �s
:

ð10Þ

To evaluate the effects of these life history features on

R0, we follow model WN1 in assuming that juvenile

reservoirs are more susceptible than adults to both natural

and disease mortality, and recover more slowly from

infection. Relative to a homogeneous adult population, the

additional terms dr > dR and dr > dR therefore decrease R0,

whereas ar > aR and cr < cR increase R0. The net effect of

adding a juvenile stage thus depends on the differences in

parameter values and on the relative densities of the two

stages (see for example Lord & Day 2001a,b). The addition

of vector-stage structure does not influence R0 or the

disease trajectory. This is because of the steady-state

assumption at the DFE that bL ¼ dV(mL + dL)/mL (Won-

ham et al. 2004), which means that vector replacement in the

population is instantaneous.

Incorporating two or more reservoir species (e.g. Dobson

2004) or vector species (e.g. Choi et al. 2002) would similarly

introduce additional equations and parameter sets into R0.

The net effect of these additions, in terms of disease dilution

or amplification (Dobson 2004), would again depend on the

relative densities of each species and on the specific

parameter values.
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IMP L I CAT IONS AND FUTURE D I R EC T IONS

Implications of model comparison

In this review, we have synthesized a group of mathematical

models to illustrate how biological assumptions alter model

predictions in host–vector diseases. Our analytical results

show that different disease-transmission assumptions gen-

erate fundamentally different disease basic reproduction

numbers. The qualitative differences in R0 expressions can

lead to diametrically opposed predictions for disease

control, and the quantitative R0 values can span orders of

magnitude. These conflicting predictions can be reconciled

by appreciating that each disease-transmission term can

realistically be applied only to a certain range of vector and

reservoir population densities. If a term is misapplied

outside this range, the resulting R0 values can be

misleadingly low or high, and predicted control strategies

may backfire.

The assumption of reservoir frequency-dependent trans-

mission applies when the biting rate by vectors is saturated

but the biting rate on reservoirs is not. It predicts that

controlling the vector density decreases the chance of

disease outbreak, whereas controlling the reservoir density

increases the chance of outbreak. This is in stark contrast to

the other transmission terms. Mass-action transmission,

which applies when both biting rates are limited by low

vector and reservoir densities, predicts that controlling either

vector or host density will reduce the chance of disease

outbreak. Susceptible frequency dependence, which assumes

that the biting rates by vectors and on reservoirs are both

saturated, predicts that control of neither vector nor host

density will influence the chance of disease outbreak, but this

assumption seems unlikely to hold in a natural system.

Quantitatively, the use of an inappropriate transmission term

can incorrectly increase or decrease the estimate of R0 by a

factor of two or more orders of magnitude in the examples

we calculated. As each of the three transmission terms is in

use in West Nile virus and related disease modelling (Table

1), it is essential to establish which is appropriate for a given

system before making model-based disease predictions and

control recommendations.

Additional assumptions about disease epidemiology also

significantly affected R0. For the system we examined,

simpler models with fewer parameters generated higher R0

values, and therefore a greater predicted risk of outbreak,

than more complex and realistic models. The R0 of the

most complex model was some two orders of magnitude

lower than that of the simplest model.

Comparing the R0 of six bird species showed that all are

intrinsically effective reservoirs for a West Nile virus

outbreak, with American crows the highest and Northern

cardinals the lowest. We introduced the R0 index to identify

the relative contributions of each species in an ecological

context that includes the proportion of mosquito blood

meals that each species supplies. The R0 index values for all

six species were indistinguishable, showing that all could

play an approximately equal role in an outbreak.

For clarity, we separately synthesized the effects of

transmission terms, epidemiological features, and life history

features, but for a given model the effects of all these

assumptions should be assessed together. Most of the seven

original arboviral encephalitis models presented numerical

simulations of the disease trajectory, but in only one case

were these validated against observed outbreak data (WN3).

With the seven models now synthesized into a systematic

array, reasonable next steps would include model paramete-

rization, validation against independent data, and model

selection. As most of the parameter estimates for West Nile

virus are currently based on small sample sizes, paramete-

rization would be more robust with more accurate and

precise distributions for all relevant species. Validation

against outbreak data would be enhanced by field estimates

of these same vector and reservoir species� densities at the
beginning of the outbreak. With the resulting parameter

estimates and quantified uncertainty in hand, appropriate

transmission terms could better be selected, the models

could better be tested and compared, and the sensitivity of

R0 more accurately assessed.

Future directions in arboviral encephalitis modelling

The model variations that we synthesized here are suffi-

ciently simple to remain analytically tractable. However,

important extensions in environmental, ecological, and

evolutionary model complexity could also be developed

and tested for host–vector models in general, and for West

Nile virus in particular.

Extrinsic environmental factors influence seasonal and

interannual population dynamics of both vectors and hosts

(Shaman et al. 2002; Hosseini et al. 2004; Pascual & Dobson

2005) and could be incorporated into the model structure

both analytically and numerically (e.g. Lord & Day 2001a,b;

Koelle & Pascual 2004; Wonham et al. 2004). Spatial models

(e.g. Hastings et al. 2005; Lewis et al. 2006a) could incor-

porate both environmental variability and animal dispersal

patterns (e.g. Yaremych et al. 2004). Extending the temporal

and spatial model scales would also allow dynamical models

to be integrated with statistical environmental models of

habitat quality and climate change for more detailed disease

forecasting (e.g. Randolph & Rogers 2000; McCallum &

Dobson 2002; Rogers et al. 2002).

The importance of many additional ecological features

of the vectors, reservoirs, and disease, could also be tested.

For example, arboviral pathogens can influence vector
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behaviour and survival (e.g. Grimstad et al. 1980; Moncayo

et al. 2000; Lacroix et al. 2005) in ways that have yet to be

incorporated into these models. The importance of disease

transmission horizontally among reservoir individuals

(Kuno 2001) and through secondary hosts (Higgs et al.

2005) should also be evaluated.

Although arboviral models thus far have generally been

developed to consider single generic species, empirical

studies show that parameter values can vary among

interacting vector species (e.g. Turell et al. 2001; Goddard

et al. 2002; Tiawsirisup et al. 2004, 2005), host species (e.g.

Bernard et al. 2001; Komar et al. 2003) and viral strains (e.g.

Brault et al. 2004; Langevin et al. 2005). The effect on R0 of

modelling multiple species (e.g. Choi et al. 2002; Dobson

2004), including vector biting preference for different host

stages and species (e.g. Lord & Day 2001a,b; Apperson et al.

2004) also warrants further investigation. Mathematically,

most of the existing models use constant rate parameters for

transition from one population class to the next. This

standard mathematical simplification can underestimate R0

(Wearing et al. 2005), and its importance for host–vector

systems should be established.

These environmental and ecological factors scale up to

the evolutionary level, where mosquito hybridization (Fon-

seca et al. 2004), coevolution among viruses, vectors and

hosts (Anderson & Roitberg 1999; Myers et al. 2000;

Grenfell et al. 2004) and the interactive effects of multiple

diseases (e.g. Hunter et al. 2003; Rohani et al. 2003) all play

out. Although these extensions inevitably increase model

complexity and reduce tractability, it remains important to

assess their relative roles in linking disease dynamics and

control at local and global scales.
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APPEND IX

Here we summarize the formulation and analysis of the

seven arboviral encephalitis models treated in this review.

For all models, we present the vector and reservoir

equations using the common notation in Table 2. We also

calculate the basic reproduction number R0 following the

next-generation matrix method (Diekmann & Heesterbeek

2000; van den Driessche & Watmough 2002). (Although

convention dictates the use of a different symbol for the

reproduction number when a model explicitly includes

control, we use R0 throughout for all models.) We include

the calculation details only for models in which R0 has not

previously been reported in the literature from this

method. For the other models, we simply give the formula

and the reference. For simplicity of R0 calculation, we

treat all rate parameters in the original equations as

constants. Although this approach leads to some simpli-

fication of the original models, particularly WN1 and JE, it

allows a comparison of their basic structures. At the DFE

in all models, Ii ¼ Ei ¼ Ri ¼ 0, SV ¼ NV ¼ N �
V , and

SR ¼ NR ¼ N �
R .

WN1 (simplified model II from Lord & Day 2001a,b)

These two papers model a single West Nile virus season

in Florida, with vectors and juvenile and adult reservoirs.

The model is extensively parameterized to allow seasonal

variation in environmental factors, which influence mos-

quito population dynamics, feeding preference, and bird

reproductive success and age structure. This is the only

study to conduct a statistical analysis of parameter

intercorrelation and model sensitivity. However, R0 is

not calculated and the full system appears too complex

for theoretical stability analysis. The same model is also

applied to St Louis encephalitis by setting reservoir

mortality to zero.

Vectors (Lord & Day 2001a, equation 5):

dSV

dt
¼ aV � aV

br Ir
Nr

þ bRIR
NR

� �
SV � dV SV

dEV

dt
¼ aV

br Ir
Nr

þ bRIR
NR

� �
SV � jV þ dVð ÞEV

dIV

dt
¼ jV EV � dV IV

: ð1:1Þ

Reservoirs (Lord & Day 2001a, p. 304):

dSr

dt
¼ ar � arbr

Sr

Nr

IV � ðdr þ mr ÞSr

dSR

dt
¼ mr Sr � aRbR

SR

NR

IV � dRSR

dIi

dt
¼ aibi

Si

Ni

IV � ðdi þ di þ ciÞIi ; i ¼ r ;R

dRR

dt
¼ cr Ir þ cRIR � dRRR

ð1:2Þ

This model treats birds that are more susceptible

(juvenile, subscript r) and less susceptible (adult, subscript

R) separately in compartments Si and Ii , where i ¼ r, R.

In the original, the parameters bi are functions of juvenile

and adult reservoir abundances and mosquito preference,

dV and jV are linear functions of temperature, which is a

cosine function of time, and aV and ar are environmen-

tally forced functions of time. The parameter mr is

originally a time delay function accounting for the survival

and maturation of uninfected juvenile birds to adults. We

inserted the parameter di into the equations dIi/dt as per

the text and figures in Lord & Day (2001b), and made

two minor notational corrections: in the original equation

for dJi/dt we replaced mJJs with mJJi (which in our

notation is drIr), and in the original equation for dAin/dt

we replaced rAAs with rAAin (which in our notation is

cRIR).
Under the simplifying assumption that all parameters are

constant per capita rates, the DFE (SV ;EV ;
IV ; Sr ; SR; Ir ; IR;RRÞ ¼ ðN �

V ; 0; 0;N �
r ;N

�
R ; 0; 0; 0) or for

the simpler case where all birds are adults

(SV ;EV ; IV ; SR; IR;RRÞ ¼ ðN �
V ; 0; 0;N �

R ; 0; 0), where

N �
V ¼ aV =dV and N �

i ¼ ai=di . Then R0 is calculated as

follows. The infected equations for EV, IV, Ir , and IR can

be rewritten in matrix form, separating new infection terms

( f ) from vital dynamics terms (v):
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EV

IV

Ir

IR

2
6664

3
7775
t

¼ f � v ¼

aV ðbr Ir=Nr þ bRIR=NRÞSV
0

arbr IV Sr=Nr

aRbRIV SR=NR

2
6664

3
7775

�

ðdV þ jV ÞEV

�jV EV þ dV IV

ðdr þ dr þ cr ÞIR
ðdR þ dR þ cRÞIR

2
6664

3
7775: ð1:3Þ

Calculating the respective linearized matrices at the DFE

gives:

F ¼

0 0 aV brN
�
V =N �

r aV bRN
�
V =N �

R

0 0 0 0

0 arbr 0 0

0 aRbR 0 0

2
664

3
775;

ð1:4Þ

V ¼

dV þ jV 0 0 0

�jV dV 0 0

0 0 dr þ dr þ cr 0

0 0 0 dR þ dR þ cR

2
664

3
775:
ð1:5Þ

Thus,

and the next generation matrix is

FV �1 ¼

0 0
aV brN

�
V

drþdrþcrð ÞN �
r

aV bRN
�
V

ðdRþdRþcRÞN �
R

0 0 0 0
arbrjV

dV ðdV þjV Þ
arbr
dV

0 0
aRbRjV

dV ðdV þjV Þ
aRbR
dV

0 0

2
6664

3
7775:

ð1:7Þ

There is a double zero eigenvalue of FV)1 and the

remaining two eigenvalues satisfy a quadratic, so the spectral

radius of FV)1 is

R0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV aVN �

V

dV

arb
2
r

ðdr þdr þcr ÞN �
r

þ aRb
2
R

ðdRþdRþcRÞN �
R

� �s
:

ð1:8Þ

This can be compared with R0 in eqn 10. For a

homogeneous reservoir population where all birds are

adults, the expression reduces to

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV aRbR

dV

aV bRN
�
V

ðdR þ dR þ cRÞN �
R

s
; ð1:9Þ

which can be compared with text eqn 6.

WN2 (based on Thomas & Urena 2001 rewritten as the ODE
system in Lewis et al. 2006b)

This West Nile virus model was originally formulated as a

system of discrete-time difference equations. The model

incorporates vectors, reservoirs and humans, and evaluates

the effects of periodic spraying as a mosquito control

measure. Theoretical model analysis provides parameter

ranges on the amount of spraying needed to force the

mosquito population to die out, but R0 is not calculated.

Numerical simulations are provided using unspecified

parameter values. This continuous-time formulation from

Lewis et al. (2006b) of the discrete-time model (Thomas &

Urena 2001) omits the original mosquito spraying param-

eter c(t).

Vectors:

dSV

dt
¼ bV ½SV þ ð1� qV ÞðEV þ IV Þ� � b0RIRSV � dV SV

dEV

dt
¼ bV qV ðEV þ IV Þ þ b0RIRSV � ðdV þ jV ÞEV

dIV

dt
¼ jV EV � dV IV :

ð2:1Þ
Reservoirs:

dSR

dt
¼ bRNR � b0RSRIV � dRSR

dIR

dt
¼ b0RSRIV � ðdR þ cRÞIR

dRR

dt
¼ cRIR � dRRR:

ð2:2Þ

V �1 ¼

1=ðdV þ jV Þ 0 0 0

jV =½dV ðdV þ jV Þ� 1=dV 0 0

0 0 1=ðdr þ dr þ cr Þ 0

0 0 0 1=ðdR þ dR þ cRÞ

2
664

3
775 ð1:6Þ
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For 0 < qV £ 1, this model incorporates vertical disease

transmission in the vector population. The DFE with

parameter constraints bV ¼ dV and bR ¼ dR is

ðSV ;EV ; IV ; SR; IR;RRÞ ¼ ðN �
V ; 0; 0;N �

R ; 0; 0Þ. The basic

reproduction number is

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV b0R
dV

b0RN
�
VN �

R

ðdR þ cRÞ

s
for qV ¼ 0 ð2:3Þ

and

qV
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qV
2

� �2

þuV b0R
dV

b0RN
�
VN �

R

ðdR þ cRÞ

s
for qV > 0; ð2:4Þ

as calculated in Lewis et al. (2006b). These can be compared

with R0 in text eqns 3 and 6. The behaviour of the original

model with different mosquito-spraying functions is

explored by Darensburg & Kocic (2004).

WN3 (Wonham et al. 2004)

This model characterizes vector and reservoir populations in

a single West Nile virus season in North America. The

model is analysed theoretically to obtain disease-free

equilibria, evaluate local stability and calculate R0. Param-

eter values are obtained from the literature, the model is

validated using reported outbreak data, and numerical

simulations are shown. Model extensions are presented to

calculate threshold mosquito densities for outbreak and to

consider seasonal variation in mosquito levels. The model

structure, excluding the original equation for dead birds

which does not influence the dynamics, is as follows.

Vectors:

dLV

dt
¼ bLNV � ðmL þ dLÞLV

dSV

dt
¼ �aV bR

IR

NR

SV þ mLLV � dV SV

dEV

dt
¼ aV bR

IR

NR

SV � jV þ dVð ÞEV

dIV

dt
¼ jV EV � dV IV :

ð3:1Þ

Reservoirs:

dSR

dt
¼ �aRbR

SR

NR

IV

dIR

dt
¼ aRbR

SR

NR

IV � ðdR þ cRÞIR
dRR

dt
¼ cRIR:

ð3:2Þ

The parameter constraint for a constant mosquito popula-

tion bL ¼ dV(mL + dL)/mL gives the DFE as ðLV ; SV ;EV ;
IV ; SR; IR;RRÞ ¼ ðdV N �

V =mL ;N
�
V ; 0; 0;N �

R ; 0; 0Þ. The dis-
ease basic reproduction number is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV aRbR

dV

aV bRN
�
V

ðdR þ cRÞN �
R

s
; ð3:3Þ

as calculated in Wonham et al. (2004). Compare text eqn 6.

WN4 (Bowman et al. 2005)

This model treats a single West Nile season in North

America for vectors, reservoirs and humans. The authors

evaluate preventive strategies (mosquito spraying vs.

personal prevention) using a detailed representation of

five human classes. The model is analysed theoretically to

obtain disease-free and endemic equilibria, evaluate local

and global stability, and calculate R0. Numerical results are

also shown.

Vectors:

dSV

dt
¼ aV � aV bR

IR

NR

SV � dV SV

dIV

dt
¼ aV bR

IR

NR

SV � dV IV :

ð4:1Þ

Reservoirs

dSR

dt
¼ aR � aRbR

SR

NR

IV � dRSR

dIR

dt
¼ aRbR

SR

NR

IV � dR þ dRð ÞIR:
ð4:2Þ

In this model, the mosquito biting rate bR is initially

presented as a general function of the total mosquito, bird

and human populations, and later is assumed for simplicity

to be a constant rate parameter. The system has a unique

DFE, namely ðSV ; IV ; SR; IRÞ ¼ ðN �
V ; 0;N �

R ; 0Þ, where

N �
V ¼ aV =dV and N �

R ¼ aR=dR. The disease basic repro-
duction number is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRbR
dV

aV bRN
�
V

ðdR þ dRÞN �
R

s
; ð4:3Þ

as calculated in Bowman et al. (2005); compare text eqn 6.

WN5 (Cruz-Pacheco et al. 2005)

This West Nile virus model is analysed theoretically to

obtain disease-free and endemic equilibria and to evaluate

local stability and, for the case of no reservoir-induced

disease mortality, global stability. The authors define an

expression for R0, which is then compared for eight North
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American bird species. Numerical outbreak simulations are

also shown for different species.

Vectors:

dSV

dt
¼ bV ½SV þ ð1� qV ÞIV � � aV bR

IR

NR

SV � dV SV

dIV

dt
¼ qV bV IV þ aV bR

IR

NR

SV � dV IV :

ð5:1Þ
Reservoirs:

dSR

dt
¼ aR � aRbR

SR

NR

IV � dRSR

dIR

dt
¼ aRbR

SR

NR

IV � ðdR þ dR þ cRÞIR
dRR

dt
¼ cRIR � dRRR:

ð5:2Þ

The DFE is ðSV ; IV ; SR; IR;RRÞ ¼ ðN �
V ; 0;N �

R ; 0; 0Þ,
where N �

R ¼ aR=dR and the vector vital rates bV ¼ dV. We

recalculate R0 from the infected equations for IV and IR
written as

IV

IR

� 	
t

¼ f � v ¼
aV bRIRSV =NR þ qV bV IV

aRbRIV SR=NR

� 	

�
dV IV

ðdR þ dR þ cRÞIR

� 	
: ð5:3Þ

Consequently,

F ¼
qV dV aV bRN

�
V =N �

R

aRbR 0

� 	
and

V ¼
dV 0

0 dR þ dR þ cR

� 	
ð5:4Þ

so that

FV �1 ¼ qV aV bRN
�
V =ðdR þ dR þ cRÞN �

R

aRbR=dV 0

� 	
:

ð5:5Þ

The spectral radius is then

R0 ¼
qV
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qV
2

� �2

þ aRbR
dV

aV bRN
�
V

ðdR þ dR þ cRÞN �
R

s
; ð5:6Þ

compare text eqn 7. The expression forR0 obtained by our

method differs from that of the corresponding term ~R0

defined in Cruz-Pacheco et al. (2005), p. 1170). This dif-

ference arises when qV is correctly treated as causing new

infections and therefore entering in f, rather than as a

vital rate term appearing in v (see van den Driessche &

Watmough 2002). When we set qV ¼ 0, bothR0 above and
~R0 reduce to

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRbR
dV

aV bRN
�
V

ðdR þ dR þ cRÞN �
R

s
: ð5:7Þ

JE (simplified from Tapaswi et al. 1995)

Japanese encephalitis is a mosquito-borne arbovirus

endemic to southeast Asia. It differs from West Nile virus

in having important mammalian as well as bird reservoirs,

and in not causing reservoir mortality. This model of JE in

India includes vectors, reservoirs, and humans. It is analysed

theoretically to obtain disease-free and endemic equilibria,

discuss local and global stability, and calculate R0. The

reservoir–human subset of this model is simulated numer-

ically in Ghosh & Tapaswi (1999).

Vectors:

dSV

dt
¼ aV þ gV IV � aV bRIR

SV

NV

� dV SV

dIV

dt
¼ aV bRIR

SV

NV

� dV þ gVð ÞIV :

ð6:1Þ

Reservoirs:

dSR

dt
¼ bRNR þ gRRR � aRbR

SR

NR

IV � dRSR

dIR

dt
¼ aRbR

SR

NR

IV � dR þ cRð ÞIR
dRR

dt
¼ cRIR � dR þ gRð ÞRR:

ð6:2Þ

In JE the original vector recruitment term aV ¼
(bV ) (bV ) dV)NV/KV)NV, where KV is the carrying

capacity of adult mosquitoes. Under the simplifying

assumption that aV is a constant rate parameter, the DFE

is ðSV ; IV ; SR; IR;RRÞ ¼ ðN �
V ; 0;N �

R ; 0; 0Þ, where

N �
V ¼ KV and the reservoir birth and death rates are

assumed to be equal.

The R0 defined in Tapaswi et al. (1995, p. 298)

corresponds to our R2
0, which we calculate from the

infected equations written as

IV
IR

� 	
t

¼ f � v ¼ aV bRIRSV =NV

aRbRIV SR=NR

� 	
� ðdV þ gV ÞIV

ðdR þ cRÞIR

� 	
:

ð6:3Þ
Consequently,

F ¼ 0 aV bR
aRbR 0

� 	
and V ¼ dV þ gV 0

0 dR þ cR

� 	
ð6:4Þ
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so that

FV �1 ¼ 0 aV bR=ðdR þ cRÞ
aRbR=ðdV þ gV Þ 0

� 	
: ð6:5Þ

The spectral radius is then

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aRbR
ðdV þ gV Þ

aV bR
ðdR þ cRÞ

s
; ð6:6Þ

compare text eqns 4 and 6.

RR (Simplified from Choi et al. 2002)

Ross River virus is the most common mosquito-borne

arbovirus in Australia. The majority of hosts are marsupials.

This model considers Western Gray kangaroo reservoirs and

humans, and is the only one of the seven arboviral models

to incorporate two different vector species. Since the disease

is endemic, disease transmission incorporates the added

parameter wV, which accounts for vectors newly infected by

reservoirs other than kangaroos and humans.

As the two sets of vector equations are identical, we show

just one for ease of model comparison.

Vectors:

dSV

dt
¼ aV � aV b0RIV SV � ðdV þ wV ÞSV

dEV

dt
¼ ðaV b0RIV þ wV ÞSV � dV þ jVð ÞEV

dIV

dt
¼ jV EV � dV IV

: ð7:1Þ

Reservoirs (kangaroos):

dSR

dt
¼ �aRb

0
RSRIV

dIR

dt
¼ aRb

0
RSRIV � cRIR:

ð7:2Þ

The original study presents numerical simulations and

analytical disease outbreak thresholds, but R0 cannot be

calculated because there is no DFE. To allow the

basic model structure to be compared, we set wV ¼ 0

and assume N �
V ¼ aV =dV , giving the DFE as

ðSV ; IV ;EV ; IR;RRÞ ¼ ðN �
V ; 0; 0;N �

R ; 0Þ. The equations

for infected individuals are then

EV

IV
IR

2
4

3
5
t

¼ f � v ¼
aV b0RIRSV

0

aRb
0
RIV SR

2
4

3
5�

ðdV þ jV ÞEV

�jV EV þ dV IV
cRIR

2
4

3
5:

ð7:3Þ
Consequently,

F ¼
0 0 aV b0RN

�
V

0 0 0

0 aRb
0
RN

�
R 0

2
64

3
75

V ¼
dV þ jV 0 0

�jV dV 0

0 0 cR

2
64

3
75: ð7:4Þ

The next generation matrix is then

FV �1 ¼
0 0

aV b0RN
�
V

cR
0 0 0

aRb
0
RjV N �

R

dV ðdVþjV Þ
aRb

0
RN

�
R

dV
0

2
64

3
75; ð7:5Þ

with spectral radius

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uV aRb

0
R

dV

aV b0RN
�
VN �

R

cR

s
; ð7:6Þ

compare text eqns 3 and 6.

Editor, Jonathan Chase

Manuscript received 5 August 2005

First decision made 27 September 2005

Second decision made 9 December 2005

Manuscript accepted 30 January 2006

Assumptions and predictions of host–vector models 725

� 2006 Blackwell Publishing Ltd/CNRS


