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Abstract. Strong solutions of p-dimensional stochastic differential equa-
tions dXt = b(Xt, t)dt + σ(Xt, t)dWt, Xs = x that can be represented

locally in explicit simulation form Xt = φx,s
(∫ t

s
Vs,udWu, t

)
are consid-

ered. Here; W is a multidimensional Brownian motion; u → Vs,u, φ
x,s are

continuous functions; and b, σ, φx,s are locally continuously differentiable.
The following three-way equivalence is established: 1) There exists such
a representation from all starting points (x, s), 2) Vs,u, φ

x,s satisfies a set
differential equations, and 3) b, σ satisfy commutation relations. (For gen-
erality, the function Vs,t is allowed to depend upon φx,s via Vs,t = Us,tφ

x,s

for some operators Us,t.) Moreover, construction theorems, based on a dif-
feomorphism between the solutions X and the strong solutions to a simpler
Itô integral equation, with a possible deterministic component, are given.
Finally, motivating examples are provided and its importance in simulation
methods, including sequential Monte Carlo, financial risk assessment and
path-dependent option pricing, is explained.

1. Introduction

One often confines selection of stochastic differential equation (SDE) models
to those facilitating calculation and simulation. For example, the popularity of
the inaccurate Black-Scholes model is only justifiable through the evaluation
ease of the resulting derivative product formulae. Indeed, Kunita (1984, p.
272) writes in his notes on SDEs that “It is an important problem in appli-
cations that we can compute the output from the input explicitly”. We shall
call such solutions explicit solutions.

Doss (1977) and Sussmann (1978) were apparently the first to solve sto-
chastic differential equations through use of differential equations. In the
multidimensional setting, Doss imposed the Abelian condition on the Lie al-
gebra generated by the vector fields of coefficients and showed, in this case,
that strong solutions, Xx

t , of Fisk-Stratonovich equations are representable as
Xx
t = ρ(Φ(x,W·)t,Wt), for some continuous ρ, Φ solving differential equations.

Under the restriction of C∞ coefficients, Yamato (1979) extended the work of
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Doss by dispensing with the Abelian assumption in favour of less restrictive q
step nilpotency, whilst also introducing a simpler form for his explicit solutions
Xx
t = u(x, t, (W I

t )I∈F ). Here, u solves a differential equation, and (W I
t )I∈F are

iterated Stratonovich integrals with integrands and integrators selected from(
t,W 1

t , ...,W
d
t

)
. Another substantial work on explicit solutions to stochastic

differential equations is due to Kunita (1984)[Section III.3]. He considers rep-
resenting solutions to time-homogeneous Fisk-Stratonovich equations via flows
generated by the coefficients of the equation under a commutative condition,
and, more generally, under solvability of the underlying Lie algebra. Kunita’s
work therefore generalizes Yamato (1979).

There is related, more recent work on simulating stochastic differential equa-
tions through stochastic Taylor’s theorem, exponential Lie series and sinh-log
series. These methods employ iterated stochastic integrals and/or ordinary
differential equation (ODE) approximation over small time. One can learn
more about these methods from e.g. Ben Arous (1989), Castell (1993), Hu
(1992), Kloeden and Platen (1992), Castell and Gaines (1996) and Malham
and Wiese (2009). These methods are general in the sense that they usually
do not require commutator conditions between the coefficient vector fields.
Still, significant coefficient smoothness is often required and it is usually found
that the computational costs associated with numerically solving the ODEs or
iteratively integrating are greater than direct use of Euler or Milstein methods
on the SDE of interest. As our interest stems from computationally intensive
applications, we turn our attention to less-general, computationally-efficient
methods.

Our representations do not employ stochastic integrals (even non-iterated
ones) nor ODEs in the manner mentioned above and consequently can facilitate
efficient simulation compared to Euler and Milstein methods. A typical use is
the following (Explicit Simulation Algorithm):

(1) Simulate a Gauss-Markov process, which will be denoted Yt herein.
(2) Use φ to map to a desired process Xt, where φ is some average of the

φx,s used herein.
(3) Possibly project down to a weak solution of a lower dimensional SDE.
(4) Possibly use importance sampling to create a weak solution to yet

another SDE with different drift.

At each successive step the number and complexities of the SDEs that can be
handled increases.

Example 1. We summarize a current use of the Explicit Simulation Algorithm
with results from this paper in simulation based option pricing, financial risk
assessment and sequential Monte Carlo.

Heston (1993) introduced a stochastic volatility model with closed form European-
call-option prices for stock, bond and foreign currency spot prices. Let B, β to
be (scalar) independent standard Brownian motions. Then, the Heston model
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is:

d

(
St
Vt

)
=

(
µSt

ν − %Vt

)
dt+

( √
1− ρ2StV

1
2
t ρStV

1
2
t

0 κV
1
2
t

)(
dBt

dβt

)
, (1.1)

with parameters µ ∈ R, ρ ∈ [−1, 1] and ν, %, κ > 0. St, the price part, is

a stochastic exponential but the exponent involves
∫ t

0
V

1
2
s dβs with β and V

being dependent so stochastic integral approximations would appear needed.
The volatility component is just the Cox-Ingersoll-Ross (CIR) model. The
diffusion vector fields do not commute i.e. [σ1, σ2]

.
= (∇σ1)σ2 − (∇σ2)σ1 6=

0 so we can not obtain explicit strong solutions of the desired form but the
Explicit Simulation Algorithm still works. Kouritzin (2018) used Theorem 2
below in steps (1), (2) above to show that the extended Heston price model,
consisting of St above along with a collection of Ornstein-Uhlenbeck processes,
has an explicit strong solution of the form considered here under Condition
(C) of Kouritzin (2018). From there, an explicit weak solution for the Heston
price was obtained by projection as in step (3) above. Finally, Condition (C)
was despensed with using Girsanov’s theorem as in step (4). Suppose ε > 0.
Kouritzin (2018) shows that the Heston (price and volatility) model (1.1) has
explicit weak solution:

St = S0 exp

(√
1−ρ2

∫ t

0

V
1
2
s dBs+

[
µ− νρ

κ

]
t+

[
ρ%

κ
− 1

2

]∫ t

0

Vsds+
ρ

κ
(Vt −V0)

)
Vt =

n∑
i=1

(Y i
t )2, ηε = inf {t : Vt ≤ ε} and

Lt = exp

{
ν − νκ
κ2

[
ln(Vt)− ln(V0) +

∫ t

0

κ2 − νκ − ν
2Vs

+ % ds

]}
up until ηε with respect to new probability measure

P̂ (A) = E[1ALT∧ηε ] ∀A ∈ FT ,

where νκ = nκ2

4
and {Y i

t }ni=1 are Ornstein-Uhlenbeck processes. It is important

to note: V and B are independent so
∫ t

0
V

1
2
s dBs is conditionally Gaussian and

there is no need to approximate stochastic integrals. (This Condition (C)

in Kouritzin (2018) would make Lt ≡ 1 and P̂ = P .) American and Asian
options were then priced efficiently using these explicit formulas and Monte
Carlo simulations. Kouritzin and MacKay (2018a) also use the Explicit Sim-
ulation Algorithm based upon work herein to produce explicit weak solutions
to a generalized Bates model (with jumps), where the adjective generalized is
used because there is an extra drift term in the price equation (that arises for
certain insurance product prices). Further, they assess insurer’s risk in Guar-
anteed Minimum Withdrawl Benefit insurance using Monte Carlo simulations
with these explicit solutions. In current work, Kouritzin and MacKay (2018b)
use (branching particle) sequential Monte Carlo to improve performance of
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path-dependent option pricing. Kouritzin (2000) and the results (Theorem 2
and Example 5) herein are used to show that the Heston model yields a second
weak solution with the formula for St unchanged but

dVt =

(
κ2

4
+ κχ

√
Vt − %Vt

)
dt+ κ

√
Vtdβ̂t

Lt = exp

{
ν − κ2

4

κ2

[
ln

(
V̂t
V0

)
+

∫ t

0

3κ2

8
− ν

2

V̂s
ds+ %t

]
− χβ̂t −

χ2

2
t

}
with respect to the new probability measure P̂ (A) = E[1ALT∧ηε ] ∀A ∈ FT up
until the time ηε = inf {t : Vt ≤ ε} that the volatility dips too low. (We pre-
sented the time-homogeneous-coefficient case for V here for simplicity. The
more general case is given in Example 5 below.) If one simulates multiple
independent copies {(Si, V i, Li)}Ni=1 with either Heston representation in this
example, then one finds that the weighted empirical measures of the path pro-
cesses converge a.s. to the process distribution of the Heston model

1

N

N∑
i=1

LiT δSi[0,T ]
,V i

[0,T ]
(s[0,T ], v[0,T ])→ PHeston(s[0,T ], v[0,T ]),

where (s[0,T ], v[0,T ]) solve (1.1) with respect to PHeston, and path-dependent op-
tion pricing can be done (with the celebrated LS algorithm). However, if the
option is over any significant time period, then the weights LiT will diverge
without some type of (unbiased) resampling, branching or interaction to level
them. Kouritzin and MacKay (2018b) use branching particle sequential Monte
Carlo with these explicit solutions to keep the weights relatively equal and all
particles effective.

The first two steps of the Explicit Simulation Algorithm involve a classi-
fications of which Itô processes Xx,s

t , starting at (x, s), are representable as

a time-dependent function of a simple stochastic integral φx,s
(∫ t

s
Vs,udWu, t

)
,

which was initially motivated by filtering applications (see Kouritzin (1998)).
Our determination of φx,s, Vs,u also facilitates an effective means of calculation
and simulation in other applications. To simulate, one merely needs to com-
pute the Gauss-Markov process

∫ t
s
Vs,udWu at discrete times and substitute

these samples into φx,s, which is often known in closed form and otherwise is
the solution of differential equations that can be solved numerically a priori.∫ t
s
Vs,udWu =

∫ t
s
Vs,u(Xu)dWu can depend upon X but not in a way that will

destroy its Gaussian distribution nor make simulation difficult.
We require commutator conditions for (step (2) and) our explicit strong solu-

tions herein, which is a significant restriction. However, (i) the drift vector field
need not strictly commute with the diffusion vector fields, (ii) non-commuting
diffusion vector fields can sometimes be handled (in a weak sense) by consid-
ering a higher dimensional SDE (see the Explicit Simulation Algorithm), (iii)
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importance sampling methods can be used to handle more non-commuting
drift vector fields. Actually, it is already known that one can have explicit
solutions under commutator conditions and our work is quite related to the
earlier works of Yamato (1979) and Kunita (1984). However, compared to
these early works, our work features time-dependent coefficients and a differ-
ent representation that is very useful in simulation. We compare our results
to Yamato (1979) and Kunita (1984) in Section 4.

Our explicit simulation is without (Euler or Milstein) bias and is often or-
ders of magnitude faster than Euler or Milstein methods when applicable and
high accuracy is desired (see Kouritzin (2018)). Our representations also make
properties of certain stochastic differential equations readily discernible. Fi-
nally, as demonstrated in Karatzas and Shreve (1987, Proposition 5.2.24),
explicit solutions can be useful in establishing convergence for solutions of
stochastic differential equations.

In order to describe our method, we recall the state-space diffeomorphism
mapping method has been used to construct solutions to interesting stochastic
differential equations from solutions to simpler ones. The idea of this method is
to change the infinitesimal generator L of a simple Itô process to the generator
L corresponding to a more complicated Itô process via Lf(x) = {L(f ◦Λ−1)}◦
Λ(x). This corresponds to using Itô’s formula on Xt = Λ−1(ξt), where ξ is a
diffusion process with infinitesimal generator L. For related examples, we refer
the reader to the problems in Friedman (2006)[page 126] or Ethier and Kurtz
(1986)[page 303].

Motivated by applications in filtering, Kouritzin and Li (2000) and Kouritzin
(2000) used differential equation methods to study: “When can global, time-
dependent diffeomorphisms be used to construct solutions to Itô equations?”,
“What scalar Itô equations can be solved via diffeomorphisms?”, and “How
can one construct these diffeomorphisms?”. They considered scalar solutions
in an open interval D to the time-homogeneous stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x, (1.2)

which are of the form φx
(∫ t

0
VudWu, t

)
, and showed that all nonsingular so-

lutions of this form were actually (time-dependent) diffeomorphisms Λ−1
t (ξt)

with ξ satisfying

dξt = (χ− κξt)dt+ dWt, ξ0 = Λ0(x).

A nonsingular solution in this scalar case was interpreted as finiteness of∫ y
λ
σ−1(x)dx for some fixed point λ and all y ∈ D. (Their methods involve

non-stochastic differential equations that can continue to hold in the singular
situations when global diffeomorphisms fail.)
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For our current work, we suppose henceforth that D ⊂ Rp is a bounded
convex domain, T > 0, and define

DT =

{
D if σ, b do not depend on t
D × [0, T ) if either do

so (x, s) ∈ DT means x ∈ D when DT = D. We also let σ(Xt)dWt imply
Itô integration and σ(Xt) • dWt Stratonovich. Then, we resolve the question:
“When can we explicitly solve vector-valued Itô equations

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, Xs = x, (1.3)

with the dimensions of Xt,Wt being p, d respectively, through representations

of the form Xx,s
t = φx,s

(∫ t
s
Vs,udWu, t

)
?”. This question is more precisely

broken into two separate important questions: “For which σ and b does such
a strong-local-solution representation exists?” and “What conditions are re-
quired on φ and V for such representations with

∫ t
s
Vs,udWu =

∫ t
s
Vs,u(Xu)dWu

still being Gauss-Markov?” Equivalently, we consider “When can the solutions
to the Fisk-Stratonovich equation

dXx
t = h(Xx

t , t)dt+ σ(Xx
t , t) • dWt, (1.4)

with

h = b− 1

2

d∑
j=1

{∇ϕσj}σj on DT (1.5)

and σj denoting the jth column of the matrix σ, be locally represented in this
manner?” It follows from, for example, Kunita (1984)[p. 239] that the unique
local solutions to (1.3) and (1.4) are equal if (1.5) holds and σ is twice con-
tinuously differentiable or satisfies the Fisk-Stratonovich acceptable condition
in D, the latter being discussed in Protter (2004)[Chapter 5]. We work with
Itô equations to avoid these stronger assumptions on σ but still relate b and
h through (1.5). Also, to obtain simple, concrete necessary and sufficient con-
ditions for such a representation, we consider all solutions starting from each
(x, s) ∈ DT . Under natural regularity conditions, we answer these question by
showing the equivalence of the following three conditions: 1) The SDEs (1.3)
have our local-solution-representations for all starting points (x, s) ∈ DT . 2)
The representation pair φx,s, Vs,t satisfy a system of differential equations. 3)
The SDE coefficients σ and h satisfy simple commutator conditions. In the
process of establishing this three-way equivalence, we also answer the ques-
tion “When is (1.3) locally diffeomorphic to an SDE with a simple diffusion
coefficient?” i.e. “When will it have a representation as in (1.6,1.7) to follow?”.

Given precise conditions of when an Itô equation has such a representa-
tion, the next natural questions we answer are: “What form do the solutions
have?” and “How do you construct such solutions?” In order to include as
many interesting examples as possible we will only require local representa-

tion Xx,s
t = φx,s

(∫ t
s
Vs,udWu, t

)
and allow σ to have rank less than min(p, d).
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By allowing the rank of σ(x) to be less than p one can handle time-dependent
coefficients, treating time as an extra state. The second advantage from al-
lowing lesser rank than min(p, d) is the extra richness afforded by appending
a deterministic equation into the diffeomorphism solution. A third, important
benefit of this general rank condition is the possibility of producing explicit
weak solutions to SDEs where no explicit strong solution exists (see Kouritzin
(2018)). In our construction results, we show that φ is constructed via a time-
dependent diffeomorphism Λt, which in turn is defined in terms of σ. The dif-
feomorphism separates a representable SDEs into deterministic and stochastic

differential equations: Λt(Xt) = (X t, X̃t), where X̃t ∈ Rp−r is deterministic
and satisfies the differential equation

d

dt
X̃t = h̃(X̃t, t), (1.6)

while X t is a Gauss-Markov process satisfying

dX t = (θ(X̃t, t) + β(X̃t, t)X t)dt+
(
Ir

∣∣∣ κ(X̃t, t)
)
dWt. (1.7)

κ is determined (within an equivalence class) by σ while θ, h̃ and β can be
anything (subject to dimensional and differentiability regularity conditions).
These parameters allow us to handle a whole class of nonlinear drift coefficients

b for a given σ in the SDE (1.3) for Xt = Λ−1
t (X t, X̃t).

In the next section, we introduce notation and state the main existence
results. In Section 3, we build off of these existence results to give our con-
struction results, illustrated with simple applications. We compare our work
to prior work of Yamato and Kunita in Section 4. The proofs of all main
results are postponed to Section 5.

2. Notation and Existence Results

Let (Wt)t≥0 be a standard d-dimensional Brownian motion with respect to
filtration {Ft}t≥0 satisfying the usual hypotheses on a complete probability
space (Ω,F , P ). We will use φx,s to denote a representation function and x
to denote a starting point as in the introduction. On the other hand, ϕ will
denote a variable with the same dimension p as φx,s and x.

For functions of time or paths of a stochastic process, we use Zt and Z(t)
interchangeably. For a matrix V , Vj will denote its jth column vector and Vi,j
the ith element of this jth column. 0j (0j) means a row (column) of j 0’s.
Bz(δ) denotes an open Euclidean ball centered at z with radius δ > 0. Sup-

pose m, r ∈ N, O ⊂ Rm is open and I ⊂ [0, T ) is an interval. Then, C(I)
is the continuous functions on I and Cr(O) denotes the continuous functions
whose partial derivatives up to order r exist and are continuous on O. More-
over, Cr,1(O× I) denotes the continuous functions g(ϕ, t) whose mixed partial
derivatives in ϕ ∈ O up to order r and in t ∈ I up to order 1 all exist and are
continuous functions on O × I. C1(O × I) = C1,0(O × I) ∩ C0,1(O × I). (We
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only require one-sided derivatives in time to exist at interval endpoints.) For
a vector function g of both ϕ ∈ Rp and t, ∇ϕg is the Jacobian matrix of g,
that is (∇ϕg)i,j = ∂ϕjgi, while ∇g will include the time derivative as the last

column. (A similar notation will be used for vector functions of y ∈ Rd and
t.) f ◦ g will denote the composition of functions f ◦ g(x) = f(g(x)).

The purpose of our representations is to simulate a class of processes in an
efficient manner, which leads to a dilemma. We would like to allow Vs,t to
depend upon Xx,s for generality but not in a way that would destroy the ease
of simulation. Our approach to this dilemma is to allow Vs,t = Us,tφ

x,s(y·, ·)
to be defined by operators Us,t on the functions φx,s(yu, u)

∣∣
u∈[s,t]

but then

impose the condition that the result Us,tφ
x,s(y·, ·) can not depend upon y. As

we will expose below, this basically allows Vs,t to depend upon some hidden
deterministic part of X but not the purely stochastic part, saving the Gaussian
nature of

Y s
t =

∫ t

s

Us,uφ
x,s(Y s

· , ·)dW (u) =

∫ t

s

Us,uφ
x,s(0, ·)dW (u) (2.1)

so it can be computed off-line, which is the point of this work.
φx,s must be differentiable enough to apply Itô’s formula and allow room for

random process Y s
t to move. For fixed s, t and path y ∈ C([s, t];Rd), Us,t is a

mapping C([s, t];Rp)→ C([s, t];Rd×d). (Us,t will be forced to be constant in y.
Hence, when we apply Us,t to φx,s(·, ·) below we are effectively applying it to
φx,s(0, ·).) Further constraints on t→ Us,tφ

x,s, in particular the imposition of a
group structure, will be set in Conditions C2, C3 below while the role of Us,t in
preserving the Guassian character of Y s

t will become clearer in Example 4. The
precise regularity conditions for potential representations Xx,s

t = φx,s (Y s
t , t),

Y s
t =

∫ t
s
Us,uφ

x,s(0, ·)dW (u) follow:

C1: For each (x, s) ∈ DT , there is a t0 = tx,s0 > s and a convex neigh-
bourhood N x,s ⊂ Rd of 0 such that φx,s ∈ C2,1(N x,s × [s, t0);Rp) and
t→ Us,tφ

x,s(y·, ·) ∈ C1([s, t0);Rd×d).
C2: φx,s, Us,t start correctly

φx,s(0, s) = x, Us,sφ
x,s(0, s) = Id, ∀(x, s) ∈ DT . (2.2)

C3: Us,tφ
x,s is non-singular on N x,s × [s, t0) (with matrix inverse denoted

by U−1
s,t φ

x,s) and satisfies

Us,tφ
x,s(y, u) = Us,tφ

x,s(0, u) (2.3)

as well as

U−1
s,t φ

x,s(yt, t)
d

dt
Us,tφ

x,s(yu, u)
∣∣
u=t

=
d

dt
Uu,tφ

φx,s(yu,u),u(yu, u)
∣∣
u=t
. (2.4)

The purpose of the first part of C3, (2.3), is to preserve the Gaussian nature of
X (while still allowing Vs,t to depend on X in some way) as discussed above.
The role of the second part of C3, (2.4), is to force a type of (semi-)group
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structure on Us,tφ
x,s. Combined, C3 will allow our representation function

t→ φx,s(·, t) to contain a deterministic, dynamic portion of X.
(2.2,2.4) imply

U−1
s,t φ

x,s(yt, t)
d

dt
Us,tφ

x,s(yu, u)
∣∣
u=t

= U−1
t,t φ

φx,s(yt,t),t
d

dt
Uu,tφ

φx,s(yu,u),u
∣∣
u=t

(2.5)

and therefore that Us,tφ
x,s is a (two parameter) group. We use (2.3) to econ-

omize the notation Us,tφ
x,s(y·, ·) to Us,tφ

x,s.
Now, define the Ft-stopping time

τx,s = min (tx,s0 , inf{t > s : Y s
t /∈ N x,s or (φx,s(Y s

t , t), t) 6∈ DT})
and let

Rx,s = ∪
t≥0

{
(y, t) : P ((Y s

t , t) ∈ B(y,t)(δ), t ≤ τx,s) > 0, ∀δ > 0
}
. (2.6)

There is structure that can be imposed upon φx,s, Us,t that will turn out to be
equivalent to the existence of our explicit strong local solutions.

Definition 1. An (x, s, σ, h)-representation is a pair φx,s, Us,t satisfying (C1, C2, C3)
such that the following system of differential equations:

∇yφ
x,s(y, t) = σ(φx,s(y, t), t)U−1

s,t φ
x,s, (2.7)

∂tφ
x,s(y, t) = h(φx,s(y, t), t) (2.8)

hold for all (y, t) ∈ Rx,s and ∂s∇yφ
x,s(0, s), ∂s∂tφ

x,s(0, s), ∂xi∇yφ
x,s(0, s) and

∂xi∂tφ
x,s(0, s) exist as continuous functions of (x, s) ∈ DT . Here and below,

∂tφ
x,s(0, s) means ∂tφ

x,s(0, t)
∣∣
t=s

.

Notice that Us,t only appears as (the matrix inverse of) Vs,t = Us,tφ
x,s so we

will only be concerned with solving for Us,tφ
x,s for the φx,s of interest.

Now, our explicit solutions are:

Xx,s
t = φx,s(Y s

t , t) on [s, τx,s). (2.9)

Our first main result establishes two necessary and sufficient conditions for all
Xx,s, defined in (2.9), to be strong local solutions to

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, Xs = x (2.10)

on [s, τx,s). The function h is always related to b through (1.5) and Us,tφ
x,s

comes into the necessary and sufficient commutator conditions through gener-
ator

A(x, s) =
d

dt
Us,tφ

x,s
∣∣
t=s
. (2.11)

It follows from (2.3) that A does not depend upon y.

Theorem 1. The following are equivalent:

a) σ ∈ C1(DT ;Rp×d), h ∈ C1(DT ;Rp), there is a unique strong solution
to (2.10) on [s, τx,s) for each (x, s) ∈ DT , and this solution has ex-
plicit form φx,s(Y s

t , t) with Y s
t defined in (2.1) and φx,s, Us,t satisfying

C1, C2, C3.
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b) There is a (x, s, σ, h)-representation φx,s, Us,t for each (x, s) ∈ DT .
c) σ ∈ C1(DT ;Rp×d), h ∈ C1(DT ;Rp) and the commutator conditions:

(∇ϕσk)σj = (∇ϕσj)σk, for all j, k ∈ {1, ..., d}, (2.12)

(∇ϕh)σj = (∇ϕσj)h+ ∂tσj − σAj, for all 1 ≤ j ≤ d. (2.13)

hold on DT for some A ∈ C(DT ;Rd×d).

Remark 1. The case where (2.12) holds but (2.13) may not hold will be han-
dled in Theorem 2 to follow.

Remark 2. When (a) or (c) are known, then there could be multiple φx,s,
Us,t pairs satisfying (2.7,2.8). However, the extra solutions to these differen-
tial equations will generally not satisfy (2.3) so they will not correspond to a
(x, s, σ, h)-representation nor necessarily be useful in simulation. For example,
in (5.26) of the proof of (c) implies (b) below we use A(φs,x(u, 0), u), which
does not depend upon y, instead of A(φs,x(u, y), u), which would generally cause
Us,t to violate (2.3).

Remark 3. Theorem 1 simplifies in the time-invariant h, σ coefficient case.
Clearly, one only needs to check the commutator conditions on D versus DT .
However, the second commutator condition actually changes in form to:

(∇ϕh)σj − (∇ϕσj)h = σBj, for all 1 ≤ j ≤ d, (2.14)

where B(ϕ) = −A(ϕ, 0). Indeed, the left hand side of (2.14) does not depend
on time so the right side can not either.

Remark 4. Theorem 1 also simplifies when d = 1, which corresponds to
appending a deterministic equation and allowing time dependence to the case
considered in Kouritzin (2000). In this d = 1 case, (2.12) is automatically
true and (2.13) becomes

(∇ϕh)σ = (∇ϕσ)h+ ∂tσ − σA. (2.15)

2.1. Simple Examples Solving the Commutator conditions. Often, we
are interested in determing the SDEs (within a class) that have the representa-
tion. In this case, the commutator conditions often can be solved quickly. The
easiest way to ensure (2.12) holds is to have each column a constant multiple
of another σj = cjσ1 for all j say. However, there are other possibilities. In
general, we suppose Theorem 1 (a) hence (b) and solve for σ, h in (c).

Example 2. Let p = d = 2 and D ⊂ R be a domain. Suppose a, e, f, g,m, n
are C2(D)-functions and our Fisk-Stratonovich equation has time-invariant
coefficients:

h(ϕ1, ϕ2) =

(
f (ϕ1) g (ϕ2)
m (ϕ1)n (ϕ2)

)
, σ (ϕ1, ϕ2) =

(
a (ϕ1) 0
e (ϕ2) e (ϕ2)

)
. (2.16)
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Moreover, suppose a(ϕ1) and e(ϕ2) are never 0. Then, σ is always non-singular
and it follows by (2.7) as well as the mean value theorem that for any u ∈ [s, t]

φx,s(y, u)− φx,s(ŷ, u) = σ(φx,s(y∗, u))U−1
s,uφ

x,s · (y − ŷ)

with y∗ ∈ N x,s for y, ŷ ∈ N x,s and any possible representation φx,s, Us,t. Hence,
φx,s(y, u) = φx,s(ŷ, u) ↔ y = ŷ. Therefore, it follows from (2.3) that Us,u =
Vs,u can not depend upon φx,s(y, u) for any u ∈ [s, t] and B in (2.14) is constant
by (2.11). Now,

∇ϕh =

(
f ′(ϕ1)g(ϕ2) f(ϕ1)g′(ϕ2)
m′(ϕ1)n(ϕ2) m(ϕ1)n′(ϕ2)

)
(2.17)

and

∇ϕσ2 =

(
0 0
0 e′ (ϕ2)

)
, ∇ϕσ1 =

(
a′(ϕ1) 0

0 e′ (ϕ2)

)
(2.18)

so the first commutator condition (2.12) is fine since

∇ϕσ1σ2 =

(
0

e′ (ϕ2) e(ϕ2)

)
= ∇ϕσ2σ1. (2.19)

Moreover,

∇ϕhσ2 −∇ϕσ2h =

(
e(ϕ2)f(ϕ1)g′(ϕ2)

m(ϕ1)(e(ϕ2)n′(ϕ2)− e′(ϕ2)n(ϕ2))

)
(2.20)

and

∇ϕhσ1 −∇ϕσ1h =

(
af ′g + efg′ − a′fg
am′n+ emn′ − e′mn

)
. (2.21)

On the other hand, denoting B =

(
b11 b12

b21 b22

)
, we have

σB =

(
ab11 ab12

eb11 + eb21 eb12 + eb22

)
. (2.22)

Hence, by (2.14) there is an explicit solution if and only if(
af ′g + efg′ − a′fg efg′

am′n+ emn′ − e′mn m(en′ − e′n)

)
=

(
ab11 ab12

eb11 + eb21 eb12 + eb22

)
(2.23)

for constants b11, b12, b21, b22. If f = c1a, n = c2e, eg
′ = c3 and m′a = c4 for

some constants c1, c2, c3, c4, then it is easy to show that this condition is met
with b22 = −c1c3, b21 = c2c4 − c1c3 and b11 = b12 = c1c3 so the representation
holds for

h(ϕ1, ϕ2) =

(
α g(ϕ2)
m′(ϕ1)

βm(ϕ1)
g′(ϕ2)

)
, σ (ϕ1, ϕ2) =

(
γ

m′(ϕ1)
0

δ
g′(ϕ2)

δ
g′(ϕ2)

)
, (2.24)

where α = c1c4, β = c2c3, γ = c4, δ = c3 are any constants and g,m are C2-
functions with 1

m′(ϕ1)
, 1
g′(ϕ1)

∈ C1(D).
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Example 3. In a similar manner, it follows that

h(ϕ1, ϕ2) =

(
α g(ϕ2)
m′(ϕ1)

βm(ϕ1)
g′(ϕ2)

)
, σ (ϕ1, ϕ2) =

(
γ

m′(ϕ1)
0

0 δ
g′(ϕ2)

)
, (2.25)

for any constants α, β, γ, δ, also has a representation.

2.2. A Simple (x, s, σ, h)-representation Example. There was significant
work done in the previous examples and we still did not have a (x, s, σ, h)-
representation. The next example is the key to solving for complete represen-
tations and will be used in the following section. It will be worth observing in

this next example that Vs,t = Us,tφ̃ = Us,tX̃ (with the notation defined within
the example) so the operators Us,t act on the deterministic part of X.

Example 4. Suppose σ(ϕ, t) =

(
Ir κ(ϕ, t)
0 0

)
∈ Rp×d satisfies (2.12). We

will find the possible h, b satisfying (2.13) and the corresponding representa-
tions Us,t, φ

x,s by Theorem 1.
Notation: As always, ϕ is a variable and φ is the representation func-
tion. Further, let x = (x1, ..., xr), x̃ = (xr+1, ..., xd), ϕ = (ϕ1, ..., ϕr), ϕ̃ =

(ϕr+1, ..., ϕd), D̃ = {ϕ̃ : (ϕ, ϕ̃) ∈ D for some ϕ}, D̃T = D̃ × [0, T ),

φx,s(y, t) =

(
φ
x,s

(y, t)

φ̃x,s(y, t)

)
, h =

(
h

h̃

)
and A =

(
A11 A12

A21 A22

)
, (2.26)

where A11 ∈ Rr×r. Finally, we let

β(ϕ, t) = −A11(ϕ, t)− κ(ϕ, t)A21(ϕ, t), (2.27)

which will appear often below.
Step 1: Interpret (2.7) and the C3 condition (2.3) on Us,t, A.
Suppose u ∈ [s, t]. By (2.7) as well as the mean value theorem(

φ
x,s

(y, u)− φx,s(ŷ, u)

φ̃x,s(y, u)− φ̃x,s(ŷ, u)

)
=

(
Ir κ(φx,s(y∗, u), u)
0 0

)
U−1
s,uφ

x,s · (y − ŷ) (2.28)

with y∗ ∈ N x,s for y, ŷ ∈ N x,s and any possible representation φx,s. Hence,
φ
x,s

(y, u) 6= φ
x,s

(ŷ, u) implies y 6= ŷ. Therefore, it follows from (2.3) that
Us,tφ

x,s can not depend upon φ
x,s

(y, u) for any u ∈ [s, t], which implies Us,tφ
x,s .=

Us,tφ̃
x,s only depends on φ̃x,s, t. This also means by (2.11) that

A(ϕ, t) =
d

dt
Uu,tφ̃

ϕ,u
∣∣
u=t
. (2.29)

Step 2: Interpret commutator conditions on κ, h.
Let ei denote the ith column of Ip so σi = ei for i ≤ r. We have by (2.12), that(

∇ϕκj−r
0

)
ei = 0, ∀i ∈ {1, 2, ..., r}, j ∈ r + 1, ..., d, (2.30)
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which establishes that κ(ϕ̃, t) can only depend upon ϕ̃, t. This is the only
restriction on κ from (2.12). By (2.13), we find

∇ϕ

(
h

h̃

)
σj −∇ϕσj

(
h

h̃

)
=

(
β ∂tκ− A12 − κA22

0 0

)
j

(2.31)

so ∇ϕh̃ = 0, implying h̃(ϕ) ∈ C1(D̃T ,Rp−r) only depends upon ϕ̃, t, and

∇ϕh = β, (2.32)

(∇ϕh)κj−r − (∇ϕ̃κj−r)h̃ = ∂tκj−r − (A12 − κA22)j−r. (2.33)

Now, it follows from (2.32,2.33) that

β κ = [(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ− A12 − κA22. (2.34)

Hence, it follows from (2.7,2.8,2.2) that φ̃x,s satisfies

∇yφ̃
x,s(y, t) = 0, (2.35)

∂tφ̃
x,s(y, t) = h̃(φ̃x,s(y, t), t), (2.36)

φ̃x,s(0, s) = x̃, (2.37)

which implies that φ̃x,s does not depend upon φ
x,s

nor y. Moreover, by (2.29)
and (2.27), we conclude that A(ϕ, t)

.
= A(ϕ̃, t) and β(ϕ, t)

.
= β(ϕ̃, t) only

depend on ϕ̃, t.
Step 3: Determine possible h, b.
By (2.32), we find

h(ϕ, ϕ̃, t) = β(ϕ̃, t)ϕ+ θ(ϕ̃, t) (2.38)

for some C1-function θ. Hence, the possible h(ϕ, ϕ̃, t) =

(
h(ϕ, ϕ̃, t)

h̃(ϕ̃, t)

)
are:

h̃ ∈ C1(D̃T ,Rp−r),

h ∈
{
θ(ϕ̃, t) + β(ϕ̃, t)ϕ : β ∈ C1(D̃T ,Rr×r); θ ∈ C1(D̃T ,Rr)

} . (2.39)

From (1.5) and fact κ(ϕ̃, t) only depends on ϕ̃, t, we find that

b = h+
1

2

d∑
j=1

{∇ϕσj}σj = h. (2.40)

Free Parameters: A21, A22, κ, β, θ and h̃ can be anything (subject to di-
mensionality and dependency on only ϕ̃, t). A12 is then determined by (2.34)
and A11 by (2.27). β and θ also determine the possible h above and φx,s below.

Different choices of κ, β, θ and h̃ will result in different solutions. However,
there is no loss in generality in taking A21, A22 to be zero.
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Step 4: Interpret differential system for φx,s.

Since φx,s =

(
φ
x,s

φ̃x,s

)
satisfies (2.8,2.2), φ̃x,s must be of the form

∂tφ̃
x,s = h̃(φ̃x,s, t), s.t. φ̃x,s(s) = x̃. (2.41)

We let X̃t denote the solution of this differential equation. Next, since φx,s

satisfies (2.7), φ
x,s

must be of the form

φ
x,s

(y, t) = c(t) +
[
Ir κ(X̃t, t)

]
U−1
s,t φ̃

x,sy, (2.42)

for some c ∈ C1([0, T );Rr). Differentiating in t, noting by (2.29) (with ϕ̃ =

X̃t) that

A(X̃t, t) =
d

dt
Uu,tφ̃

X̃u,u
∣∣
u=t
, (2.43)

and using (2.42,2.43,2.4,2.41,2.34,2.27), one has (with U−1
s,t = U−1

s,t φ̃
x,s) that

∂tφ
x,s

(y, t) (2.44)

= c′(t)−
[
I κ(X̃t, t)

]
A(X̃t, t)U

−1
s,t y

+
[
0 ∂tκ(X̃t, t) +∇ϕ̃κ1(X̃t, t) h̃(X̃t, t), ...,∇ϕ̃κd−r(X̃t, t) h̃(X̃t, t)

]
U−1
s,t y

= c′(t) + β(X̃t, t)[I κ(X̃t, t)]U
−1
s,t y

= c′(t) + β(X̃t, t)(φ
x,s

(y, t)− c(t)).
On the other hand, by (2.8) and (2.38)

∂tφ
x,s

(y, t) = θ(X̃t, t) + β(X̃t, t)φ
x,s

(y, t). (2.45)

Comparing (2.44) and (2.45), one has that

c′(t) = θ(X̃t, t) + β(X̃t, t)c(t) subject to c(s) = x. (2.46)

Step 5: Determine U in terms of κ, β and θ.
We just need A to satisfy (2.27,2.34) so there is no loss of generality in taking(
A11 A12

A21 A22

)
(ϕ̃, t) =

(
−β [(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ− β κ
0 0

)
(ϕ̃, t).

(2.47)
By (2.43), (2.4) and (2.47), we know

∂tUs,tX̃ = (Us,tX̃)A(X̃t, t) (2.48)

= Us,tX̃

(
−β {[(∇ϕ̃κ1)h̃, ..., (∇ϕ̃κd−r)h̃] + ∂tκ− β κ}
0 0

)
(X̃t, t)

subject to Us,sX̃ = Us,sx̃ = Id. Now, suppose that Tu,t is the two parameter
semigroup:

d

dt
Tu,t = −Tu,t β(X̃t, t), ∀t ≥ u subject to Tu,u = Ir. (2.49)
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Then, the solution of (2.48) is

Us,tX̃ =

(
Ts,t Ts,tκ(X̃t, t)− κ(X̃s, s)
0 Id−r

)
, (2.50)

and so

U−1
s,t X̃ =

(
T−1
s,t T−1

s,t κ(X̃s, s)− κ(X̃t, t)
0 Id−r

)
. (2.51)

Moreover, it follows by (2.46) that c can also be expressed in terms of T−1
s,t .

Step 6: Solution Algorithm.

a: Check κ only depends upon ϕ̃, t. This must be true by Step 2.

b: Choose any functions β ∈ C1(D̃T ,Rr×r); θ ∈ C1(D̃T ,Rr) and h̃ ∈

C1(D̃T ,Rp−r) for drift of the form b(ϕ, ϕ̃, t) = h(ϕ, ϕ̃, t) =

(
θ(ϕ̃, t) + β(ϕ̃, t)ϕ

h̃(ϕ̃, t)

)
.

These are the only possible drifts by Step 3.
c: Solve

X̃ ′t = h̃(X̃t, t) subject to X̃s = x̃

d: Solve

d

dt
Ts,t = −Ts,t β(X̃t, t), ∀t ≥ s subject to Ts,s = Ir. (2.52)

Then, set

Us,tX̃ =

(
Ts,t Ts,tκ(X̃t, t)− κ(X̃s, s)
0 Id−r

)
, (2.53)

U−1
s,t X̃ =

(
T−1
s,t T−1

s,t κ(X̃s, s)− κ(X̃t, t)
0 Id−r

)
, (2.54)

c(t) = T−1
s,t x+ T−1

s,t

∫ t

s

Ts,uθ(X̃u, u)du. (2.55)

e: Divide φx,s =

(
φ
x,s

φ̃x,s

)
and set φ̃x,s(t) = X̃t,

φ
x,s

(y, t) = c(t) +
[
Ir κ(X̃t, t)

]
(U−1

s,t X̃)y.

The preceding example was intuitively pleasing: We showed you could in-
deed represent linear SDEs using a single Gaussian stochastic integral. Fur-

ther, we showed that we could append an ordinary differential equation (dX̃t =

h̃(X̃t)dt) and use its solution within the coefficients of the stochastic differen-
tial equation. Finally, we showed how to construct the solution. While none of
this is surprising, it does explain our necessary and sufficient conditions. In the
next section, we will show how to combine this example with diffeomorphisms
to handle the general case with nonlinear coefficients.
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3. Construction Results and Examples

When one explicit solution exists, there will be a whole class of such solu-
tions corresponding to distinct b’s. We now identify the b’s, φ’s and U ’s for
these solutions corresponding to a given σ. This is done by using local diffeo-
morphisms to convert the general case to the case of Example 4. The idea is
based upon the following simple lemma.

Lemma 1. Suppose D ⊂ Rp is a domain, T > 0, DT = D × [0, T ), Λ̂
.
=(

Λt

t

)
: DT → Λ̂(DT ) ⊂ Rp+1 is a C2-diffeomorphism and σ, b, h, {φx,s}(x,s)∈DT ,

{Us,tφx,s}(x,s)∈DT ,s≤t<T , A satisfy Conditions C1, C2, C3 as well as equations

(1.5,2.11). Let D̂T = Λ̂(DT ),

σ̂ = {(∇ϕΛt)σ} ◦ Λ̂−1, ĥ = {(∇ϕΛt)h} ◦ Λ̂−1,

b̂ =

{
(∇ϕΛt)b+

1

2

d∑
j=1

p∑
i,k=1

(∂ϕi∂ϕkΛt)σi,jσk,j

}
◦ Λ̂−1,

φ̂x,s(y, t) = Λt ◦ φΛ̂−1(x,s)(y, t),

Ûs,tφ̂
x,s = Us,tφ

Λ̂−1(x,s),

Â = A ◦ Λ̂−1.

Then, σ̂, b̂, ĥ, {φ̂x,s}(x,s)∈D̂T , Û , Â satisfy Conditions C1, C2, C3 as well as equa-

tions (1.5,2.11) on D̂T . Moreover,

i) φ̂x,s, Ûs,t is a (x, s, σ̂, ĥ)-representation for each (x, s) ∈ D̂T if and only
if φx,s, Us,t is a (x, s, σ, h)-representation for each (x, s) ∈ DT .

ii) (2.12) holds if and only

(∇ϕσ̂k)σ̂j = (∇ϕσ̂j)σ̂k, on D̂T for all j, k ∈ {1, ..., d}. (3.1)

iii) (2.13) holds if and only

(∇ϕĥ)σ̂j = (∇ϕσ̂j)ĥ+ ∂tσ̂j − σ̂Âj, on D̂T for all 1 ≤ j ≤ d. (3.2)

Remark 5. In the time-homogeneous case, we can deal with B instead of

A and set B̂ = B ◦ Λ−1
0 . The notation Λ̂

.
=

(
Λt

t

)
just means that Λ̂ is a

diffeomorphism with the constraint that the last component is the identity map.

Proof. This lemma follows by direct calculation. Perhaps, the fastest way to
verify the commutator conditions is to think of (1.4) as a time-homogeneous
equation

d

[
Xt

t

]
=

[
h(Xt, t)

1

]
dt+

[
σ(Xt, t)

0

]
• dWt,

[
Xs

s

]
=

[
x
s

]
on [s, τx,s), by appending the trivial equation t = t and thinking of t as an
additional state variable. Then, verifying (2.13) is equivalent to (3.2) is the
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same as verfying(
∇
[
h
1

])[
σj
0

]
=

(
∇
[
σj
0

])[
h
1

]
−
[
σ
0

]
Aj

↔
(
∇
[
ĥ
1

])[
σ̂j
0

]
=

(
∇
[
σ̂j
0

])[
ĥ
1

]
−
[
σ̂
0

]
Âj,

which avoids ∂tσj and Λt if we express (ĥT , 1)T and (σ̂Tj , 0)T in terms of Λ̂. �

The idea behind this lemma is that σ gets changed into σ̂ =

(
Ir κ
0 0

)
with

some diffeomorphism and we can use Example 4 to solve for the possible ĥ

and the representations φ̂x,s, Ûx,s. Unfortunately, it is sometimes impossible
to have a single diffeomorphism for all of DT and, even when it is possible, we
may not know that until after local diffeomorphisms are constructed and one
of them is extendable to all of DT .

Definition 2. Suppose (x, s) ∈ DT . Then, an (x, s)-local diffeomorphism

(Ox,s, Λ̂x,s) is a bijection Λ̂x,s : Ox,s → Λ̂x,s(Ox,s) such that Λ̂x,s ∈ C2(Ox,s;Rp+1),
where Ox,s ⊂ DT is a (relatively open) neighbourhood of x, s. We define

∇Λ̂−1(Λ̂(ϕ, t)) to be
[
∇Λ̂(ϕ, t)

]−1

for (ϕ, t) ∈ Ox,s.

We imposed sufficient differentiability on our local diffeomorphisms for our

uses to follow. Our (x, s)-local diffeomorphisms will take the form Λ̂ =

(
Λt

t

)
with Λt being constructed from σ under the conditions:

[D]: Let D ⊂ Rp be a bounded convex domain, T > 0 and DT = D× [0, T ).
[Hr]: The rank of σ is r on DT with the first r rows having full row rank.

[∂]: σ ∈ Cr+1(DT ;Rp×d).
[B]: (∇ϕσj)σk − (∇ϕσk)σj = 0 on DT , for 1 ≤ j, k ≤ d and (x, s) ∈ DT .

To ensure the row rank part of Hr, we can just permute the rows of (1.3),
amounting to relabeling the {X i

t}
p
i=1.

Proposition 1. Suppose [D, Hr, ∂, B] hold. Then for any (x, s) ∈ DT , there

exists an (x, s)-local diffeomorphism (Ox,s, Λ̂x,s) and a constant permutation
matrix π such that

σ̂
.
= {(∇ϕΛt)σπ} ◦ Λ̂−1 =

(
Ir κ
0 0

)
∈ Rp×d on Λ̂(Ox,s),

where κ ∈ C1(Λ̂(Ox,s);Rr×(d−r)) does not depend on ϕ1, . . . , ϕr.

Proof. Provided in Section 5. �

Remark 6. The permutation matrix π permutes the columns of σ. We label
the permuted diffusion coefficient σπ = σπ and note that

dXt = b(Xt)dt+ σ(Xt)dWt = b(Xt)dt+ σπ(Xt)dW
π
t ,
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where W π = π−1W is a permutation of the Brownian motions W . Also, the
Stratonovich drift h remains the same by (1.5).

Remark 7. It follows from the proof in Section 5 that the diffeomorphism can

have the form Λ̂ = Λ̂r ◦· · ·◦Λ̂2◦Λ̂1 for any diffeomorphisms Λ̂i : Λ̂i−1◦· · ·◦Λ̂2◦
Λ̂1(DT ) → Rp+1 satisfying {∇Λ̂i · · · ∇Λ̂2∇Λ̂1σ

π
i } ◦ Λ̂−1

1 ◦ Λ̂−1
2 ◦ · · · ◦ Λ̂−1

i = ei,
where (e1 e2 . . . ep ep+1) = Ip+1 is the identity matrix. However, as will be seen
below in Remark 9, this does not uniquely define the diffeomorphism.

Proposition 1 immediately provides us our second main theorem.

Theorem 2. Suppose [D, Hr, ∂, B] hold, h ∈ C1(DT ;Rp), (x, s) ∈ DT and W
is an Rd-valued standard Brownian motion. Then, there exists a stopping time

τ > s, a permutation matrix π and an (x, s)-local diffeomorphism (Ox,s, Λ̂x,s),
as in Proposition 1 and Remark 7, such that

i) σ̂
.
= {(∇ϕΛt)σ

π} ◦ Λ̂−1 =

(
Ir κ
0 0

)
∈ Rp×d on Λ̂(Ox,s),

with κ ∈ C1(Λ(Ox,s);Rr×(d−r)) not depending on ϕ1, . . . , ϕr and ii) the Stratonovich

SDE dXt = h(Xt)dt+ σ(Xt) • dWt, Xs = x has a solution Xt = Λ−1
t

(
X t

X̃t

)
on [0, τ ] if and only if the simpler SDE

d

[
X t

X̃t

]
= ĥ

(
X t

X̃t

)
dt+

(
Ir κ
0 0

)
dW π

t ,

[
Xs

X̃s

]
= Λs(x) (3.3)

has a solution on [0, τ ], where ĥ = (∇ϕΛth+ ∂tΛt) ◦ Λ̂−1.

We stated the simpler SDE in terms of Itô integration. However, it follows
by (1.5) and the nature of κ that (3.3) would have exactly the same form in
terms of Stratonovich integration.

In this theorem we do not have a commutator condition for h so we can not
guarantee the simple form of ĥ as in Example 4. This means that X̃ is not in
general deterministic nor is X necessarily Gaussian. We also impose slightly
stronger conditions on σ compared to Theorem 1 but gain information about
the representation as local diffeomorphisms.

For our final main result, we add back the commutator condition for h, and
characterize all the solutions Xx,s

t = φx,s(Y s
t , t) to (2.10) via Example 4. We

do this through our basic set of parameters for (x, s):

Definition 3. Suppose [D, Hr, ∂] hold, DT be as defined above and O =

Ox,s ⊂ DT below. Let P = Px,sσ be the set of all (Λ̂, κ, β, θ, h̃, π) such that

P0) π is a constant permutation matrix.

P1) (Ox,s, Λ̂x,s) is a (x, s)-local diffeomorphism, where Λ̂(ϕ, t) =

[
Λt(ϕ)
t

]
.

For convenience, we let Λt =

[
Λt

Λ̃t

]
with Λt ∈ Rr;
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P2) κ ∈ C1(Λ̂(O);Rr×(d−r)) depends only on ϕr+1, . . . , ϕp, and t;

P3) {(∇ϕΛt)σ
π} ◦ (Λ̂)−1 =

(
Ir κ
0 0

)
on Λ̂(O);

P4) β ∈ C1(Λ̂(O);Rr×r) depends only on ϕr+1, . . . , ϕp, and t;

P5) θ ∈ C1(Λ̂(O);Rr) depends only on ϕr+1, . . . , ϕp, t;

P6) h̃ ∈ C1(Λ̂(O);Rp−r) depends only on ϕr+1, . . . , ϕp, t.

To each (Λ̂, κ, β, θ, h̃, π) ∈ P , we associate the following functions:

X̃ = X̃x,s ∈ Rp−r uniquely solves d
dt
X̃t = h̃(X̃t, t), X̃s = Λ̃s(x);

G(t) =
(
Ir

∣∣∣ κ(X̃t, t)
)
∈ Rr×d;

d
du
Ts,u = −Ts,u β(X̃u, u), ∀u ≥ s subject to Ts,s = Ir;

Us,uX̃ =

(
Ts,u Ts,uκ(X̃u, u)− κ(X̃s, s)

0 Id−r

)
;

U−1
s,uX̃ =

(
T−1
s,u T−1

s,uκ(X̃s, s)− κ(X̃u, u)

0 Id−r

)
;

cs(t) = T−1
s,t Λs(x) + T−1

s,t

∫ t
s
Ts,uθ(X̃u, u)du.

(3.4)

The following theorem follows from Theorem 2, Theorem 1 (so the explicit
solution implies [B] above) and Example 4. In particular, we must have

(∇ϕΛth+ ∂tΛt) ◦ Λ̂−1 =

(
h(ϕ, ϕ̃, t)

h̃(ϕ̃, t)

)
=

(
θ(ϕ̃, t) + β(ϕ̃, t)ϕ

h̃(ϕ̃, t)

)
, (3.5)

which gives our possible drifts h in the following theorem.

Theorem 3. Suppose [D, Hr, ∂] hold, (x, s) ∈ DT and Xx,s
t = φx,s

(∫ t
s
Us,uφ

x,sdW π
u , t
)

,

with φ, U satisfying C1, C2, C3, solves (2.10) up to some stopping time τx,s >

s. Then, there exists ((Ox,s, Λ̂x,s), κ, β, θ, h̃, π) ∈ Px,sσ , and related functions

X̃,G, U, c defined by (3.4), such that

h = [∇ϕΛt]
−1

{[
θ(X̃t, t)

h̃(X̃t, t)

]
− ∂tΛt +

[
β(X̃t, t) Λt

0

]}
on Ox, (3.6)

φx,s(y, t) = φ(Λ̂,κ,β,θ,h̃)(y, t) = Λ−1
t

([
cs(t) +G(t)(U−1

s,t X̃)y

X̃t

])
(3.7)

on N x =

{
(y, t) :

[
cs(t) +G(t)U−1

s,t X̃y

X̃t

]
∈ Λt(O

x,s)

}
. Finally, if π̆, Λ̆ and κ̆

also satisfies P0–P3, then there exist β̆, θ̆, h̆ such that (Λ̆, κ̆, β̆, θ̆, h̆, π̆) ∈ P,
b(Λ̆,κ̆,β̆,θ̆,h̆,π̆) = b(Λ̂,κ,β,θ,h̃), and φ(Λ̆,κ̆,β̆,θ̆,h̆,π̆) = φ(Λ̂,κ,β,θ,h̃).
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Remark 8. For the sake of brevity in the examples below, we will just give local
diffeomorphisms satisfying P3) above. However, as is shown in our companion
paper Kouritzin (2018), it is often possible to solve for them using the technique
used in the proof of Proposition 1 herein.

Remark 9. To illustrate the need of the final statement of Theorem 3, we
take for example, σ(x) = x ∈ Rp. Then, any L ∈ C1(Rp) depending on

x2/x1, . . . , xp/x1 satisfies (∇L)σ = 0. Therefore, Λ̂ and hence the parameter

set is not unique but we can create the same b, φ from any consistent κ, Λ̂.

3.1. One Dimensional Case. Suppose d = p = r = 1, D ⊂ R and x ∈ D.

Then, κ, h̃ do not exist and β, θ only depend on t. Moreover, Us,t = Ts,t =

e−
∫ t
s β(u)du, cs(t) = T−1

s,t Λs(x) + T−1
s,t

∫ t
s
Ts,uθ(u)du and the diffeomorphism can

be taken as Λt(ϕ) =
∫

1
σ(ϕ,t)

dϕ. One then finds by (1.5,3.4,3.6,3.7) that the

corresponding diffusion drift b and explicit solutions are

b(ϕ, t) = σ(ϕ, t)
{
θ(t) + β(t)Λt(ϕ)− ∂tΛt

}
+

1

2
σ(ϕ, t)∂ϕσ(ϕ, t) (3.8)

Xt = Λ−1
t

[{
Λs(x) +

∫ t

s

Ts,uθ(u)du+

∫ t

s

Ts,udWu

}/
Ts,t

]
. (3.9)

Example 5 (Time-varying Cox-Ingersoll-Ross model). Suppose θ, β and con-
tinuously differentiable s(t) > 0 are chosen and σ(ϕ, t) = s(t)

√
ϕ. Then,

Λt(ϕ) =
2
√
ϕ

s(t)
, Λ−1

t (z) =
(
zs(t)

2

)2

and the possible Itô drifts are

b(ϕ, t) = θ(t)s(t)
√
ϕ+ 2

(
β(t) +

ṡ(t)

s(t)

)
ϕ+

s2(t)

4
.

The explicit solutions are then

Xx,s
t =

∣∣∣∣ s(t)s(s)
e
∫ t
s β(v)dv

√
x (3.10)

+
s(t)

2

{∫ t

s

e
∫ t
u β(v)dvθ(u)du+

∫ t

s

e
∫ t
u β(v)dvdWu

} ∣∣∣∣2.
In the case s(t) = σ, θ and β are taken constant, we get

Xx,s
t =

1

4

{
2eβ(t−s)√x+

θσ

β
(eβ(t−s) − 1) + σ

∫ t

s

eβ(t−u)dWu

}2

solves

dXx,s
t =

(
σ2/4 + 2βXx,s

t + σθ
√
Xx,s
t

)
dt+ σ

√
Xx,s
t dWt, Xs = x

as long as Xx,s
t > 0. This solves the usual CIR model

dXt = α (β −Xt) dt+ σ
√
XtdWt. (3.11)
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when θ = 0, α = 2β, β = σ2/(8β). Now, set Yt =
√
Xt, where X solves

(3.11) with σ2 = 4αβ, and τ = inf{t > 0;Xt = 0}. It is well known that
P (τ <∞) = 1. Then,

dYt =
1

8Yt

(
4αβ − σ2

)
dt− α

2
Ytdt+

σ

2
dWt

= −α
2
Ytdt+

σ

2
dWt, (3.12)

by Itô’s formula. However, since (3.12) defines a Gaussian process and Y
must be non-negative, one cannot have Yt defined by (3.12) unless t < τ . This
explains why we first look for explicit local solutions.

3.2. Square Non-Singular Case. Suppose that d = p = r, σ = σ(ϕ, t)
is a d × d non-singular continuously-differentiable matrix satisfying (2.12),

D ⊂ Rp and x ∈ D. Again, we apply Theorem 3 and find κ, h̃ do not exist

while β, θ only depend on t. Also, there is a local diffeomorphism Λ̂ =

(
Λt

t

)
such that ∇ϕΛt(ϕ) = [σ(ϕ, t)]−1, and all explicit solutions are of the form
φx,s(t, y) = Λ−1

t

(
cs(t) + U−1

s,t y
)
, where

Us,t = −
∫ t

s

Us,uβ(u)du+ I and cs(t) = U−1
s,t

{
Λs(x) +

∫ t

s

Us,uθ(u)du

}
for some θ ∈ C([0, T );Rd) and β ∈ C1([0, T ),Rd×d). The resulting drift is

b(ϕ, t) = σ(ϕ, t)
{
θ(t) + β(t)Λt(ϕ)− ∂tΛt(ϕ)

}
+

1

2

d∑
j=1

(∇ϕσj(ϕ, t))σj(ϕ, t).

Example 6. Geometric Brownian motions: Take σij(ϕ) = ϕiγij with γ non-
singular and D = (0,∞)d. Then, σ satisfies the commutation condition (2.12)
since [(∇ϕσj)σk]i = ϕiγijγik, and the diffeomorphism can be chosen as Λ(ϕ) =

Λt(ϕ) = γ−1

 logϕ1
...

logϕd

. Λ’s image is Rd, so Λ−1(z) =

e(γz)1

...
e(γz)d

 is defined

everywhere and φx,si (y, t) = exp
[
γ{cs(t) + U−1

s,t y}
]
i
. The possible drifts satisfy

bi(ϕ, t) = ϕi

{
αi(t)−

d∑
j=1

Bij(t) logϕj

}
,

for 1 ≤ i ≤ d, where B(t) = γβ(t)γ−1, and αi(t) = 1
2
[γγ>]ii + [γθ(t)]i.

Example 7. Diffeomorphism example: In the previous examples, we started
with σ. Suppose instead we had a diffeomorphism

Λ(ϕ1, ϕ2) = Λt(ϕ1, ϕ2) =

[ π
2

+ arcsin(logϕ1ϕ2 − 1)
π
2

+ arcsin(2ϕ2

ϕ1
− 1)

]
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on 1 < ϕ1ϕ2 < e, ϕ2 ≤ ϕ1. Then, the possible full rank σ’s satisfy σ =
(∇ϕΛ)−1 i.e.

σ(ϕ1, ϕ2) =

 ϕ1

2

√
2 logϕ1ϕ2 − (logϕ1ϕ2)2 − ϕ1

2ϕ2

√
ϕ2(ϕ1 − ϕ2)

ϕ2

2

√
2 logϕ1ϕ2 − (logϕ1ϕ2)2 −1

2

√
ϕ2(ϕ1 − ϕ2)

 (3.13)

so (∇Λ)σ = I2 and σ satisfies (2.12) by Lemma 1 ii). The possible Stratonovich
(time-dependent) drifts h(ϕ1, ϕ2, t) are

σ(ϕ1, ϕ2)

(
θ1(t) + β11(t)(π

2
+arcsin(logϕ1ϕ2 −1))−β12(t)(π

2
+arcsin(2ϕ2

ϕ1
−1))

θ2(t) + β21(t)(π
2

+arcsin(logϕ1ϕ2 −1))−β22(t)(π
2

+arcsin(2ϕ2

ϕ1
−1))

)
(3.14)

while Us,t, cs satisfy the equations at the start of Subsection 3.2.

3.3. Non-Square Case. The Extended Heston model of our companion pa-
per Kouritzin (2018) is an important non-square example. We provide a second
interesting non-square example herein.

Example 8 (Heisenberg group). Let x ∈ Rd and x̃ ∈ R be the components
of the starting point, A = A(t) be a Rd×d continuously differentiable matrix

function and σ(ϕ, t) = σ(ξ, z, t) =

[
Id

(A(t)ξ)>

]
, where ξ ∈ Rd, z ∈ R. Then, σ

has rank r = d. The solution to dXt = σ(Xt, t)dWt is known as the Brownian
motion on the Heisenberg group. Moreover,

(∇ϕσj)σk − (∇ϕσk)σj =

[
0

Ajk − Akj

]
.

Therefore, (2.12) holds true if and only if A is symmetric. In this case, one
can solve for an explicit solution for an arbitrary starting point (x, x̃, s). The

diffeomorphism Λ̂(ξ, z, t) =

[
Λt(ξ, z)

t

]
is solved Λt(ξ, z) =

[
ξ
g

]
with g(ξ, z, t) =

z − 1
2
ξ>A(t)ξ following the proof of Proposition 1 in Section 5 (see Kouritzin

(2018) for details on a more involved example). Hence, π = Id, σ̂ =

[
Id
0

]
,

κ does not exist so G(t) = Id and [∇Λt]
−1 =

[
Id 0

ξ>A(t) 1

]
. Now, we can

take any functions θ ∈ Rd, β ∈ Rd×d, h̃ ∈ R satisfying the differentiability

conditions in Definition 3 and let X̃t, Us,tX̃, cs(t) satisfy:

d

dt
X̃t = h̃(X̃t, t) s.t. X̃s = x̃− 1

2
x>A(s)x

d

du
Us,uX̃ = −(Us,uX̃) β(X̃u, u) s.t. Us,sX̃ = Id

cs(t) = U−1
s,t

{
x+

∫ t

0

Us,uθ(X̃u, u)du

}
.
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From Theorem 3 and (1.5), drift b must be of the (quadratic) form

b(ξ, z, t)=

[
θ(X̃t, t)− β(X̃t, t)ξ

h̃(X̃t, t) + ξ>A(t)θ(X̃t, t)− ξ>A(t)β(X̃t, t)ξ + 1
2
ξ> d

dt
A(t)ξ + 1

2
Tr{A(t)}

]
for some θ, β, h̃. Finally, the corresponding φ is given by

φ(y, t) =

[
cs(t) + (U−1

s,t X̃)y

X̃t + 1
2
(cs(t) + (U−1

s,t X̃)y)>A(t)(cs(t) + (U−1
s,t X̃)y)

]
.

4. Comparison with the works of Yamato and Kunita

Now, we compare our existence results to those appearing in Yamato (1979)
and Kunita (1984). In Section III.3 of Kunita’s treatise, he considers repre-
sentations of time-homogeneous Fisk-Stratonovich equations

dXx
t = h(Xx

t )dt+ σ(Xx
t ) • dWt (4.1)

in terms of the flows generated by the vector fields

X0(y) =

p∑
i=1

hi(y)
∂

∂yi
and Xk(y) =

p∑
i=1

σik(y)
∂

∂yi
, k = 1, ..., d, (4.2)

under conditions imposed on the Lie algebra L0(X0,X1, . . . ,Xd) generated by
Xk, 0 ≤ k ≤ d. In the special case where these vector fields commute, i.e.
the Lie bracket [Xk,Xj] = 0 for each j, k = 0, ..., d, and the coefficients hi, σik
are respectively in C3

α, C4
α (the locally four times continuously differentiable

functions whose fourth derivative is α-Hölder continuous), his work gives rise
to the composition formula

(Xx
t )i = Exp (tX0) ◦ Exp

(
W 1
t X1

)
◦ · · · ◦ Exp

(
W d
t Xd

)
◦ χi(x), (4.3)

= φi(Wt, t)

locally. Here, χi is the function taking x to its ith component and Exp (uXk)
is the one parameter group of transformations generated by vector field Xk,
i.e. the unique solution to

d

du
(f ◦ ϕu) = Xkf(ϕu), ϕ0 = x, ∀f ∈ C∞. (4.4)

In fact, to use (4.3), one must solve (4.4) for k = 0, ..., d and f = χi, i = 1, ..., d.
Kunita also goes beyond commutability, even surpassing Yamato (1979) in
generality by considering the situation where L0(X0, ...,Xd) is only solvable,
but the expression replacing (4.3) necessarily becomes more unwieldy.

Our characterization of φx,s provided by Theorem 3 provides an alternative
to (4.3) that is more amenable to direct calculation. Corollary 1 (to follow)
supplies a converse to (4.3) in the sense that if Xx,s

t were to have such a
functional representation φx,s(Wt, t) in terms of Brownian motions only, then
the vector fields must commute. This was previously established in Theorem
4.1 of Yamato (1979) under C∞ conditions on both φ and the coefficients.

The other advantages of our representations over Kunita’s results are:
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• We allow time dependent vector fields.
• We decrease the regularity assumptions by imposing weaker differen-

tiability on h and on σ when r is small. The looser regularity on the
coefficients requires eschewing Fisk-Stratonovich equations in favour of
Itô processes.
• We remove the nilpotency assumptions (for our representations).

To validate the final claim, we take p = 2, d = 1,

X0 = {θ(x2)−B(x2)x1}∂x1 + θ̃(x2)∂x2 ,

and X1 = ∂x1 . Then [X0,X1] = B∂x1 . Moreover, if Xk = [X0,Xk−1], k ≥ 2,

then Xk = ak(x2)∂x1 , where ak+1 = θ̃(∂x2ak) + Bak, k ≥ 1 and a1 = 1. In
general, the ak’s will not vanish and thereby the Lie algebra contains an infinite
number of linearly independent vector fields. This algebra is solvable but is
not nilpotent.

Using Theorem 1, we can also give the converse to Kunita’s result, Example
III.3.5 in Kunita (1984), that is valid under the mild regularity on b, σ, h given
at the beginning of the section.

Corollary 1. Suppose that there exists a domain D̃ such that the coefficients
σ and h are time-homogeneous and Fisk-Stratonovich acceptable on D̃T =
D̃×(0, T ). Further, assume that the solution to the Fisk-Stratonovich equation
(4.1) has a unique local solution

(Xx
t )i = Exp (tX0) ◦ Exp

(
W 1
t X1

)
◦ · · · ◦ Exp

(
W d
t Xd

)
◦ χi(x)

on 0 ≤ t < τx for some positive stopping time τx and each x ∈ D̃, where Xk,
k = 0, 1, . . . , d are the vector fields defined in (4.2). Then,

[Xk,Xj] = 0 on D̃ for each j, k = 0, . . . , d.

Proof. We find that Xx
t = φ(Yt, t) with Us,t = I so A = 0 from (2.11) and

σA = 0. It now follows from Theorem 1 and (2.12,2.13) that [Xk,Xj] = 0. �

5. Proofs of the main results

Note: For notational simplicity, we will drop superscripts s and x in the
proofs as they are just fixed starting points.

5.1. Uniqueness in Theorem 1 a). The closure DT of DT is convex and
compact. Further, b, σ can be extended to Lipschitz continuous functions on
DT by our C1-conditions in a) of Theorem 1. Now, we use the proof of Kunita
(1984)[Theorem II.5.2] for uniqueness of (strong) local solutions to the SDE
until they leave DT .
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5.2. Proof of Theorem 1 a) is equivalent to b).

Proof. Using (2.1) and Itô’s formula for Xt = φ(Yt, t), one finds that for any
1 ≤ i ≤ p,

d(Xt)i =
d∑

m=1

d∑
j=1

∂ymφi(Yt, t)(Us,tφ)mjdW
j
t (5.1)

+

[
∂tφi(Yt, t) +

1

2

d∑
j=1

d∑
k=1

∂yj∂ykφi(Yt, t)(Us,tφ (Us,tφ)>)jk

]
dt.

Now, starting with b) implies a), we have a (x, s, σ, h)-representation φx,s, Us,t
(that satisfies C1, C2, C3). Using (2.7,2.8) on (5.1), we find

d(Xt)i = σi(φ(Yt, t), t)dWt + hi(φ(Yt, t), t)dt (5.2)

+
1

2

d∑
j=1

d∑
k=1

∂yj∂ykφi(Yt, t)(Us,tφ (Us,tφ)>)jkdt.

Moreover,

∂ym{σij(φ, t)} =

p∑
n=1

{∂ϕnσij}(φ, t)∂ymφn

and if (2.7) is true, one obtains

∂ym{σij(φ, t)} =
d∑
l=1

∂ym∂ylφi (Us,tφ)lj.

Abbreviating notation Umk(φ, t) = (Us,tφ)mk, multiplying the last two equali-
ties by Umk(φ, t), summing over m and using (2.7) again, one finds that

p∑
n=1

{∂ϕnσij}(φ, t)σnk(φ, t) =
d∑

m=1

d∑
l=1

∂ym∂ylφi Ulj(φ, t)Umk(φ, t), (5.3)

and, taking k = j and summing over j, one has that

d∑
j=1

{∇ϕσj}(φ, t)σj(φ, t) =
d∑
l=1

d∑
m=1

(U(φ, t)U>(φ, t))lm∂ym∂ylφ. (5.4)

Therefore, if (2.7,2.8,2.2) are satisfied, then clearly Xt is a local strong solution
to (2.10) by (1.5). Moreover, letting t↘ s, we find by (2.7,2.8,2.2) that

σ(x, s) = ∇yφ
x,s(0, s) and h(x, s) = ∂tφ

x,s(0, s)

so σ, h ∈ C1 by the last part of Definition 1.
To show a) implies b), we suppose Xt is a strong solution to (2.10) on

(s, τx,s). Then, since continuous finite-variation martingales are constant, the
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(continuous) Itô process φ(Yt, t) from (5.1) matches (2.10) if and only if

σij(φ, t) =
d∑

m=1

∂ymφi (Us,tφ)mj, ∀1 ≤ i ≤ p, 1 ≤ j ≤ d, (5.5)

and

bi(φ, t) = ∂tφi +
1

2

d∑
j=1

d∑
k=1

∂yj∂ykφi (Us,tφ(Us,tφ)>)jk ∀1 ≤ i ≤ p (5.6)

for all t ∈ (s, τx,s). Rewriting (5.5) in matrix form, one finds

σ(φ(Yt, t), t) = {∇yφ(Yt, t)}Us,tφ, (5.7)

and (2.7) is true. Now, we can use (5.4) (which was just shown to be a
consequence of (2.7)) to find (5.6) is equivalent to

∂tφ = b(φ, t)− 1

2

d∑
k=1

{∇ϕσk}(φ, t) σk(φ, t) = h(φ, t), (5.8)

using (1.5). Now, (2.8) follows by continuity and (2.6). Letting t↘ s in (5.7)
and (5.8), one finds

σ(x, s) = ∇yφ
x,s(0, s) and h(x, s) = ∂tφ

x,s(0, s)

so the last part of Definition 1 follows from the C1 property of h, σ. �

5.3. Switching Paths Lemma. We will use the following lemma within the
proof of Theorem 1 b) and c) equivalence. It is related to the question of
when a vector field is the gradient of a scalar field, integration over different
paths and exactness of one forms. The spirit of this Lemma is well known.
It is stated and proved in the exact manner needed below. There are two
reasons why this lemma is necessarily more complicated than one might first

expect: i) It is the {σ̂j} not the {β̂Vj} (which also involve the function Ut)
that commute via (5.9) below. ii) The right hand side of the other commutator
conditon (5.10) is not zero.

Lemma 2. Suppose that N ⊂ (−1,∞) × Rd, ∆ ⊂ Rp+1 are bounded do-

main with closures N , ∆; (0, x) ∈ N with x ∈ Rp; ĥ ∈ C1(N ;Rp+1),
σ̂ ⊂ C1(N ;R(p+1)×d), A ∈ C1(N ;Rd×d) satisfy

(∇σ̂j)σ̂k − (∇σ̂k)σ̂j = 0, ∀j, k ∈ {1, ..., d} (5.9)

(∇ĥ)σ̂k − (∇σ̂k)ĥ = −σ̂Ak, ∀k ∈ {1, ..., d}; (5.10)

and φ̂ is a solution to

φ̂(y) = (0, x) +
d∑
i=0

∫ yi

0

β̂(φ̂(y0, ..., yi−1, u, 0d−i))(Vy0)idu, ∀y ∈ N , (5.11)
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where β̂ = [ĥ σ̂] and Vt =

[
1 0d
0d U−1

t

]
with Ut being the d× d solution to the

linear equation

Ut = I +

∫ t

0

UuA(φ̂(u, 0d))du.

Then, φ̂ also solves

φ̂(y) = (0, x) +
d∑
i=0

∫ yπ(i)

0

β̂(φ̂(π−1(yπ(0), ..., yπ(i−1), u, 0d−i))(Vyiπ(u))π(i)du,

(5.12)
where

yiπ(u) =

 y0 0 ∈ {π(0), ..., π(i− 1)}
u 0 = π(i)
0 otherwise

for any y ∈ N and permutation π of {0, 1, ..., d} so the integration order does
not matter. Here, π−1 is an operator re-ordering the arguments to undo the
permutation, i.e. to move yπ(j) from the jth to the π(j)th position.

Remark 10. In the statement and proof of this lemma we have made time
as the first rather than last variable at the request of readers as it seems to
be more natural for them in this type of result. It also causes the notation to
simplify slightly.

Proof. It follows from its definition that

Vt = I −
∫ t

0

Â(φ̂(u, 0d))Vudu with Â =

[
0 0d
0d A

]
. (5.13)

The permutations of {0, 1, 2, ..., d} is a symmetric group and any permuta-

tion is the composition of at most d(d+1)
2

elementary permutations. Hence, we
take a permutation π and consider a further elementary permutation (r, r+ 1)
for some r ∈ {0, ..., d− 1}. The result follows by induction once we show that∫ yπ(r)

0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), u, 0d−r))(Vyrπ(u))π(r)du (5.14)

+

∫ yπ(r+1)

0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), yπ(r), u, 0d−r−1))(Vyr+1
π (u))π(r+1)du

=

∫ yπ(r+1)

0

β̂(φ̂(π−1(yπ(0), ..., yπ(r−1), 0, u, 0d−r−1))(Vyr+1
π (u))π(r+1)du

+

∫ yπ(r+1)

0

β̂(φ̂(π−1(yπ1(0), ..., yπ(r−1), u, yπ(r+1), 0d−r−1))(Vyrπ(u))π(r)du.

(5.14) can be divided into three cases: a) π(0) > r + 1 (when r < d − 1), b)
π(0) < r and c) π(0) ∈ r, r + 1. To ease the notation, we note that showing

these three cases is equivalent to assuming that φ̂ satisfies:
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a: φ̂(w, z) =

∫ w

0

σ̂j(φ̂(u, 0))du+

∫ z

0

σ̂k(φ̂(w, v))dv,

b: φ̂(w, z) =

∫ w

0

σ̂(φ̂(u, 0))(U−1
t )jdu+

∫ z

0

σ̂(φ̂(w, v))(U−1
t )kdv,

c: φ̂(t, z) =

∫ t

0

ĥ(φ̂(u, 0))du+

∫ z

0

σ̂(φ̂(t, v))(U−1
t )jdv,

for j, k ∈ {1, ..., d} and showing the corresponding integration order switch:

a: φ̂(w, z) =

∫ w

0

σ̂j(φ̂(u, z))du+

∫ z

0

σ̂k(φ̂(0, v))dv,

b: φ̂(w, z) =

∫ w

0

σ̂(φ̂(u, z))(U−1
t )jdu+

∫ z

0

σ̂(φ̂(0, v))(U−1
t )kdv,

c: φ̂(t, z) =

∫ t

0

ĥ(φ̂(u, z))du+

∫ z

0

σ̂j(φ̂(0, v))dv.

Here, w, z represent two of {y1, ..., yd} with the others fixed. t is used for y0.

Case a: This case is subsumed by case b (with U−1
t = I) proved below.

Case b: It follows from hypothesis b that ∂
∂v
φ̂(w, v) = σ̂(φ̂(w, v))(U−1

t )k and

∂

∂w
φ̂(w, z) = σ̂(φ̂(w, 0))(U−1

t )j +

∫ z

0

∂

∂w
σ̂(φ̂(w, v))(U−1

t )kdv (5.15)

= σ̂(φ̂(w, 0))(U−1
t )j +

∫ z

0

d∑
i=1

∇σ̂i(φ̂(w, v))
∂

∂w
φ̂(w, v)(U−1

t )ikdv.

Moreover, it follows from the commutator condition (5.9) that

σ̂(φ̂(w, z))(U−1
t )j − σ̂(φ̂(w, 0))(U−1

t )j (5.16)

=

∫ z

0

∑
l

∇σ̂l(φ̂(w, v))
∂

∂v
φ̂(w, v)(U−1

t )ljdv

=

∫ z

0

∑
l

∇σ̂l(φ̂(w, v))
∑
i

σ̂i(φ̂(w, v))(U−1
t )ik(U

−1
t )ljdv

=

∫ z

0

∑
i

∑
l

∇σ̂i(φ̂(w, v))σ̂l(φ̂(w, v))(U−1
t )ik(U

−1
t )ljdv

=

∫ z

0

∑
i

∇σ̂i(φ̂(w, v))σ̂(φ̂(w, v))(U−1
t )j(U

−1
t )ikdv.

Therefore, it follows by (5.15,5.16) and Gronwall’s inequality that

∂

∂w
φ̂(w, z) = σ̂(φ̂(w, z))(U−1

t )j. (5.17)
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Finally, by the commutator condition (5.9) again and (5.17)∫ w

0

[σ̂(φ̂(u, z))− σ̂(φ̂(u, 0))](U−1
t )jdu (5.18)

=

∫ w

0

∫ z

0

∑
i

∇σ̂i(φ̂(u, v))
∂

∂v
φ̂(u, v)(U−1

t )ijdvdu

=

∫ w

0

∫ z

0

∑
i,l

∇σ̂i(φ̂(u, v))σ̂l(φ̂(u, v))(U−1
t )lk(U

−1
t )ijdvdu

=

∫ z

0

∫ w

0

∑
i,l

∇σ̂l(φ̂(u, v))σ̂i(φ̂(u, v))(U−1
t )ij(U

−1
t )lkdudv

=

∫ z

0

∫ w

0

∑
l

∇σ̂l(φ̂(u, v))
∂

∂u
φ̂(u, v)(U−1

t )lkdudv

=

∫ z

0

[σ̂(φ̂(w, v))− σ̂(φ̂(0, v))](U−1
t )kdv

and Case b follows by rearrangement.

Case c: It follows from hypothesis c and (5.13) that ∂
∂v
φ̂(t, v) = σ̂(φ̂(t, v))(U−1

t )j
and

∂

∂t
φ̂(t, z) = ĥ(φ̂(t, 0)) +

∫ z

0

∂

∂t

{
σ̂(φ̂(t, v))(U−1

t )j

}
dv (5.19)

= ĥ(φ̂(t, 0)) +

∫ z

0

∑
i

∇σ̂i(φ̂(t, v))
∂

∂t
φ̂(t, v)(U−1

t )ijdv

−
∑
i

∫ z

0

σ̂i(φ̂(t, v))dv
∑
l

Ail(φ̂(t, 0))(U−1
t )ljdv.

Moreover, it follows from the commutator condition (5.10) that

ĥ(φ̂(t, z))− ĥ(φ̂(t, 0)) =

∫ z

0

∇ĥ(φ̂(t, v))
∂

∂v
φ̂(t, v)dv (5.20)

=

∫ z

0

∑
l

∇ĥ(φ̂(t, v))σ̂l(φ̂(t, v))(U−1
t )ljdv

=

∫ z

0

∑
l

∇σ̂l(φ̂(t, v))ĥ(φ̂(t, v))(U−1
t )ljdv

−
∫ z

0

∑
l

σ̂(φ̂(t, v))A(φ̂(t, 0))l(U
−1
t )ljdv.

Therefore, it follows by (5.19,5.20) and Gronwall’s inequality that

∂

∂t
φ̂(t, z) = ĥ(φ̂(t, z)). (5.21)
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Finally, by the commutator condition (5.10) again, (5.13) and (5.21)∫ t

0

ĥ(φ̂(u, z))− ĥ(φ̂(u, 0))du (5.22)

=

∫ t

0

∫ z

0

∇ĥ(φ̂(u, v))
∂

∂v
φ̂(u, v)dvdu

=

∫ t

0

∫ z

0

∑
k

∇ĥ(φ̂(u, v))σ̂k(φ̂(u, v))(U−1
u )kjdvdu

=

∫ z

0

∫ t

0

∑
k

∇σ̂k(φ̂(u, v))ĥ(φ̂(u, v))(U−1
u )kjdudv

−
∫ z

0

∫ t

0

∑
k

σ̂(φ̂(u, v))Ak(φ̂(u, 0))(U−1
u )kjdudv

=

∫ z

0

∫ t

0

∑
k

∇σ̂k(φ̂(u, v))
∂

∂u
φ̂(u, v)(U−1

u )kjdudv

+

∫ z

0

∫ t

0

σ̂(φ̂(u, v))
∂

∂u
(U−1

u )jdudv

=

∫ z

0

[σ̂(φ̂(t, v))(U−1
t )j − σ̂j(φ̂(0, v))]dv

and Case c follows by rearrangement. �

5.4. Proof of Theorem 1 b) is equivalent to c).

Proof. Step 1: Show that (c) implies (b).
Let N x,s be a open ball centered at 0 ∈ Rd (whose radius can depend upon
starting point (x, s)), t0 > s and N = N x,s×(s, t0). Next, we define successive
approximations to φx,s, Us,tφ by the path integral and linear equation

φn+1(y, t) = x+

∫ t

s

h(φn(0d, u), u)du (5.23)

+
d∑
i=0

∫ yi

0

σ(φn(y1, ..., yi−1, u, 0d−i, t), t)(U
n
s,t)
−1
i du,

Un+1
s,t = I +

∫ t

s

Un+1
s,u A(φn(0d, u), u)du, (5.24)

starting with φ0(y, t) = x. (Note that Un
s,t’s inverse Bn

s,t exist and satisfies

Bn
s,t = I −

∫ t
s
A(φn−1(0, u), u)Bn

s,udu.) Let L be the integral operator corre-
sponding to (5.23,5.24) so that

(φn+1, Un+1) = L(φn, Un).

Then, it is well known and easy to verify that the iterated operator Lm is
a contraction on C(N ;Rp) × C([s, t0);Rd×d) with supremum norm for some
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m ∈ N. Hence, (φn, Un) converges as n → ∞ to some unique fixed point
(φx,s, Us) satisfying

(φx,s, Us) = L(φx,s, Us),

i.e. for each (y, t) ∈ N

φx,s(y, t) = x+

∫ t

s

h(φx,s(0d, u), u)du (5.25)

+
d∑
i=0

∫ yi

0

σ(φx,s(y1, ..., yi−1, u, 0d−i, t), t)(Us,t)
−1
i du,

Us,t = I +

∫ t

s

Us,u A(φx,s(0d, u), u)du. (5.26)

Hence,

∂

∂t
U−1
s,t = −A(φx,s(0d, t), t)U

−1
s,t . (5.27)

C2, C3 are true by our construction. Moreover, C1 and the continuity of
∂s∇yφ

x,s(0d, s), ∂s∂tφ
x,s(0d, s), ∂xi∇yφ

x,s(0d, s) and ∂xi∂tφ
x,s(0d, s) will follow

from (5.25) and the conditions on h and σ once we have established φx,s sat-
isfies (2.7,2.8).

It remains to show that φx,s satisfies (2.7,2.8). The fundamental theorem of
calculus immediately tells us that ∂

∂yd
φx,s(y, t) = σ(φx,s(y, t))(Us,t)

−1
d . We use

a different path to have access to the other partial derivatives. Clearly, (5.25)
is equivalent to(

φx,s(y, t)
t

)
=

(
x
s

)
+

∫ t

s

(
h(φx,s(0d, u), u)

1

)
du (5.28)

+
d∑
i=0

∫ yi

0

(
σ(φx,s(y1, ..., yi−1, u, 0d−i, t), t)(Us,t)

−1
i

0d

)
du

and we can define new coefficients corresponding to this enlarged equation:

ĥ(ϕ̂) =

(
h(ϕ, t)

1

)
, σ̂j(ϕ̂) =

(
σ(ϕ, t)

0d

)
, (5.29)

where ϕ̂ =

(
ϕ
t

)
. One finds the commutator conditions (2.12,2.13) are equiv-

alent to

(∇σ̂k)σ̂j − (∇σ̂j)σ̂k = 0, ∀j, k ∈ {1, ..., d} (5.30)

(∇σ̂0)σ̂j − (∇σ̂j)ĥ = −σ̂Aj, ∀j ∈ {1, ..., d}, (5.31)

which means we can use Lemma 2 (with time shifted functions ĥ(·, s + ·),
σ̂(·, s+ ·), A(·, s+ ·), Us,s+· and φ̂x,s(·, s+ ·)) to move the path segment of the
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desired partial derivative to the end and find

∂

∂yi
φx,s(y, t) = σ(φx,s(y, t), t)(Us,t)

−1
i ,

∂

∂t
φx,s(y, t) = h(φx,s(y, t), t). (5.32)

Step 2: Show that (2.7) implies (2.12).
By C1 and (2.7), one has that

∂yj{σ(φ, t)(U−1
s,t φ)k} = ∂yj∂ykφ(y, t) = ∂yk∂yjφ(y, t) = ∂yk{σ(φ, t)(U−1

s,t φ)j}.
(5.33)

However, it follows by (2.3) of C3 and then (2.7) that

∂yj{σ(φ, t)(U−1
s,t φ)k} (5.34)

=
∑
m

{∂yjσm(φ, t)}(U−1
s,t φ)mk

=
∑
m

∇φσm(φ, t)σ(φ, t)(U−1
s,t φ)j(U

−1
s,t φ)mk

=
∑
m

∑
n

∇φσm(φ, t)σn(φ, t)(U−1
s,t φ)nj(U

−1
s,t φ)mk

and similarly

∂yk{σ(φ, t)(U−1
s,t φ)j} (5.35)

=
∑
n

∑
m

∇φσn(φ, t)σm(φ, t)(U−1
s,t φ)mk(U

−1
s,t φ)nj .

Letting t↘ s in (5.34) and (5.35), one finds by (5.33) that for all 1 ≤ j, k ≤ d,∑
m

∑
n

∇xσm(x, s)σn(x, s)(U−1
s,s φ)nj(U

−1
s,s φ)mk (5.36)

= lim
t↘s

∂yj{σ(φ, t)(U−1
s,t φ)k}

= lim
t↘s

∂yk{σ(φ, t)(U−1
s,t φ)j}

=
∑
m

∑
n

∇xσn(x, s)σm(x, s)(U−1
s,s φ)nj(U

−1
s,s φ)mk.

However, U−1
s,s φ = I so we have that

(∇xσq)(x, s)σp(x, s) = (∇xσp)(x, s)σq(x, s).

Hence, (2.12) holds.
Step 3: Show that (2.7,2.8) imply (2.13).
By C1 and (2.7,2.8), one has that

d

dt
{σ(φ, t)(U−1

s,t φ)k} = ∂ykh(φ, t). (5.37)

One gets by (2.7) that

∂ykh(φ, t) = ∇φh(φ, t)∂ykφ(y, t) = ∇φh(φ, t)σ(φ, t)(U−1
s,t φ)k (5.38)
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and by the chain rule, (5.37), (2.8) as well as the standard formula
d

dt
B−1
t =

−B−1
t

(
d

dt
Bt

)
B−1
t that

∂ykh(φ, t) =
d

dt
{σ(φ, t)(U−1

s,t φ)k} (5.39)

=
∑
m

∇φσm(φ, t)h(φ, t)(U−1
s,t φ)mk + ∂tσ(φ, t)(U−1

s,t φ)k

− σ(φ, t)U−1
s,t φ

∑
m

d

dt
(Us,tφ)m(U−1

s,t φ)mk.

Combining (5.38,5.39), multiplying by (Us,tφ)kn and summing, we get

∇φh(φ, t)σn(φ, t) = ∇φσn(φ, t)h(φ, t) + ∂tσn(φ, t) (5.40)

− σ(φ, t)U−1
s,t φ

x,s d

dt
(Us,tφ

x,s)n

so, letting t↘ s and using (2.11,2.2), one arrives at (2.13).
�

5.5. Proof of Proposition 1. Our methods are motivated in part by Brickell
and Clark (1970)[Propositions 8.3.2 and 11.5.2]. By reducing T > 0 if neces-
sary, we can find a permutation π such that the first r columns of σπ = σπ
are linearly independent on DT .

Proof. Fix (x, s) ∈ DT and t ∈ [s, T ). Λt will have form:

Λt = Λr,1
t , where Λi,1

t = Λi
t ◦ Λi−1

t ◦ · · · ◦ Λ2
t ◦ Λ1

t , (5.41)

Λi
t(ϕ) =

i−1∑
j=1

ϕjej +H i(ϕi, ..., ϕp, t). (5.42)

Here, Λi
t is a Cr+2−i-diffeomorphism on a neighborhoodOxi−1

t of xi−1
t = Λi−1,1

t (x)
so Λt : Ox

t → Rp for some neighborhood Ox
t of x.

To construct Λi
t recursively, we suppose σ̂j = ej for j < i and

αi
.
= {∇Λi−1,1

t σπi } ◦ (Λi−1,1
t )−1 (5.43)

does not depend upon ϕ1, ..., ϕi−1, which are vacuously true when i = 1. More-
over, without loss of generality, we assume the ith component of αi satisfies
αi,i 6= 0 (or else we change π by permuting columns i, ..., d of σπ). Set ψit(ϕ) =
θt(ϕi − xi−1

t,i ;ϕ1, ..., ϕi−1, x
i−1
t,i , ϕi+1, ..., ϕp), where θ satisfies θt(0;ϕ) = ϕ and

d
du
θt(u;ϕ) = αi(θt(u;ϕ), t) for u ∈ Iϕ, an open interval containing 0, and ϕ in

a neighborhood containing xi−1
t . Then, ∂ϕiψ

i = αi(ψ
i). For j 6= i, we have

∂ϕjψ
i
t(ϕ) = ∂ϕjθt(ϕi − xi−1

t,i ;ϕ1, ..., ϕi−1, x
i−1
t,i , ϕi+1, ..., ϕp) and

∂u∂ϕjθt(u;ϕ) = ∂ϕjαi(θ(u;ϕ), t) s.t. ∂ϕjθt(0;ϕ) = ej
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so ∇ψit(xi−1
t ) has determinant αi,i(x

i−1
t , t) 6= 0. Thus by the Inverse Function

Theorem, ψit has inverse Λi
t ∈ Cr+2−i(Oxi−1

t ,Rp) and ∇Λi
t = [∇ψit]−1(Λi

t) on

neighborhood Oxi−1
t = ψit(U

xi−1
t ) of xi−1

t with

Uxi−1
t =

{
ϕ : ‖∇ψit(ϕ)−∇ψit(xi−1

t )‖ < 1

2‖(∇ψit(xi−1
t ))−1‖

}
, (5.44)

and ‖ · ‖ being Frobenius norm. Hence, ∇Λi
t((Λ

i
t)
−1)∇ψit = I and

σ̂i = {∇Λi
tαi}(Λi

t)
−1 = ei ∈ Rp. (5.45)

Moreover, Λi
t has the form (5.42) if ψit has similar form. ψit has this form by

its definition as well as the facts αi is locally Lipschitz and does not depend
upon ϕ1, ..., ϕi−1. (5.42) and induction then imply that

ek = σ̂k = {∇Λi,1
t σ

π
k} ◦ (Λi,1

t )−1 ∀k ≤ i.

Next,

(∇σ̂j)σ̂k − (∇σ̂k)σ̂j = (∇σπj )σπk − (∇σπk )σπj = 0 ∀ 1 ≤ k, j ≤ d (5.46)

by Lemma 1. Now, since σ̂k = ek ∈ Rp for 1 ≤ k ≤ i, (5.46) implies

(∇σ̂j)ek = (∇σ̂j)ek − (∇ek)σ̂j = 0 ∀ 1 ≤ k ≤ i < j

on a neighborhood O of x. Therefore, σ̂j and (by a similar argument) αi+1

can not depend upon ϕ1, . . . , ϕi so we can take i = r by induction and

σ̂ = {(∇Λt)σ
π} ◦ Λ−1

t =

(
Ir κ
0 κ̃

)
∈ Rp+1×d on Λt(O

x),

where κ ∈ Rr×(d−r) and κ̃ ∈ R(p−r)×(d−r) do not depend on the variables
ϕ1, . . . , ϕr. Since σ̂ has also rank r, it follows that κ̃ = 0.

It remains to show there is a relatively open Ox,s ⊂ DT containing (x, s)
such that (ϕ, t) → Λt(ϕ) is twice continuously differentiable on Ox,s. The
desired differentiability of ψi, αi and Λi follow from their definitions and [∂].
For V ⊂ Rp and γ > 0, we let V γ = {v + γ : v ∈ V, γ ∈ Rp with |γ| ≤ γ}.

We let Ox,s = Ox,s
r , I is = (s − ti, s + ti) ∩ [0, T ), where ti, Ox,s

i are found
recursively, Ox,s

i ⊂ DT is relatively open, contains {x} × I is and Λi,1 : Ox,s
i →
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Rp. Let t0 = T , Ux,s
0 = Bx(1), Ox,s

0 = Bx(1)× I0
s and for i = 1, 2, ..., r define

Ki = sup
(ϕ,t)∈Ox,si−1

(|Λi−1,1
t (ϕ)− Λi−1,1

t (x)|/|ϕ− x|) ∨ 1

Li = sup
(ϕ,t)∈Ox,si−1

(‖∇ψit(Λ
i−1,1
t (ϕ))−∇ψis(Λi−1,1

s (ϕ))‖/|t− s|) ∨ 1

M i = sup
(ϕ,t)∈Ox,si−1

(|ψit(Λ
i−1,1
t (ϕ))− ψit(xi−1

t )|/|ϕ− x|) ∨ 1

N i = sup
(ϕ,t)∈Ox,si−1,|γi|≤γi

(|Λi
t(ψ

i
t(Λ

i−1,1
t (ϕ)) + γi)− Λi

t(ψ
i
t(Λ

i−1,1
t (ϕ)))|/γi) ∨ 1

Ux,s
i =

{
ϕ ∈ Ux,s

i−1 : ‖∇ψis(Λi−1,1
s (ϕ))−∇ψis(xi−1

s )‖ < 1

8‖(∇ψis(xi−1
s ))−1‖

}
recursively. (γi is a vector of size γi so the supremum inN i is over vectors below

this size.) Ux,s
i must contain a ball Bx((K

i + 1)ε) for some ε = εi > 0. Let

γi = ε
N i , δi = min

{
γ1

M1 , ...,
γi

M i

}
, Ox,s

i = Bx(δ
i)×I is and 0 < ti < ti−1 be such

that sup
t∈Iis
‖(∇ψit(xi−1

t ))−1‖ ≤ 2‖(∇ψis(xi−1
s ))−1‖ and Liti <

1

16‖(∇ψis(xi−1
s ))−1‖

.

We need only show that ψis(Λ
i−1,1
s (Bx(δ

i))) ⊂ ψit(U
xi−1
t ) for all t ∈ I is.

First, (ψit(Λ
i−1,1
t (Bx(ε))))

γi⊂ ψit(Λ
i−1,1
t (Bx((K

i + 1)ε))) for t ∈ Is follows by
considering ϕ ∈ Bx(ε) and

|Λi
t(ψ

i
t(Λ

i−1,1
t (ϕ)) + γi)− xi−1

t | ≤ |Λ
i−1,1
t (ϕ)− xi−1

t |
+ |Λi

t(ψ
i
t(Λ

i−1,1
t (ϕ)) + γi)− Λi

t(ψ
i
t(Λ

i−1,1
t (ϕ)))|

< Kiε+N iγi < (Ki + 1)ε.

Now, ψit(Λ
i−1,1
t (Bx(δ

i))) ⊂ (ψit(Λ
i−1,1
t (Bx(ε))))

γi for t ∈ I is since ϕ ∈ Bx(δ
i)

implies
|ψit(Λ

i−1,1
t (ϕ))− ψit(xi−1

t )| < M iδi ≤ γi

and ϕ ∈ (ψit(Λ
i−1,1
t (Bx(ε)))

γi .

Finally, ψit(Λ
i−1,1
t (Ux,s

i )) ⊂ ψit(U
xi−1
t ) for t ∈ I is, since ϕ ∈ Ux,s

i implies

‖∇ψit(Λ
i−1,1
t (ϕ))−∇ψit(xi−1

t )‖ ≤ ‖∇ψit(Λ
i−1,1
t (ϕ))−∇ψis(Λi−1,1

s (ϕ))‖
+ ‖∇ψis(Λi−1,1

s (ϕ))−∇ψis(xi−1
s )‖

+ ‖∇ψis(xi−1
s )−∇ψit(xi−1

t )‖

≤ 2Li|t− s|+ 1

8‖(∇ψis(xi−1
s ))−1‖

<
1

4‖(∇ψis(xi−1
s ))−1‖

<
1

2‖(∇ψit(xi−1
t ))−1‖

for t ∈ Is so ϕ ∈ Uxi−1
t . �
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