To get full credit solve 3 of the following problems (you are welcome to attempt them all)

1. Suppose that the extension L/\mathbb{Q} is finite Galois with simple non cyclic Galois group. Show that there is no rational prime p such that (p) remains prime in L.

2. Let α be a root of $f(X) = X^2 + X + 6$.
 a) Show that $\mathbb{Z}[\alpha]$ is the ring of integers of $\mathbb{Q}(\sqrt{-23})$. Find the prime factorization of $(2) = p_1 p_2$.
 b) Show that there are no elements in $\mathbb{Z}[\alpha]$ with norm 2. Conclude that p_1, p_2 are not principal.
 c) What is the class number $h_{\mathbb{Q}(\sqrt{-23})}$?

3. Let $L = \mathbb{Q}(\sqrt{-17})$ and $\mathcal{O}_L = \mathbb{Z}[\sqrt{-17}]$.
 a) Let $p_1 = (2, 1 + \sqrt{-17})$, $p_2 = (3, 1 - \sqrt{-17})$, and $p_3 = (3, 1 + \sqrt{-17})$. Show that $(2) = p_1^2$ and $(3) = p_2 p_3$.
 b) Find the prime decomposition for (18) and $(1 \pm \sqrt{-17})$.
 c) Find all the ideals $a \subset \mathcal{O}_L$ with $N(a) = 18$.

4. Let L be a number field. Recall that a prime $p \in \mathbb{Z}$ is totally ramified if $p \mathcal{O}_L = \mathfrak{B}^r$ where $r = [L : \mathbb{Q}]$.
 a) Show that if p is totally ramified in \mathcal{O}_L then it is also totally ramified in \mathcal{O}_K where K is an intermediate field: $\mathbb{Q} \subset K \subset L$.
 b) Show that if L_1 and L_2 are two extensions of \mathbb{Q} such that there is a prime $p \in \mathbb{Z}$ with p totally ramified in L_1 and unramified in L_2, then $L_1 \cap L_2 = \mathbb{Q}$.
 c) Use the previous result to show that if p_1, \ldots, p_r are different primes in \mathbb{Z} then $\mathbb{Q}[\sqrt{p_1}, \ldots, \sqrt{p_r}]$ is an extension of \mathbb{Q} of degree 2^r.

5. Let A a Dedekind domain, K its field of fractions. $K \subset L \subset M$ finite extensions, B and C the integral closures of A in L and M respectively. Let $p \subset b \subset c$ be three prime ideals os A, B, and C respectively. Prove that e and f are multiplicative, i.e.,
 $$e(c/p) = e(c/b)e(b/p)$$
 $$f(c/p) = f(c/b)f(b/p)$$

6. Let S be a compact, convex, symmetric set in \mathbb{R}^n such that $\mu(S) \geq m2^n$ for some positive integer m. Show that S contains at least $2m$ points in \mathbb{Z}^n.

7. Show that $\mathbb{Z}[\sqrt{223}]$ has three ideal classes.

8. Show that the ideal class group of $\mathbb{Z}[\sqrt{-14}]$ is cyclic of order 4.