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Abstract The question how aquatic populations persist in rivers when individuals
are constantly lost due to downstream drift has been termed the “drift para-
dox.” Recent modeling approaches have revealed diffusion-mediated persistence
as a solution. We study logistically growing populations with and without a ben-
thic stage and consider spatially varying growth rates. We use idealized hydro-
dynamic equations to link river cross-sectional area to flow speed and assume
heterogeneity in the form of alternating patches, i.e., piecewise constant condi-
tions. We derive implicit formulae for the persistence boundary and for the disper-
sion relation of the wave speed. We explicitly discuss the influence of flow speed,
cross-sectional area and benthic stage on both persistence and upstream invasion
speed.

Keywords Aquatic organisms - Persistence - Invasions - Rivers - Spatial
heterogeneity - Advection—diffusion equations

1. Introduction

Streams and rivers are characterized by a variety of physical, chemical and ge-
omorphological features such as unidirectional flow of water, pools and riffles,
bends and waterfalls, floodplains, lateral inflow and hyporheic zones, hierarchi-
cal network structure and many more (Allan, 1995). These abiotic conditions give
rise to a wide range of qualitatively different habitats for aquatic populations such
as periphyton, invertebrates, and fish. Spatio-temporal variations in temperature,
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light, flow conditions, and nutrient availability particularly affect species who do
not possess the ability to actively move between different conditions and thereby
choose among or average over these features. These species with limited active
mobility in the water column, e.g., periphyton and invertebrates, form the base
of a complex food-web, and are indicators of ecosystem health (Hill et al., 2000).
Natural and human disturbances may alter these environmental conditions, e.g.,
through flood events, landslides, dam and channel construction, water extraction,
or land-use patterns in the watershed. In order to sustainably manage and main-
tain riverine ecosystems, it is therefore crucial to understand the effects of hetero-
geneity on persistence and extinction, invasion potential and invasibility, as well as
competition of such populations.

The question how invertebrates in streams can resist wash-out caused by flow,
has been termed the “drift paradox” (Miiller, 1954, 1982). Recent modeling efforts
for the drift paradox identified a “critical flow speed” below which a population
can persist on a long enough stretch of a river and also spread upstream in form of
a moving front (Speirs and Gurney, 2001; Lutscher et al., 2005; Pachepsky et al.,
2005). These models neglect spatial heterogeneities and assume a homogeneous
habitat. Spatial heterogeneities have been considered when modeling spread and
persistence in terrestrial systems, but typically under the assumption of symmetric
dispersal and hence neglecting flow (Shigesada et al., 1986; Cruywagen et al., 1996),
but see Weinberger (2002). Lewis et al. (1996) include flow in the model formu-
lation but not in the analysis. Cantrell and Cosner (2003) provide some general
results that include flow, but their model formulation is not tied to the geome-
try of rivers. Since heterogeneities in riverine habitats can frequently be linked
to channel geometry, it is important to include an appropriate representation of
this geometry into the model. While it is nearly impossible to completely describe
the complexity of fluid flow in natural river channels, hydrologists have success-
fully employed advection—diffusion equations to describe time-series data of con-
servative tracer injections in rivers and streams (Bencala and Walters, 1983). For
a more recent and mathematically detailed theory of transport in hydrology see
Logan (2001). Even though the equations are spatially one-dimensional, they im-
plicitly capture some essential aspects of the three-dimensional geometry of the
river channel.

The objective of the present work is to analyze the effects of heterogeneity
on persistence and spread of a single population in a riverine habitat by syn-
thesizing and extending the approaches and concepts mentioned earlier. We first
use the ideas of Bencala and Walters (1983) on representations of transport and
flow to derive two models for spatio-temporal dynamics of a population. The first
model considers only the pelagic phase and hence simultaneously generalizes the
model of Speirs and Gurney (2001) by introducing heterogeneity, and the model of
Shigesada et al. (1986) by introducing unidirectional flow. The second model
includes a benthic stage of the population and generalizes the system of
Pachepsky et al. (2005) by introducing horizontal heterogeneity. The importance
of a benthic stage for persistence of populations has been demonstrated frequently
(DeAngelis et al., 1995; Dent and Henry, 1999; Mulholland and De Angelis, 2000;
Lutscher et al., 2005; Pachepsky et al., 2005).
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For both model equations we study persistence of the population through the
“critical domain size” problem and spatial spread through the speed of traveling
(periodic) waves. These two concepts have a distinguished history in spatial ecol-
ogy. For convenience of the reader, we summarize related work in Table 1. The
“critical domain size” is the minimal amount of habitat that a population requires
to persist (Skellam, 1951). It results from the assumption that a population can
grow locally within a bounded habitat, but might be lost from the habitat to unin-
habitable exterior by movement across the boundary. The critical domain size has
been studied in continuous and discrete time modeling frameworks (Kierstead and
Slobodkin, 1953; Kot and Schaffer, 1986), and it provides an important tool in con-
servation biology and reserve design (Cantrell and Cosner, 1993; Botsford et al.,
2001). In unbounded heterogeneous domains, there is a critical fraction of good
habitat that guarantees population persistence (Shigesada et al., 1986; Van Kirk
and Lewis, 1997).

The invasion speed of a population is a crucial quantity in many cases: some
invasions may be intended, e.g. for biological control agents (Baker and Dunn,
1990), others may threaten native species or, in the case of an epidemic disease,
human health may be at risk (Medlock and Kot, 2003). Hastings et al. (2005) give
a comprehensive overview on ecological aspects of the subject, Xin (2000) provides
a summary of mathematical results on front propagation. While several measures
of the speed of spread are available (Aronson and Weinberger, 1975; Weinberger,
1982), we focus mostly on the (minimal) speed of a traveling wave (Fisher, 1937)
and discuss the relation to other measures in the appendix.

Throughout this paper, we consider flow and advection to be caused by the flow-
ing water in rivers and streams, but many other physical processes induce advective
transport of populations, and our modeling framework and results are widely ap-
plicable. Most obvious examples are coast lines with dominant currents (Gaylord
and Gaines, 2000) where no-fishing zones can create heterogeneity (Botsford et al.,
2001), or plug-flow reactors as models for the gut (Ballyk et al., 1998), where pock-
ets in the gut wall give rise to heterogeneities. Somewhat less obvious examples of
systems with unidirectional flow are phytoplankton in the water column, sinking
due to gravity (Huisman et al., 2002), and terrestrial systems in the presence of
moving temperature isoclines (Potapov and Lewis, 2004).

In the next section, we present the two models for population dynamics and
movement in heterogeneous domains. In the following we always assume that the
habtiat consists of periodically varying, alternating patches of good and bad qual-
ity. We apply homogenization theory to recover the homogeneous model on a long
spatial scale. In Section 3, we derive conditions for persistence of the population in
an unbounded domain with alternating good and bad patches. We recover the re-
sults from Shigesada et al. (1986) in case of no flow and show how the introduction
of flow changes these results. In Section 4, we focus on the minimal speed of a trav-
eling periodic wave in an alternating good—-bad habitat. We give conditions under
which a population can spread against the flow. Then we turn to conditions for per-
sistence on a bounded patch in Section 5, we focus especially on the question how
much heterogeneity is needed for persistence in the case where the homogenized
model predicts extinction.
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2. Modeling

We start by deriving an implicitly three-dimensional conservation law for move-
ment of individuals in rivers and streams. Following Bencala and Walters (1983)
and DeAngelis et al. (1995), we partition the river into the flowing water or pelagic
zone and the storage or benthic zone. We denote by X € R the longitudinal dis-
tance in the river and assume that longitudinal movement occurs only in the pelagic
zone. In each cross-section, we assume that the river is well-mixed, and we denote
A(X), Ay(X) as the cross-sectional areas of flowing and storage zone, respectively.
The corresponding densities of individuals are denoted by U(X), N(X).

2.1. Movement dynamics
The two processes that cause longitudinal displacement of individuals are diffusive

and advective transport. The temporal change in total mass of pelagic individuals
due to these two processes in a given test volume is

9 X]A(T X)U(T, X)dX = X18<AD3U>(T X)dXx
aT Jx, ’ ’ Jx, 9X ax)
Xy
- /X ~axQuIT Max (1)

The change due to the diffusive flux, given by the first integral on the right-hand
side of (1) is proportional to the concentration gradient Uy, by Fick’s law and
proportional to the cross-sectional area by the assumption on homogeneous lateral
mixing. Similarly to Shigesada et al. (1986), we allow the diffusion constant D to
vary in space. The change due to the advective flux depends on the discharge QO =
V A, where V is the flow speed at X. For a more detailed derivation of (1) from a
two-dimensional description, see Appendix A.1.

Discharge and cross-sectional area are related by the continuity equation for
stream flow (Eagleson, 1970)

IA 90

3T ax + (OLin — OLow), 2

where QOrin, OLour denote lateral flows due to tributaries and groundwater ex-
change. For the purposes of this study, we assume that there are no lateral flows
and that the channel geometry does not change in time, so that the discharge is
constant.

2.2. Pelagic population

If we consider only the flow compartment and assume that the pelagic population
grows logistically, then the earlier mentioned considerations lead to our first model
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equation

= LDAU)x~ LUt (FX) — nU)U, (3)

where F is the spatially varying growth rate and p the (spatially constant) factor in
the logistic self-limitation term. In Appendix A.1, we derive our model equation
(3) again, this time from an individual-based random-walk approach. For constant
A > 0and Q = 0, this equation is the one studied by Shigesada et al. (1986). For
spatially constant coefficients D, A, O, F > 0, we obtain the model by Speirs and
Gurney (2001).

2.3. Benthic—pelagic population

Many populations with benthic stages spend only a small fraction of their lifetime
in the free-flowing water and do not reproduce there (Allan, 1995). Therefore,
we model logistic growth for the benthic population only and assume a (spatially
varying) exchange rate K(X) between storage and flowing zone. This leads to the
system of equations

Ur = A(X)<D(X>A(X>UX>X (%()Uﬁ K(X)(N - U), (4a)
Ax) )
= K555 W = M)+ (F) = s, (4b)

This model reduces to the one studied by Pachepsky et al. (2005) when all coeffi-
cients are assumed constant in space. In the following analysis of the two models,
we will usually treat the simpler model (3) first and more explicitly. Details in the
analysis of (4) will be omitted when they are not markedly different from the sim-
pler case.

2.4. Boundary conditions

In Section 5, we investigate conditions for population persistence in a finite stretch
[0, B] of the river, and hence we have to introduce boundary conditions for U. Pre-
vious studies in flow-through environments have used two different types of such
conditions, namely Dirichlet or “hostile” conditions (Speirs and Gurney, 2001;
Pachepsky et al., 2005), or Danckwerts conditions (Ballyk et al., 1998; Lutscher
et al., submitted for publication). In Appendix A.2 we use a random-walk model to
understand the differences between these two approaches. Here, we use a “worst-
case” scenario to study persistence, i.e., the hostile boundary conditions. We as-
sume that no individuals leave or enter the stretch at the upstream boundary but
all individuals leave and none enter at the downstream boundary. Mathematically,
this is expressed by imposing the boundary conditions

DAUx—-QU =0 at X=0, and U=0 at X=B. 5)
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Biological scenarios that correspond to these conditions could be that the top end
is the source of the river (stretch), while the bottom end is an abrupt change of
conditions. These might include a waterfall, a fast flowing river, a lake or the ocean
with different water quality (e.g., saltwater) or human disturbances (e.g., waste-
water).

2.5. Periodic habitat

As the simplest and most mathematically tractable extension to the constant co-
efficient case, we consider a periodically varying habitat with piecewise constant
coefficient functions (Shigesada et al., 1986; Robbins and Lewis, submitted for
publication). This corresponds to a river with a series of pools and riffles, for ex-
ample. We assume that

A, Dy, F, A, Ky, Xe (0, L))+ LZ

A, DX FQO. A KX =3y B A o, Xe (L. L)+ 12 O

where [ + L, = L. Without loss of generality, we assume F; > F, and Fj > 0.
We refer to the patches where F = Fj as the “good” patches and the other ones
as “bad” patches because of the difference in growth rates. In fact, we will only
consider F, < 0, so that the growth rate becomes a death rate in the bad patches.
At the boundaries between the two types of habitat we prescribe matching condi-
tions for the density and the flux. For continuity of the density, these conditions
are given by

lim U(T. X) = i UT lim U(T, X) = lim U(T. X). 7
x%IE,(X) im (T, X), ngj(X) ng]_(X) (7

where Li; = L1+ jL, L,; = jL, j € Z. The matching conditions for the fluxes

guarantee that total mass is conserved. They are obtained by replacing the den-
sity U(T, X) in conditions (7) with the flux J (7, X), given by

J(T, X) = D(X) AX)Ux(T, X) — QU(T, X). (8)
2.6. Non-dimensionalization

We introduce non-dimensional quantities in lower case letters as follows:

T=Ft, X=xJDi/F, U(T,X)= Fu(t, x)/un, N(T, X) = Fin(t, x)/n, (9a)

AX) = Aa(x),  As(X) = Aas(x),  D(X) = Did(x), F(X) = Fi f(x). (9b)

Then the pelagic equation (3) becomes

wi(t, x) = ——[d(x)a()ux(t, )] = —=uc(t, x) + [ f(x) —u(t, O)]u(t, x),  (10)

() ()
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whereas the benthic—pelagic system (2.4) reads

" = %[d(x)a(x)ux]x - %x)ux ¥ ka(x)(n — u), (11a)
n; = ky(x)(u — n) + [ f(x) — njn. (11b)

The non-dimensional discharge is ¢ = Q/( A/ Dy Fy) and the coefficient functions
are given by

(), d(x), £, ku(), kn(x) L1132 755 xe(0,h)+1Z (12)
ax,dx,)x,ux,nx_ A D F K K )
A D R R Tadg ¥ € (b +b)+1Z

withly = Li/Fi/Dy, k=1,2and [ = [; + . For future reference, we will also use
subscripts to denote the value of the coefficient functions on the good and bad
patches, respectively, i.e.,a; = 1,a, = A/ A and so on.

2.7. Homogenization

Pools and riffles in a river are examples of heterogeneities that typically occur on
much shorter spatial scales than the whole stretch of a river. In this section, we
derive spatially homogeneous equations on a large spatial scale by averaging over
small-scale heterogeneities. The derivation of these equations follows the general
framework of multi-scale expansions and is similar to the work by Othmer (1983),
who considered Eq. (10) with ¢ = 0.

We assume that the period / =1; + 1, = ¢ < 1 is small and introduce the small
space variable ¢y = x. Assuming that the coefficient functions depend on that
small space variable only, we write

d(y) =d(ey) = d(x),  a(y)=a(ey) =a(x). &(y.u)=(f(ey) —wu. (13)

We assume that the solution of (10) can be expanded as a power series in ¢ as
follows

u(t, x) = iskuk(t, Z,)) (14)

k=0

where z = x is the large space variable, each term uy is periodic in y of period
one, and for k > 1 the average over a period with respect to y is zero. The partial
derivative with respect to x translates into the new coordinates as

a a 19
— =4 -—. 15
ox 82+88y (15)
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We substitute expressions (14), (15) into Eq. (10) and compare powers of e. After
lengthy calculations, we find the homogenized form of Eq. (10) to be

9 L 92 -0 _
Euo = DTZZMO — Qafzu() + G(uo), (16)
where
_ @dyu - q o fya()E(y. u)dy
D= s = —, G = = . 17
(@)a 2= an @) (@)a (17

The harmonic and arithmetic means are denoted by (-)y and () o, respectively. The
term G is the average growth rate weighted by the cross-sectional area, denoted
by (-)w. Equation (16) is simply Fisher’s equation with advection as studied in
Speirs and Gurney (2001). Therefore, the spreading speeds with and against the
advection are given by

ct=2VDG+ 0. (18)

Note that the benthic—pelagic system (11) can in general not be homogenized to
obtain the corresponding equations (3) in Pachepsky et al. (2005). While the afore-
mentioned homogenization procedure works for the pelagic equation in (11), the
spatial scales in the benthic equations do not separate, i.e., the benthic population
tracks the small-scale variations in growth rate, f, and/or exchange rates, k;, k.

3. Persistence in unbounded domains

In a fragmented habitat, persistence of a population depends on there being
“enough” good patches. In this section, we derive precise conditions for persis-
tence. We compare the results to the ones obtained by Shigesada et al. (1986)
and emphasize the influence of flow, channel geometry, and benthic stage on
persistence.

3.1. Pelagic system

Linearizing the pelagic equation (10) at u = 0 and making an exponential ansatz
for the eigenvalue A, we obtain the equation

d(x) — %w F(f)—Mu=0, xe[0,0, I=L+h (19

together with the matching conditions (7) and (8). Thus, the resulting problem is
Hill’s equations with piecewise constant coefficient functions d, a, f. It is known
that there is a sequence of eigenvalues of (19) and that the stability of the zero
solution is determined by the dominant eigenvalue A (Magnus and Winkler, 1979).
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The zero solution is stable if A < 0 and unstable if > > 0. The set > = O is called the
persistence boundary.

Lemma 3.1. Ifqg > 2 then Eq. (19) does not have a solution for . > 0, and hence
the population cannot persist. For 0 < q < 2, the persistence boundary is given
implicitly by

(d2a28)2 + o?

sin(aly ) sinh(8ly) S ads
20y

— cos(aly) cosh(8l,) + E =0, (20)

where

o= (1—q*/4), 8= (fz - qz) /dz E = cosh (i (z1 n LZ)) 1)
’ 4a§dz ’ 2 a2d2 '

In the original parameters of the model, the extinction condition g > 2 reads
0/ A = 24/ F D;. Therefore, if the advection speed in the good patches Q/A;
exceeds the speed of a traveling wave in a homogeneously good environment,
2/ F1 Dy, then the population cannot persist and is washed downstream. Hence,
the critical advection speed for persistence (Pachepsky et al., 2005) is the same as
in the homogeneous model and independent of the conditions in the bad patches.
The precise conditions for persistence, however, do depend on the parameters in
the bad patch. A proof of Lemma 3.1 and details of the derivation of (20) are
given in Appendix A.3. Setting g = 0 and using some trigonometric identities, one
obtains condition (13) from Shigesada et al. (1986).

To illustrate the effect of flow and channel geometry on the persistence for a
pelagic population, we plot the persistence boundary as given by (20) in Fig. 1. In-
creasing the flow for fixed channel cross-section reduces the persistence region for
the population (left panel). The flow takes individuals from good to bad patches
where they die, and hence the population can only persist if the length of the bad
patches is shorter or the loss rate in the bad patches is smaller. Increasing the cross-
sectional area of bad patches obviously reduces the population’s overall growth
rate and hence makes the population more prone to extinction (right panel). With-
out an additional plot, we report that increasing the diffusion rate in bad patches
also reduces the persistence region. Higher diffusion implies again that more indi-
viduals are carried to bad patches where they die.

3.2. Benthic—pelagic system

Next, we turn to the benthic—pelagic system (11). The linearized problem is given
by

1

[d(x)a(x)us]s — —L—uy + ko(x)(n — ), (22a)
a(x)

a(x)

Uy

ny = ky(x)(u —n) + f(x)n. (22b)
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Stability boundary

Extinction ‘ Extinction L]

Length of bad patch
Length of bad patch

Persistence

051 Persistence

-15 = 05 [} 15 = Y3 [}
Growth rate in bad patch Growth rate in bad patch

Fig. 1 Stability boundaries of the pelagic equation (10) in the f,—/, plane. The zero solution is
stable above the curve and unstable below. The plot on the left shows that the persistence region
decreases with increasing flow. The parameters are ¢ = 0, 1, 1.9 for the solid, dashed, and dash-dot
curve, respectively. Diffusion is held constant at d, = 1, the non-dimensional length of the good
patchis /; = 1 and cross-sectional area is constant, i.e., a = 1. The plot on the right shows that the
persistence region decreases with increasing cross-sectional area of bad patches. The parameters
are a = 0.8, 1, 1.2 for the solid, dashed, and dash-dot curve, respectively. Discharge is fixed at
q =1, dp, [; are as mentioned earlier, so that the dashed curves in both plots are identical.

If the growth rate on the good patches exceeds the exchange rate, i.e., f > k, then
n, > 0since u > 0, and hence the benthic population will always grow. In this case,
the population can persist, independently of how long or wide the bad patches are
and independently of the discharge. Similar parameter regions of unconditional
persistence have been found in previous work with stationary and mobile states
(Hadeler and Lewis, 2002; Lutscher et al., 2005; Pachepsky et al., 2005).

From now on, we assume f < k, on good patches. This condition is, of course, al-
ways satisfied on bad patches with f, < 0 < k,(x). We make an exponential ansatz
in (22) and look for the persistence boundary A = 0. The resulting system of equa-
tions can be reduced to the single equation

q

dxu”" — ——u' +gx)u=0, xel0,I], I=4L+Db, (23)
a(x)
where
. kn(x) _ ku(x) f(x)
=60 (6570 1) = 2o - 1oy e

The function g is piecewise constant with g(x) = g1, on good and bad patches,
respectively. On a good patch, we have 0 < f < k, and therefore, g > 0. On a bad
patch f < 0 implies g < 0. Hence, Eq. (23) is completely analogous to (19) and
can be treated similarly. The following lemma summarizes the results.

Lemma 3.2. If f > k, on the good patches, then the zero solution of (11) is un-
stable and the population can persist independently of the other parameters. If
f < k, on the good patches and q > 2./g1, then the zero solution is stable and the
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population cannot persist independently of the other parameters. Otherwise, the per-
sistence boundary is given by (20), where now the parameter definitions (21) are
replaced by

a2=(g1—q2/4) 32= (g2_612> /d2 E = cosh (g <l1+172>> (25)
’ 4atd, ’ 2 ad )]

Just as mentioned earlier in the case without the benthic stage, we can rewrite the
persistence condition g < 2,/g7 in dimensional terms as

K;
9, DR ———, (26)
Al KlAi;l — Fl

which is exactly the critical advection velocity for persistence in homogeneously
good habitat as given in Eq. (8) in Pachepsky et al. (2005).

We examine the effect of varying the exchange coefficients k,, k, on the per-
sistence region for Eq. (22). For simplicity, we fix k, = k, to be constant across
patches, thereby reducing the problem to only one parameter. In Fig. 2 we plot
the stability boundary for increasing values of k;,, and see that the persistence re-
gion decreases accordingly. As a comparison, we plot the stability boundary (20)
without benthic stage for identical parameter values. As k, increases, the stabil-
ity boundary with benthic stage approaches the one without, in fact for k, = 100
the two are indistinguishable. Here, we do not explicitly consider possible scalings

Stability boundary

35" Extinction

25-

Length of bad patch

Persistence

-15 T 05 0
Growth rate in bad patch

Fig. 2 The stability boundary given by Lemma 3.2 for a population with benthic stage with
varying parameter k, = k, = 2, 4, 10 for the dashed, dash-dot, and dotted curve, respectively. For
kn = k, = 100, the curve is virtually indistinguishable from the solid line that is obtained from
(20) for a population without benthic stage with identical parameter values. These values are
d=1,a=2,andg = 1.
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that relate the benthic case to the case without benthic compartment, but refer to
Pachepsky et al. (2005), where two approximations were discussed.

Without additional plots, we report that, analogously to the behavior in Fig. 1,
fixing all other parameters and increasing g or a;, respectively, results in a decreas-
ing persistence region.

4. Traveling periodic waves

If the persistence condition from the previous section is satisfied, numerical simula-
tions of (10) show that traveling periodic waves evolve from compactly supported
initial data. This effect was first observed by Shigesada et al. (1986) in the ab-
sence of flow. More recently, Weinberger (2002) proved the existence of traveling
periodic waves for a general class of models in periodic habitats. In the presence of
flow, the speed of spread is different in the two opposite directions, as illustrated
in Fig. 3. In this section, we derive formulae for the minimal upstream and down-
stream speeds of such waves, and we determine the conditions for the upstream
spread to halt.

4.1. Pelagic system

We linearize Eq. (10) at the trivial solution u = 0 and look for traveling periodic
waves of the form

ult,x) =u(t+t,x+1)=v(x —ct)p(x), (27)
where ¢ denotes the wave speed, and ¢(x) = ¢(x + ) is a periodic function. The
analysis in Appendix A.4 reveals that i is of the form ¥ (z) = exp(—sz), where s is

the shape parameter of the wave front. We collect further results from Appendix
A4 in the following lemma.

Lemma 4.1. Ifq > 2 then there are no upstream traveling periodic waves. If g < 2,
then the dispersion relation between the speed of a traveling periodic wave, upstream
or downstream, and its shape parameter is given implicitly by

q b
h I +1 — |/ —_—
cos <s(1+2)+2<1+a2d2)>

2 d 2
— sinh(ol)) sinh(azzz)% + cosh(arly) cosh(aals), (28)

where

/ q q2
= —14 =, = — Hh+ — d>. 29
o1 [&\) (o)) \/(CS 2 %2>/2 ( )
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Fig. 4 The minimal wave speeds as a function of discharge for two different values of cross-
section in the bad patches (left panel) and as a function of cross-sectional area in bad patches
(right panel). In the left panel, we consider narrow bad patches (a; = 0.5) and obtain the fast
downstream (solid) and upstream (dashed) speeds. In the same plot, for wide bad patches (a; = 2)
the upstream and downstream speeds are give by the dash-dot and the dotted line, respectively. In
the right panel, we consider high discharge (¢ = 1), which results in the solid and dashed line for
downstream and upstream speeds, respectively. Low discharge (¢ = 0.5) results in downstream
and upstream speeds given by the dash-dot and the dotted line, respectively. The other parameters
arelj =l =1,d, =1, f, = —0.5. The horizontal line ¢ = 0 indicates where upstream waves get
stalled.

Note that the condition g < 2 in this lemma implies that the critical advection
speed for upstream invasion, i.e., the advection speed beyond which no upstream
invasion is possible, is identical to the critical advection speed for persistence (see
Lemma 3.1). This equality in homogeneous domains was one of the major obser-
vations by Pachepsky et al. (2005) and Lutscher et al. (2005).

In Fig. 4 we plot the minimal speed of traveling periodic waves as a function of
other parameters in the system. We indicate by ¢ > 0 the speed in the direction of
the flow and by ¢ < 0 the opposite direction. Without flow (¢ = 0) the speeds in
both directions are exactly the same. With increasing discharge, the downstream
speed increases and the upstream speed decreases. The speed is approximately lin-
ear as a function of the discharge g, as could be expected from the homogenized
equation (16) and the corresponding speed formula (18). It is instructive to explore
the relationship between the minimal wave speeds in the heterogeneous versus ho-
mogeneous environments a bit further. Using the parameter values as in Fig. 4, we
calculate the values of the homogenized coefficients as given in (17) and compare
the behavior of the homogenized to model to the heterogeneous one. For narrow
bad patches (a; = 0.5) we obtain a spreading speed of ¢* = +4/3(1 £ ¢) from (18)
for the homogenized equation, which coincides with the lines plotted in Fig. 4. For
wide bad patches (a, = 2), however, the averaged growth rate is negative. Hence,
the population would not spread in the homogenized environment, whereas Fig. 4
shows that it does spread for small enough values of g.

The right panel in Fig. 4 shows how the wave speed depends on the cross-
sectional area in bad patches. The downstream speed is monotonically decreasing
with increasing cross-section. As the bad patches get wider, the flow speed de-
creases there so that individuals move more slowly. At the same time, the larger
area of a bad patch incurs higher loss to the population. The situation is different
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for the upstream wave. Small cross-sections of bad patches lead to small loss rate
but to very high flow velocity, against which the population has to move. Large
cross-sections of bad patches imply small flow velocity, which would facilitate up-
stream invasions, but incur high population loss. The upstream wave moves fastest
for intermediate cross-sections.

We can homogenize the dispersion relation (28) by assuming /; +/ < 1 and
using the expansions of cosh and sinh up to second order. After some algebra, we
obtain

(11 + 12)2.5‘ (11 + lz)q L +afoly
c= : (30)
(h+ab)h +L/(ed))  h+ah (b +ab)s
The minimal values of ¢ = c(s) are given by
c— (L +5L)? L +a n (h+h)q
(11 + 61212)(11 + lz/(dzdz)) (11 + azlz) L+ axlr
da
P Y RCC2LL Y I (31)
(a)a (a)a

which is exactly the minimal wave speed (18) for the homogenized Fisher equation
(16).

Finally, we look at the conditions for the upstream spread to stop, i.e., we want to
characterize max, o c(s) = 0. Differentiating (28) with respect to s and substituting
the conditions c(s) = ¢’(s) = 0 leads to

(712 + (d2a202)2

1 = sinh(o1/) sinh(02/,) 2aydy010

+ cosh(a1/;) cosh(ozly), (32)

with o1, as mentioned earlier but with ¢ = 0.
4.2. Benthic—pelagic system

The analysis of traveling periodic waves for the system with benthic stage (11) is, in
most parts, a combination of the aforementioned analysis with the idea (24) used
to reduce the persistence problem with benthic stage to the one without. Some
details are give in Appendix A.4. There are, however, a few differences so that the
summary of results in the next lemma is not as complete as could be wished for.

Lemmad.2. Assumethat f < k, on good patches. If g > 2\/k,/(k, — 1), then there
are no upstream traveling waves. If the reverse inequality holds then the dispersion
relation between the wavespeed ¢ and the shape parameter s is given by (28) with
01, defined by

q* q*
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and g1, defined as the values on the good and bad patches of g(x) given by (compare
(24))

_ kukn _ ku(f—CS) _
g—m—ku—ikn_(f_cs), CS?éf kn. (34)

There are no nontrivial traveling periodic wave solutions with cs = f — k;,.

Solving the dispersion relation from the previous lemma for ¢ = c¢(s) numeri-
cally reveals that there are several solutions. This was to be expected, since the
analysis here contains the case of constant homogeneous environment that was
treated in a different way by Lewis and Schmitz (1996), and Pachepsky et al.
(2005). There, it could be shown that of the two possible solutions, the larger one
is the correct one. The smaller one would lead to oscillatory solutions at the lead-
ing edge of the wave, and hence to negative densities. The dispersion relation for
¢(s) depends continuously on the length of the bad patch, since it is derived from
the determinant of the matrix in (A.31), which depends continuously on /,. By
continuity then, the larger solution is also the correct wavespeed in our case, at
least for small values of /,. In Fig. 5 we plot the speeds obtained by the previous
lemma, assuming, that the speed with larger absolute value is always the correct
one. We compare the speeds to the case without benthic stage. The most notable
difference is that the upstream speed is not linear with respect to discharge. The
population with benthic stage invades upstream faster than without benthic stage,
and the difference increases as g increases.

For the case missing in Lemma 4.2, namely k, < f in good patches, we conjec-
ture that the population can spread upstream independently of the discharge. This
conjecture is supported by numerical simulations and by the analogous statement
in homogeneous habitats. In addition, it is shown in Appendix A.4 thatif k, < f

Velocities

_3 1 1 1 1 1 1 1
25 3 35 4

2
Discharge

Fig. 5 The figure compares the minimal traveling wave speeds for pelagic only (downstream
dashed, upstream dotted) to the speeds with benthic stage (downstream solid, upstream dash-dot).
The parametersare d =a; =1, = —05and k, = k, = 1.1
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then there cannot be a biologically meaningful solution with ¢ = 0; hence, an up-
stream invading wave cannot be stalled by changing parameters. A rigorous proof
of this conjecture remains future work.

5. Persistence in bounded domains

In this section, we investigate how the graininess of a bounded domain influ-
ences persistence on that domain. We consider the domain [0, b] subdivided into
2n patches, alternating good and bad of length /; and /,, respectively. Hence, we
have the relationship b = nl = n(l; 4+ I;). For simplicity, we only present the case
of a pelagic species, i.e., we look at Eq. (10), but it is obvious that the treat-
ment of the benthic—pelagic system in Section 3.2 extends to the analysis here.
Boundary conditions are given by (5), i.e., no-flux at x = 0 and hostile at x = b.
To find the boundary between persistence and extinction, we linearize (10) at
u = 0 and find conditions for the dominant eigenvalue 2 = 0. Hence, we study the
equation

1

~[dau, ] - gux + fu=0, xel0,b], (35)
with

dau, —qu =20 at x=0, u(b)=0. (36)

This problem can be fully analyzed, similar to the ones in the two previous sections,
but the resulting formulae are somewhat more complicated than the ones for the
unbounded domain. The persistence condition is given implicitly as the zero-set of
the determinant of a certain (4n — 1) x (4n — 1) matrix. Due to the block structure
of the sparse matrix, this condition reduces to a condition on certain products of
2 x 2 matrices. We present the details of the analysis in Appendix A.3 and concen-
trate on the results here.

The critical domain size problem in the presence of flow, i.e., the minimal length
of a river that supports a population, was first explicitly addressed by Speirs and
Gurney (2001) in homogeneous habitats. A more general treatment of the leading
eigenvalue of a reaction-advection—diffusion equation on a homogeneous domain
in several space dimensions is given in Murray and Sperb (1983). With heterogene-
ity, one may ask how the critical domain size depends on the number of subdivi-
sions of the domain. The results are summarized in Fig. 6, left panel. Parameters
are chosen in the simplest possible way and such that the spatially averaged growth
rate of the population is zero. Hence, in the homogenization limit, the population
cannot persist. We see that the minimal domain length increases with the number
of subdivisions. For example, whereas a river of length 4 is sufficient to sustain a
population if there are only 2 or 3 alternating pairs of good/bad patches, the popu-
lation will be driven to extinction if there are 6 or more subdivisions. As expected,
the case with advection requires a longer domain for persistence.

In the right panel in Fig. 6 we fix the domain length to b =4 and plot the
maximum loss rate in bad patches that a population can tolerate before it goes
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Fig. 6 Left: Minimal total domain length for a given number of subdivisions in good/bad patches.
Right: Possible loss rates (negative growth rates) in bad patches for population persistence on
a fixed domain length dependent on number of subdivisions in good/bad patches. See text for
details. The parameters are d, = a; = 1 and we fix the ratio /1 //; = 1. In the left panel, we choose
fo = —1 so that the average growth rate is zero. In the right panel, we fix the total domain length
to b = 4. The curved lines are the results from Eq. (A.24). The straight horizontal lines indicate the
growth rate necessary for population persistence of the homogenized equation (16) on a domain
of length 4 according to Speirs and Gurney (2001), Eq. (5). Solid lines represent g = 0.3, whereas
dashed lines are g = 0.

extinct. We compare this with the persistence condition as given by Speirs and
Gurney (2001) for the homogenization (16). We see that the population can
tolerate larger loss rates in the heterogeneous case, but as the patches become
small, the persistence condition approaches the one for the homogenization. We
want to point out that the case f, = —1 corresponds to an average growth rate of
zero; hence, if the habitat consists of only two patches, then the population can
persist even when the average growth rate is negative. These results are in line
with many other studies that confirm that increasing the number of subdivisions
into good and bad habitats may lead to extinction of a population, with or without
advection, see Cantrell and Cosner (2003) and the discussion therein, and in
particular Cantrell and Cosner (1991).

6. Robustness of results

There are two loss terms included into the models mentioned earlier: One is re-
lated to flow when individuals drift away from a location, the other is mortality
given as the negative growth rate in a bad patch. While dependence of the “flow
loss” on cross-sectional are is built into the model formulation, it is assumed that
the cross-sectional area (a;) and the loss rate (f;) in a bad patch can be chosen
independently. In reality, the two parameters may be linked, for example, through
nutrient or light levels. One of the results in the previous sections is that persistence
is decreasing with increasing cross-sectional area of bad patches. In this section,
we discuss whether different biological scenarios satisfy or violate the modeling



2148 Bulletin of Mathematical Biology (2006) 68: 2129-2160

assumptions, and we explore how robust the persistence results are with respect to
biologically relevant violations of these assumptions.

In the first scenario, we assume that the river is of constant depth, while the
width might be changing. We assume furthermore that the input rate of nutrients
is constant per surface area of the river, for example nutrient input through up-
welling or by rain. Then nutrient concentration, and hence the population growth
rate, are independent of cross-sectional area, so that the modeling assumptions are
met. The difference between good and bad patches might be caused by physical or
chemical features of the river bottom or by harvesting.

In the second scenario we assume that nutrients enter the river with a constant
rate per unit length, for example through lateral run-off. In this case, increasing
the cross-sectional area in a bad patch leads to lower nutrient concentration, which
implies a higher loss rate. Hence, the two effects combine; increasing loss rate with
increasing cross-sectional area of bad patches should reduce the persistence region
even further. We explored this scenario by assuming a simple linear relationship
between loss rate ( f>) and cross-sectional area (a;), at least for values of a; close
to unity. We set

Lh=0—-ela-1)f;, (37)

where f is the loss rate for a, = 1, i.e., when the river is of constant cross-sectional
area. (We choose parameters in such a way that the factor in front of f;' remains
positive.) The result is given in Fig. 7, top left panel, which should be compared to
Fig. 1. As expected, the persistence region decreases (compared to the case where
f> is independent of a,) when a, increases above a; = 1 and increases when a;
decreases below unity.

In the next two scenarios, we consider the effect of light levels rather than nutri-
ents. Again, if the river is of constant depth with only the width changing, then the
light levels are independent of cross-sectional area so that the modeling assump-
tions are met. If the depth of the river varies but the width remains constant then
light levels decrease with increasing cross-sectional area. If we assume that light is
the limiting factor, then bad patches become worse as their depth increases. Hence,
the situation is the same as mentioned earlier in the second scenario. Increasing the
cross-sectional area in bad patches will decrease the persistence region.

If, however, bad patches are characterized by too high light levels, for example
through the effect of photobleaching, then the situation changes. Increasing the
depth now decreases the loss rate in the bad patches, which should increase the
persistence region. So, increasing the depth generally reduces persistence but in
this case might also increase persistence. To explore if and how the two effects bal-
ance, we assumed the simple linear relationship as mentioned earlier (37), but this
time with ¢ < 0. The results depend on the actual value of ¢ as depicted in Fig. 7.
For ¢ = —0.5 increasing the cross-sectional area still decreases the persistence re-
gion but not as much as with constant f,. For ¢ = —0.8 the situation is different.
The positive effect of reduced light at a, = 1.5 compensates for the general nega-
tive effect of increased cross-section, and the population is more likely to persist
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Fig. 7 The stability boundary of the pelagic model (10) with f; as in (37) for different values of
ap and ¢. In all four plots, the solid curves show the case ¢ = 0, where f, = —0.5 is independent of
ay for ap = 0.8 (upper), ay = 1 (middle), and a, = 1.5 (lower). With dependence on &, the dashed
lines represents the case a; = 0.8 and the dash-dot lines have ap = 1.5. In the top left panel, we
have ¢ = 0.5, the top right corresponds to ¢ = —0.5, and the lower panels are ¢ = —0.8, —0.9,
respectively.

than for a; = 1. For ¢ = —0.9 the effect is even stronger, so that the persistence
region is even larger than for a, = 0.8.

7. Discussion

We studied the effects of flow and heterogeneity on the persistence and invasion
of a single population, with or without benthic stage, in a river. We used a hy-
drodynamic equation to relate the cross-sectional area of a river to the speed of
the flow, and hence we implicitly captured the three-dimensional nature of a river
in our explicitly one-dimensional model. We incorporated heterogeneity as peri-
odically alternating patches. In our analysis, we generalized previous results from
Shigesada et al. (1986) by adding advective flow, and results from Pachepsky et al.
(2005) by adding spatial heterogeneity. We derived implicit formulae for the stabil-
ity boundary for persistence and for the dispersion relation for traveling periodic
waves. In addition to previous work, we also considered persistence on bounded
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heterogeneous domains. We recovered the threshold character of the critical ad-
vection speed (Pachepsky et al., 2005) as follows. If the advection speed in good
patches is larger than the critical speed, then the population cannot persist nor
invade upstream, if it is smaller, then there are parameter values such that the
population can persist and invade upstream. We concentrated on the effects of
discharge and cross-sectional area. Even in its non-dimensional form, the model
still contains too many parameters to explore all the relationships explicitly here,
but we gave the general formulae that can be used to explore the specific relation-
ships of interest in applications.

Our mathematical analysis rests on linearization at the trivial solution and stabil-
ity analysis. It was recently shown by Berestycki et al. (2005) that the linearization
at zero does indeed predict the long-term dynamic behavior of the system with-
out benthic stage and without advection. The result that the linearization at zero
predicts the correct wavespeed, again without a benthic stage, is due to Weinberger
(2002). Generalizing the results to systems with non-mobile stages is future work.

Introducing a benthic stage in the model is biologically reasonable for algae and
benthic invertebrates. The effect of the extra compartment is not simply a linear
reduction of the advection speed experienced by individuals (Speirs and Gurney,
2001), but introduces the qualitatively different behavior of unconditional persis-
tence and upstream invasion if the local growth rate exceeds the exchange rate,
see also Lewis and Schmitz (1996), and Pachepsky et al. (2005).

Intensive research efforts focus on understanding and predicting the dynamics
of periphyton and benthic invertebrates in river systems. We discuss the applica-
bility of the results that emerge from this work regarding spatial heterogeneity
by considering three cases. The original model assumed that all parameters are
independent, whereas in reality some may be related, e.g., the growth rate may
depend on cross-sectional area via light availability. We found that the qualitative
results obtained for independent parameters are robust for a simple relationship
between loss rate and cross-sectional area. This suggests that the general qualita-
tive results hold across a broad range of ecological scenarios, and that they could
be found in future experimental work. The results in Section 5 directly apply to
channelization and restoration of rivers. Our results indicate a generally negative
effect of channelization on (single) species persistence, i.e., the persistence region
decreases with increasing homogenization. These findings are supported by recent
experimental work on river restoration through increasing spatial heterogeneity,
see Giller (2005) and references therein.

Finally, the results in Lemmas 3.1 and 4.1 indicate that a population that can
persist in a river can also spread upstream. Biologically, this finding clearly makes
sense in a homogeneous environment, but requires extra consideration in the het-
erogeneous environment considered here. Upstream range limits may be caused
by (gradually) changing environmental conditions (Lutscher et al., submitted for
publication), which are not captured in the periodic heterogeneity assumed here.
However, situations are conceivable where a species can persist in some “good”
patches but not spread upstream through a bad patch, e.g., Zebra mussels in chains
of lakes in eastern North America. Hence, these species must somehow be disper-
sal limited, and strong advection could be one limiting factor. The mathematical
formulation as a reaction—advection—diffusion equation does not show this effect.
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The diffusion operator with its strong positivity properties combined with a growth
term that does not have an Allee effect causes the population to spread if it can
persist. The result is related to the infinite propagation speed of the diffusion equa-
tion, a property that was already criticized by Einstein (1906). We conjecture that
corresponding hyperbolic models with finite propagation speed (Hadeler, 1999)
would be able to capture the phenomenon that a population can persist in some
patches but not spread upstream, but we are not aware of such models incorporat-
ing advection. Similarly, we would conjecture that a porous-media equation with
an additional advective term might be able to capture that phenomenon. Alterna-
tively, we would suggest that certain individual-based stochastic model analogues
to our deterministic model may allow for local persistence and downstream, but
no upstream, spread. Altogether, we see certain limitations in using the diffusion
operator to model spatial spread, certainly when strong spatial heterogeneity is
present.

The results obtained earlier extend to other systems where individuals are sub-
ject to unidirectional flow coast lines with ocean currents, vertical advection of
phytoplankton (Huisman et al., 2002), bacteria in the gut (Ballyk and Smith,
1999), vegetation in sloped terrain (Sherratt, 2005), and effects of climate change
(Potapov and Lewis, 2004). In particular, the results can be applied to reserve de-
sign along coasts with longshore currents (Botsford et al., 2001).

River ecosystems are, of course, much more complex than the model analyzed
here. This model is one more step towards a mechanistic modeling framework
for these environments. A strategic model for competition and resource gradients
in rivers is presented in Lutscher et al. (submitted for publication). The next steps
are to include more ecological interactions, for example model the fate of nutrients
explicitly or include a predator into the equations.

Appendix
A.l. Derivation of the movement equation

In Section 2, we used heuristics to derive the one-dimensional movement equation
(1). Here we present a more detailed derivation from a two-dimensional diffusion
equation with coordinates X (longitudinal) and Y (transversal). We may assume
that the domain is bounded in the Y-direction by the X-axis, ¥ = 0, and by some
positive function Y = A(X), the cross-section at X.

The two-dimensional diffusion equation using Fick’s law with drift in the X-
direction is given by

Br = (Di(X, Y)Bx)x + (D2(X, Y) By)y — (V(X)B) x. (A.1)

Alternatively, this equation can be interpreted as the probability density of a sin-
gle individual moving randomly with a bias in the X-direction (Aronson, 1983).
The no-flux boundary conditions are By = 0 at Y = 0 and

DlBan + Dsznz — VBnl =0 (AZ)
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at Y = A(X), where n” = (ny, ny) = (— A(X), 1) is the outward pointing normal.
We integrate (A.1) in the Y-direction to get

5 [AX AX)

o [ Bay= [ (DX VB (DX By - (VOB)xaY. (A3)
0 0

The middle term on the right-hand side can be integrated using the boundary

conditions:

A(X)
/0 (D2(X, Y)By)y dY = [Di1 BxA — VBA]jy=acx)- (A.4)

Now we introduce the assumption of cross-sectional homogeneity by setting
B(T, X, Y) = B(T, X) and D;(X, Y) = D;(X). Then (A.3) becomes

A(X)Br = (D1 Bx) xA(X) + (D1 By) A(X) — (VB)A(X) — (VB)xA(X)
= (D1ABx)x — (VAB)y,

which is the movement term in Section 2 with Q = AV = constant.
A.2. Derivation of the boundary conditions

Two different kinds of boundary conditions have been used for the “downstream”
boundary of the advection—diffusion model

Ul = DUX)(— VU)(, Xe [0, b], (AS)

namely, the “hostile” condition U(b) = 0 (Speirs and Gurney, 2001; Pachepsky
et al., 2005) and the “Danckwert’s condition” Ux(b) =0 (Ballyk et al., 1998;
Lutscher et al., submitted for publication). We extend the individual random-walk
model by Van Kirk and Lewis (1999) to gain insight as to how these two differ in
their biological interpretation.

At time steps df an individual moves left and right on a grid with step size dx with
probabilities L = (D — (Vdx)/2)/2 and R= (D + (Vdx)/2)/2, respectively. Ex-
panding the resulting master equation in Taylor series and applying the parabolic
scaling dt, dx — oo while (dx)?/(2dt) = 1 gives Eq. (A.5), see e.g., Turchin (1998).
At the boundary X = b, the individual moves left, i.e., back into the domain, with
probability L as mentioned earlier. Of the remaining probability 1 — L it leaves
the domain with rate adx and stays otherwise. Then the master equation at the
boundary reads

1
UG +dib)= 3 (D+ gdx> U(t, b — dx)

+ [ _ % (D - gdx - adxﬂ U(t, b). (A.6)
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Expanding in Taylor series, multiplying by dx and taking the parabolic limit as
described earlier leads to the condition

(V—a)U— DUy = 0. (A7)

When individuals do not leave the domain, then « = 0 and hence we obtain the
no-flux boundary conditions used at X = 0. If individuals leave the domain at the
same rate as the advection takes them, then « = V and we obtain the Danckwert’s
conditions. If individuals leave the domain at a much faster rate, i.e., « — 00, then
the “hostile” condition U = 0 results.

A.3. Derivation of the persistence condition

In this section, we prove Lemma 3.1 and derive in detail the persistence boundary
for a single pelagic population as discussed in Section 5 on a bounded domain and
in Section 3 on an infinite domain.

To derive the persistence condition for a single pelagic population on a bounded
heterogeneous habitat, we study the equation

1
—[dau,], — %ux Y fu=0, xel0,b], (A.8)

with boundary conditions
dauy —qu=0 at x=0, u()=0. (A9)

The habitat [0, b] is divided into 27 alternating good and bad patches of length /;
and [, respectively. The parameter values on the good and bad patches are given
by (12).

We rewrite the problem as a set of equations, each with constant coefficients
and connected through the boundary conditions. On the interval [ml, ml + ;] we
define w,(x —ml) = u(x) form=0,...,n — 1. Then each w,, is defined on [0, /1]
and satisfies

w, — qw,, + wy, = 0. (A.10)

Similarly, we define z,,(x — ml) = u(x) on [ml + 11, (m+ 1){]form=0,...,n—1.
Again, each z,, is defined on [/, /] and satisfies

- aiz;n + frzm=0. (A.11)
2

Since no confusion can arise, we will drop the subscripts on d, a, f for the rest of
this calculation.

The boundary- and matching conditions for u translate in conditions for wy,, z,
as follows. At x = 0 and x = b we have
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wy(0) = quo(0) =0, z,1(b) = 0. (A12)
At x = ml + [; we have the two conditions

wn(l1) = zm(h), w, () = adz, (1), (A.13)
whereas at x = ml we get

anl) = w1 (0),  adz, () = w),,1(0). (A14)

The following transformation turns out to simplify things substantially. We set
W,(x) exp(gx/2) = w,(x) and Z,(x)exp(gx/(2ad)) = z,(x). Then (A.10) and
(A.11) translate into

2

2
., 7 _ : N, _
W+ (1 0 ) W,=0, dZ + <f 4a2d> Z = 0. (A.15)

By assumption, we have f < 0 and hence, Zis a convex function. If ¢ > 2 then Wis
also convex. According to the boundary and matching conditions, W;;(0) > 0 and
the signs of the slopes of adjacent W,,, Z; are identical. Therefore, each W,,, Z,
must be an increasing function, and hence the boundary condition Z, (/) = 0 can-
not be satisfied. From here on, we assume that ¢ < 2 so that o> =1 — g?/4 > 0.

The matching conditions (A.12)-(A.14) translate into the following conditions
for W,,,, Z,.,

W,(0) — %WO(O) -0, Zoi()=0 (A.16)
Wi(11)e /2 = Z, (1 e/ o), Wo(0) = Zp 1D/ (A7)
W, (1)et"? = ad Z, (1;)e?/ D), W, (0) =adZ, ,(1)e?/? D, — (A.18)

where we have used the relations on W, Z,, to simplify the relations for W, , Z, .
We now make the ansatz

Wu(x) = Ay cos(ax) + B, sin(ax). (A19)

Since f < 0, we may set § = /(¢2/(4a2d) — f)/d and write

Zm(x) = Dy, cosh(8(/ — x)) + G, sinh(8(I — x)). (A.20)
The matching conditions mentioned earlier translate into conditions for the coef-
ficients A, B, D, G,. After a lot of algebra, these can be conveniently written
in matrix form M¢& = 0, where

ET - [A(’)a B)a D07 G07 Ala Bls Dla le cee An—lv Bn—l, anl] (A-zl)

(note that (A.12) implies D,,_; = 0) and
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Ks 0 0 O

M M; 0 O
0 M, My O

M = 0 0 M, M

[ e i)
[ el ]
[l el o]

(A22)

o 0 o 0 M M O
o 0 o0 o0 0 M K

The entries of M are matrices of the form

-SE
Ki = (q/2, —a), K> = (adéézéz)’
M — G E S1Eq Ve — -GE -SE
= —OlSlEl aC1E1 ’ T ad852E2 ad5C2E2 ’

_(E 0 (-1 0
M2—<0 ad8E3>’ M“—( 0 a>’

where

Cy = cos(aly), Sy = sin(aly), C, = cosh(8hy), S, = sinh(8/,)
and

E1 = e%ll, Ez = eﬁl‘, E3 = eﬁl.
In order for (A.8) and (A.9) to have a solution, we require that the coefficients
& be nonzero, which in turn requires that det M = 0. The matrix M has dimen-
sion (4n — 1) x (4n — 1) so that computation can be time-intensive. However, we

use the particular structure of M to find a simpler way to compute the persis-
tence condition. Note that M;, M, are invertible. If there is a nonzero solution &

we may assume G,_; = 1. Then we can inductively derive the following condition
for Ay, By :
(g)") = (M7 MM M) MK = (E;) . (A23)

With the additional condition for Ay, By from the first row of M, we arrive at the
following formula for the persistence boundary:

qvi —2av, = 0. (A.24)
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The same ideas as mentioned earlier apply to the derivation of the persistence
boundary on unbounded domains, in fact, things become easier in that case. Be-
cause of the matching conditions, the real line can now be thought of as one good
and one bad patch with periodic boundary conditions. The argument that there
is no solution for ¢ > 2 is even simpler than before because a non-constant peri-
odic function cannot be convex everywhere. The same ansatz for W, Zleads to the
condition that the determinant of the 4 x 4 matrix

M M
M,,:( ! 3) (A.25)
My M

be zero. Cofactor expansion of the determinant and rearranging of terms gives
formula (20) for the persistence boundary.

If we return to the problem on a bounded domain but now increase the length
of the domain by adding patches then we increase n in (A.23). Then the right-hand
side in that equation converges to a multiple of the eigenvector corresponding to
the larger eigenvalue. If we want the left-hand side to be neither zero nor infinity,
then the matrix in brackets in (A.23) must have 1 as an eigenvalue, while the other
eigenvalues must be less than one in absolute value. Indeed, if ¢ is an eigenvector
of (Ml’lM3M2’] M) then & = (¢, —M2’1M4§)T is a nonzero solution to M, & =
0. Hence, in the limit b — oo the persistence condition on the bounded domain
becomes the persistence condition on the unbounded domain.

A.4. Derivation of the minimal wave speeds

Putting the ansatz (27) into the linearization of (10) and rearranging terms yields
the equation

L = Y V)

d
¢1/f v 12 v

Since the right-hand side of that equation is independent of ¥ we conclude that
the fractions involving ¢ must be constant, and hence v is an exponential ¥ (z) =
exp(—sz), where s is the shape parameter of the wave front. With this we obtain
an equation for ¢ alone, namely

d¢//+((da)#_st)(p/_i_<f+dsz_(da)%s_cs>¢:0, (A27)

The matching conditions (7) and (8) translate into

H}} o(x) = Eclﬁll o(x), (A.28a)

lxlg)l o(x) = I;ITIII o(x), (A.28b)
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lim(¢'(x) — s¢(x)) = limda(¢'(x) —s¢(x)). (A.28¢)
lxiﬁ}(rb/(X) = 5¢(x)) = lim da(¢'(x) — s¢(x)). (A.28d)

The equation is linear in ¢ and the coefficients are constant on the two intervals
[0, 1] and [14, []. Therefore, we make an exponential ansatz on each of these two
subintervals and use (A.28) to match the coefficients. We set

o(x) = Aje™* + Ae™*, x€]0,6],

¢(x) = Bieh ™) + BP0 x e[1,1], (A.29)
where
O{lzzg—‘rS:l:Ul ﬂlzz—i—sﬂzaz (A30)
’ 2 ’ ’ 2ad ’

with o1, defined as in (29).

The argument from the previous section that not both arguments «; 5, 812 can
be real at the same time because of periodic matching, carries over to the case at
hand. For downstream traveling waves, we have ¢, s > 0 and for upstream waves,
we have ¢, s < 0. In both cases, the product satisfies cs > 0. Therefore, o is always
real, and so o; must have nonzero imaginary part. This gives the necessary condi-
tion g < 2. The matching conditions (A.28) yield the following linear relationship
between the coefficients

1 1 -1 -1

A

el el _ebil _ehhx A
=0.

% + o0 % — 01 —(% —adoz) —(% —l—adO'z) B

(4 +o)eh (4 —op)e —(4 —adoy)eP>  —(4 + adoy)eP B
(A31)

In order for a nonzero solution to exist, the determinant of the matrix has to vanish.
This determinant can be computed explicitly by cofactor expansion. Using some
trigonometric identities, one finally arrives at formula (28).

To derive the minimal wavespeed for the benthic—pelagic system (11), we com-
bine the ideas mentioned earlier with a substitution similar to (24). The ansatz
u(t, x) = Y1(z)¢1(x) and n(z, x) = Y2(2)¢2(x) with z = x — ¢t first gives the condi-
tion v/;(z) = A;j exp(—sz). With this information, the benthic equation reads

cstp — ka1 = (f — kn) o (A.32)

If f(x) > k,(x) on good patches, then this equation does not have a meaningful
solution, i.e., ¢; > 0 for ¢ = 0. Hence, if there exist upstream traveling periodic
waves, then they can never get stalled. Assuming cs # f — k, we solve for ¢, and
obtain the following equation for ¢;, which is analogous to (A.27):
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do” + (% — 2ds) ¢ + <g +ds* — (da)%s — cs) =0, (A33)

with g(x) being defined as (compare (24))

__ kke o K(f—cs)
g_cs+kn—f ku_kn—(f—cs)‘ (A.34)

From here we proceed as mentioned earlier. The condition that one of the expo-
nents in (A.30) have nonzero imaginary part translates into the condition on the
good patches that again o7 be purely imaginary. The critical value for g, is given
by

cs—g1+q*/4=0, or q=2g —ocs. (A.35)

The expression under the root is a decreasing function in ¢s so that the maximal
value is obtained at cs = 0 and given by

(A.36)

which, in non-dimensional parameters, is the same as (26).
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