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Abstract

Herein, expanded Hidden Markov Models (HMMs) are considered as potential deepfake
generation and detection tools. The most specific model is the HMM, while the most general
is the pairwise Markov chain (PMC). In between, the Markov observation model (MOM) is
proposed, where the observations form a Markov chain conditionally on the hidden state.
An expectation-maximization (EM) analog to the Baum–Welch algorithm is developed to
estimate the transition probabilities as well as the initial hidden-state-observation joint
distribution for all the models considered. This new EM algorithm also includes a recursive
log-likelihood equation so that model selection can be performed (after parameter conver-
gence). Once models have been learnt through the EM algorithm, deepfakes are generated
through simulation, while they are detected using the log-likelihood. Our three models
were compared empirically in terms of their generative and detective ability. PMC and
MOM consistently produced the best deepfake generator and detector, respectively.

Keywords: Markov observation models; hidden Markov model; Baum–Welch algorithm;
expectation-maximization; pairwise Markov chain; deepfake

MSC: 62M05; 60J22; 68T10

1. Introduction
Hidden Markov Models (HMMs) were introduced in papers by Baum and Petrie [1]

and Baum and Eagon [2]. Traditional HMMs have enjoyed tremendous modelling success
in applications like computational finance (see e.g., Petropoulos et al. [3]), single-molecule
kinetic analysis (see Nicolai [4]), animal tracking (see Sidrow et al. [5]), forecasting commod-
ity futures (see Date et al. [6]) and protein folding (see Stigler et al. [7]). The unobservable
hidden HMM states X are a discrete-time Markov chain, and the observations process Y is
some distorted, corrupted partial information or measurement of the current state of X,
satisfying the following condition:

P
(
Yn ∈ A

∣∣Xn, Xn−1, . . . , X1
)
= P

(
Yn ∈ A

∣∣Xn
)
.

These emission probabilities, P
(
Yn ∈ A

∣∣Xn
)
, have a conditional probability mass function

y → bXn(y).
Perhaps the most common challenges in HMMs are calibrating the model, decoding

the hidden sequence from the observation sequence and real-time belief propagation, i.e.,
filtering. The first problem is solved recursively in the HMM setting by the Baum–Welch
re-estimation algorithm, which is an application of the Expectation-Maximization (EM)
algorithm, predating the EM algorithm. The second, decoding problem is solved by the
Viterbi algorithm (see Viterbi [8], Rabiner [9], Shinghal and Toussaint [10]), which is a
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dynamic programming algorithm. The filtering problem is also solved effectively after
calibration using a recursive algorithm that is similar to part of the Baum–Welch algorithm.
In practice, there can be numeric problems, like a multitude of local maxima to trap the
Baum-Welch algorithm, or inefficient matrix operations when the state size is large but the
hidden state resides in a small subset most of the time. In these cases, it can be advisable to
use particle filters or other alternative methods, which are not the subject of this paper (see
instead Cappé et al. [11] for more information). The forward and backward propagation
probabilities of the Baum–Welch algorithm also tend to become very small over time, a
phenomenon known as the small-number problem. While satisfactory results can sometimes
be obtained by (often logarithmic) rescaling, this small-number problem is still a severe
limitation of the Baum–Welch algorithm. However, the independent emission form of the
observation modelling undertaken in HMMs can be even more fundamentally limiting.

The autoregressive HMM (AR-HMM) and, more generally, the pairwise Markov chain
(PMC) were introduced to allow more extensive and practical observation models. For the
AR-HMM, the observations take the following structure:

Yn = β
(Xn)
0 + β

(Xn)
1 Yn−1 + · · ·+ β

(Xn)
p Yn−p + εn, (1)

where {εn}∞
n=1 is a (usually zero-mean Gaussian) i.i.d. sequence of random variables, and

the autoregressive coefficients are functions of the current hidden state Xn. The AR-HMM
has experienced strong success in applications like speech recognition (see Bryan and
Levinson [12]), the diagnosis of blood infections (see Stanculescu et al. [13]) and the study
of climate patterns (see Xuan [14]). One advantage of the AR-HMM is that the Baum–Welch
algorithm can still be used (see Bryan and Levinson [12]).

The general PMC model from Pieczynski [15] only assumes that (X, Y) is jointly Markov.
Derrode and Pieczynski [16], Derrode and Pieczynski [17] and Kuljus and Lember [18]
explain the generality of the PMC and give some interesting subclasses of this model. It is
now well understood how to filter and decode PMCs. In fact, Kuljus and Lember [18] solve
the decoding problem in great generality, while Derrode and Pieczynski [17] use Baum–
Welch-like recursions to produce the filter. Both Derrode and Pieczynski [16] and Derrode
and Pieczynski [17] assume reversibility of the PMC and have the observations living
in a continuous space. To our knowledge, the Baum–Welch rate re-estimation algorithm
has not been validated in general for PMCs. Our first goal is to develop and validate this
Baum–Welch algorithm for PMCs, while at the same time estimating hidden initial states
and overcoming the small-number problem mentioned above by using alternative variables
in our forward and backward recursions. Our resulting EM algorithm will apply to many
big data problems.

Our second goal is to show the applicability of HMMs and PMCs, as well as a model
called the Markov Observation Model (MOM), which falls part way between HMMs and
PMCs in deepfake detection and generation. The key to producing and detecting deepfakes
is to bring in an element that is easily calculated, yet often overlooked in HMMs and PMCs:
likelihood. During training, as well as during detection, likelihood can be used in the place
of the discriminator in a Generative Adversarial Network (GAN), while simulation plays
the part of the generator. Naturally, the expectation-maximization algorithm also plays a
key role in this deepfake application, as explained below.

Our third goal is subtler. Just because the PMC model is more general than the HMM,
and the Baum–Welch algorithm can be extended to learn either model, does not mean one
should pronounce the death of the HMM. The problem is that the additional generality
leads, in general, to a more complicated likelihood with a multitude of maxima for the
EM algorithm to become trapped in or choose from. It can become a virtually impossible
task to learn a global, or even a useful, maximum. Hence, the performance of the PMC
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model as a hidden Markov structure can be sub-optimal compared to the performance of
the HMM or MOM, as we shall show empirically. Alternatively, the global maximum of
the PMC may not be what is wanted. For these reasons, we promote the MOM and, in fact,
show that it performs the best in simple deepfake detection, while the PMC generates the
best deepfakes.

The HMM and nonlinear filtering theory (NFT) can each be thought of as nonlin-
ear generalization of the Kalman filter (see Kalman [19], Kalman and Bucy [20]). The
recent analogues (see [21]) of the celebrated Fujisaki–Kallianpur–Kunita and the Duncan–
Mortensen–Zakai equations (see [22–26] for some original and general results) of NFT to
continuous-time Markov chain observations provide further evidence of the closeness of
the HMM and NFT. The hidden state, called the signal in NFT, can be a general Markov
process model and live in a general state space, but there is no universal EM algorithm
for identifying the model, like the Baum–Welch algorithm, nor a dynamic programming
algorithm for identifying a most likely hidden-state path, like the Viterbi algorithm. Rather,
the goals in NFT are usually to compute filters, predictors and smoothers, for which there
are no exact closed-form solutions, except in isolated cases (see [27]), and approximations
have to be used. Like HMMs, nonlinear filtering has enjoyed widespread application.
For instance, the subfield of nonlinear particle filtering, also known as sequential Monte
Carlo, has a number of powerful algorithms (see Elfring [28], Pitt and Shephard [29], Del
Moral et al. [30], Kouritzin [31], Chopin and Papaspiliopoulos [32]) and has been applied to
numerous problems in areas like Bayesian inference (Chopin [33], Kloek and van Dijk [34],
van Dijk and Kloek [35]), bioinformatics (Hajiramezanali et al. [36]), economics and mathe-
matical finance (Creal [37]), intracellular movement (Maroulas and Nebenführ [38]), fault
detection (D’Amato et al. [39]), pharmacokinetics (Bonate [40]), geosciences (Van Leeuwen
et al. [41]), and many other fields. Still, like in HMMs, the observations in nonlinear filter
models are largely limited to distorted, corrupted, partial observations of the signal. NFT is
used successfully in deepfake generation and detection herein. However, the simplicity of
the EM and likelihood algorithms for HMMs, MOMs and PMCs are compelling advantages
here in the deepfake application but likely also in some of these other applications of NFT.

The layout of this paper is as follows: In the next section, we explain the models, in
particular the Markov observation models, and how they can be simulated. In Section 3
the filter and likelihood calculations are derived. In Section 4, EM techniques are used to
derive an analog to the Baum–Welch algorithm for identifying the system (probability)
parameters. In particular, joint recursive formulas for the hidden-state and observation
transition probabilities, as well as the initial hidden-state-observation joint distribution,
are derived. Section 5 contains our deepfake application and results. Section 6 is devoted
to connecting the limit points of the EM-type algorithm to the maxima of the conditional
likelihood, given the observations. Finally, Section 7 clarifies our contributions, makes our
most basic conclusions and suggests some future work the author hopes will be undertaken.

2. Models and Simulation
Let N ∈ N be some final time. We first clarify the HMM assumption of independent

emission probabilities.
Under the HMM,

P(Y1 = y1, . . . , YN = yN | {Xi}N
i=1) =

N

∏
i=1

bXi (yi), ∀yi, (2)

where y → bx(y) is a probability mass function for each x. Otherwise, the HMM and PMC
are explained elsewhere.
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Next, we explain how the MOM generalizes the HMM and fits into the PMC. Suppose
O is some discrete observation space. In the MOM, like in the HMM, the hidden state
is a homogeneous Markov chain X on some discrete (finite or countable) state space E
with one-step transition probabilities px→x′ for x, x′ ∈ E. Contrary to the HMM, the MOM
allows self-dependence in the observations (this is illustrated by rightward arrows between
the Ys in Figure 1). In particular, MOM observations Y are a (conditional) Markov chain,
given the hidden state with the following transition probabilities:

P
(

Yn+1 = y
∣∣∣{Xi = xi}n+1

i=0 , {Yj = yj}n
j=0

)
= qyn→y(xn+1) ∀x0, . . . , xN ∈ E; y, yn ∈ O (3)

These do not affect the hidden-state transitions, in the sense that

P(Xn+1 = x̂
∣∣∣Xn = x, {Xi}i<n, {Yj}j≤n) = px→x̂, ∀x, x̂ ∈ E, n ∈ N0 (4)

Still, (3) implies that

P
(

Yn+1 = y
∣∣∣{Xi}n+1

i=0 , {Yj}j≤n

)
= P

(
Yn+1 = y

∣∣∣Xn+1, Yn

)
, ∀y ∈ O (5)

i.e., that the new observation only depends upon the new hidden state (as well as the past

observation). Equations (3) and (4) imply that the hidden-state observation pair

(
X
Y

)
is

jointly Markov with joint one-step transition probabilities:

P
(

Xn+1 = x, Yn+1 = y
∣∣∣Xn = xn, Yn = yn

)
= pxn→x qyn→y(x) ∀x, xn ∈ E; y, yn ∈ O.

X0 X1 X2 X3

Y0 Y1 Y2 Y3

Obs 1 Obs 2 Obs 3

prior X

prior Y

Shaded values: not observed; X0, Y0: not part of normal HMM.

Figure 1. Markov observation model structure.

The joint Markov property then implies that

P
(

Xn+1 = x, Yn+1 = y
∣∣∣X1 = x1, Y1 = y1, X2 = x2, Y2 = y2, . . . , Xn = xn, Yn = yn

)
=

pxn→xqyn→y(x).

Notice that this generalizes the emisson probability to

P
(
Yn = y

∣∣Xn, Xn−1, . . . , X1; Yn−1, . . . , Y1
)
= P

(
Yn = y

∣∣Yn−1, Xn
)
= qYn−1→y(Xn) (6)

so the MOM generalizes the HMM by just taking qYn−1→y(Xn) = bXn(y), a state-dependent
probability mass function. To see how the MOM is related to the AR-HMM, we rewrite
(1) as
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
Yn

Yn−1

Yn−2
...

Yn−p+1


︸ ︷︷ ︸

Yn

=


β
(Xn)
1 β

(Xn)
2 β

(Xn)
3 · · · β

(Xn)
p

1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 0 · · · 1 0




Yn−1

Yn−2

Yn−3
...

Yn−p


︸ ︷︷ ︸

Yn−1

+


β
(Xn)
0 + εn

0
0
...
0

, (7)

which, given the hidden state Xn, gives an explicit formula for Yn in terms of only Yn−1

and some independent noise εn. Hence, {Yn} is obviously conditionally Markov, and
{(Xn,Yn)} is an MOM. We have not claimed that this subsumes the AR-HMM yet, because
{εn} is usually Gaussian in the AR-HMM, and we handle the case of discrete noise herein.
This will be further discussed in Section 7.

A subtly that arises with the MOM over the HMM is that we need an enlarged initial
distribution, since we have a Y0 that is not observed (see Figure 1). Rather, we think of
starting up the observation process at time 1, even though there were observations to be
made prior to this time. Further, since we generally do not know the model parameters, we
need a means to estimate this initial distribution

P(X0 ∈ dx0, Y0 ∈ dy0) = µ(dx0, dy0).

It is worth noting that the MOM resembles the stationary PMC under Condition
(H) in Pieczynski [15], which forces the hidden state to be Markov by Proposition 2.2 of
Pieczynski [15].

Simulation

Any PMC is characterized by an initial distribution µ on E × O and a joint transition
probability px,y→x̂,ŷ for its hidden state and observations. In particular,

px,y→x̂,ŷ = px→x̂qy→ŷ(x̂) (8)

for the MOM and
px,y→x̂,ŷ = px→x̂bx̂(ŷ) (9)

for the HMM. In any case, the marginal transitions are denoted as

px,y→x̂ = ∑̂
y

px,y→x̂,ŷ and px,y→ŷ = ∑̂
x

px,y→x̂,ŷ . (10)

µ, p characterize a (µ, p)-PMC. The initial distribution µ gives the distribution of
(X0, Y0) for the MOM and PMC, while the initial distribution µX gives the distribution of
X1 for the HMM by convention. This convention makes sense since the MOM and PMC
have observation history to model in some unknown Y0. In the case of the HMM, an initial
(X1, Y1) can then be drawn from µ(x, y) = µX(x)bx(y).

The simulation of the HMM, MOM and PMC observations is performed in the same
way: Begin by drawing (X0, Y0) ((X1, Y1) for the HMM) from µ, continue the simulation
using px,y→x̂,ŷ and then finally throw out the hidden state X (as well as Y0 for MOM and
PMC) to leave the observation process Y.
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3. Likelihood, Filter and Predictor
A PMC is parameterized by its initial distribution µ and joint transition probability

p for its hidden state and observations. Its ability to fit a given sequence of observations
Y1, . . . , Yn up to time n is naturally judged by its likelihood:

Ln = Lµ,p
n = P(Y1, . . . , Yn) = Pµ,p(Y1, . . . , Yn) for all n ≥ 1 with L0 = 1. (11)

Here, Pµ,p is a probability measure, where

(
X
Y

)
is a (µ, p)-PMC. Therefore, given sev-

eral (µ1, p1), .., (µm, pm) PMC models, perhaps found by different runs of an expectation-
maximization algorithm, as well as an observation Y1, . . . , YN data sequence, one can use
the likelihoods {Lµi ,pi

n }m
i=1 to judge which model best fits the data. Each run of the EM

algorithm would converge to a local maximum of the likelihood function, and then the
likelihood function could be used to determine which of these produces a higher maximum.
Since the MOM and HMM are PMCs (with specific p given in (8) and (9)), this test extends
to judging the best MOM and best HMM.

In applications like filtering, the hidden state has significance, and estimating (the dis-
tribution of) it is important. The (optimal) filter is the (conditional) hidden-state probability
mass function

πn(x) ⊜ P(Xn = x|Y1, . . . , Yn) ∀x ∈ E, n ≥ 1. (12)

We first work with the PMC, and then extract the MOM and HMM from these cal-
culations. The likelihood and filter can computed together in real time using the forward
probability {

α0(x, y) = P(Y0 = y, X0 = x)
αn(x) = P(Y1, . . . , Yn, Xn = x), 1 ≤ n ≤ N

, (13)

which is motivated from the Baum–Welch algorithm. Then, it follows from (11)–(13) that

πn(x) =
αn(x)

∑
ξ

αn(ξ)
=

αn(x)
Ln

so Ln = ∑
ξ

αn(ξ) ∀n ≥ 1 and π0(x, y) = α0(x, y). (14)

Moreover, we obtain, based on the multiplication rule, the joint Markov property and (13),
the following:

αn(x) (15)

= P(Y1, . . . , Yn, Xn = x)

= ∑
xn−1

P(Y1, . . . , Yn, Xn−1 = xn−1, Xn = x)

= ∑
xn−1

P(Y1, . . . , Yn−1, Xn−1 = xn−1)P(Xn = x, Yn

∣∣∣Y1, . . . , Yn−1, Xn−1 = xn−1)

= ∑
xn−1

αn−1(xn−1)pxn−1,Yn−1→x,Yn ,

which can be solved recursively for n = 2, 3, . . . , N − 1, N, starting (according to (13)) at

α1(x1) = ∑
x0

∑
y0

µ(x0, y0) px0,y0→x1,Y1 . (16)
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Recall that α0 = µ is assigned differently. On a computer, we do not recurse αn, due to risk
of underflow (the small-number problem), but rather we revert back to the filter πn. Using
(14) and (15), one finds that the forward recursion for π is

ρn(x) = ∑
xn−1

πn−1(xn−1)pxn−1,Yn−1→x,Yn , πn(x) =
ρn(x)

an
, an = ∑

xn

ρn(xn), (17)

which can be solved forward for n = 2, 3, . . . , N − 1, N, starting at

π1(x) =
∑
x0

∑
y0

µ(x0, y0) px0,y0→x,Y1

a1
, a1 = ∑

x1

∑
x0

∑
y0

µ(x0, y0) px0,y0→x1,Y1 . (18)

This immediately implies that L1 = a1, and then, by using (14), (17) and induction, that

Ln = a1a2 · · · an ⇝ Ln = Ln−1an, L0 = 1. (19)

Thus, the filter and likelihood can be computed in real time (after initialization) via the
recursions in (17) and (19).

Once the filter has been computed, predictors can also be computed using Chapman–
Kolmogorov-type equations. For example, it follows from the multiplication rule and the
Markov property that the one-step predictor is

P(Yn+1 = yn+1 | Y1, . . . , Yn) = ∑
xn ,xn+1

P(Yn+1 = yn+1, Xn+1 = xn+1, Xn = xn, Y1, . . . , Yn)

P(Y1, . . . , Yn)
(20)

= ∑
xn ,xn+1

P(Yn+1 = yn+1, Xn+1 = xn+1 | Xn = xn, Y1, . . . , Yn)P(Xn = xn | Y1, . . . , Yn)

= ∑
xn ,xn+1

pxn ,Yn→xn+1,yn+1 πn(xn),

which reduces to

P(Yn+1 = yn+1 | Y1, . . . , Yn) = ∑
xn ,xn+1

pxn→xn+1 qYn→yn+1(xn+1)
πn(xn), (21)

and

P(Yn+1 = yn+1 | Y1, . . . , Yn) = ∑
xn ,xn+1

pxn→xn+1 bxn+1(yn+1)πn(xn) (22)

respectively in the cases of the MOM and HMM.
In non-real-time applications, we strengthen our hidden-state estimates to include

future observations via the joint path filter

Πn−1,n(x, x̂) = P(Xn−1 = x, Xn = x̂ | Y1, . . . , YN), (23)

which is a joint pmf for n = 2, . . . , N. To compute the joint path filter, we first let
β0(x0, x1, y) = P

(
Y1, . . . , YN

∣∣∣X0 = x0, X1 = x1, Y0 = y
)

βn(xn, xn+1) = P
(

Yn+1, . . . , YN

∣∣∣Xn = xn, Xn+1 = xn+1, Yn

)
, ∀ 0 < n < N − 1

βN−1(xN−1, xN) = P
(

YN

∣∣∣XN−1 = xN−1, XN = xN , YN−1

)
=

pxN−1,YN−1→xN ,YN

pxN−1,YN−1→xN

, (24)
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where the last equality follows from the definition of conditional probability, and the
normalized versions of β:

χn(x, x̂) =
βn(x, x̂)

an+1 · · · aN
, ∀n = 1, . . . , N − 1 and χ0(x, x̂, y) =

β0(x, x̂, y)
a1 · · · aN

. (25)

Notice that we include an extra variable y in α0, β0. This is because we do not see the first
observation Y0, so we have to consider all possibilities and treat it like another hidden state.
Then, based on (11), (13), the Markov property, (19) and (14), the following is obtained:

Πn−1,n(x, x̂) =
P(Xn−1 = x, Xn = x̂, Y1, . . . , YN)

P(Y1, . . . , YN)
(26)

=
αn−1(x)P(Xn = x̂, Yn, . . . , YN

∣∣∣Xn−1 = x, Y1, . . . , Yn−1)

LN

=
πn−1(x)P(Xn = x̂, Yn, . . . , YN

∣∣∣Xn−1 = x, Yn−1)

an · · · aN

so based on (24)–(26),

Πn−1,n(x, x̂) (27)

=
πn−1(x)P(Xn = x̂, Yn, . . . , YN , Xn−1 = x, Yn−1)P(Xn = x̂, Xn−1 = x, Yn−1)

an · · · aN P(Xn = x̂, Xn−1 = x, Yn−1)P(Xn−1 = x, Yn−1)

=
πn−1(x)P(Yn, . . . , YN

∣∣Xn = x̂, Xn−1 = x, Yn−1)P(Xn = x̂
∣∣Xn−1 = x, Yn−1)

an · · · aN

= πn−1(x)χn−1(x, x̂)px,Yn−1→x̂

for n = 2, 3, . . . , N. This means that there are two ways to compute the (marginal) path
filter directly from (27):

Πn(x) = P(Xn = x | Y1, . . . , YN) = πn(x) ∑
xn+1

χn(x, xn+1)px,Yn→xn+1 (28)

for n = 1, 2, . . . , N − 1, and

Πn(x) = P(Xn = x | Y1, . . . , YN) = ∑
xn−1

χn−1(xn−1, x)pxn−1,Yn−1→x πn−1(xn−1) (29)

for n = 2, 3, . . . , N. These all become computationally effective by a backward recursion for
χ. It also follows from (24), the definition of conditional probability, the Markov property,
partitioning and our transition probabilities that

βn(xn, x) = P(Yn+1, . . . , YN | Xn = xn, Xn+1 = x, Yn) (30)

= P(Yn+2, . . . , YN | Xn = xn, Xn+1 = x, Yn+1, Yn)P(Yn+1 | Xn = xn, Xn+1 = x, Yn)

= P(Yn+2, . . . , YN | Xn+1 = x, Yn+1)
pxn ,Yn→x,Yn+1

pxn ,Yn→x

= ∑
x′∈E

P
(
Yn+2, . . . , YN | Xn+2 = x′, Xn+1 = x, Yn+1

)
∗P
(
Xn+2 = x′ | Xn+1 = x, Yn+1

)pxn ,Yn→x,Yn+1

pxn ,Yn→x

=
pxn ,Yn→x,Yn+1

pxn ,Yn→x
∑
x′

βn+1(x, x′)px,Yn+1→x′ ,
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so normalizing by (25), the following can be obtained:

χn(xn, x) =
pxn ,Yn→x,Yn+1

an+1 pxn ,Yn→x
∑
x′

χn+1(x, x′)px,Yn+1→x′ , (31)

which can be solved backward for n = N − 1, N − 2, . . . , 3, 2, 1, starting from

χN(xN , xN+1) = 1. (32)

The n = 0 value for π and χ becomes

χ0(x0, x1, y) =
px0,y→x1,Y1

a1 px0,y→x1
∑
x′

χ1(x1, x′)px1,Y1→x′ , (33)

π0(x, y) = α0(x, y) = µ(x, y) (34)

to account for the fact that we do not see Y0 as the data turns on at time 1. With χ0 in hand,
we can estimate the joint distribution of (X0, Y0), which are the remaining hidden variables.
It follows from Bayes’ rule, (11), (19), the multiplication rule, (24) and (25) that

Π0(x, y) = P(X0 = x, Y0 = y | Y1, . . . , YN) (35)

=
P(Y1, . . . , YN | X0 = x, Y0 = y)P(X0 = x, Y0 = y)

LN

=

∑
x1

P(Y1, .., YN | X1 = x1, X0 = x, Y0 = y)P(X1 = x1 | X0 = x, Y0 = y)µ(x, y)

a1 · · · aN

= µ(x, y)∑
x1

χ0(x, x1, y)px,y→x1 .

for all x ∈ E, y ∈ O.
The pathspace filter and likelihood algorithm is given in Algorithm 1.

Algorithm 1: Path filter and likelihood for PMC

Data: Observation sequence: Y1, . . . , YN

Input: PMC parameters: {px,y→x̂,ŷ}, {µ(x, y)}

1 ρ1(x) = ∑
x0

∑
y0

µ(x0, y0) px0 ,y0→x,Y1 ∀x;

2 a1 = ∑
x

ρ1(x)

3 L1 = a1;

4 π1(x) = ρ1(x)
a1

∀x.

5 for n = 2, 3, . . . , N do
6 ρn(x) = ∑

xn−1

πn−1(xn−1)pxn−1 ,Yn−1→x,Yn ∀x

7 an = ∑x ρn(x)
8 Ln = Ln−1an;

9 πn(x) = ρn(x)
an

∀x.

10 end
Output: Filter π, Likelihood L

11 χN(xN , xN+1) = 1 ∀xN+1, xN .
12 for n = N − 1, N − 2, . . . , 1 do
13 χn(xn, x) =

pxn ,Yn→x,Yn+1
an+1 pxn ,Yn→x

∑
x′

χn+1(x, x′)px,Yn+1→x′ ∀xn, x

14 Πn,n+1(x, x̂) = πn(x)χn(x, x̂)px,Yn→x̂ ∀x, x̂.
15 end

16 χ0(x0, x1, y) =
px0,y→x1,Y1
a1 px0,y→x1

∑
x′

χ1(x1, x′)px1 ,Y1→x′ ∀x0, x1; y.

17 Π0(x, y) = µ(x, y)∑
x1

χ0(x, x1, y)px,y→x1 ∀x; y.

Output: Path Filters Πn,n+1, Π0
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The first part of Algorithm 1, up to the first set of outputs, runs in real time, as
the observations arrive, and provides the real-time filter and likelihood. For real-time
applications, one would stop there, or else add predictors not included in Algorithm 1 but
given as an example in (20). Otherwise, one can refine the estimates of the hidden states
based on future observations, which then provides the pathspace filters and is the key to
learning a model. This is the second part of Algorithm 1, and is explained below. But first,
we note that the recursions developed so far are easily tuned to an MOM or HMM.

3.1. MOM Adjustments

For the MOM, we use (8). We leave (13), (14) and (19) unchanged, so (17) and (18)
become

ρn(x) = qYn−1→Yn(x) ∑
xn−1∈E

πn−1(xn−1)pxn−1→x, πn(x) =
ρn(x)

an
, an = ∑

xn

ρn(xn), (36)

for all x ∈ E, which can be solved forward for n = 2, 3, . . . , N − 1, N, starting at

π1(x) =
∑
x0

∑
y0

µ(x0, y0) px0→x qy0→Y1(x)

a1
, a1 = ∑

x1

∑
x0

∑
y0

µ(x0, y0) px0→x1 qy0→Y1(x1). (37)

The backward recursions change a little more, starting with (24) and (25), which change to
β0(x1, y) = P

(
Y1, . . . , YN

∣∣∣X1 = x1, Y0 = y
)

βn(xn+1) = P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1, Yn

)
, ∀ 0 < n < N − 1

βN−1(xN) = P
(

YN

∣∣∣XN = xN , YN−1

)
= qYN−1→YN (xN)

(38)

and the normalized versions

χn(x̂) =
βn(x̂)

an+1 · · · aN
, ∀n = 1, . . . , N − 1 and χ0(x̂, y) =

β0(x̂, y)
a1 · · · aN

(39)

since

P(Yn+1, . . . , YN
∣∣Xn = xn, Xn+1 = xn+1, Yn) = P(Yn, . . . , YN

∣∣Xn+1 = xn+1, Yn) (40)

by Lemma 1 (to follow). Then, (27) becomes

Πn−1,n(x, x̂) = πn−1(x)χn−1(x̂)px→x̂ (41)

for n = 2, 3, . . . , N. This then implies the obvious simplifications of (28) and (29) to

Πn(x) = πn(x) ∑
xn+1

χn(xn+1)px→xn+1 and Πn(x) = χn−1(x) ∑
xn−1

pxn−1→x πn−1(xn−1) (42)

for n = 1, 2, . . . , N − 1 and n = 2, 3, . . . , N, respectively. Then, (31) becomes

χn(x) =
qYn→Yn+1(x)

an+1
∑
x′

χn+1(x′)px→x′ (43)

by (5), which is solved backwards starting from χN(xN+1) = 1. The values at n = 0 become

χ0(x1, y) =
qy→Y1(x1)

a1
∑
x′

χ1(x′)px1→x′ , π0(x, y) = µ(x, y) (44)
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and

Π0(x, y) = µ(x, y)∑
x1

χ0(x1, y)px→x1 . (45)

for all x ∈ E, y ∈ O.

3.2. HMM Adjustments

For the HMM, we use (9). We have a MOM with the specific

qy→ŷ(x̂) = bx̂(ŷ) (46)

that also starts at n = 1 with µ(x, y) = µX(x)bx(y), instead of n = 0. This creates modest
changes or simplifications for the filter startup:

ρ1(x) = bx(Y1)µX(x), a1 = ∑
x

ρ1(x), π1(x) =
ρ1(x)

a1
. (47)

But otherwise, (36) holds with just the substitution qy→ŷ(x̂) = bx̂(ŷ).
To handle the backward recursion, we first reduce the general definition of β in (24),

using (2), to βn(xn+1) = P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1

)
, ∀ 0 < n < N − 1

βN−1(xN) = P
(

YN

∣∣∣XN = xN

)
= bxN (YN)

(48)

and the normalized versions

χn(x) =
βn(x)

an+1 · · · aN
, ∀n = 1, . . . , N − 1. (49)

There are no α0, π0, β0 or χ0 variables for the HMM. The HMM’s backward-recursion
simplifications are based on the following result.

Lemma 1. For the MOM and the HMM,

P
(

Yn+1, . . . , YN

∣∣∣Xn = xn, Xn+1 = xn+1, Yn

)
=

 P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1, Yn

)
for MOM

P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1

)
for HMM

.

Proof. For the MOM, we have

P(Yn, . . . , YN , Xn = xn, Xn+1 = xn+1)

P(Yn, Xn = xn, Xn+1 = xn+1)
(50)

=
∑xn+2,...,xN

P(Xn = xn, Yn)pxn→xn+1 qYn→Yn+1(xn+1)pxn+1→xn+2 · · · qYN−1→YN (xN)pxN−1→xN

P(Xn = xn, Yn)pxn→xn+1

= ∑
xn+2,...,xN

qYn→Yn+1(xn+1)pxn+1→xn+2 qYn+1→Yn+2(xn+2) · · · pxN−1→xN qYN−1→YN (xN)

= P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1, Yn

)
.
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In the case of the HMM, this becomes. However, it follows from the multiplication rule, the
tower property and (2) that

P
(

Yn+1, . . . , YN

∣∣∣Xn = xn, Xn+1 = xn+1, Yn

)
(51)

= ∑
xn+2,...,xN

bxn+1(Yn+1)pxn+1→xn+2 bxn+2(Yn+2) · · · pxN−1→xN bxN (YN)

= P
(

Yn+1, . . . , YN

∣∣∣Xn+1 = xn+1

)
which establishes the desired dependence.

Finally, the initial probability estimate comes from Bayes rule, (11), (24) and (25):

Π1(x) = P(X1 = x
∣∣∣Y1, . . . , YN) (52)

=
P(Y1, . . . , YN

∣∣∣X1 = x)P(X1 = x)

P(Y1, . . . , YN)

=
β1(x)µX(x)

LN

= χ1(x)µX(x).

4. Probability Estimation via EM Algorithm
In this section, we develop a recursive expectation-maximization algorithm that can

be used to create convergent estimates for the transition and initial probabilities of our
models. We leave the theoretical justification of convergence to Section 6.

The main goal of developing an EM algorithm is to find px,y→x̂,ŷ for all x, x̂ ∈ E,
y, ŷ ∈ O and µ(x, y) for all x ∈ E, y ∈ O. Noting that every time step is considered to be a
transition in a discrete-time Markov chain, we would ideally set the following:

px,y→x̂,ŷ =
Expected transitions (x, y) to (x̂, ŷ) given observations

Expected occurrences of (x, y) given observations
(53)

=

1Y1=ŷP(Y0 = y, X0 = x, X1 = x̂
∣∣∣Y1, . . . , YN) +

N
∑

n=2
1Yn−1=y,Yn=ŷP(Xn−1 = x, Xn = x̂

∣∣∣Y1, . . . , YN)

P(Y0 = y, X0 = x
∣∣∣Y1, . . . , YN) +

N
∑

n=2
1Yn−1=yP(Xn−1 = x

∣∣∣Y1, . . . , YN)

,

which means that we must compute P(Y0 = y, X0 = x, X1 = x̂
∣∣∣Y1, . . . , YN), P(Y0 = y, X0 =

x
∣∣∣Y1, . . . , YN) and, using (23) and (28), Πn = (x) for all 0 ≤ n ≤ N, and Πn−1,n(x, x̂) for all

1 ≤ n ≤ N, to get this transition probability estimate. Now, by Bayes’ rule, ((11), (19)), ((24),
(25)) and ((13), (14)), we obtain the following:

P(Y0 = y, X0 = x, X1 = x̂
∣∣∣Y1, . . . , YN) (54)

=
P(Y1, . . . , YN

∣∣X1 = x̂, X0 = x, Y0 = y)P(X1 = x̂, X0 = x, Y0 = y)
a1 · · · aN

= χ0(x, x̂, y)px,y→x̂ π0(x, y)

so

Π0,1(x, x̂) = ∑
y

π0(x, y) px,y→x̂ χ0(x, x̂, y) (55)
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and so
Π0(x) = ∑

y,x̂
π0(x, y) px,y→x̂ χ0(x, x̂, y). (56)

πn and χn are computed recursively in (17) and (31) using the prior estimates of px,y→x̂, ŷ
and µ.

Expectation-maximization algorithms use these types of formulas and prior estimates
to produce better estimates. We take estimates for px,y→x̂,ŷ, and µ(x, y) and obtain new
estimates for these quantities iteratively using (53), (54), (27), (35) and (28):

p′x,y→x̂,ŷ =

1Y1=ŷπ0(x, y)px,y→x̂χ0(x, x̂, y) +
N−1
∑

n=1
1Yn=y,Yn+1=ŷπn(x)px,y→x̂χn(x, x̂)

π0(x, y)∑
x1

px,y→x1 χ0(x, x1, y) +
N−1
∑

n=1
1Yn=yπn(x) ∑

xn+1

px,y→xn+1 χn(x, xn+1)

, (57)

and using (35),

µ′(x, y) = ∑
x1

χ0(x, x1, y)px,y→x1 µ(x, y). (58)

Remark 1. (1) Different iterations of px,y→x̂,ŷ, µ(x, y) will be used on the left- and right-hand
sides of (57) and (58). The new estimates on the left are denoted as p′x,y→x̂,ŷ, µ′(x, y).
(2) Setting the marginal px,y→x̂ = 0 or probability µ(x, y) = 0 will result in it staying zero for all
updates. This effectively removes this parameter from the EM optimization update, and should be
avoided unless it is known that one of these should be 0.
(3) If there are no successive observations with Yn = y and Yn+1 = ŷ in the actual observation
sequence, then all new estimates p′x,y→x̂,ŷ will either be set to 0 or close to it. They might not be
exactly zero, due to the first term in the numerator of (57), where we could have an estimate of
Y0 = y and an observed Y1 = ŷ.

We now have everything required for our EM algorithms, which are given for the
PMC, MOM and HMM cases in Algorithms 2, 3 and 4 respectively.

These algorithms start with the initial estimates p1
x,y→x̂,ŷ, µ1(x, y) of px,y→x̂,ŷ, µ(x, y),

and refine them successively to new estimates p2
x,y→x̂,ŷ, µ2(x, y); p3

x,y→x̂,ŷ, µ3(x, y); etc. It is

important to know that our estimates {pk
x,y→x̂,ŷ, µk(x, y)} improve as k → ∞.

Lemma 3 (below) will be used to ensure that an initially positive estimate stays positive
as k increases, which is important in our proofs in Section 6. The following lemma follows
easily from (31)–(33), (17), (18), (34), induction and the fact that ∑

x′
px,Yn+1→x′ = 1. A sensible

initialization of our EM algorithm would ensure that the condition px,Yn→x̂,Yn+1 > 0 holds.

Lemma 2. Suppose px,Yn→x̂,Yn+1 > 0 for all x, x̂ ∈ E and n ∈ {1, . . . , N − 1}. Then,

1. χm(x, x̂) > 0 for all x, x̂ ∈ E and m ∈ {1, . . . , N − 1}.
2. χ0(x, x̂, y) > 0 for any x, x̂ ∈ E, y ∈ O, such that px,y→x̂,Y1 > 0.
3. πm(x) > 0 for all x ∈ E and m ∈ {1, . . . , N} if, in addition, ∑

x0,y0

µ(x0, y0)px0,y0→x̂,Y1 > 0

for all x̂ ∈ E.
4. π0(x, y) > 0 if µ(x, y) > 0.

The following result is the key to ensuring that our non-zero parameters stay non-zero.
It follows from the prior lemma, as well as (57), (58) and (31).

Lemma 3. Suppose N ≥ 2, px,Yn→x̂,Yn+1 > 0 for all x, x̂ ∈ E and n ∈ {1, . . . , N − 1}. Then,



Mathematics 2025, 13, 2128 14 of 25

1. p′x,y→x̂,ŷ > 0 if px,y→x̂,ŷ > 0; {Yn = y, Yn+1 = ŷ} occurs; and ∑
x0,y0

µ(x0, y0)px0,y0→x,Y1 >

0 for all x, x0 ∈ E.
2. µ′(x, y) > 0 if µ(x, y) > 0 and there exists x̂ such that px,y→x̂,Y1 > 0.

Algorithm 2: EM algorithm for PMC

Input: Initial Estimates: {px,y→x̂,ŷ}, {µ(x, y)}
1 while p and µ have not converged do

/* Forward propagation. */

2 ρ1(x) = ∑
x0

∑
y0

µ(x0, y0) px0,y0→x,Y1 ∀x;

3 a1 = ∑
x

ρ1(x)

4 π1(x) = ρ1(x)
a1

∀x.

5 for n = 2, 3, . . . , N do
6 ρn(x) = ∑

xn−1

πn−1(xn−1)pxn−1,Yn−1→x,Yn ∀x

7 an = ∑x ρn(x)

8 πn(x) = ρn(x)
an

∀x.

9 end
/* Backward propagation. */

10 χN(xN , xN+1) = 1, ∀xN−1, xN .
11 for n = N − 1, N − 2, . . . , 1 do
12 χn(xn, x) =

pxn ,Yn→x,Yn+1
an+1 pxn ,Yn→x

∑
x′

χn+1(x, x′)px,Yn+1→x′ ∀xn, x.

13 end

14 χ0(x0, x1, y) =
px0,y→x1,Y1
a1 px0,y→x1

∑
x′

χ1(x1, x′)px1,Y1→x′ ∀x0, x1; y.

/* Probability Update. */

15 px,y→x̂,ŷ =

px,y→x̂

[
1Y1=ŷχ0(x, x̂, y)µ(x, y) +

N−1
∑

n=1
1Yn=y,Yn+1=ŷχn(x, x̂)πn(x)

]
∑
ξ

px,y→ξ

[
χ0(x, ξ, y)µ(x, y) +

N−1
∑

n=1
1Yn=yχn(x, ξ)πn(x)

]
∀x, x̂; y, ŷ.

16 µ(x, y) = µ(x, y)∑
x1

χ0(x, x1, y)px,y→x1 ∀x; y.

17 end
Output: Final Estimates: {px,y→x̂,ŷ}, {µ(x, y)}
Output: Log Likelihood: LLN = log(a1) + log(a2) + · · · log(aN) // Model Quality
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Algorithm 3: EM algorithm for MOM

Input: Initial Estimates: {px→x̂}, {qy→ŷ(x)}, {µ(x, y)}
1 while p, q, and µ have not converged do
2 ρ1(x) = ∑

x0∈E
∑

y0∈O
µ(x0, y0) px0→x qy0→Y1(x) ∀x ∈ E;

3 a1 = ∑x ρ1(x)

4 π1(x) = ρ1(x)
a1

∀x ∈ E.

5 for n = 2, 3, . . . , N do
6 ρn(x) = qYn−1→Yn(x) ∑

xn−1∈E
πn−1(xn−1)pxn−1→x ∀x ∈ E.

7 an = ∑x ρn(x).

8 πn(x) = ρn(x)
an

∀x ∈ E.

9 end
10 χN(x) = 1 ∀x ∈ E.
11 for n = N − 1, N − 2, . . . , 1 do

12 χn(x) =
qYn→Yn+1(x)

an+1
∑

x̂∈E
χn+1(x̂)px→x̂ ∀x ∈ E.

13 end

14 χ0(x, y) =
qy→Y1(x)

a1
∑

x̂∈E
χ1(x̂)px→x̂ ∀x ∈ E, y ∈ O.

15 qy→ŷ(x) =
∑
ξ

pξ→x

[
1Y1=ŷχ0(x, y)µ(ξ, y) +

N−1
∑

n=1
1Yn=y,Yn+1=ŷχn(x)πn(ξ)

]
∑
ξ

pξ→x

[
χ0(x, y)µ(ξ, y) +

N−1
∑

n=1
1Yn=yχn(x)πn(ξ)

]
16 ∀x ∈ E; y, ŷ ∈ O.
17 µ(x, y) = µ(x, y)∑

x1

χ0(x1, y)px→x1 ∀x ∈ E; y ∈ O.

18 px→x̂ =

px→x̂

[
∑
y

µ(x, y)χ0(x̂, y) +
N−1
∑

n=1
πn(x)χn(x̂)

]

∑
x1

px→x1

[
∑
y

µ(x, y)χ0(x1, y) +
N−1
∑

n=1
χn(x1)πn(x)

] ∀x, x̂ ∈ E.

19 end
Output: Final Estimates: {px→x̂}, {qy→ŷ(x)}, {µ(x, y)} // Characterize MOM

Output: Log Likelihood: LLN = log(a1) + log(a2) + · · · log(aN) // Model Quality
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Algorithm 4: EM algorithm for HMM

Data: Observation sequence: Y1, . . . , YN

Input: Initial Estimates: {px→x̂}, {bx(ŷ)}, {µX(x)}

1 while p, b, and µ have not converged do
/* Forward propagation. */

2 ρ1(x) = bx(Y1)µX(x) ∀x ∈ E.
3 a1 = ∑x ρ1(x)

4 π1(x) = ρ1(x)
a1

∀x.

5 for n = 2, 3, . . . , N do
6 ρn(x) = bx(Yn) ∑

xn−1∈E
πn−1(xn−1)pxn−1→x ∀x ∈ E.

7 an = ∑x ρn(x).

8 πn(x) = ρn(x)
an

∀x.

9 end
/* Backward propagation. */

10 χN(x) = 1 ∀x ∈ E.
11 for n = N − 1, N − 2, . . . , 1 do
12 χn(x) = 1

an+1
∑

x̂∈E
χn+1(x̂)bx̂(Yn+1)px→x̂ ∀x ∈ E.

13 end
/* Probability Update. */

14 γt(x) =
πt(x)χt(x)

∑ξ πt(ξ)χt(ξ)
∀x ∈ E

15 µX(x) = γ1(x) ∀x ∈ E.

16 bx(y) =

N
∑

n=1
1Yn=yγn(x)

N
∑

n=1
γn(x)

∀x ∈ E; y ∈ O.

17 px→x̂ =

px→x̂

[
N
∑

n=2
πn−1(x) bx̂(Yn)

an
χn(x̂)

]
N−1
∑

n=1
γn(x)

∀x, x̂ ∈ E.

18 end
Output: Final Estimates: {px→x̂}, {bx(ŷ)}, {µX(x)} // Characterize HMM

Output: Log Likelihood: LLN = log(a1) + log(a2) + · · · log(aN) // Model Quality

5. Deepfake Application
Motivated by [42], we considered our three hidden models in deepfake generation and

detection. In particular, we used the models’ EM, simulation and Bayes’ factor capabilities
to generate and detect deepfake real coin-flip sequences, and then compared them to
determine which of the three is the best at both generation and detection.

We first created 137 real sequences of 400 coin flips by generating independent fair
Bernoulli trials. Another 137 hand fake sequences of 200 coin flips were created by students
with knowledge of undergraduate probability. They were told to make them look real to
try to fool both humans and machines. Note that we worked with coin flip sequences with
a length of 200, except for the training with real sequences, where a length of 400 was used
so that length was not a defining factor of these real sequences. This added length to the
real sequences did not bias either of the HMM, MOM or PMC over the others, as it was
consistent for all.
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We used HMM, MOM and PMC simulation with a single hidden-state variable taking
s possible values (henceforth referred to as s states) to generate deepfake sequences of
200 coin flips based on the 137 real sequences. To do this, we first learnt each of the 137 real
sequences using the EM algorithms with s + 1 hidden states for each model, creating three
collections of 137 parameter sets for each s. Then, we simulated a sequence from each set of
parameters, throwing the hidden states away, creating three collections of 137 observation
coin-flip sequences for each s. These were the HMM-, MOM- and PMC-type deepfake
sequences . Note that learning was conducted based on the 400 long real sequences (to
remove noise from the parameters), but we created 200 long deepfake sequences.

Once all five sets of (real, fake and deepfake) data had been collected, we ran 100
training and testing trials at each selected s and averaged over these trials. For each
trial, we randomly and independently split each of the 137 (hand) fake sequences into
110 training and 27 testing sequences, i.e., an 80-to-20 split. Conversely, we regenerated
the 137 independent sets of real sequences and 3 deepfake sequences using, respectively,
independent random number and Markov chain simulation with their models, but still
divided these sets into 110 training and 27 testing sequences. We then trained the HMM,
MOM and PMC with s hidden states on each of these sets of 110 training sequences. Note
that since the deepfake sequences were generated with s + 1 hidden states, the actual
model generating these sequences could not be identified. At this point, we had 110 sets of
HMM parameters (i.e., HMM models) for each of the real, hand fake, HMM, MOM and
PMC different training sequences in that trial. Similarly, we had 550 sets of MOM and
PMC parameters.

Detection for each testing sequence was carried out using all the models. In a trial,
each of the five sets of 27 sequences was run against the 550 HMM, 550 MOM and 550
PMC models. A sequence was then predicted by the HMM to be real, hand fake, HMM-
generated, MOM-generated or PMC-generated based on HMM likelihood with s hidden
states. In particular, a sequence was predicted to be real if the sum of the log-likelihood
over the 110 real HMM models was higher than that over the 110 hand fake, 110 HMM,
110 MOM and 110 PMC HMM models. In the same way, it was predicted to be hand
fake, HMM, MOM or PMC by the HMM. This same procedure was repeated for the MOM
and for the PMC, and then for the remaining 99 trials, using the regeneration method
mentioned above. The results were averaged and put into Tables 1–3 in the cases s = 3, 5
and 7, respectively.

Table 1. Generative and detection ability with s = 3. Blue highlight indicates this detection method is
the best detector, while orange indicates the generation method is the most difficult to detect bythis
detection method.

Real (%) Handfake (%) HMM (%) MOM (%) PMC (%) Overall (%)

HMM detection 99.96 93.36 76.89 78.25 59.79 81.65
Standard deviation 0.357 3.590 25.343 9.841 27.386 10.076

MOM detection 99.03 89.39 98.39 91.31 77.11 91.11
Standard deviation 2.250 0.612 2.347 9.370 5.129 2.148

PMC detection 100 70.14 95.18 90.04 88.07 88.69
Standard deviation 0.0 2.243 1.990 3.491 5.519 1.402

Overall detection 99.66 84.30 90.15 86.53 74.99 87.15
Standard deviation 0.759 1.425 8.510 4.677 9.343 3.466
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Table 2. Generative and detection ability with s = 5.

Real (%) Handfake (%) HMM (%) MOM (%) PMC (%) Overall (%)

HMM detection 100 94.79 73.61 64.89 63.25 79.31
Standard deviation 0 3.383 27.013 24.905 19.987 11.739

MOM detection 98.79 89.29 95.32 87.90 79.96 90.30
Standard deviation 2.101 0.001 3.685 11.203 9.868 3.040

PMC detection 96.71 70.82 89.54 84.18 92.32 86.71
Standard deviation 2.470 1.688 1.917 3.526 4.607 1.218

Overall detection 98.5 84.97 86.16 78.99 78.51 85.44
Standard deviation 1.081 1.260 9.110 9.179 7.587 4.062

Table 3. Generative and detection ability with s = 7.

Real (%) Handfake (%) HMM (%) MOM (%) PMC (%) Overall (%)

HMM detection 100 95.00 41.5 55.68 33.89 65.21
Standard deviation 0 3.003 29.270 28.099 22.608 12.141

MOM detection 98.76 89.29 96.96 90.52 90.82 93.29
Standard deviation 2.166 0.001 3.419 12.049 7.998 2.531

PMC detection 99.82 73.25 95.75 94.21 88.32 90.27
Standard deviation 0.782 2.298 1.736 2.723 5.464 1.230

Overall detection 99.53 85.85 78.07 80.14 71.01 82.92
Standard deviation 0.768 1.260 9.989 10.231 8.198 4.154

6. Convergence of Probabilities
In this section, we establish the convergence properties of the transition probabilities

and the initial distribution {pk
x,y→x̂,ŷ, µk(x, y)} that we derived in Section 4. Our method

adapts the ideas of Baum et al. [43], Liporace [44] and Wu [45] to our setting.
We think of the transition probabilities and initial distribution as parameters, and

let Θ denote all of the non-zero transition and initial distribution probabilities in p, µ. Let
e = |E| and o = |O| be the cardinalities of the hidden and observation spaces, and set
d′ = e + o. Then, px,y→x̂,ŷ : (E × O)2 → [0, 1] has a domain space of cardinality (d′)2,
and µ(x, y) ∈ [0, 1]E⊗O has a domain space of cardinality e × o. Combined, this leads to
(d′)2 + e × o parameters. However, we are removing the values that will be set to zero and
adding sum to one constraints to consider a constrained optimization problem on (0, ∞)d for
some d ≤ (d′)2 + e × o. Removing these zero possibilities gives us the necessary regularity
for our re-estimation procedure. However, it is not enough to just remove them at the
beginning. We have to ensure that zero parameters will not creep in during our interations,
or else we will be doing such things as taking logarithms of 0. Lemma 3 suggests that
estimates not initially set to zeros will not occur as zero in later iterations. In general, we
will assume the following:

Definition 1. A sequence of estimates {pk, qk, µk} is zero-separating if

1. p1
x,y→x̂,ŷ > 0 iff pk

x,y→x̂,ŷ > 0 for all k = 1, 2, 3, . . . ,

2. µ1(x, y) > 0 iff µk(x, y) > 0 for all k = 1, 2, 3, . . . .

Here, iff stands for if and only if.
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This means that we can potentially optimize over the p, µ that we initially do not set
to zero. Henceforth, we factor the zero p, µ out of Θ, consider Θ ⊂ (0, ∞)d with d ≤ d′ and
define the parameterized mass functions

py0,y1,...,yN (x; Θ) = px0,y0→x1,y1 px1,y1→x2,y2 · · · pxN−1,yN−1→xN ,yN µ(x0, y0) (59)

in terms of the non-zero values only. The observable likelihood

PY1,...,YN (Θ) = ∑
x0,x1,...,xN

∑
y0

py0,Y1,...,YN (x0, x1, . . . , xN ; Θ) (60)

is not changed by removing the zero values of p, µ, and this removal allows us to define
the re-estimation function

QY1,...,YN (Θ, Θ′) = ∑
x0,...,xN

∑
y0

py0,Y1,...,YN (x0, . . . , xN ; Θ) ln py0,Y1,...,YN (x0, . . . , xN ; Θ′). (61)

Note: Here, and in the sequel, the summation in P, Q above is only over the non-zero
combinations. We would not include an xi, xi+1 pair where pxi ,Yj→xi+1,Yj+1 = 0, nor an x0, y0

pair where µ(x0, y0) = 0. Hence, our parameter space is

Γ = {Θ ∈ (0, ∞)d : ∑̂
x,ŷ

px,y→x̂,ŷ = 1, ∑
x,y

µ(x, y) = 1}.

Later, we will consider the extended parameter space

K = {Θ ∈ [0, 1]d : ∑̂
x,ŷ

px,y→x̂,ŷ = 1, ∑
x,y

µ(x, y) = 1}

as limit points. Note that in both Γ and K, Θ is only over the px,y→x̂,ŷ and µ(x, y) that are
not just set to 0 (before limits).

Then, equating Y0 with y0 to ease notation, one obtains the following:

Q(Θ, Θ′) = ∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
µ(x0, y0) (62)[

N

∑
m=1

ln p′xm−1,Ym−1→xm ,Ym
+ ln µ′(x0, y0)

]
.

The re-estimation function is used to interpret the EM algorithm we derived earlier. We
impose the following condition to ensure everything is well defined.

(Zero) The EM estimates are zero-separating.

The following result is motivated by Theorem 3 of Liporace [44].

Theorem 1. Suppose (Zero) holds. The expectation-maximization solutions (57) and (58) derived
in Section 4 are the unique critical point of the re-estimation function Θ′ → Q(Θ, Θ′), subject to
Θ′ forming probability mass functions. This critical point is a maximum taking value in (0, 1]d for
d explained above.

We consider it as an optimization problem over the open set (0, ∞)d, but with the constraint
that we have mass functions, so the values have to be in the set (0, 1]d.
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Proof. One obtains based on (62), as well as the constraint ∑x̂,ŷ p′x,y→x̂,ŷ = 1, that the
maximum must satisfy

0 =
∂

∂p′x,y→x̂,ŷ

{
Q(Θ, Θ′)− λ

(
∑
ξ,θ

p′x,y→ξ,θ − 1

)}
(63)

= ∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
N

∑
m=1

1xm−1=x,Ym−1=y1xm=x̂,Ym=ŷ

p′x,y→x̂,ŷ
µ(x0, y0)− λ

where λ is a Lagrange multiplier and Ym−1 = y means Y0 = y0 when m = 1. Multiplying
by p′x,y→x̂,ŷ, summing over x̂, ŷ and then using (11), (35) and (28) and then (19), (14) and
(25), one determines that

λ =
N

∑
m=1

∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
1xm−1=x,Ym−1=y µ(x0, y0) (64)

= P(X0 = x, Y0 = y, Y1, . . . , YN) +
N

∑
m=2

1Ym−1=yP(Xm−1 = x, Y1, . . . , YN)

= Π0(x, y)LN +
N

∑
m=2

1Ym−1=yΠm−1(x)LN

= ∑
x1

β0(x, x1, y)px,y→x1 α0(x, y) +
N

∑
m=2

∑
xm

1Ym−1=yβm−1(x, xm)px,Ym−1→xm αm−1(x).

Substituting (64) into (63) and repeating the argument in (64), but with (27) instead of (28),
one determines that

p′x,y→x̂,ŷ = ∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
N

∑
m=1

1xm−1=x,Ym−1=y,xm=x̂,Ym=ŷ

λ
µ(x0, y0) (65)

=

1Y1=ŷP(X0 = x, Y0 = y, X1 = x̂, Y1, . . . , YN) +
N
∑

m=2
1Ym−1=y,Ym=ŷP(Xm−1 = x, Xm = x̂, Y1, . . . , YN)

∑
x1

β0(x, x1, y)px,y→x1 α0(x, y) +
N
∑

m=2
∑
xm

1Ym−1=yβm−1(x, xm)px,Ym−1→xm αm−1(x)

=

1Y1=ŷχ0(x, x̂, y)px,y→x̂π0(x, y) +
N
∑

m=2
1Ym−1=y,Ym=ŷχm−1(x, x̂)px,Ym−1→x̂πm−1(x)

∑
x1

χ0(x, x1, y)px,y→x1 π0(x, y) +
N
∑

m=2
∑
xm

1Ym−1=yχm−1(x, xm)px,Ym−1→xm πm−1(x)
.

To explain the first term in the numerator in the last equality, we use the multiplication rule
and (24) to find

P(X0 = x, Y0 = y, X1 = x̂, Y1, . . . , YN) = β0(x, x̂, y)P(X0 = x, Y0 = y, X1 = x̂) = χ0(x, x̂, y)LNπ0(x, y)px,y→x̂

from which it will follow easily.
Finally, for a maximum, one also requires

0 =
∂

∂µ′(x, y)

{
Q(Θ, Θ′)− λ

(
∑

ξ∈E,θ∈O
µ′(ξ, θ)− 1

)}
(66)

= ∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
1x0=x1y0=y

µ′(x, y)
µ(x0, y0)− λ,
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where λ is a Lagrange multiplier. Multiplying by µ′(x, y) and summing over x, y, one
obtains that

λ = ∑
x0,...,xN

∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
µ(x0, y0) (67)

= P(Y1, . . . , YN)

= LN .

Substituting (67) into (66), one obtains by (35) that

µ′(x, y) =

∑
x0,...,xN

∑
y0

[
N
∏

n=1
pxn−1,Yn−1→xn ,Yn

]
1x0=x1y0=yµ(x0, y0)

LN
(68)

=
P(X0 = x, Y0 = y, Y1, . . . , YN)

LN

= π0(x, y)∑
x1

χ0(x, x1, y)px,y→x1 .

Now, we have established that the EM algorithm of Section 4 corresponds to the unique
critical point of Θ′ → Q(Θ, Θ′). Moreover, all mixed partial derivatives of Q in the
components of Θ′ are 0, while

∂2QY1,Y2,...,YN (Θ, Θ′)

∂p′x,y→x̂,ŷ
2 (69)

= − ∑
y0;x0,...,xN

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
N

∑
m=1

1Xm−1=x,Ym−1=y,xm=x̂,Ym=ŷ

p′x,y→x̂,ŷ
2 µ(x0, y0)

and

∂2QY1,Y2,...,YN (Θ, Θ′)

∂µ′(x, y)2 (70)

= − ∑
y0;x0,...,xN

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
N

∑
m=1

1y0=y,x0=x

µ′(x, y)2 µ(x0, y0).

Hence, the Hessian matrix is diagonal with negative values along its axis, and the critical
point is a maximum.

The upshot of this result is that if the EM algorithm produces parameters {Θk} ⊂ Γ,
then Q(Θk, Θk+1) ≥ Q(Θk, Θk).

Now, we have the following result, based on Theorem 2.1 of Baum et al. [43], that
establishes that the observable likelihood is also increasing i.e., P(Θk+1) ≥ P(Θk).

Lemma 4. Suppose (Zero) holds. Q(Θ, Θ′) ≥ Q(Θ, Θ) implies P(Θ′) ≥ P(Θ). Moreover,
Q(Θ, Θ′) > Q(Θ, Θ) implies P(Θ′) > P(Θ).

Proof. ln(t) for t > 0 has convex inverse exp(t). Hence, by Jensen’s inequality,
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Q(Θ, Θ′)− Q(Θ, Θ)

P(Θ)
(71)

= ln exp

[
∑

x0,x1,...,xN
∑
y0

ln

(
py0,Y1,...,YN (x0, x1, . . . , xN ; Θ′)

py0,Y1,...,YN (x0, x1, . . . , xN ; Θ)

)
py0,Y1,...,YN (x0, x1, . . . , xN ; Θ)

P(Θ)

]

≤ ln

 ∑
x0,x1,...,xN

∑
y0

py0,Y1,...,YN (x0, x1, . . . , xN ; Θ)
py0,Y1,...,YN (x0,x1,...,xN ;Θ′)

py0,Y1,...,YN (x0,x1,...,xN ;Θ)

P(Θ)


= ln

(
P(Θ′)

P(Θ)

)
and the result follows.

The stationary points of P and Q are also related.

Lemma 5. Suppose (Zero) holds. A point Θ ∈ Γ is a critical point of P(Θ) if, and only if, it is a
fixed point of the re-estimation function, i.e., Q(Θ; Θ) = maxΘ′ Q(Θ; Θ′), since Q is differentiable
on (0, ∞)d in Θ′.

Proof. The following derivatives are equal:

∂PY1,...,YN (Θ)

∂px,y→x̂,ŷ
= ∑

x0,...,xN
∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
N

∑
m=1

1xm−1=x,Ym−1=y,xm=x̂,Ym=ŷ

pxm−1→xm

µ(x0, y0) (72)

=
∂QY1,Y2,...,YN (Θ, Θ′)

px,y→x̂,ŷ

∣∣∣
Θ′=Θ

,

which are defined since px,y→x̂,ŷ ̸= 0. Similarly,

∂PY1,...,YN (Θ)

∂µ(x, y)
= ∑

x0,...,xN
∑
y0

[
N

∏
n=1

pxn−1,Yn−1→xn ,Yn

]
1(x0,y0)=(x,y) (73)

=
∂QY1,Y2,...,YN (Θ, Θ′)

∂µ′(x, y)

∣∣∣
Θ′=Θ

.

We can rewrite (65), (68) in recursive form, with the values of π and χ substituted in,
to find that

Θk+1 = M(Θk),

where M is a continuous function. Moreover, P : K → [0, 1] is continuous and satisfies
P(Θk) ≤ P(M(Θk)) from above. Now, we have established everything we need for the
following result, which follows from the proof of Theorem 1 of Wu [45].

Theorem 2. Suppose (Zero) holds. Then, {Θk}∞
k=1 is relatively compact, all its limit points (in

K) are stationary points of P, producing the same likelihood P(Θ∗), say, and P(Θk) converges
monotonically to P(Θ∗).

Wu [45] provides several interesting results in the context of general EM algorithms to
guarantee convergence to local or global maxima under certain conditions. However, the
point of this paper is to introduce a new model and algorithms with just enough theory to
justify the algorithms. Hence, we do not consider theory under any special cases here, but
rather refer the reader to Wu [45].
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7. Discussion and Conclusions
We have established a new expectation-maximization (EM) algorithm to converge to

the parameters of general pairwise Markov chains and Markov observation models that
generalizes the Baum–Welch algorithm for hidden Markov models. Our extension not only
expands the model itself, but also identifies the initial distribution and solves the small-
number problem. We have shown that the likelihood, filter, and (observation) predictor
are all easily computable in real time using a recursion like the forward equation in the
EM algorithm (after the parameters have converged). We have shown that the pathspace
filter for conditional distribution of the hidden state, given all the observations, is also
computable using the results of both the forward and backward equations. We invented a
GAN-like setup using the likelihoods of known models (with a voting scheme) for detection
and simulation (throwing away the hidden component) for the generation part. Finally, we
have shown how all our new technology might be combined to solve interesting problems
like deepfake generation and detection. Work that is currently underway appears shows
great promise for the application of these methods in areas like fraud detection, statistical
process control and deepfake detection. It seems like the quality of the results obtained in
these domains will not be satisfactory with any existing approaches in the literature, which
will surely validate this present work as more than just theory.

I was asked a couple of intriguing questions by the anonymous reviewers, which I
will begin to discuss within this paragraph on potential future work. All our development
focused on the discrete-space case. However, the classical Baum–Welch algorithm for
HMMs also holds in the continuous (nearly) Gaussian case. A similar generalization to the
one we made here should establish an EM algorithm for (nearly) Gauss–Markov coupled
hidden-state observation pairs. Then, one would be in a position to properly establish
our method for establishing the EM algorithm in the usual AR-HMM with Gaussian noise
using the representation (7). Continuing in this direction, one could wonder whether there
are EM-based forward–backward equations to estimate the parameters in an ARMA-HMM
or ARIMA-HMM, both of which would satisfy an equation like the following:

Yn = β
(Xn)
0 + β

(Xn)
1 Yn−1 + · · ·+ β

(Xn)
p Yn−p + εn + θ

(Xn)
1 εn−1 + · · ·+ θ

(Xn)
q εn−q (74)

where {βx
i } and {θx

i } are parameters that depend upon the state of a hidden Markov
chain, and {εi} is an i.i.d. noise sequence. (Here, the parameters θ would take different
values or the equation might be rearranged if we had an ARIMA model instead of an
ARMA model.) These observation equations are not naturally Markov. Indeed, they are
close to the ARFIMA models that are used to simulate long-range-dependent sequences.
However, the ARMA-HMM and ARIMA-HMM still have linear observation equations
with a finite number of parameters and dependence upon a hidden Markov chain. It would
be intriguing to investigate whether the EM method can be extended to handle these cases,
and whether there are analogs to the forward and backward equations that can be can be
combined to estimate all the parameters in these models.
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