
ARTICLE IN PRESS
0040-5809/$ - se

doi:10.1016/j.tp

�Correspond
Avenue, Kingst

E-mail addr
1Current add

and Conservati

USA.
Theoretical Population Biology 70 (2006) 244–254

www.elsevier.com/locate/tpb
A spatially explicit model for an Allee effect: Why wolves recolonize so
slowly in Greater Yellowstone

Amy Hurforda,b,�, Mark Hebblewhitea,1, Mark A. Lewisa,b,c

aDepartment of Biological Sciences, University of Alberta, Edmonton, Alta., Canada T6G 2E9
bCentre for Mathematical Biology, University of Alberta, Edmonton, Alta., Canada T6G 2E9

cDepartment of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alta., Canada T6G2E9

Received 3 January 2005

Available online 29 June 2006
Abstract

A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low

densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect

do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially

explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model

for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding

units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to

determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results

suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Biological invasion theory predicts that populations with
high reproductive rates and long distance dispersal will
spread quickly (Fisher, 1937). In the Greater Yellowstone
Ecosystem (GYE, MT and WY, USA) the reintroduced
gray wolf population (Canis lupus) increased by 65%
percent between 1996 and 1997 (Smith, 1998). Wolves can
also disperse distances greater than 800 km (Ballard et al.,
1983; Fritts, 1983; Boyd and Pletscher, 1999). Yet wolves
do not recolonize as quickly as biological invasion theory
predicts. Assuming logistic population growth and a
Gaussian distribution of dispersal distances, the Fisher
(1937) model predicts a recolonization rate of 93.9 km/year
e front matter r 2006 Elsevier Inc. All rights reserved.
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(see Appendix A) by wolves to the GYE. The observed
GYE recolonization rate between 1997 and 2002 is an order
of magnitude lower, only 9.78 km/year (Table 3). This
slower than predicted spread suggests a possible Allee effect
(Lewis and Kareiva, 1993; Kot et al., 1996; Veit and Lewis,
1996; Wang et al., 2002). A reduced probability of finding
mates at low densities is a frequently hypothesized
mechanism that can cause an Allee effect (Boukal and
Berec, 2002; Bessa-Gomes et al., 2004; and references
therein). Our objective is to determine the effect of a
reduced probability of finding mates at low densities on the
spread rate of a sexually reproducing, invading, population.
Recent work defines a component Allee effect as a

positive relationship between a component of individual
fitness and population density or number (Stephens et al.,
1999; Boukal and Berec, 2002) and a demographic Allee
effect as a positive relationship between total fitness and
population density or number (Stephens et al., 1999).
Many mechanisms have been identified that may give rise
to an Allee effect in a component of fitness (Dennis, 1989;
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Table 1

Table of variables

Variable Definition Units

x Location in space after dispersal km

y Location in space prior to dispersal km

t Time years

Nt Density wolves/km

Dt Density of individuals in new packs wolves/km

xt Spatial extent of the disperser producing

population

km
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Courchamp et al., 1999; Stephens and Sutherland, 1999;
Møller and Legendre, 2001). In canids, Allee effects may
arise when hunting is cooperative, as shown for African
wild dog Lycaon pictus (see Courchamp et al., 2000).
However, this is unlikely for wolves if small packs are able
to secure more prey per capita than large packs (Schmidt
and Mech, 1997, but see Vucetich et al., 2004). Several
studies report the mortality of wolves that disperse long
distances to regions of low wolf density (Nowak, 1983;
Licht and Fritts, 1994; Mech et al., 1995; Boyd-Heger,
1997). We suggest the most likely source of an Allee effect
in wolves is a reduced probability of finding mates at low
densities during the dispersal phase.

Excellent reviews of approaches used to model Allee
effects are found in Boukal and Berec (2002) and
Taylor and Hastings (2005). Many studies have investi-
gated the effect of a reduced probability of finding mates
at low densities on population dynamics (Engen et al.,
2003; Bessa-Gomes et al., 2004; Berec and Boukal, 2004;
and numerous others) and some have investigated the
effect of a reduced probability of finding mates at low
densities on population spread rate (e.g. Wang et al., 2002;
Veit and Lewis, 1996). We model a reduced probability of
finding mates at low densities as influencing only the
component of fitness associated with the probability of
establishing new breeding units. Our model derivation
assumes a component Allee effect and our analysis
determines how this assumed component Allee effect
influences recolonization rate. We model population
growth as two separate processes: (1) establishment of
new breeding units and (2) net annual change in breeding
group size/density through immigration, emigration, births
and deaths. Even when broken into these two separate
processes, decreased success in finding a mate at low
densities should still be considered a component Allee
effect, since a positive relationship exists between mate
density and the probability of finding a mate. This
distinction between establishment and subsequent growth
yields a biologically realistic model which can be para-
meterized and validated with empirical data.

To model pair formation it is necessary to understand
how organisms search for mates. Because little is known
regarding where wolves or other mammals search for mates
with respect to the beginning and end of their dispersal
paths, we consider the extreme possibilities (searching for
the mates at the very beginning and very end). We
determine the spread rates predicted by the extreme
searching strategies and use these as the upper and lower
estimates for the predicted spread rate. The model is
validated by comparing the predicted range of spread rates
for the parameterized model to an empirical estimate of the
recolonization rate for wolves in the GYE.

2. Model derivation

We model local population density NðxÞ as the sum of
the density of individuals in new packs and the density of
existing packs after reproduction,

Ntþ1ðxÞ|fflfflfflffl{zfflfflfflffl}
local density in

year tþ1

¼ f ðNtðxÞÞ|fflfflfflfflffl{zfflfflfflfflffl}
local density

after
reproduction by

existing
breeding units

þ DtðxÞ;|fflffl{zfflffl}
local density from
formation of new
breeding units

(1)

where t indicates the year, locations in space are denoted as
x. In Eq. (1), Ntþ1ðxÞ is the sum of the density due to
reproduction by existing breeding units and the density
due to the formation of new breeding units. The distinction
between new and existing breeding units is that
new breeding units were formed less than 1 year ago (see
Tables 1 and 2 for definitions and units of all variables and
parameters).
Our model derivation makes several simplifying assump-

tions:
(A1)
 Space is homogeneous on the scale for which the
model is parameterized.
(A2)
 There is a critical density Nc, below which the
population grows geometrically (at rate r) and no
dispersers are produced. Once local density has
reached Nc it never drops below that level.
(A3)
 When local density exceeds Nc, dispersers are
produced at density GtðyÞ with a 1:1 sex ratio, where
y denotes locations in space prior to dispersal. The
distribution of dispersal distances is denoted by the
probability density function k which is unbiased in
either direction (symmetric) and identical for male
and female dispersers.
(A4)
 Only dispersers can form pairs (new breeding units),
and the establishment of new breeding units depends
on the density of dispersers, the distance at which
dispersers can detect each other f and the probability
that dispersers that encounter will pair, c.
(A5)
 Only dispersers that form pairs can reproduce.
Failure to find a mate is assumed to result in
mortality before the next breeding season. Therefore,
a reduced probability of finding mates at low density
impacts individual fitness (i.e. component Allee effect,
Stephens et al., 1999).
We derive two sub-models for Dt where dispersers search
for mates and form pairs: (1) prior to dispersal and (2)
following dispersal.
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Table 2

Table of parameters

Parameter Definition Estimate Units

Nc Critical threshold density that must be exceeded for disperser production 0:25a Wolves per km

g Density of dispersers produced when pack density exceeds Nc 0:09a Wolves per km

a Laplace coefficient 0.02 Per km

r Geometric growth rate for packs 41 year old 1.33 Unitless

s The number of wolves in newly formed breeding units at the end of the first year 5.64 Wolves per pair

f The radius at which one disperser can detect another 20.7b, 39.2b km

c The probability that given two dispersers of the opposite sex meet, they form a pair 1b Unitless

TD Average territory diameter 26.4 km

aThis estimate of Nc equates to 6.6 wolves per territory or 0.012 wolves per km2. Furthermore, g ¼ 0:02 equates to 0.53 dispersers per territory or

0.00097 dispersers per km2.
bFrom the data we estimate cf. For simplicity we fix c ¼ 1. To ensure that the proportion of dispersers that find mates is 0.47 for the first four years

following reintroduction f is different for the pair formation prior (f ¼ 20:7) and pair formation following dispersal (f ¼ 39:2) models.

A. Hurford et al. / Theoretical Population Biology 70 (2006) 244–254246
2.1. Pair formation prior to dispersal

Let GtðyÞ denote the density of dispersers produced at y

as a function of local density. We assume an equal sex ratio
at any point in space such that the density of a single sex of
disperser produced at y is HtðyÞ ¼ GtðyÞ=2. For a female
located at y, the expected number of male dispersers she
can detect (and vice versa) is denoted by I tðyÞ and is given
by the formula

I tðyÞ ¼
1

2

Z yþf

y�f
GtðxÞ dx, (2)

where f is the detection distance in km. We approximate I t

by the mid-point rule such that I t � fGt. Using the Law of
Mass Action, the density of opposite sex encounters is
EtðyÞ ¼ HtðyÞI tðyÞ � fG2

t ðyÞ=2. Dispersers that encounter
each other will pair with probability c, such that the
density of pairs is cEt ¼ cfG2

t ðyÞ=2. Since the density of
pairs is a monotonically increasing function of disperser
density, GtðyÞ, a component Allee effect exists between the
density of dispersers and the component of fitness
associated with the formation of pairs. Dispersal of pairs
occurs via a redistribution kernel kðx� yÞ yielding Jt, the
density of pairs after dispersal,

JtðxÞ ¼

Z
Ot

cEtðyÞkðx� yÞ dy,

¼ c
f
2

Z
Ot

G2
t ðyÞkðx� yÞ dy, ð3Þ

where Ot is the region over which the density of pairs
formed prior to dispersal is non-zero and x is an
individual’s final location after dispersal. Therefore, the
density of individuals in new packs, Dt, when pair
formation occurs prior to dispersal is

DtðxÞ ¼ sJtðxÞ,

¼ sc
f
2

Z
Ot

G2
t ðyÞkðx� yÞ dy, ð4Þ
where s is the number of wolves in a newly formed pack
when the pack is 1 year old.
2.2. Pair formation following dispersal

We derive an alternative sub-model for Dt where
dispersers disperse first and then pair. The density of either
sex of dispersers after dispersal, but prior to pair
formation, is

HtðxÞ ¼
1

2

Z
Ot

GtðyÞkðx� yÞ dy. (5)

In this case, the number of male dispersers I tðxÞ that can be
detected by a female disperser located at x is

I tðxÞ ¼
1

2

Z xþf

x�f

Z
Ot

GtðyÞkðx� yÞ dy dx,

� f
Z
Ot

GtðyÞkðx� yÞ dy. ð6Þ

The density of encounters is Et ¼ HtIt. Opposite sex
encounters result in pair formation with probability c;
hence, the density of pairs is

JtðxÞ ¼ cEtðxÞ ¼ cHtðxÞI tðxÞ,

¼ c
f
2

Z
Ot

GtðyÞkðx� yÞ dy

� �2

. ð7Þ

Again, note the positive relationship between disperser
density GtðyÞkðx� yÞ and the density of pairs JtðxÞ which
implies a component Allee effect as it did for the pair
formation prior to dispersal model. Given Eq. (7), the
density of individuals in newly formed packs is

DtðxÞ ¼ sJtðxÞ

¼ sc
f
2

Z
Ot

GtðyÞkðx� yÞ dy

� �2

. ð8Þ
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2.3. General model

We substitute these forms of Dt into Eq. (1) to
understand the population level consequences of the
component Allee effect via density dependent pair forma-
tion. The general model for pair formation prior to
dispersal is

Ntþ1ðxÞ ¼ f ðNtðxÞÞ þ sc
f
2

Z
Ot

G2
t ðyÞkðx� yÞ dy, (9)

and the general model for pair formation following
dispersal model is

Ntþ1ðxÞ ¼ f ðNtðxÞÞ þ sc
f
2

Z
Ot

GtðyÞ kðx� yÞ dy

� �2

. (10)

The differences between Eqs. (9) and (10) are a result of
dispersal occurring prior to the application of the Law of
Mass Action in the pair formation prior to dispersal sub-
model (Eqs. (2)–(3)) and after dispersal in the pair
formation following dispersal sub-model (Eqs. (5)–(7)).
2Available on-line at http://www.nps.gov/yell/nature/animals/wolf/

wolfup.html.
3Available online at http://westerngraywolf.fws.gov/annualreports.htm.
2.4. Functional forms

We specify the functional forms of f ðNtÞ, Gt and kðx�

yÞ that we will use for our analysis. We define disperser
production Gt as a piecewise function where a density of g
dispersers/km is produced when local population density
exceeds a critical threshold density Nc. Formally,

GtðyÞ ¼
g if NtðyÞXNc;

0 otherwise:

�
(11)

Given this definition of GtðyÞ, the region Ot over which
dispersers are produced is the region over which NtðyÞ

exceeds Nc. We use a geometric population growth
function,

f ðNtðxÞÞ ¼ rNtðxÞ for f ðNtðxÞÞpNe, (12)

where Ne is a critical threshold below which population
growth is geometric with a reproduction ratio r41. For
simplicity we let Ne ¼ Nc. We assume that once local
density exceeds the critical threshold Nc it will always
remain above the Nc threshold. We do not define a form of
the growth function for f ðNtÞ4Nc as disperser production
is constant for NtXNc.

For our analysis we chose the dispersal kernel kðx� yÞ to
be a Laplace kernel,

kðx� yÞ ¼
a
2
expð�ajx� yjÞ dy. (13)

It was not possible to choose a dispersal kernel based on fit
to the data, since we do not have data on wolf dispersal
distances in the GYE. We choose the Laplace kernel for
kðx� yÞ since it can be understood mechanistically as
arising from a one-dimensional random walk where wolves
‘settle’ out from the population at a constant rate to start
new packs (Neubert et al., 1995). Substituting the
functional forms of f ðNtÞ, Gt and kðx� yÞ into the
equation for pair formation prior to dispersal (Eq. (9))
yields

Ntþ1ðxÞ ¼ rNtðxÞ þ scfg2
a
4

Z
Ot

expð�ajx� yjÞ dy, (14)

and into the equation for pair formation following
dispersal (Eq. (10)) yields

Ntþ1ðxÞ ¼ rNtðxÞ þ scfg2
a
8

Z
Ot

expð�2ajx� yjÞ dy. (15)

2.5. Parameter estimation: GYE wolves

We estimate model parameters from demographic,
dispersal and pair formation data from the GYE wolf
population. Wolves were released into YNP following a
period of confinement in reacclimation pens. We omit data
from the first year after packs were released from
reacclimation pens as forced confinement influenced the
probability that wolves would disperse upon release (Fritts
et al., 2001).
Disperser production and critical population size (g and

Nc) are estimated using data on pack sizes and the number
of dispersers produced as provided in annual reports for
the YNP Wolf Project2 (Phillips and Smith, 1997; Smith,
1998; Smith et al., 1999, 2000, 2001; Smith and Guernsey,
2002; Smith et al., 2003) and Rocky Mountain Wolf
Recovery3 (US Fish and Wildlife Service et al., 2000, 2001,
2002, 2003). However, these progress reports do not record
when no wolves dispersed from a pack. To correct for this,
we augmented the disperser production data by adding
observations of no dispersers in the cases where all pack
members were accounted for through mortality or survival
in the pack. To convert pack sizes and number of dispersers
produced to densities, we divided these values by the mean
territory diameter (TD ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
AT=p

p
; where AT ¼ 545:6 km2,

Carroll et al., 2003 is the mean pack territory area). We
used a maximum likelihood fit of Eq. (11) to the density
data to estimate the parameters g and Nc.
Smith et al. (2000) report the mean dispersal distance for

GYE wolves from 1995 to 1999 as ū ¼ 76:7 km. We equate
the mean dispersal distance ū ¼ 76:7 km (Smith et al., 2000)
with the mean of the two-dimensional dispersal kernel with
constant settling rate (Eq. (20), see Appendix A).
As cf always occurs as a product in our models

(Eqs. (14) and (15)) it is not necessary to estimate the values
of c and f separately. During the first four years of
recolonization to the GYE the proportion of dispersers
that found mates was 0:47 (Smith et al., 2000). We estimate
the product cf so that for each model (Eqs. (14) and (15))

http://www.nps.gov/yell/nature/animals/wolf/wolfup.html
http://www.nps.gov/yell/nature/animals/wolf/wolfup.html
http://westerngraywolf.fws.gov/annualreports.htm
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Fig. 1. Two different initial population densities are shown. (A) Initial

condition 1 labelled as N0 where initially a population has invaded the left

side of the domain. Formally, initial condition 1 is defined as N0ðxÞXNc

for �1oxox0 and N0ðxÞ ¼ 0 otherwise. Example solutions to Eq. (14)

show the population spreading to the right. The parameters are: a ¼ 0:01,
r ¼ 1, A ¼ 25, Nc ¼ 1. The extent of the disperser producing population is

x0 ¼ 1001; x1 ¼ 1161; x2 ¼ 1342; x3 ¼ 1523. (B) Initial condition 2

labelled as N0 where initially a population has invaded the center of the

domain. Formally, initial condition 2 is N0ðxÞXNc for �x0pxpx0 and

N0ðxÞ ¼ 0, otherwise. Example solutions to Eq. (15) show the population

spreading in both directions. The parameters are: a ¼ 0:04; r ¼ 1:135;
A ¼ 12:5; Nc ¼ 1. The extent of the disperser producing population is:

x0 ¼ 500;x1 ¼ 811; x2 ¼ 1137;x3 ¼ 1464. In both (A) and (B) the dotted

line indicates that our analysis focuses on modeling the population

dynamics at low densities.
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the proportion of dispersers that find mates in the first four
years is 0:47 (see Appendix A). Hence, only the density of
new breeding units formed varies between the two models
(Fig. 3).

We estimate s using data on wolf pack sizes in the GYE
for the first three years following the formation of a new
pack (Appendix B). The parameter s is the number of wolves
in a newly formed pack when the pack is 1 year old (where a
pack is defined as 1 year old on the first April after pair
formation). We calculate s as the mean number of
individuals in newly formed packs at the first April following
pair formation. To find the reproductive ratio r we divided
the total density of wolves at time tþ 1 by the total density
of wolves at time t. We performed this calculation for t ¼ 1
and 2 and estimated r as the mean of the results. Since r is the
reproductive ratio of packs at low densities which were
established for at least 1 year, we included only packs that
are 1–3 years old with a density of less than or equal to Nc.
We excluded packs that were influenced by human interven-
tion (other than legal control actions).

2.6. Model validation: finding the observed rate of spread

We calculate the spread rate for the model (Eqs. (14) and
(15)) in the next section. We validate the model by comparing
the predicted spread rate (Eq. (18)) to the observed rate of
recolonization by wolves to the GYE. We used maps of wolf
territory locations from YNP Wolf Project annual reports
from 1997 to 2002 to estimate the empirical rate of wolf
recolonization in the GYE (km/year). We determine the area
occupied by disperser producing packs at the start of each year
by estimating the 100% minimum convex polygon (MCP) of
all territories above the critical threshold for disperser
production using the animal movements extension (Hooge
and Eichenlaub, 1996) in ArcView 3.2 (see Fig. 2A). For
simplicity, the area encompassed by the 100% MCP is
assumed circular, with a radius xt equal to the extent of the
disperser producing population at time t. The linear spread
rate c (km/year) is the slope of the linear regression of xt versus
time. To be consistent, the linear regression does not include
the range radius of the population in 1996 as this is less than 1
year after wolves were released from reacclimation pens.

3. Analysis and results

We analyze a general model (Eq. (16)) of which the
models (Eqs. (14) and (15)) are special cases. We analyze
the model for two initial conditions. Given initial condition
1 (shown in Fig. 1A and defined in Appendix A), the region
in space occupied by the disperser producing population Ot

is ð�1;xt�. Evaluating Eqs. (14) and (15) in the region
x4xt yields

Ntþ1ðxÞ ¼ rNtðxÞ þ A expð�waðx� xtÞÞ, (16)

where w ¼ 1 for the pair formation prior to dispersal
model, w ¼ 2 for the pair formation following dispersal
model and A ¼ scfg2=ð4wÞ. In Appendix A we show that
for initial condition 1, Eq. (16) can be solved such that

Ntþ1ðxÞ ¼ expð�waðx� x0ÞÞ rþ
A

Nc

� �t

for x4xtþ1.

(17)

Eq. (17) is graphically depicted in Fig. 1A. For initial
condition 2, numerical solutions to Eq. (16) (w ¼ 2) are
shown in Fig. 1B. For both initial conditions the spread
rate for the spatially explicit Allee effect model (Eq. (16))
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Table 3

The predictions of two models compared to the observed spread rate for

wolves recolonizing the GYE

Model Spread rate (km/year)

Pair formation prior to dispersal 41.11

Pair formation following dispersal 20.00

Observed spread rate (95% CI upper limit) 12.05

Observed spread rate 9.78

Observed spread rate (95% CI lower limit) 7.51
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Fig. 2. Wolf recolonization to the GYE. (A) For each year, the area

occupied by all wolf packs of density Nc or greater is calculated as a

minimum convex polygon (MCP). The Yellowstone National Park shape

file was provided by Spatial Analysis Center at Yellowstone National

Park. (B) The MCP area recolonized is assumed circular with radius equal

to xt the linear extent of recolonization by packs with density Nc or

greater (dots). The population spread rate is equal to the slope of the linear

regression. The 95% confidence interval for the linear regression are

shown as dotted lines.
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has the same form,

c ¼
1

wa
log rþ

A

Nc

� �
(18)

(see Appendix A). When parameterized Eq. (18) predicts a
spread rate of 41.11 km/year for the pair formation prior to
dispersal model and 20.00 km/year for the pair formation
following dispersal model (Tables 2 and 3). To estimate the
actual rate that wolves introduced to YNP have recolo-
nized the GYE we calculated the area occupied by wolf
packs of density larger than Nc from 1997 to 2002
(Fig. 2A). The area occupied by wolf packs of density
greater than Nc increased from 6542 km2 in 1997 to a
maximum of 29; 093 km2 in 2002. Assuming an approxi-
mately circular area, we calculated range radii of packs
with density exceeding the critical threshold as 45.631 km
in 1997 increasing to 96.230 km in 2002. The linear
regression of radii versus time was significant, radii ¼
25:02þ 9:78� ðyears since reintroductionÞ, F 1;4 ¼ 142:62,
p ¼ 0:0003, R2 ¼ 0:97 (Fig. 2B). The slope of the linear
regression (9.78 km/year) is the mean spread rate, with
SEðcÞ ¼ 3:43, resulting in a 95% confidence interval of
7.51–12.05 km/year (Table 3).

4. Discussion

Our results provide a link between a mechanism that can
cause a component Allee effect and population spread rate.
To understand population level dynamics at the leading
edge of the invasion front, we derive a component Allee
effect model (Eqs. (14) and (15)) with biologically mean-
ingful parameters that describes population density when
the probability of finding a mate decreases with decreasing
density of potential mates. We show that for GYE wolves a
reduced probability of finding mates at low densities slows
the predicted rate of recolonization.

The component Allee effect model predicts a spread rate
of between 20.00 and 41.11 km/year, which is slower than
the spread rate predicted by the Fisher model (see
Appendix A). An integrodifference model with a Laplace
dispersal kernel but no component Allee effect would
predict a spread rate faster than the Fisher model, since the
spread rate of an integrodifference equation with a Laplace
dispersal kernel is faster than an integrodifference model
with the equivalent Gaussian dispersal kernel (Kot et al.,
1996). Fisher’s model and integrodifference models for
biological invasions typically assume all dispersers are
equally likely to reproduce. For a sexually reproducing
population where individuals must search to find mates
(such as wolves) this implies that the probability of finding
a mate is independent of mate density. Therefore, we
conclude that a reduced probability of finding mates at low
densities slows the population spread rate for GYE wolves.
Furthermore, the spread rate for the spatially explicit

Allee effect model (Eq. (18)) is an increasing function of the
ratio A=Nc. The constant A can be interpreted as a measure
of the density of new packs formed in a single time interval
(see second term on the right of Eq. (16)). It is the
dimensionless ratio of this density measure A to the
dispersal density threshold Nc (above which wolves
disperse) that appears in the spread rate formulation



ARTICLE IN PRESS
A. Hurford et al. / Theoretical Population Biology 70 (2006) 244–254250
(Eq. (18)). To understand the effect of behavioral
components on population spread, the constant A can
be broken down into its component parameters
A ¼ scfg2=ð4wÞ. Hence A, as well as the corresponding
spread rate (Eq. (18)), is an increasing function of size of
newly formed pack (s), likelihood of pair formation (c),
radius of detection for a mate (f) and density of dispersers
produced (g). The parameter A is reduced when pair
formation is post-dispersal (w ¼ 2), rather than pre-
dispersal (w ¼ 1). In this way, the spread rate with Allee
effect is connected explicitly to the behavioral components
that give rise to the Allee effect.

Table 3 shows that when pair formation occurs prior to
dispersal the population spreads more quickly than if pair
formation occurs after dispersal. This is because the
different pair formation strategies give rise to different
densities of new breeding units or pairs. Fig. 3 compares
the density of pairs for the pair formation prior to dispersal
(Eq. (3)) and pair formation following dispersal (Eq. (7))
strategies. In both cases the proportion of dispersers that
find mates is the same, however, the locations of the pairs
are influenced by the pair formation strategy. Furthermore,
Eq. (18) also provides a useful rule of thumb: if all
individuals search for mates at the beginning of their
dispersal path the population will spread twice as quickly
when compared to a population where all individuals
search for mates at the end of their dispersal path. This rule
of thumb holds for GYE wolves and all populations where
A=Nc is much greater than r (see Eq. (18)).

However, while the component Allee effect models slow
the predicted spread rate, the predicted spread rate is still
faster than the observed recolonization rate of wolves to
the GYE (Table 3). We believe the main mechanism for the
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Fig. 3. Given an initial distribution of dispersers (dashed) we calculate the

density of successful dispersers for (1) pair formation prior to dispersal

(fine line, Eq. (3)) and (2) pair formation following dispersal (bold line, Eq.

(7)). In the figure, the proportion of total dispersers that are successful (r)
is the same for both pair formation strategies. Parameter values are:

a ¼ 0:01, f ¼ 20 (pair formation prior), f ¼ 84:83 (pair formation

following dispersal), c ¼ 1, g ¼ 0:1 and xt ¼ 50.
higher model-based estimate of spread rate compared to
the empirical spread rate arises because of differences in
wolf population dynamics between source (inside YNP)
and sink (outside YNP) areas. Our models were para-
meterized with population data for wolves in the first seven
years following reintroduction when a large proportion of
the wolves inhabited a protected area. Over time the
population spread further into non-protected areas. We
expect that r is an overestimate of the geometric growth
rate outside YNP. Hence, by Eq. (18) the overestimate in r

will produce an overestimate in c as the population spreads
outside YNP. Regardless, the reasonable match between
model and empirical estimates supports the important role
of Allee effects in pair formation in dispersing wolves.
While we have shown that a reduced probability of

finding mates at low densities may slow spread rate,
separating the two processes that lead to population
growth (breeding unit establishment and subsequent
growth following the establishment of breeding groups)
may result in different model outcomes (e.g. unconditional
extinction, unconditional survival or extinction–survival
scenarios, Boukal and Berec, 2002) which may, in turn,
suggest different strategies to best control the abundance of
target species (Taylor et al., 2004). While Eq. (18) precisely
describes the relationship between model parameters and
spread rate, it is only valid when the population is
spreading (e.g. spread rate is greater than zero). In this
paper, we have not determined the full range of model
outcomes which we leave for future work. Another area of
future work is to derive a similar model for pair formation
where there is sex-biased dispersal which occurs in large
mammals and birds (Pusey, 1987).
Our study provides several meaningful results: (1) the

derivation of a spatially explicit model for a reduced
probability of finding mates at low densities, (2) a reduced
probability of finding mates at low densities may slow
invasion rates and (3) a formula for the population spread
rate that is a function of demographic, dispersal and pair
formation parameters (Eq. (18)). While other studies have
investigated Allee effects caused by a reduced probability
of finding mates at low densities (see Introduction), the
utility of our work is in the additional realism garnered
from separating breeding group establishment and popula-
tion size/density changes following establishment through
immigration, emigration, births and deaths.
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Appendix A

A.1. Fisher model

Fisher model is

qN

qt
¼ rN 1�

N

K

� �
þD

q2N
qx2

(19)

(Fisher, 1937). The diffusion coefficient D is calculated as
D ¼ ū2=p (Shigesada and Kawasaki, 1997) where ū is the
mean dispersal distance (ū ¼ 76:7, Smith et al., 2000). The
reproductive rate r is calculated as the slope of a linear
regression of Ntþ1 �Nt versus Nt, where Nt is the density
of wolves in YNP at time t. We assume the area of YNP is
10; 000 km2 and calculate the density of wolves in YNP
from 1996 to 2002. The spread rate is calculated as
c ¼

ffiffiffiffiffiffi
rD
p

, r ¼ 1:18, D ¼ 1872 km2=year.

A.2. Parameter estimation

A.2.1. Estimating a from two-dimensional dispersal data

The Laplace kernel (Eq. (13)) can be understood
mechanistically as arising from a one-dimensional random
walk with diffusion coefficient D where wolves ‘settle’ out
from the population at a constant rate a to start new packs
(Neubert et al., 1995). When the wolves are given enough
time to settle, the distribution of settled wolves is given by
Eq. (13) with a ¼

ffiffiffiffiffiffiffiffiffi
a=D

p
. Alternatively a two-dimensional

random walk with constant settling rate yields

kðx� yÞ ¼
a2

p
K0ðajx� yjÞ, (20)

where K0 is a zeroth order modified Bessel function and x

and y are the two-dimensional locations in space before
and after dispersal (Broadbent and Kendall, 1953). The
marginal distribution of this radially symmetric dispersal
kernel is the Laplace kernel (Eq. (13)). Lewis et al. (2006)
show that, for an advancing ‘planar’ invasion front, a one-
dimensional model incorporating the marginal distribution
of the two-dimensional dispersal kernel is the appropriate
model. We equate the mean of Eq. (20) with the reported
mean dispersal distance for wolves in the GYE (Smith
et al., 2000) such that ū ¼ p=ð2aÞ. Therefore, we calculate
the Laplace coefficient as a ¼ p=ð2ūÞ where ū ¼ 76:7.

A.2.2. Calculating the proportion of dispersers that find

mates

We calculate r, the proportion of dispersers that find a
mate in the first t years, for both the pair formation prior
to and following dispersal models (Eqs. (14) and (15)). We
calculate the total number of successful dispersers in any
year as twice the integral of Jt over the entire region, where
Jt is given by Eqs. (3) and (7). The total number of
dispersers produced in any year for both models is the
integral of GtðyÞ evaluated on the interval Ot. Therefore, r
the proportion of dispersers that successfully find mates
after t years for our models is

r ¼

Pt
t¼12

R1
�1

JtðxÞ dxPt
t¼1

R
Ot

GtðyÞ dy
. (21)

For the pair formation prior to dispersal model Jt is given
by Eq. (3) such that cf is given by the equation

cf ¼
r
Pt

t¼1

R
Ot

GtðyÞ dyPt
t¼1

R1
�1

R
Ot

G2
t ðyÞkðx� yÞ dy dx

. (22)

Substituting Gt (Eq. (11)) and kðx� yÞ (Eq. (13)) into
Eq. (22) we calculate cf for the pair formation prior to
dispersal model as

cf ¼
r
Pt

t¼1

R xt

�xt
g dyPt

t¼1

R1
�1

R xt

�xt
ðag2=2Þ expð�ajx� yjÞ dy dx

,

¼
4r
g
. ð23Þ

For the pair formation following dispersal model, where Jt

is given by Eq. (7),

cf ¼
r
Pt

t¼1

R
Ot

GtðyÞ dyPt
t¼1

R1
�1

R
Ot

GtðyÞkðx� yÞ dy
� �2

dx

. (24)

Substituting Gt (Eq. (11)) and kðx� yÞ (Eq. (13)), cf for
the pair formation after dispersal model yields

cf ¼
r
Pt

t¼1

R xt

�xt
g dyPt

t¼1

R1
�1

R xt

�xt
ðag=2Þ expð�ajx� yjÞ dy

� �2
dx

¼
16ar

P4
t¼1xt

g
P4

t¼1 expð�2axtÞð3þ 2axt þ expð2axtÞð4axt � 3ÞÞ
.

ð25Þ
A.3. Model analysis: initial condition 1

We find Ntþ1 and the population spread rate c for
Eqs. (14) and (15) for two different initial conditions.
Initial condition 1 (Fig. 1A) is defined as

N0ðxÞXNc for �1oxpx0,

¼ 0 otherwise. ð26Þ

Given initial condition 1, the region in space occupied by
the disperser producing population Ot is ð�1; xt�. Evalu-
ating Eqs. (14) and (15) in the region x4xt yields

NtðxÞ ¼ rNt�1ðxÞ þ A expð�waðx� xt�1ÞÞ, (27)

where w and A are: w ¼ 1, A ¼ scfg2=4 (pair formation
prior to dispersal, Eq. (14)) and w ¼ 2, A ¼ scfg2=8 (pair
formation following dispersal, Eq. (15)). We suppose that
solutions for Eq. (27) have a slope of expð�waxÞ for x4xt

such that

NtðxÞ ¼ Bt expð�waxÞ for x4xt. (28)
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Substituting Eq. (28) into Eq. (27) yields

Ntþ1ðxÞ ¼ rBt expð�waxÞ þ A expðwaxtÞ expð�waxÞ

¼ Btþ1 expð�waxÞ,

where

Btþ1ðxÞ ¼ rBt þ A expð�waxtÞ for x4xt. (29)

Therefore, we show that if Nt has a slope of expð�waxÞ,
Ntþ1 also has a slope of expð�waxÞ. We look for solutions
in the region x4x0 by solving Eq. (27) for t ¼ 1, where
N0ðxÞ is described by initial condition 1,

N1ðxÞ ¼ A expðwax0Þ expð�waxÞ for x0ox. (30)

Therefore, B1 ¼ A expðwax0Þ and Nt and Ntþ1 have a slope
of expð�waxÞ for all t.

Solutions to Eq. (27) have an exponential slope for x4xt

where A40 such that

NtðxÞ ¼ Bt expð�waxÞ for x4xt. (31)

The point at which the population starts the exponential
drop is xt where

NtðxtÞ ¼ Nc. (32)

We calculate xt from Eqs. (31) and (32) to yield

expðwaxtÞ ¼
Bt

Nc

. (33)

We can substitute Eqs. (31) and (33) into Eq. (27) to find
the relationship between Btþ1 and Bt such that

Btþ1 ¼ Bt rþ
A

Nc

� �

¼ B1 rþ
A

Nc

� �t

, ð34Þ

where B1 ¼ A expðwax0Þ. Substituting Eq. (34) into
Eq. (31), Nt is given by the equation

NtðxÞ ¼ expð�waðx� x0ÞÞ rþ
A

Nc

� �t�1

for x4xt. (35)

Eq. (35) is graphically depicted in Fig. 1A. The extent of
the disperser producing population is

xtþ1 ¼
1

wa
log expðax0Þ

A

Nc

rþ
A

Nc

� �t�1
 !

, (36)

and we find the rate of population spread is given explicitly
in terms of the model parameters as

c ¼ xtþ1 � xt ¼
1

wa
log rþ

A

Nc

� �
. (37)

A.4. Model analysis: initial condition 2

We show that the spread rate for Eqs. (14) and (15) is the
same for both initial conditions. Initial condition 2 (Fig. 1)
is defined as

N0ðxÞXNc for � x0pxpx0

¼ 0 otherwise. ð38Þ

For this initial condition it is not possible to provide a
general model for different values of w.

A.4.1. Pair formation prior to dispersal

Evaluating Eq. (14) where the limits of integration are
dictated by initial condition 2 gives Ot ¼ ½�xt;xt�. There-
fore, Eq. (9) where x4xt yields

Ntþ1ðxÞ ¼ rNtðxÞ þ 2A expð�axÞ sinhðaxtÞ, (39)

where A ¼ scfg2=4. We consider solutions to Eq. (39) of
the form NtðxÞ ¼ Bt expð�axÞ for x4xt. Substituting Nt

into Eq. (39), the relationship between Btþ1 and Bt is

Btþ1 ¼ rBt þ 2A sinhðaxtÞ. (40)

We evaluate B1 as

B1 ¼ 2A sinhðax0Þ; x4x0, (41)

and therefore show that Nt ¼ Bt expð�axÞ for all t where
x4xt. We use Eq. (33) (w ¼ 1) to calculate the extent of the
disperser producing population,

expðaxtþ1Þ ¼ r
Bt

Nc

þ
2A

Nc

sinhðaxtÞ. (42)

We substitute Bt ¼ Nc expðaxtÞ from Eq. (33) to yield

xtþ1 ¼
1

a
log r expðaxtÞ þ

2A

Nc

sinhðaxtÞ

� �
. (43)

Eq. (43) can be evaluated through cobwebbing (as shown
in Fig. 10 in Kot et al., 1996). The cobwebbing diagram
for Eq. (43) is shown in Fig. 4. The spread rate for this
model, c ¼ xtþ1 � xt, is the vertical distance between the
dashed line and the 1:1 line. Note that the spread rate for
Eq. (43) becomes constant as t!1. The spread rate,
c ¼ xtþ1 � xt, becomes constant as xt !1:

c ¼ lim
xt!1

1

a
log r expðaxtÞ

�

þ
2A

Nc

expðaxtÞ � expð�axtÞ

2

� ��
� xt. ð44Þ

Since expð�axtÞ ! 0 as xt !1,

c ¼ lim
xt!1

1

a
log expðaxtÞ rþ

A

Nc

� �� �
� xt

¼ lim
xt!1

1

a
log rþ

scfg2

4Nc

� �
. ð45Þ

Therefore, Eq. (45) yields the same result as Eq. (18) and
the spread rate for Eq. (14) is the same for either initial
condition.

A.4.2. Pair formation following dispersal

For initial condition 2, we evaluate Eq. (15) as

Ntþ1ðxÞ ¼ rNtðxÞ þ 2Aðexpð�2axÞðcoshð2axtÞ � 1ÞÞ, (46)
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Fig. 4. Finding the extent of the disperser producing population via

cobwebbing. Eq. (43) (dark line) predicts the spatial extent of the disperser

producing population xtþ1 as a function of xt for initial condition 2. The

1:1 line is shown as a light line. The values on the x-axis that correspond to
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vertical distance between the dashed line and the 1:1 line is the spread rate

for a given value of xt. This figures shows a constant spread rate as xt

tends towards infinity. The parameter values used to generate this figure

are: r ¼ 1:33, a ¼ 0:05, A ¼ 1:1, Nc ¼ 0:247.
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for xoxt where A ¼ scfg2=8. We let Nt ¼ Bt expð�2axÞ

and substitute Nt into Eq. (46). Therefore, Btþ1 as a
function of Bt is

Btþ1 ¼ rBt þ 2Aðcoshð2axtÞ � 1Þ. (47)

We evaluate B1 as

B1 ¼ 2Aðcoshð2ax0Þ � 1Þ where x4x0, (48)

and therefore we show that Nt ¼ Bt expð�2axÞ holds for
all t where x4xt.

We use Eq. (33) (where w ¼ 2) to find xtþ1 for Eq. (47),

expð2axtþ1Þ ¼ r
Bt

Nc

þ
2A

Nc

ðcoshð2axtÞ � 1Þ. (49)

We substitute Bt ¼ Nc expð2axtÞ from Eq. (33) into Eq.
(49) and calculate the extent of the disperser producing
population, xtþ1, as

xtþ1 ¼
1

2a
log r expð2axtÞ þ

2A

Nc

ðcoshð2axtÞ � 1Þ

� �
. (50)

Eq. (50) can be evaluated by cobwebbbing (see Fig. 4). The
spread rate, c ¼ xtþ1 � xt, becomes constant as xt !1,
therefore the asymptotic spread rate is

c ¼ lim
xt!1

1

2a
log r expð2axtÞ

�

þ
2A

Nc

expð2axtÞ þ expð�2axtÞ

2
� 1

� ��
� xt. ð51Þ
Since expð�2axtÞ ! 0 and expð2axtÞbA=Nc as xt !1,

c ¼ lim
xt!1

1

2a
log expð2axtÞ rþ

A

Nc

� �� �
� xt ð52Þ

¼ lim
xt!1

1

2a
log rþ

scfg2

8Nc

� �
, ð53Þ

where Eq. (52) yields the same results as Eq. (18) and
therefore the population spread rate for Eq. (15) does not
depend on the initial condition.

Appendix B. Supplementary data

Supplementary data associated with this article can be
found in the online version at 10.1016/j.tpb.2006.06.009
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