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Abstract The first recorded North American epidemic of West Nile virus was
detected in New York state in 1999, and since then the virus has spread and
become established in much of North America. Mathematical models for this
vector-transmitted disease with cross-infection between mosquitoes and birds
have recently been formulated with the aim of predicting disease dynamics and
evaluating possible control methods. We consider discrete and continuous time
versions of the West Nile virus models proposed by Wonham et al. [Proc. R. Soc.
Lond. B 271:501–507, 2004] and by Thomas and Urena [Math. Comput. Modell.
34:771–781, 2001], and evaluate the basic reproduction number as the spectral
radius of the next-generation matrix in each case. The assumptions on mosquito-
feeding efficiency are crucial for the basic reproduction number calculation.
Differing assumptions lead to the conclusion from one model [Wonham, M.J.
et al., Proc. R. Soc. Lond. B 271:501–507, 2004] that a reduction in bird density
would exacerbate the epidemic, while the other model [Thomas, D.M., Urena,
B., Math. Comput. Modell. 34:771–781, 2001] predicts the opposite: a reduction in
bird density would help control the epidemic.
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1. Introduction

Although West Nile (WN) virus is endemic in Africa, the Middle East and west-
ern Asia, the first recorded North American epidemic of WN virus was detected
in New York state in 1999. Since 1999 WN virus has spread and has become es-
tablished in much of North America. Recent mathematical models for this disease
have been proposed in an attempt to predict disease dynamics and elucidate con-
trol methods (Bowman et al., 2005; Lord and Day, 2001; Thomas and Urena, 2001;
Wonham et al., 2004).

The temporal spread of WN virus involves an interplay of the transmission
between birds via female mosquitoes as disease vectors and of the disease dynam-
ics within a reservoir of birds. While birds can die quickly from the virus (especially
corvids, such as crows and jays), the mosquito disease vectors do not appear to
be affected adversely by the disease. The interaction of WN virus with secondary
hosts (mainly humans and horses) is dead-end in the sense that there is no evidence
that these secondary hosts can infect feeding mosquitoes (although see Higgs et al.
(2005) for very recent evidence that some mammals may not be dead-end hosts).
Thus a cross-infection model involving susceptible-infectious interactions between
birds (reservoirs) and mosquitoes (vectors) is the central starting point for formu-
lating WN virus dynamics, and is the basis for all models considered here.

Given a mathematical model for disease spread, the basic reproduction number,
R0, is an essential summary parameter. It is defined as the expected number of
secondary cases caused by a single infected individual introduced into an other-
wise susceptible population. If R0 is greater than one, a local disease outbreak is
possible. Control methods can be designed to bring the control basic reproduction
number, which we also denote by R0, to a value less than one. The dependence
of R0 on model parameters can be used (through the modification of parameter
values) to evaluate efficacy of such control methods.

However, different models for a given disease may not deliver the same R0.
Models for the same disease can be based on differing assumptions about disease
transmission and dynamics. These, in turn, result in different R0 expressions. In
evaluating the effect of control methods by using R0, the conclusions that are
drawn depend crucially on the model assumptions. Thus, if R0 is to be used to
evaluate the effect of control measures on disease outbreak, it is necessary to link
the R0 value directly to model assumptions. This is the primary purpose of the
paper. Indeed, we will show that the assumptions on mosquito-feeding efficiency
are crucial for the basic reproduction number calculation. Differing assumptions
lead one model (Wonham et al., 2004) to conclude that a reduction in bird density
would exacerbate the epidemic, while the other model (Thomas and Urena, 2001)
predicts the opposite: a reduction in bird density would help control the epidemic.

Our approach is to consider how both biological and temporal model struc-
ture influence R0. We proceed by example, analyzing, in depth, continuous and
discrete-time versions of models by Wonham et al. (2004) and Thomas and
Urena (2001). Both consider the North American WN virus epidemic, but are
formulated with different biological assumptions and time structures. The first
model (Wonham et al., 2004) treats time as a continuous variable, and is an
eight-dimensional system of ordinary differential equations for vector and reser-
voir compartments. For comparison, we also formulate two different discrete-time
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versions of this model. The second model (Thomas and Urena, 2001) is in discrete
time and consists of a nine-dimensional difference equation system for vector,
reservoir and human compartments. We also formulate a continuous time version
of this model. For the resulting five models, we calculate and compare R0 expres-
sions and consider their differing implications for disease control.

The secondary purpose of the paper is to demonstrate, via our sample calcula-
tions, how the basic reproduction number can be calculated in a straightforward
way for both discrete and continuous time models, even when the models become
complicated, such as in the eight- and nine-dimensional cross-infection models for
WN virus (Thomas and Urena, 2001; Wonham et al., 2004).

2. Methods to calculate R0

2.1. Continuous time models

For an epidemic model with disease compartments that is formulated as an ordi-
nary differential equation system, a precise mathematical definition of R0 is the
spectral radius of the next-generation matrix (Diekmann and Heesterbeek, 1999;
van den Driessche and Watmough, 2002). Provided that a disease-free equilibrium
(DFE) exists, and some other biologically realistic conditions are satisfied, then the
next-generation matrix can be determined from the system as follows. Write the
equations for the infected compartments only as

dx
dt

= (F − V)(x),

where vector x gives the number in each infected compartment, F denotes the
rate of new infections and V denotes the rate of transfer (by other means) be-
tween compartments. Let F and V denote the linearized matrices at the DFE from
F and V , respectively. Then FV−1 is the next-generation matrix, with the (i, j) en-
try giving the expected number of new infections in compartment i produced by an
infected individual introduced into compartment j . The basic reproduction num-
ber R0 is the spectral radius of FV−1 (see Diekmann and Heesterbeek, 1999; van
den Driessche and Watmough, 2002). The DFE is locally asymptotically stable if
the matrix F − V has all eigenvalues with negative real parts. With the above def-
inition of R0, this stability condition can be shown by using M-matrix theory to
be equivalent to R0 < 1. In addition, F − V is unstable if R0 > 1. Therefore, if
introduced at a low level, the disease dies out when R0 < 1, but persists in the
population when R0 > 1. The exact form of R0 is thus important in determining
control strategies for the disease.

2.2. Discrete-time models

For discrete-time epidemic models, the equations for the infected compartments
are written as

x(t + 1) = (F + T )x(t)

where x(t) is the number in each infected compartment at time step t , F represents
the new infections and T represents other transitions between compartments.
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Linearization at the DFE (which is assumed to exist), gives rise to nonnegative
matrices F and T, with the spectral radius of T less than 1. As in Caswell (2001)
and Li and Schneider (2002), the discrete next generation matrix, which projects
the infected compartments from one-time step to the next, is given by F(I − T)−1,
where I denotes an identity matrix. For a discrete system, R0 is the spectral radius
of F(I − T)−1. It follows from Perron–Frobenius theory (Caswell, 2001; Li and
Schneider, 2002), that the DFE is linearly stable or unstable according to whether
R0 is less than or greater than one. Thus the exact formulation of a discrete model,
which in turn gives an expression for R0, is important in determining whether or
not the disease can persist, and in suggesting control measures.

2.3. Common notation

To compare different models, we introduce common notation for all state variables
(numbers of mosquitoes, birds and humans in the different disease compartments)
and parameters in the two original models. Exposed and infective compartments
must both be considered as infected when calculating R0. Since West Nile virus
is a vector-transmitted disease, we expect a square root in the expression for R0,
which arises as a geometric mean of the vector and reservoir variables (Diekmann
and Heesterbeek, 1999; van den Driessche and Watmough, 2002).

Vector Reservoir Humans

State variables
Larval LV

Susceptible SV SR SH

Exposed EV

Infectious IV IR IH

Recovered RR RH

Dead XR

Total adults AV

Total NV NR NH

Parameters
Birth bV bR bH

Proportion of births that are infected ρV

Maturation mV

Death (natural) dL, dV dR

Death (from virus) δR

Vector biting on host βR βH

Virus transmission (to) αV αR

Virus incubation κV

Recovery from virus γR γH

For continuous time models, all parameters are per capita rates per unit time,
except for the proportion ρV and the probabilities αV and αR. For discrete-time
models, all parameters except ρV are probabilities or numbers per unit time. In the
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analysis that follows a superscript ˆ is used to distinguish parameters for discrete-
time models from parameters for continuous time models.

The models we consider here are for a single season under constant environ-
mental conditions (but see Wonham et al., 2004, for extensions to a variable envi-
ronment). Hence there is birth and death of mosquitoes (vectors), but only death
of birds (reservoirs), as bird reproduction is assumed to have occurred before the
mosquito season. The Wonham et al. (2004) model allows for virus-induced death
of birds (which is necessary for birds, such as corvids, that die quickly from WN
virus), while the Thomas and Urena (2001) model does not allow for virus-induced
death of birds (which may be a good approximation for birds, such as passerines,
that do not die quickly from WN virus) but includes natural death in all bird com-
partments. The Thomas and Urena (2001) model also allows for vertical trans-
mission of the virus from mosquito parent to offspring, while the Wonham et al.
(2004) model does not. The two models differ in their assumptions on the disease
transmission terms.

The Wonham et al. (2004) model was formulated in continuous time whereas
the Thomas and Urena (2001) model was formulated in discrete time, with time
steps of a week. The calculation for the basic reproduction number was made for
the Wonham et al. (2004) but not for the Thomas and Urena (2001) model. We
formulate discrete- and continuous-time versions for both models, and make the
calculation of basic reproduction number for each formulation, so as to facilitate
model comparison.

3. West Nile virus model of Wonham et al. (2004)

3.1. Continuous time model

We now give the continuous time WN virus model as formulated by Wonham et al.
(2004). The authors include age structure for the female mosquito population by
dividing this population into larvae and adults, with birth into the larval stage, and
natural death in each stage. The adult stage is divided into susceptible, exposed
(latent) and infectious compartments. For the one season model, they assume that
WN virus can cause reservoir death, but natural birth and death of the reservoir
population is ignored. This population is divided into susceptible, infectious,
recovered and dead compartments. Cross-infection between mosquitoes and
birds is modeled by mass action incidence normalized by the total population
of birds. This arises since female mosquitoes only take a fixed number of blood
meals per unit time, and follows a similar term used to model malaria; see, for
example, Anderson and May (1991). Since humans are dead-end hosts, they are
not included in this model. In the common notation, the dynamics are given by
the following ordinary differential equation system:

Vectors (V):

dLV

dt
= bV(SV + EV + IV) − mV LV − dL LV

dSV

dt
= −αVβR

IR

NR
SV + mV LV − dVSV
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dEV

dt
= αVβR

IR

NR
SV − (κV + dV)EV

dIV

dt
= κV EV − dV IV.

Reservoirs (R):

dSR

dt
= −αRβR

SR

NR
IV

dIR

dt
= αRβR

SR

NR
IV − (δR + γR)IR

dRR

dt
= γR IR

dXR

dt
= δR IR.

For the existence of a disease-free equilibrium it is assumed that vector birth
and death rates balance in the absence of disease. This is expressed by the fol-
lowing parameter constraint: bV = dV (1 + dL/mV). The disease-free equilibrium
is

(LV, SV, EV, IV, SR, IR, RR, XR) =
(

bV

mV + dL
A∗

V, A∗
V, 0, 0, N∗

R, 0, 0, 0
)

.

The infected variables are (EV, IV, IR) and with F, the rate of appearance of new
infections, and V, the rate of transfer between compartments,




EV

IV

IR




t

= F − V =




αVβR
IR

NR
SV

0

αRβR
SR

NR
IV




−




(κV + dV)EV

dV(IV − κV)EV

(δR + γR)IR


 .

The corresponding linearized matrices at the DFE are

F =




0 0 αVβR
A∗

V

N∗
R

0 0 0

0 αRβR 0




, V =




κV + dV 0 0

−κV dV 0

0 0 δR + γR


 .
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Then

FV−1 =




0 0
αVβR A∗

V

(δR + γR)N∗
R

0 0 0

αRβRκV

(κV + dV)dV

αRβR

dV
0




so the spectral radius of FV−1 is

R0 =
√

αVαRβ2
RκV

dV(dV + κV)(δR + γR)
A∗

V

N∗
R

as found in Wonham et al. (2004). It can be seen that R0 is the geometric mean
of αVβRκV

dV(dV+κV)
A∗

V
N∗

R
and αRβR

(δR+γR) . The first term is the product of the infection rate to
the vector at the DFE, the average time that a vector spends in the infective class
and the probability that a vector entering the exposed class survives to become
infective. The second term is the product of the infection rate to the reservoir and
the average time that a bird spends in the infective class before dying or recovering.

3.2. Discrete-time version of Wonham et al. (2004) model—version 1

To uniquely write down the difference equations from the original continuous time
model, the ordering of events needs to be specified. Thus, we consider the follow-
ing set of assumptions.

1. Birth, infection and transfer between compartments occur at the beginning of
the time step.

2. Natural and disease-induced mortality occur at the end of the time step.

Note that a different ordering of events is considered in the Appendix.
Under assumptions (1) and (2), the difference equation system takes the form:

LV(t + 1) = (1 − d̂L)b̂V(SV(t) + EV(t) + IV(t)) + (1 − d̂L)(1 − m̂V)LV(t)

SV(t + 1) = (1 − d̂V)SV(t)(1 − α̂V)β̂R IR(t)/NR(t) + (1 − d̂V)m̂V LV(t)

EV(t + 1) = (1 − d̂V)SV(t)
(

1 − (1 − α̂V)β̂R IR(t)/NR(t)
)

+ (1 − d̂V)(1 − κ̂V)EV(t)

IV(t + 1) = (1 − d̂V)κ̂V EV(t) + (1 − d̂V)IV(t)

SR(t + 1) = SR(t)(1 − α̂R)β̂R IV(t)/NR(t)
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IR(t + 1) = (1 − δ̂R)SR(t)
(
1 − (1 − α̂R)β̂R IV(t)/NR(t)) + (1 − δ̂R)(1 − γ̂R)IR(t)

RR(t + 1) = γ̂R IR(t)

XR(t + 1) = XR(t) + δ̂R

(
SR(1 − (1 − α̂R)β̂R IV(t)/NR(t)) + (1 − γ̂R)IR(t)

)
.

By way of example, we derive in detail the equation for SV(t + 1). First, the
expected number of bites made by a susceptible mosquito in a unit time interval
is β̂R, and the expected number of times the mosquito bites an infected bird is
β̂R IR(t)/NR(t). The probability of a mosquito avoiding the infection arising from a
single bite on an infected bird is 1 − α̂V and hence the probability of a susceptible
mosquito avoiding infection in a given time step is (1 − α̂V)β̂R IR(t)/NR(t). The number
of susceptible mosquitoes remaining susceptible in a given time step, SV(t)(1 −
α̂V)β̂R IR(t)/NR(t), is augmented by the number of larvae maturing m̂V LV(t), and then
is diminished by natural mortality which is avoided with probability 1 − d̂V. Using
a similar approach, it is possible to derive the other equations above.

Here, the parameter constraint for existence of a disease-free equilibrium is

b̂V(1 − d̂V) = d̂V

(
1 + d̂L

m̂V(1 − d̂L)

)
.

The disease-free equilibrium is

(LV, SV, EV, IV, SR, IR, RR, XR) =
(

(1 − d̂L)b̂V

(1 − d̂L)m̂V + d̂L
A∗

V, A∗
V, 0, 0, N∗

R, 0, 0, 0

)
.

The infected variables are EV, IV and IR. Linearizing the equations for these vari-
ables about the DFE and writing the resulting matrix as F + T, where F includes
only new infections and the column sums of T are less than one, gives the following
nonnegative matrices:

F =




0 0 −(1 − d̂V)β̂R ln(1 − α̂V)
A∗

V

N∗
R

0 0 0

0 −(1 − δ̂R)β̂R ln(1 − α̂R) 0




T =




(1 − d̂V)(1 − κ̂V) 0 0

(1 − d̂V)κ̂V 1 − d̂V 0

0 0 (1 − δ̂R)(1 − γ̂R)


 .
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Then the matrix F(I − T)−1 is given as


0 0 −(1−d̂V)β̂R ln(1−α̂V)A∗
V

(δ̂R+γ̂R(1−δ̂R))N∗
R

0 0 0
−(1−δ̂R)β̂R ln(1−α̂R)(1−d̂V)κ̂V

d̂V(d̂V+κ̂V(1−d̂V))
−(1−δ̂R)β̂R ln(1−α̂R)

d̂V
0




and the spectral radius of F(I − T)−1 is

R0 =
√

(1 − d̂V)2(1 − δ̂R)β̂2
Rκ̂V ln(1 − α̂V) ln(1 − α̂R)

d̂V(d̂V + κ̂V(1 − d̂V))(δ̂R + γ̂R(1 − δ̂R))

A∗
V

N∗
R

.

3.3. Comparison of discrete with continuous time version

The discrete-time version in Section 3.2 has a natural correspondence with the
continuous time version considered earlier in Section 3.1. In particular, due to the
assumed order of events for the discrete system in Section 3.2, the events in step
(1) are conditioned upon surviving mortality in the previous step (2). Hence the
parameters are conditioned upon surviving natural (d̂V or d̂L) or disease-induced
(δ̂R) mortality. This means that δR is replaced by δ̂R, dV is replaced by d̂V, γR is
replaced by γ̂R(1 − δ̂R), bV is replaced by b̂V(1 − d̂L), κV is replaced by κ̂V(1 − d̂V),
and mV is replaced by m̂V(1 − d̂L). The infection rate αVβR is replaced by −(1 −
d̂V)β̂R ln(1 − α̂V), and infection rate αRβR is replaced by −(1 − δ̂R)β̂R ln(1 − α̂R).
With these substitutions the above basic reproduction number is identical to the
previous continuous time version (Section 3.1), and R0 can again be interpreted as
a geometric mean.

4. West Nile virus model of Thomas and Urena (2001)

4.1. Discrete-time model

We now give the discrete-time model, as formulated by Thomas and Urena (2001),
with the time step of 1 week. In the model, the authors include compartments for
susceptible, exposed and infectious mosquitoes; susceptible, infectious and recov-
ered birds; and susceptible, infectious and recovered humans. They assume that
a proportion of mosquito births is infected, and so goes into the exposed class
(vertical WN virus transmission). Birds are assumed to die naturally (not from the
virus), human death is omitted, and mass action incidence is assumed. The biting
rate parameter, which is defined as ‘the probability that one mosquito bites one
bird’ in a given week is constrained to lie between zero and one, unlike the biting
parameter of Section 3.2, β̂R, which is defined as the number of bites made per sus-
ceptible mosquito per time step. Furthermore, there are no separate transmission
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parameters α̂V and α̂R in the original model (Thomas and Urena, 2001). The
probability of virus transmission between mosquitoes and birds is implicitly as-
sumed to be α̂V = α̂R = 1. To distinguish the biting rate parameters in this model
from the model discussed Section 3.2, we use β̃R and β̃H for the (Thomas and
Urena, 2001) model in this section. The order of events is not explicitly stated
in (Thomas and Urena, 2001). Control by insecticide spraying every other week is
through the introduction of a time dependent function c(t) (death due to spraying),
namely

c(t) =
{

0, t even
constant c ∈ (0, 1), t odd.

We keep this spraying function in our model formulation, so as to facilitate com-
parison with the model in Thomas and Urena (2001), although the control level is
taken to be equal to zero in the analysis that follows.

In the common notation, the dynamics are given by the difference equation sys-
tem for vectors, reservoirs and humans:
Vectors (V):

SV(t + 1) = (1 − β̃R)IR(t)(1 − d̂V + b̂V − c(t))SV(t)

+ (1 − ρ̂V)b̂V(EV(t) + IV(t))

EV(t + 1) = (1 − (1 − β̃R)IR(t))(1 − d̂V + b̂V − c(t))SV(t)

+ (1 − κ̂V)(1 − d̂V − c(t))EV(t) + ρ̂Vb̂V(EV(t) + IV(t))

IV(t + 1) = (1 − d̂V − c(t))(IV(t) + κ̂V EV(t)).

Reservoirs (R):

SR(t + 1) = b̂R(IR(t) + RR(t)) + (1 − β̃R)IV(t)(1 − d̂R + b̂R)SR(t)

IR(t + 1) = (1 − (1 − β̃R)IV(t))(1 − d̂R + b̂R)SR(t) + (1 − γ̂R)(1 − d̂R)IR(t)

RR(t + 1) = (1 − d̂R)RR(t) + γ̂R(1 − d̂R)IR(t).

Humans (H):

SH(t + 1) = b̂H NH(t) + (1 − β̃H)IV(t)SH(t)

IH(t + 1) = (1 − (1 − β̃H)IV(t))SH(t) + (1 − γ̂H)IH(t)

RH(t + 1) = RH(t) + γ̂H IH(t).

Note that we have corrected a bracket in their IV(t + 1) equation, and have
also omitted a term (1 − κ̂V)b̂V EV(t) on the right side of the equation for
EV(t + 1) as given in Thomas and Urena (2001)(Eq.(3)) as this does not seem
biologically reasonable, since vertically transmitted disease is accounted for by
the term containing ρ̂V. The total number of humans is given by NH = SH +
IH + RH.
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The nonlinearities in the infection terms differ from those assumed in Section
3.2. For example, the nonlinearity in the fraction of susceptible mosquitoes avoid-
ing infection, (1 − β̃R)IR(t), differs from the nonlinearity for the discrete model of
Section 3.2, (1 − α̂V)β̂R IR(t)/NR(t), unless 1 − β̃R = (1 − α̂V)β̂R/NR(t), or equivalently
β̂R ln(1 − α̂V)/NR = ln(1 − β̃R). A similar argument applied to the bird population
shows that the nonlinear incidence terms are equal only when β̂R ln(1 − α̂R)/NR =
ln(1 − β̃R).

The model assumptions that lead to the differences in nonlinear transmission
terms can be summarized as follows. If a single infected mosquito were introduced
into a population of birds, the probability that any given susceptible bird avoids
infection during the weekly time-step is 1 − β̃R, according to Thomas and Urena
(2001), and is (1 − α̂V)β̂R/NR(t), according to Wonham et al. (2004). The first as-
sumes that the probability of avoiding infection is independent of the bird popula-
tion size, while the second assumes that the probability of avoiding infection is an
increasing function of bird population size.

Constraints for the existence of a DFE are d̂V = b̂V, d̂R = b̂R, b̂H = 0 and c(t) =
0, and the DFE has SV = N∗

V, SR = N∗
R, SH = N∗

H and all other state variables zero.
The model of Thomas and Urena (2001) includes vertical transmission of dis-

ease through infected vector births (the parameter ρ̂V). This must also be included
in F giving rise to a term in the matrix F . With c(t) = 0 and infected variables
EV, IV, IR, IH, this model gives F(I − T)−1 as a 4-by-4 matrix, where the IH vari-
able plays no role in the calculation because humans are dead-end hosts and so do
not impact infection of other species (see Appendix for matrices F and T). This
matrix is reducible, with two of its eigenvalues being zero, thus its spectral radius
is given as the largest eigenvalue of the reduced matrix




ρ̂V
− ln(1 − β̃R)N∗

V

dR + γ̂R(1 − d̂R)

− ln(1 − β̃R)κ̂V(1 − d̂V)N∗
R

d̂V(d̂V + κ̂V(1 − d̂V))
0


 .

For ρ̂V > 0, some births are infected, then R0 is equal to

1
2


ρ̂V +

√
ρ̂2

V + 4
(1 − d̂V)κ̂V ln2(1 − β̃R)N∗

V N∗
R

d̂V(d̂V + κ̂V(1 − d̂V))(d̂R + γ̂R(1 − d̂R))


 .

If there are no infected births, then R0 is reduced and is given explicitly as a square
root, namely:

R0 =
√

(1 − d̂V)κ̂V ln2(1 − β̃R)N∗
V N∗

R

d̂V(d̂V + κ̂V(1 − d̂V))(d̂R + γ̂R(1 − d̂R))
.

Although the R0 for ρ̂V = 0 is superficially different from the R0 for the discrete-
time version of the Wonham et al. (2004) model in Section 3.2, the two can be
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closely connected if it is assumed that the value of β̃R can be related to the pa-
rameters β̂R, α̂V, α̂R, and NR as discussed earlier. Namely, β̂R ln(1 − α̂V)/N∗

R =
ln(1 − β̃R) and β̂R ln(1 − α̂R)/N∗

R = ln(1 − β̃R). Once these assumptions are made,
the only difference between the R0 terms is in the precise way that the mortal-
ity terms appear in the formula. As demonstrated for the Wonham et al. (2004)
model in the Appendix, the manner in which the mortality terms appear in R0

depends upon the precise ordering of events within one-time step of the discrete-
time model. We believe that this is the reason for the discrepancy between the
two R0 terms (for the Thomas and Urena, 2001 model with ρ̂V = 0 of this section
and for the discrete (Wonham et al., 2004) model of Section 3.2), but have not
pursued analysis of this further. This is because, when formulating their model,
Thomas and Urena did not precisely specify the ordering of events within a time
step.

4.2. Continuous time version of Thomas and Urena (2001) model

Assuming a small time step, we replace t + 1 in the original (Thomas and Urena,
2001) model (modified as noted in Section 4.1) with t + �t , where �t → 0.
We replace probabilities by corresponding rates, so that â = a�t , where a is
bV, dV, κV, bR, dR, γR, respectively, and set β̃R = βR�t . Then we expand the func-
tions with respect to �t using a Taylor series and neglect all higher order terms
(such as (�t)2, (�t)3). The resulting differential equation system, obtained as the
limit with �t → 0, reads:

dSV

dt
= −βRSV IR − dVSV + bVSV + bV(1 − ρV)(EV + IV)

dEV

dt
= βRSV IR − dV EV − κV EV + ρVbV(EV + IV)

dIV

dt
= −dV IV + κV EV

dSR

dt
= bR NR − dRSR − βR IVSR

dIR

dt
= βR IVSR − (dR + γR)IR

dRR

dt
= γR IR − dR RR

dSH

dt
= −βH IVSH + bH NH

dIH

dt
= βH IVSH − γH IH

dRH

dt
= γH IH.
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The disease-free equilibrium, with parameter constraints bV = dV, bR = dR and
bH = 0, is

(SV, EV, IV, SR, IR, RR, SH, IH, RH) = (N∗
V, 0, 0, N∗

R, 0, 0, N∗
H, 0, 0) .

The infected variables are EV, IV, IR and IH but IH can be excluded from the
R0 calculations by an argument similar to that used in the original (Thomas and
Urena, 2001) model in Section 4.1. Then in variables EV, IV, IR the matrices at the
DFE are

F =




ρVbV ρVbV βR N∗
V

0 0 0

0 βR N∗
R 0




V =




dV + κV 0 0

−κV dV 0

0 0 dR + γR


 .

Consequently,

FV−1 =




ρV ρV
βR N∗

V

(dR + γR)

0 0 0

βRκV N∗
R

dV(dV + κV)
βR N∗

R

dV
0




so the spectral radius of FV−1 is, for ρV = 0,

R0 =
√

β2
RκV N∗

V N∗
R

dV(dV + κV)(dR + γR)
.

For ρV > 0,

R0 = 1
2


ρV +

√
ρ2

V + 4
β2

RκV N∗
V N∗

R

dV(dV + κV)(dR + γR)


 .

With the ratio of A∗
V and N∗

R replaced by the product N∗
V N∗

R and δR replaced
by dR, the expression for R0 in the continuous (Wonham et al., 2004) model in
Section 3.1 is analogous to the above expression with ρV = 0, once we recall that,
for the Thomas and Urena (2001) model, αV = αR = 1. As discussed earlier in
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Section 5, the main difference is due to the different assumptions made about the
disease transmission terms. An identification between the R0 expressions for this
continuous model and the previous discrete model (Section 4.1) can be made as for
the Wonham et al. (2004) models of Section 3. If βR is replaced by − ln(1 − β̃R),
and κV and γR are conditioned on surviving natural death, then the R0 of Section
4.1 is obtained.

5. Discussion and concluding remarks

As demonstrated in Section 3, analysis of the change in R0 with model parameters
for the Wonham et al. (2004) model predicts that a reduction in mosquito density
can be used to control WN virus outbreaks. This prediction is shared by the model
of Thomas and Urena for WN virus (2001). However, Wonham et al. (2004) also
predicts that a reduction in bird density will actually exacerbate, rather than con-
trol, a WN virus outbreak. By way of contrast, this second result is not predicted by
the model of Thomas and Urena (2001). In fact, for the Thomas and Urena (2001)
model, a reduction in bird density will control, rather than exacerbate, a WN virus
outbreak. Clearly, both results cannot be simultaneously correct from a biological
perspective.

A resolution of this quandary arises from an analysis of how model assump-
tions shape the formula for R0. The two models make different assumptions about
mosquito-feeding efficiencies, leading to different disease transmission terms.

The Wonham et al. (2004) model follows Anderson and May (1991) in using
modified mass action terms that assume efficient mosquito searching even when
host densities are low (αRβR

SR
NR

IV for mosquitoes to birds and αVβR
IR
NR

SV for birds
to mosquitoes). This assumption corresponds to a disease transmission rate that
depends only on the proportion of birds susceptible or infected, and is independent
of the actual density of birds. Thus a constant disease transmission rate is assumed
over a range of bird densities (Fig. 1).

The Thomas and Urena (2001) model uses simple mass action terms that as-
sume the encounter rate between mosquitoes and hosts is proportional to host den-
sity (in the continuous formulation, these are βR IVSR for mosquitoes to birds and
βRSV IR for birds to mosquitoes). This assumption corresponds to a transmission
rate that increases linearly with bird density (Fig. 1). As noted earlier, the Thomas
and Urena (2001) model does not explicitly state the order of events within in each
time step. A further investigation of the Thomas and Urena (2001) model might
reformulate the specification of the order of events within each time step, although
we do not pursue this here.

Since WN-vector mosquitoes in North America typically exhibit a 3-day feed-
ing cycle, it may be reasonable to imagine a saturating functional response
of transmission rate to bird density, of which the Wonham et al. (2004) and
Thomas and Urena (2001) models each represent a part (Fig. 1). Incorporat-
ing such dynamics into a single model would require a different transmission
term (McCallum et al., 2001).

Although both model assumptions have a sound theoretical basis, they yield
starkly different predictions as to the effect of bird control (as calculated from
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Fig. 1 Two different assumptions about mosquito-feeding efficiency lead to different WN
transmission dynamics. The (Wonham et al., 2004) model assumes the transmission rate is
invariant across bird densities (horizontal line), whereas the Thomas and Urena (2001) model
assumes transmission scales with bird density (diagonal line). When SR = NR = N∗

R, the per
mosquito transmission rate to hosts is αRβR in the Wonham et al. (2004) model, whereas the
per mosquito transmission rate to hosts is βR N∗

R in the Thomas and Urena (2001) model.
Biologically, transmission rates likely exhibit a response that is a combination of the two (solid
lines), depending on the equilibrium density of hosts N∗

R.

R0) on WN virus. When bird densities are low, the Wonham et al. (2004) model
predicts that the remaining birds receive more bites and become local hot spots
for disease transmission with each bird having a high probability of becoming in-
fected and passing on the virus. The Thomas and Urena (2001) model, in contrast,
predicts that the disease will die out in regions of low bird density. Thus, the R0

of Thomas and Urena (2001) predicts that bird control would be effective in con-
trolling WN, whereas the R0 of Wonham et al. (2004) predicts that it would be
counterproductive.

Because the R0 involves linearization about the equilibrium SR = N∗
R, the model

yielding correct R0 is the one whose functional response of transmission rate to
bird density is valid for typical bird densities N∗

R. In other words, if reduction in
bird density from N∗

R means no reduction in the overall biting rate, but simply
that the remaining birds are bitten more frequently (i.e., N∗

R is in the ‘flat’ region
of Fig. 1), then the R0 of Wonham et al. (2004) pertains. If, by way of contrast,
reduction in bird density from N∗

R means a concomitant reduction in the overall
biting rate (i.e., N∗

R is in the ‘linear’ region of Fig. 1) then the Thomas and Urena
(2001) model pertains.

This simple example illustrates our primary purpose. That is, to demonstrate
clearly how slightly different, but seemingly reasonable assumptions, going into a
model formulation for WN virus, can yield very different biological conclusions
on the basis of analysis of R0. Indeed, as we have shown in Section 3 and the
Appendix, a change as simple as moving from continuous to discrete-time for-
mulation can yield several plausible discrete-time models, each with a qualita-
tively different R0. As such, this paper is designed as a cautionary note which
underscores the importance of model formulation and between-model compar-
ison prior to inferring the efficacy of disease management methods. Section 2
and the subsequent explicit calculations address our secondary purpose, namely
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to set out clearly the calculations for the basic reproduction number for a con-
tinuous or discrete-time model, with particular emphasis on models for WN
virus.

The two models that we have taken from the literature, specifically the continu-
ous time model of Wonham et al. (2004) and the discrete-time model of Thomas
and Urena (2001), plus the additional continuous time models by Lord and Day
(2001) and by Bowman et al. (2005) are, to our knowledge, the only mathematical
models for West Nile virus currently in the literature. We are considering these,
a model of St Louis Encephalitis virus by Lord and Day (2001) and other studies
on Encephalitis (Kay et al., 1987; Tapaswi and Ghosh, 1999; Tapaswi et al., 1995;
Lord and Day, 2001) for further comparisons.

Appendix

A.1 Discrete-time version of Wonham et al. (2004) model—version 2
(different assumptions)

To see how the ordering of events can affect the model structure, and eventually
R0, we consider a different set of assumptions from that in Section 3.2. The new
assumptions are as follows:

1. Disease-induced and natural mortality and birth occur at the beginning of the
time step.

2. Infection and transfer occur at the end of the time step.

The corresponding model in discrete time is formulated as

LV(t + 1) = (1 − m̂V)[b̂V(SV(t) + EV(t) + IV(t)) + (1 − d̂L)LV(t)]

SV(t + 1) = (1 − d̂V)SV(t)(1 − α̂V)
β̂R(1−δ̂R)IR(t)
NR(t)−δ̂R IR(t)

+ m̂V[(1 − d̂L)LV(t) + b̂V(SV(t) + EV(t) + IV(t))]

EV(t + 1) = (1 − d̂V)SV(t)
(

1 − (1 − α̂V)
β̂R(1−δ̂R)IR(t)
NR(t)−δ̂R IR(t)

)

+ (1 − d̂V)(1 − κ̂V)EV(t)

IV(t + 1) = κ̂V(1 − d̂V)EV(t) + (1 − d̂V)IV(t)

SR(t + 1) = SR(t)(1 − α̂R)
β̂R(1−δ̂R)IV(t)
NR(t)−δ̂R IR(t)

IR(t + 1) = (1 − γ̂R)
(

SR(t)
(

1 − (1 − α̂R)
β̂R(1−δ̂R)IV(t)
NR(t)−δ̂R IR(t)

)
+ (1 − δ̂R)IR(t)

)

RR(t + 1) = γ̂R

(
SR(t)

(
1 − (1 − α̂R)

β̂R(1−δ̂R)IV(t)
NR(t)−δ̂R IR(t)

)
+ (1 − δ̂R)IR(t)

)

XR(t + 1) = XR(t) + δ̂R IR(t).



Bulletin of Mathematical Biology (2006) 68: 491–509 507

Now, the parameter constraint for existence of a disease-free equilibrium is

b̂V = d̂V

(
1 + d̂L

m̂V(1 − d̂L)

)
.

The disease-free equilibrium is

(LV, SV, EV, IV, SR, IR, RR, XR)

=
(

(1 − d̂L)(1 − m̂V)b̂V

(1 − d̂L)m̂V + d̂L
A∗

V, A∗
V, 0, 0, N∗

R, 0, 0, 0

)
.

The infected variables are EV, IV and IR and

F =




0 0 −(1 − d̂V)(1 − δ̂R)β̂R ln(1 − α̂V)
A∗

V

N∗
R

0 0 0

0 −(1 − d̂V)(1 − γ̂R)β̂R ln(1 − α̂R) 0




T =




(1 − d̂V)(1 − κ̂V) 0 0

(1 − d̂V)κ̂V 1 − d̂V 0

0 0 (1 − δ̂R)(1 − γ̂R)


 .

The matrix F(I − T)−1 is given as




0 0
p̂V(1 − δ̂R)β̂R ln(1 − α̂V)A∗

V

(δ̂R + γ̂R(1 − δ̂R))N∗
R

0 0 0

−( p̂V)2(1 − γ̂R)β̂R ln(1 − α̂R)κ̂V

d̂V(d̂V + κ̂V(1 − d̂V))

−( p̂V)(1 − γ̂R)β̂R ln(1 − α̂R)

d̂V
0




where here p̂V is written for (1 − d̂V). Thus the spectral radius of F(I − T)−1 is

R0 =
√

(1 − d̂V)3(1 − γ̂R)(1 − δ̂R)β̂2
Rκ̂V ln(1 − α̂V) ln(1 − α̂R)

d̂V(d̂V + κ̂V(1 − d̂V))(δ̂R + γ̂R(1 − δ̂R))

A∗
V

N∗
R

.

Note that this R0 is different than the one calculated for the previous discrete-
time model in Section 3.2. However, as with the previous model, this R0 can
be made identical to the earlier Wonham et al. (2004) R0, once the parame-
ters are conditioned upon surviving natural (d̂V or d̂L) or disease-induced (δ̂R)



508 Bulletin of Mathematical Biology (2006) 68: 491–509

mortality, and the infection rates are modified appropriately. For these assump-
tions, this means that δR is replaced by δ̂R, dV is replaced by d̂V, γR is replaced
by γ̂R(1 − δ̂R), bV is replaced by b̂V(1 − d̂L), κV is replaced by κ̂V(1 − d̂V), and
mV is replaced by m̂V(1 − d̂L) as in Section 3.2. The infection rate αVβR is re-
placed by −(1 − d̂V)(1 − δ̂R)β̂R ln(1 − α̂V), and infection rate αRβR is replaced by
−(1 − δ̂R)(1 − γ̂R)β̂R ln(1 − α̂R). Note that, due to the different set of assumptions
regarding the ordering of events, these infection rates are expressed by different
parameters than in the previous discrete-time model (Section 3.2): a new factor of
1 − δ̂R appears in the αVβR term, and a new factor of 1 − γ̂R appears in the αRβR

term.

A.2 Matrices F and T for Thomas and Urena (2001) model

The 4-by-4 matrices F and T used to compute R0 in Section 4.1 are given explicitly
as

F =




ρ̂Vb̂V ρ̂Vb̂V − ln(1 − β̃R)N∗
V 0

0 0 0 0

0 − ln(1 − β̃R)N∗
R 0 0

0 − ln(1 − β̃H)N∗
H 0 0




T =




(1 − κ̂V)(1 − d̂V) 0 0 0

κ̂V(1 − d̂V) 1 − d̂V 0 0

0 0 (1 − γ̂R)(1 − d̂R) 0

0 0 0 (1 − γ̂H)


 .
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