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Abstract. In this paper, the strong existence and uniqueness for a degenerate
finite system of quantile-dependent McKean-Vlasov stochastic differential equations
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1. Introduction

Stochastic differential equations (SDEs) with coefficients depending on the proba-
bility distribution of the unknown, often referred to as mean-field or McKean-Vlasov
SDEs, have become a hot research area in recent years. Their dynamics are of the
form:

dXt = F (t,L(Xt), Xt)dt+ σ(t,L(Xt), Xt)dWt, (1.1)

where (Wt)t≥0 is a d-dimensional Brownian motion and L(Xt) ∈ P(Rd) is the
probability law of the unknown Xt. Here P(Rd) denotes the space of Borel probability
measures on Rd. This type of dynamics naturally appears as the limit of a large
system of interacting players. Each individual player in the system interacts through
the empirical measure of the population. As the size of the population grows to
infinity, due to the weak dependence nature and by the law of large number, the
empirical measure will converge to the law of each individual, the limiting dynamic
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of each player depends only on its own law and not the measures of the others any
more. This is the so-called propagation of chaos phenomenon, originally studied by
McKean [20].

The well-posedness of equation (1.1) has been intensively investigated by many
authors. Mishura and Veretennikov [22] proved the strong uniqueness under the
usual Lipschitz condition and the assumption that σ is independent of L(Xt) and
uniformly non-degenerate. Furthermore, assuming that F is Hölder continuous, σ
is Lipschitz continuous in the second and third arguments, Chaudru de Raynal [7]
showed that (1.1) admits a unique strong solution. Recently, Frikha, Konakov and
Menozzi [14] extended Chaudru de Raynal’s result to the non-linear Mckean-Vlasov
SDEs driven by α-stable Lévy processes under mild Hölder regularity assumptions.
Röchner and Zhang [26] showed the strong well-posedness of the above SDE when F
and σ satisfy some integrability conditions in the third argument and are Lipschitz
continuous in the second argument.

Notice that all the aforementioned results require the Lipschitz or Hölder continuity
of coefficients. There are also some effort to lift these continuity assumptions. Let us
mention only two works. In the work of Jourdain [17], the author studied the SDEs
with F depending on the marginal of the solution at time t. The weak uniqueness
was obtained without the continuity assumption of F on the third argument (but
still having Lipschitz continuity in the second argument). In [19], Lacker proved
the (weak and strong) uniqueness for the solutions to (1.1) when drift coefficient
F is singular and diffusion coefficient σ is independent of the second argument.
More precisely, the drift coefficient F in [19] is merely bounded and measurable, but
still Lipschitz continuous in the second argument in the sense of the total variation
distance. Let us point out that in all the above mentioned literature, both the drift
and diffusion coefficients are assumed to be Lipschitz continuous with respect to the
probability measure L(Xt). However, in reality it is too restrictive to assume the
continuity of a function on the space of measures with respect to the Wasserstein
metric. Thus, it is an interesting, natural, and challenging question to remove the
restriction of continuity of the coefficients with respect to the probability measure
L(Xt).

For example, in finance and other applications (e.g. [10]), the following quantile-
dependent equation is introduced and studied:

dXt = F (t, Qα(Xt), Xt)dt+ σ(t, Qα(Xt), Xt)dWt, (1.2)

where F : R+ × Rd × Rd → Rd and σ : R+ × Rd × Rd → Rd ⊗ Rd are continuous
functions, α = (α1, . . . , αd) ∈ (0, 1)d, and Qα(Xt) is the α-quantile (vector) of the
probability measure L(Xt) of Xt, namely,

(Qα(Xt))j = (Qα(L(Xt)))j = inf
{
yj ∈ R,

∫
x∈Rd,xj≤yj

L(Xt)(dx) ≥ αj

}
, j = 1, . . . , d .
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It is well-known that for any two real valued random variables X and Y with
cumulative distributions FX and FY , the p-Wasserstein distance is given by

Ip(X, Y ) =

(∫ 1

0

|F−1
X (α)− F−1

Y (α)|pdα
)1/p

.

From the above expression it is obvious that the coefficients in (1.2) are not continuous
with respect to the Wasserstein distance for any finite p ≥ 1. Hence, we need a
completely different approach to study the existence and uniqueness problems for
quantile-dependent equations.

The works [10] and [18] are among the first to study this type of equations. Crisan
et al. [10] motivated such a model (1.2) from a financial viewpoint and proved
the existence of a solution, but left open both the weak and strong uniqueness
problems. Kolokoltsov [18] then established the strong uniqueness of (1.2) under
some differentiable and Lipschitz conditions on σ and F . In particular, Kolokoltsov
assumed the uniform ellipticity condition on a := σσ∗, namely, there exists a constant
Λ > 0, such that

Λ−1|ξ|2 ≤ |ξ, a(t, y, x)ξ| ≤ Λ|ξ|2, ∀ (t, y, x) ∈ R+ × Rd × Rd, ξ ∈ Rd . (1.3)

The main contribution of this paper is to remove the above uniform ellipticity
condition (1.3) and we shall prove the pathwise uniqueness for the quantile-dependent
SDE under the weak Hörmander condition (see e.g. [16, Page 355]). To control the
quantile when proving the uniqueness, we require that the solution Xt (as a random
vector) has a density (with respect to Lebesgue measure) and this density is strictly
positive with a certain decay property. This problem of the existence of density
is an important topic in probability theory and partial differential equations. The
weak Hörmander condition imposed in the McKean-Vlasov equation ensures the
existence of the density of its solution. Let us recall one such result on the following
nd-dimensional Langevin-type stochastic differential equation:

dX1
t = F1 (t, Qα(Xt), X

1
t , · · · , Xn

t ) dt+ σ (t, Qα(Xt), X
1
t , · · · , Xn

t ) dWt,

dX2
t = F2 (t, Qα(Xt), X

1
t , · · · , Xn

t ) dt,

dX3
t = F3 (t, Qα(Xt), X

2
t , · · · , Xn

t ) dt,
...

dXn
t = Fn

(
t, Qα(Xt), X

n−1
t , Xn

t

)
dt,

(1.4)

where d and n are positive integers; (Wt)t≥0 is a standard d-dimensional Brownian mo-
tion; X i, 1 ≤ i ≤ n, are all d-dimensional processes, and (Xt)t≥0 = (X1

t , . . . , X
n
t )t≥0;

F1 : R+ × Rnd × Rnd → Rd; Fi : R+ × Rnd × R(n−i+2)d → Rd for i = 2, · · · , n; and
σ : R+×Rnd×Rnd → Rd⊗Rd are continuous functions. Denote by Id and 0d the d×d
identity and zero matrices respectively. Introducing D = (Id, 0d, · · · , 0d)T ∈ Rnd×d,
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and letting F = (F1, · · · , Fn)T , we can rewrite (1.4) in the following abbreviated
form

dXt = F (t, Qα(Xt), Xt)dt+Dσ(t, Qα(Xt), Xt)dWt. (1.5)

The system of equation (1.4) (or (1.5)) is highly degenerate if n ≥ 2 and the ellipticity
condition (1.3) is obviously not satisfied. Still, in the special case that F and σ in
(1.5) are independent of the quantile, namely, when (1.5) is reduced to

dXt = F̄ (t,Xt)dt+Dσ̄(t,Xt)dWt , (1.6)

the existence of the density, its derivatives and its two-sided Gaussian bounds have
been obtained in [9, 11, 21,23], which are critical to this work.

The degenerate stochastic differential equations of the form (1.6) have attracted
more and more attention in the past years (see e.g. [24,29,30]). When a Newton equa-
tion ẍ(t) = F (t, x(t), ẋ(t)) is under influence of some uncertainty, the corresponding
stochastic differential equation could be ẍ(t) = F (t, x(t), ẋ(t)) +G(t, x(t), ẋ(t))Ẇ (t).
This equation is of the form (1.6) if we let x2(t) = x(t) and x1(t) = ẋ(t), namely,
dx1(t) = F (t, x2(t), x1(t))dt + G(t, x2(t), x1(t))dW (t) and dx2(t) = x1(t)dt. This
type of equations naturally appears in various scientific contexts. For example, in
physics, equation (1.6) corresponds to the dynamics of a finite-dimensional non-
linear Hamiltonian system (a chain of anharmonic oscillators) coupled with two heat
reservoirs at different temperatures, which was used by Eckmann et al. [12] (see also
[15,27,28]) to study the statistical mechanics of such system. Rey-Bellet and Thomas
[25] considered the low-temperature asymptotic behavior of the invariant measure
in the framework of (1.6). In mathematical finance, there are some applications of
the Langevin-type equation in pricing Asian options (see e.g. [2]). In fact, many
SDEs including some used in financial markets fail to satisfy the uniform ellipticity
condition so alternative conditions like ours, which require substantially different
proofs, are important. We hope that our extension to the quantile-dependent SDEs
would bring more applications to various fields.

To obtain the existence and uniqueness of the solution of the PDE (2.7) which
is associated to equation (1.5), we use the fixed point theorem (see the proof of
Proposition 4.4). But, to apply the fixed point theorem, we need to bound a certain
distance between Qα(h1) and Qα(h2) by a certain distance of h1 and h2 (see (4.1)).
This was already done in [18]. We also need to bound the distance between u(1) and
u(2) by the distance between ω(1) and ω(2), where each u(i) (i = 1, 2) is the density

of X
(i)
t in (1.5) when Qα(X

(i)
t ) is replaced by ω(i) (see Proposition 4.2). This is

relatively complicated and requires the fact that the density u of the solution Xt of
(1.5) is characterized by the corresponding Fokker-Planck equation. Thus, the above
problem of controlling the distance between u(1) and u(2) by the distance between ω(1)

and ω(2) is reduced to investigating the regularity with respect to the non-linearities.
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However, because of the degeneracy, it is hard to use the PDE approach as in [18].
Instead, we shall use a time-dependent Feynman-Kac formula.

The paper is organized as follows. In Section 2, we present the main hypotheses
and main results of this paper. We also fix some notations in this section. Some
useful a priori estimates on the density of the solution to the SDE (1.2) including
the tail estimates and lower bounds are given in Section 3. We will also recall the
time-dependent Feynman-Kac formula in this section. These two-sided bounds of
the density and the Feynman-Kac formula play central roles in our approach. We
give in Section 4 the proof of our main results.

2. Main results

For any x ∈ Rnd, we write x = (x1, · · · , xn) = (x1
1, · · · , xd1; · · · ;x1

n, · · · , xdn), where
for i = 1, · · · , n, j = 1, · · · , d, xi ∈ Rd, xji ∈ R. Let |xi| denote the Euclidean

norm of xi, that is, |xi| =
(∑d

j=1 |x
j
i |2
) 1

2
. Let Fi : R+ × Rnd × R((n−i+2)∧n)d →

Rd be continuous mappings. For notational simplicity, we may consider Fi as a
continuous mapping from R+ × Rnd × Rnd to Rd and write F = (F1; · · · ;Fn) =
(F 1

1 , · · · , F d
1 ; · · · ;F 1

n , · · · , F d
n) as well.

For any d × d matrix a = (aij)
d
i,j=1, denote by |a| = (

∑d
i,j=1 |aij|2)

1
2 its Hilbert-

Schmidt norm. In what follows, we use ‖ ·‖p for the Lp norm on the probability space
(Ω,F ,P). For any measurable function f on a Euclidean space, |f |Lp denotes the Lp

norm of |f | with respect to the Lebesgue measure. C(Rd) and Cb(Rd) denote the
sets of continuous functions and bounded continuous functions on Rd, respectively.

The notation ∇ stands for the gradient with respect to all space variables. Let
f ∈ C(R+×Rnd×Rnk,Rd), k = 1, · · · , n. ∇xif(t, y, x) denotes the gradient operator
with respect to the ith space variable xi ∈ Rd, which is a d× d Jacobian matrix.

Fix a time horizon [0, T ]. We will need the following hypotheses for coefficients F
and σ and the initial condition X0.

(H1) F is uniformly bounded at the origin of the third argument. That is, there
exists a positive constant κ such that

sup
t∈[0,T ],y∈Rnd

|F (t, y, 0)| ≤ κ <∞.

(H2) The function a := σσ∗ is uniformly elliptic, namely, (1.3) is satisfied.
(H3) F and σ are uniformly Lipschitz continuous in space variables with constant

κ > 0, i.e., for all y, ȳ, x, x̄ ∈ Rnd,

sup
t∈[0,T ]

(
|F (t, y, x)− F (t, ȳ, x̄)|+ |σ(t, y, x)− σ(t, ȳ, x̄)|

)
≤ κ (|x− x̄|+ |y − ȳ|) .
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(H4) The function x 7→ F (t, y, x) is twice differentiable and function x1 7→
a(t, y, x1, . . . , xn) is three times differentiable. Moreover, the following in-
equalities hold true

sup
(t,y,x)∈[0,T ]×Rnd×Rnd

∣∣∣∣ d∑
j,k=1

∂2

∂xj1
∂xk1

ajk(t, y, x)

∣∣∣∣ ≤ κ,

sup
t∈[0,T ]

d∑
j,k=1

∣∣∣∣ ∂2

∂xk1∂xj1
akj(t, y, x)− ∂2

∂xk1∂xj1
akj(t, ȳ, x̄)

∣∣∣∣ ≤ κ (|x− x̄|+ |y − ȳ|) ,

and

sup
t∈[0,T ]

n∑
i=1

d∑
j=1

∣∣∣∣ ∂∂xji F j
i (t, y, x)− ∂

∂xji
F j
i (t, ȳ, x̄)

∣∣∣∣ ≤ κ (|x− x̄|+ |y − ȳ|) ,

for all x, x̄, y, ȳ ∈ Rnd.
(H5) For any integer i = 2, . . . , n, the derivative ∇xi−1

Fi(t, y, x) is η-Hölder con-
tinuous in the first spatial variable xi−1 with constant κ, and there exists
a closed convex subset εi−1 contained in the set of invertible d × d matri-
ces, such that for all t ∈ [0, T ] and (xi−1, · · · , xn) ∈ R(n−i+2)d, the matrix
∇xi−1

Fi(t, y, xi−1, · · · , xn) belongs to εi−1.
(I) X0 is a random variable independent of W . The probability law of X0 has a

continuously differentiable density f > 0 satisfying the following integrability
condition

U =

∫ ∞
0

sup
|z|≥r
|f(z)|2(r4n−1+ε + rn−1)dr

+

∫ ∞
0

[
sup
|z|≥λ
|∇f(z)|4

] (
λ4nd−1+ε + λnd−1

)
dλ <∞, (2.1)

for some constant ε > 0.

Remark 2.1. The most important hypotheses in this work are the hypotheses (H2)
and (H5): the matrices (∇xi−1

Fi)2≤i≤n have full rank, which imply a version of the
(weak) Hörmander condition. It ensures the existence of the probability density
of the solution to (1.5) (see [11, Theorem 1.1]). Let us point out that in (H2) we
assume that a = σσ∗ is uniformly elliptic. However, the diffusion coefficient Dσσ∗D∗

of the whole system (1.5) is highly degenerate.

Remark 2.2. Hypotheses (H3), (H4) are to guarantee the Lipschitz continuity of
the function c defined in (2.6) below. In addition, they imply that c is bounded,
which is needed in the application of the Feynman-Kac formula (see Theorem 3.10).

Remark 2.3. At the first look, hypothesis (I) seems a little complicated. However,
Gaussian densities and many other functions satisfy this condition. Furthermore,
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it is worth mentioning that to prove Proposition 4.2 (i.e. the local existence and
uniqueness), hypothesis (I) can be weakened to the following form:∫

Rnd
f(y)2

(
|y|nd+ε + 1

)
dy +

∫ ∞
0

[
sup
|z|≥λ
|∇f(z)|4

] (
λ4nd−1+ε + λnd−1

)
dλ <∞.

The condition (2.1) is used to guarantee the global existence and uniqueness of
solutions to (1.5).

In the next theorem, we provide the existence and uniqueness result for equation
(1.5), which is the main result of this paper.

Theorem 2.4. Assume that hypotheses (H1)-(H5) and hypothesis (I) hold true.
Then, there exists a unique strong solution to SDE (1.5) on [0, T ].

The idea to prove the above theorem is to construct a contraction mapping
associated to equation (1.5). To this end, we need to introduce an auxiliary equation.
Given a continuous (deterministic control) function ω on [0, T ] with values in Rnd,
we consider the following stochastic differential equation

dXω
t = F (t, ωt, X

ω
t )dt+Dσ(t, ωt, X

ω
t )dWt, (2.2)

with initial condition X0 satisfying hypothesis (I). Under hypotheses (H1)-(H5),
equation (2.2) has a unique strong solution, whose density uωt (x) satisfies the following
Fokker-Planck equation:

∂

∂t
uωt (x) =

1

2

d∑
i,j=1

∂2

∂xi1∂x
j
1

(
aij(t, ωt, x)uωt (x)

)
−

n∑
i=1

d∑
j=1

∂

∂xji

(
F j
i (t, ωt, x)uωt (x)

)
=

1

2

d∑
i,j=1

aij(t, ωt, x)
∂2

∂xi1∂x
j
1

uωt (x) + 〈b(t, ωt, x),∇uωt (x)〉+ c(t, ωt, x)uωt (x),

(2.3)

with initial condition uω0 = f , where

a = (aij)
d
i,j=1 = σσ∗, (2.4)

b = (b1, . . . , bn) with bi = (b1
i , . . . , b

d
i ), i = 1, . . . , n and

bji (t, y, x) = −F j
i (t, y, x) + 1{i=1}

d∑
k=1

∂

∂xk1
akj(t, y, x), (2.5)

and

c(t, y, x) = −
n∑
i=1

d∑
j=1

∂

∂xji
F j
i (t, y, x) +

1

2

d∑
j,k=1

∂2

∂xj1∂x
k
1

ajk(t, y, x), (2.6)
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for any (t, y, x) ∈ [0, T ] × Rnd × Rnd. It follows from [1, Theorem 1] that (2.3) is
well-posed. Thus, the density of uωt (x) is the unique solution to the equation (2.3).

Similarly, if (1.5) has a solution Xt with quantile Qα(Xt) being continuous in time,
then the law of Xt has a density u that is the solution to the following equation

∂

∂t
ut(x) =

1

2

d∑
i,j=1

aij(t, Qα(ut), x)
∂2

∂xi1∂x
j
1

ut(x) + 〈b(t, Qα(ut), x),∇ut(x)〉

+ c(t, Qα(ut), x)ut(x). (2.7)

It will be shown in Section 4 that the proof of Theorem 2.4 is reduced to proving
that PDE (2.7) admits a unique solution. However, it is not easy to deal with such
PDE whose coefficients depend on quantiles. We shall find an appropriate Banach
space B and construct a mapping M on B. The well-posedness of (2.7) is shown by
proving that M is a contraction map on B in Proposition 4.4 (below).

In the next theorem, we prove the well-posedness of (2.7).

Theorem 2.5. Let f be a continuous differentiable function on Rnd satisfying
hypothesis (I). Assume hypotheses (H1)-(H5) hold true. Then, there exists a function
u on [0, T ]×Rnd, which is the unique solution to PDE (2.7) with initial condition f .

The strong existence and uniqueness as well as density estimates of solutions to
degenerate SDEs (independent of the probability measure) with Hölder continuous
drifts and under the weak Hörmander condition has been investigated by Chaudru
de Raynal [6]. In [18], to obtain the stability result the author uses the two-sided
bounds of the density and its first order derivatives under the uniform ellipticity
condition. In our hypoellipticity case, we encounter the following difficulties.

(1) For (1.6), Pigato [23] obtained upper bounds for the derivatives of transition
density of any order. The first derivative with respect to the variable xji
(i = 1, · · · , n; j = 1, · · · , d) is given by

|∂xjip(t, x; 0, y)| ≤ C

t(2b
ij−1
d
c+1+n2d)/2

exp

(
−|T

−1
t (x− θt(y))|2

C

)
,

where y is the initial position; C is a constant; b·c denotes the integer part
function, T and θt are given by (3.1) and (3.2) below. As we see, this bound
is more singular near t = 0 than that in the elliptic case.

(2) To overcome this problem, we assume that the initial condition f satisfies
certain differentiability and integrability (over the whole Rnd) conditions, in
hope that the singularity difficulty can be absorbed in the initial condition.
However, proceeding with this effort, we immediately encounter the difficulty
that we do not know how to pass the gradient ∇xp(t, x; s, y) to ∇f in the
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following integral: ∫
Rnd

f(y)∇xp(t, x; s, y)dy

since p(t, x; s, y) is not the form of p(t, s, x− y). To get around this difficulty,
we apply the time inhomogeneous Feynman-Kac formula. This enables us to
finish the stability analysis of the solution to (2.3) with respect to ω.

3. A priori estimates of the density

In the remainder of the paper, we assume that d = 1 to simplify the presentation.
The case d > 1 can be treated analogously with only additional notational complexity.
We use C > 0 to denote a generic constant which may vary from occurrence to
occurrence.

First, let us turn to (1.6). We need a result from [9]. To state this result, we need
to introduce the following conditions on the coefficients F̄ and σ̄.

(C1): F̄ (t, 0) is bounded for all t ∈ [0, T ] and ā = σ̄σ̄∗ is uniformly elliptic with the
positive constant Λ.

(C2): σ̄ is globally Lipschitz in the space variable uniformly in time variable. For
all j = 1, 2, · · · , n the functions F̄i, i = 1, · · · , j, are uniformly ηj-Hölder
continuous in the jth spatial variable with ηj ∈ (2j−2

2j−1
, 1], uniformly in time

and other spatial variables.
(C2’): The functions F̄1, · · · , F̄n and σ̄ are uniformly Lipschitz and η-Hölder contin-

uous (η ∈ (0, 1]) with respect to the underlying space variables respectively.
(C3): For each integer 2 ≤ i ≤ n, (t, xi, · · · , xn) ∈ R+ × R(n−i+1)d, the function

xi−1 ∈ Rd 7→ F̄i(t, xi−1, · · · , xn) is continuously differentiable and its deriva-
tive, denoted by (t, xi−1, · · · , xn) ∈ R+×R(n−i+2)d 7→ ∇xi−1

F̄i(t, xi−1, · · · , xn),
is η-Hölder continuous in the first space variable xi−1 with constant κ.
Moreover, there exists a closed convex subset εi−1 contained in the set
of invertible d × d matrices, such that for all t ≥ 0, i = 2, · · · , n and
(xi−1, · · · , xn) ∈ R(n−i+2)d, the matrix ∇xi−1

F̄i(t, xi−1, · · · , xn) belongs to
εi−1.

Remark 3.1. Conditions (C1), (C2), (C2’) and (C3) can be easily verified by
hypotheses (H1)-(H5). In fact, (C1) and (C3) are the same as (H1), (H2) and (H5).
Additionally, hypotheses (H3) and (H4) imply (C2) and (C2’).

Theorem 3.2 (see [9]). Assume that (C1), (C2) and (C3) hold true. Then there
exists a unique strong solution to SDE (1.6).

We also need a result about the Gaussian estimate for the density of the solution
to (1.6). To state this result we introduce the scale matrix T and shift vector θ as
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follows. Fix t ≥ 0 and x ∈ Rnd. Let Tt denote the following nd×nd diagonal matrix:

Tt =


T 1
t 0 . . . 0
0 T 2

t . . . 0
...

...
. . .

...
0 0 . . . T nt

 =


t
1
2 Id 0 . . . 0

0 t
3
2 Id . . . 0

...
...

. . .
...

0 0 . . . tn−
1
2 Id

 . (3.1)

Let θ·(x) : [0, T ] 7→ Rnd be the solution to following (deterministic) ODE,{
d
dt
θt(x) = F̄ (t, θt(x)) ,

θ0(x) = x.
(3.2)

Theorem 3.3 (see [11]). Assume that (C1), (C2’) and (C3) hold true. Let X be
the solution to (1.6) with initial condition X0 = x, where x ∈ Rnd. Then, for any
t ∈ [0, T ], the law of Xt admits a probability density, denoted by pt(·, x). Moreover,
there exists a constant CT ≥ 1, depending on T, n, d,Λ, η, the Lipschitz constants in
(C1)-(C3), and ε1, ε2, · · · , εn−1, such that for any y ∈ Rnd,

1

CT tn
2d/2

exp
(
−CT |T −1

t (θt(x)− y)|2
)
≤ pt(y, x) ≤ CT

tn2d/2
exp

(
−C−1

T |T
−1
t (θt(x)− y)|2

)
,

(3.3)

where Tt and θt(x) are given by (3.1) and (3.2) respectively.

Remark 3.4. We still cite the theorem for general dimension d. However, we will
continue to work on the case d = 1.

The above Theorem 3.3 suggests that the ith coordinate X i
t of the system at time

t oscillates around Tt with fluctuations of order ti−
1
2 . In addition, the deterministic

flow θ plays an important role in the density bounds of Xt for (1.6). As we will see in
the proof of Proposition 3.7 that the density of Xt for equation (2.2) has analogous
two-sided bounds of the form (3.3) under Hypotheses (H1)-(H5). So in order to
make use of the existing density bounds, we define the other deterministic flow θω

associated to equation (2.2) as follows.

Let F : Rn → Rn be defined as in Section 1 (with d = 1). For any continuous
function ω : [0, T ] → Rn, and x ∈ Rn, we define, analogously to (3.2), a function
θω = (θω1 , . . . , θ

ω
n) on [0, T ] with values in Rn by the following ODE{

d
dt
θω(t, x) = F (t, ωt, θ

ω(t, x)) , t ∈ [0, T ] ,

θω(0, x) = x .
(3.4)

We have the following lemma about θω.

Lemma 3.5. Assume that hypotheses (H1)-(H5) hold true and assume that ω is
a continuous function of t ∈ [0, T ]. Let θω satisfy (3.4). Then, for 0 ≤ t ≤ T and
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x ∈ Rn, the following inequalities hold

e−κt|x| − κt ≤ |θω(t, x)| ≤ (|x|+ κt) eκt (3.5)

and

e−nκt ≤ det(∇θω(t, x)) ≤ enκt, (3.6)

where κ is the positive constant that appeared in hypotheses (H1)-(H5).

Proof. By the Lipschitz property and uniformly boundedness (at the origin) of F ,
we see that

|θω(t, x)| =
∣∣∣x+

∫ t

0

F (r, ωr, θ
ω(r, x))dr

∣∣∣
≤|x|+

∫ t

0

(|F (r, ωr, 0)|+ κ|θω(r, x)|) dr

≤|x|+ κt+

∫ t

0

κ|θω(r, x)|dr.

An application of Gronwall’s inequality yields

|θω(t, x)| ≤ (|x|+ κt) eκt. (3.7)

This proves the second inequality in (3.5). To prove the first inequality, we consider
the following backward ODE:{

d
ds
θ̂s = −F (s, ωs, θ̂), 0 ≤ s < t,

θ̂t = ξ ∈ Rn.
(3.8)

Similar to (3.7), we can show that

|θ̂s| ≤ (|ξ|+ κ(t− s)) eκ(t−s),

for all s ∈ [0, t]. Notice that θ̂ = {θω(s, x) ; s ∈ (0, t)} is the solution to (3.8) with

terminal condition θ̂t = θω(t, x). Then, we have

|x| = θ̂0 ≤ (|θω(t, x)|+ κt) eκt.

The proof of inequality (3.5) is then completed.

Taking the derivative of the following equation with respect to x,

θω(t, x) = x+

∫ t

s

F (r, ωr, θr(x))dr,

we have

∇θω(t, x) = Id +

∫ t

s

∇F (r, ωr, θ
ω(r, x))∇θω(r, x)dr.
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By Liouville’s formula, we can write

det(∇θω(t, x)) = exp

(∫ t

s

tr[∇F (r, ωr, θ
ω(r, x))]dr

)
. (3.9)

Now the hypothesis (H3) can be applied to obtain (3.6). The lemma is then
proved. �

By Lemma 3.5 and the implicit function theorem, we have the following corollary.

Corollary 3.6. Assume that hypotheses (H1)-(H5) hold true and that ω(t), 0 ≤
t ≤ T is a continuous function. Let θω satisfy (3.4). Then, there exist a function
(θω)−1(t, ·) such that

θω
(
t, (θω)−1(t, x)

)
= (θω)−1

(
t, θω(t, x)

)
= x,

for all x ∈ Rn. Moreover, the gradient of (θω)−1 with respect to the spatial variable
satisfies the following inequality:

e−nκt ≤ det(∇(θω)−1(t, x)) ≤ enκt. (3.10)

The above Lemma 3.5 and Corollary 3.6 are served as estimates in the following
Proposition 3.7 and Proposition 3.8, respectively. In the next proposition, we provide
a tail estimate for the solution to (2.3).

Proposition 3.7. Assume that hypotheses (H1)-(H5) hold true. Let f be a positive,
continuous integrable function on Rn. Then for any ε > 0, there exist K > 0 such
that ∫

GK
|uωt (x)|dx ≤ ε, (3.11)

for any t ∈ [0, T ] and for any continuous function ω : [0, T ]→ Rn, where

GK =
{
x = (x1, . . . , xn) ∈ Rn : max

1≤i≤n
|xi| ≥ K

}
.

Proof. For any ε > 0, due to integrability of f , we can choose K̄ such that∫
|x|≥K̄

|f(x)|dx ≤ ε. (3.12)

Denote by pωt (x, y) the transition density of Xω from y at time 0 to x at time t.
Then, it is well-known that

uωt (x) =

∫
Rn
pωt (x, ξ)f(ξ)dξ.

Notice that hypotheses (H1)-(H5) ensure that functions σ̄ and F̄ given by

σ̄(t, x) = σ(t, ωt, x), and F̄ (t, x) = F (t, ωt, x),
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for all (t, x) ∈ [0, T ]× Rn, satisfy conditions (C1)-(C3) and (C2’). Additionally, the
independence of t and x of the constant of κ in hypotheses (H1)-(H5) and Remark
3.1 imply that the constant CT appearing in Theorem 3.3 is independent of the
choice of ω. This allows us to apply Theorem 3.3 to obtain∫

GK
|uωt (x)|dx =

∫
GK

∣∣∣∣∫
Rn
pωt (x, ξ)f(ξ)dξ

∣∣∣∣ dx
≤
∫
GK

∫
Rn
CT t

−n2/2 exp
(
−C−1

T |T
−1
t (x− θω(t, ξ))|2

)
|f(ξ)|dξdx

=

∫
G1K

∫
Rn
CT t

−n2/2 exp
(
−C−1

T |T
−1
t (y)|2

)
|f(ξ)|dξdy,

where θω is defined by (3.4) and

G1
K = {y ∈ Rn : max

1≤i≤n
|yi + θωi (t, ξ)| > K}.

Performing a change of variable z = T −1
t (y), we have∫

GK
|uωt (x)|dx ≤

∫
G2K

∫
Rn
CT exp

(
−|z|

2

CT

)
f(ξ)dξdz

≤
∫
Rn

∫
{|ξ|>K̄}

CT exp

(
−|z|

2

CT

)
f(ξ)dξdz +

∫
G2K

∫
{|ξ|≤K̄}

CT exp

(
−|z|

2

CT

)
f(ξ)dξdz,

where

G2
K =

{
z ∈ Rn : max

1≤i≤n
|ti−

1
2 zi + θωi (t, ξ))| > K

}
.

As a consequence of (3.12), we have∫
Rn

∫
{|ξ|>K̄}

CT exp

(
−|z|

2

CT

)
f(ξ)dξdz ≤ (πCT )

n
2CT ε.

On the other hand, by Lemma 3.5, we know that

|θω(t, ξ)| ≤ (|ξ|+ κt) eκt ≤ K̄eκT + κTeκT ,

for all |ξ| ≤ K̄ and t ∈ [0, T ]. Then, we have

G2
K ⊆

{
z ∈ Rn : max

1≤i≤n
|ti−

1
2 zi| > K − K̄eκT − κTeκT

}
=: G3

K .

Therefore, for any ε > 0, there exists K sufficiently large such that∫
G2K

∫
{|ξ|≤K̄}

CT exp

(
−|z|

2

CT

)
f(ξ)dξdz ≤

∫
{|ξ|≤K̄}

CTf(ξ)dξ

∫
G3K

exp

(
−|z|

2

CT

)
dz ≤ ε.

The proof of this proposition is complete. �
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Proposition 3.8. Assume that hypotheses (H1)-(H5) hold true. Let f be a positive,
continuously integrable function on Rn. Then for any K > 0 there exists δ > 0 such
that

inf
{
uωt (x) : max

1≤j≤n
|xj| ≤ K

}
≥ δ, (3.13)

for all t ∈ [0, T ] and for all continuous functions ω on [0, T ] with values in Rn.

Proof. Fix K > 0. For any x ∈ R with |x| ≤ K. By the lower bound of (3.3) we get

uωt (x) =

∫
Rn
pωt (x, ξ)f(ξ)dξ

≥
∫
R
pωt (x, ξ)f(ξ)dξ

≥ 1

CT tn
2/2

∫
R

exp
(
−CT |T −1

t (x− θω(t, ξ))|2
)
f(ξ)dξ,

where

R = {ξ ∈ Rn : |x1 − θω1 (t, ξ)| ≤
√
t, · · · , |xn − θωn(t, ξ)| ≤ t(2n−1)/2, max

1≤j≤n
|xj| ≤ K}.

Due to Lemma 3.5, we know that

e−κt|ξ| − κt ≤ |θω(t, ξ)|,

for all t ∈ [0, T ]. Thus, we have

|ξi| ≤ |ξ| ≤ (|θω(t, ξ)|+ κt) eκt .

For any ξ = (ξ1, . . . , ξn) ∈ R, it is easy to see

|θω(t, ξ)| ≤
[ n∑
i=1

(
t
2i−1

2 + |xi|
)2
] 1

2

≤
√

2|x|+
√

2n(T
n−1
2 + 1).

This means that

R ⊆ R1 := {ξ ∈ Rn : |ξ| ≤ (
√

2nK +
√

2n(T
n−1
2 + 1) + κT )eκT}. (3.14)

Recall that f is a continuous positive integrable function. Hence, there exists δ > 0
such that f(ξ) ≥ δ on the set R1 ⊇ R. As a consequence, for any x ∈ Rn with
|x| ≤ K, we have

uωt (x) ≥ δ

CT tn
2/2

∫
R

exp
(
−CT |T −1

t (x− θω(t, ξ))|2
)
dξ.
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By change of variable T −1
t (x− θω(t, ξ)) = y and then by Corollary 3.6, we have

uωt (x) ≥ δ

CT

∫
{y∈Rn:|yi|≤1,i=1,...n}

exp
(
−CT |y|2

)
det
(
∇(θω)−1 (t, x− Tt(y))

)
dy

≥ δ

CT
e−(nCT+nκT )

∫
{y∈Rn:|yi|≤1,i=1,...n}

dy

=
δ

CT
2ne−(nCT+nκT ),

which completes the proof of the proposition. �

Combining the Propositions 3.7 and 3.8, we arrive at the following result.

Proposition 3.9. Assume that hypotheses (H1)-(H5) hold true and that ω : [0, T ]→
Rn is a continuous function. Let uω be the solution to (2.3) with initial condition
f ∈ C(Rn)∪L1(Rn). For any α ∈ (0, 1)n and t ∈ [0, T ], let ω̂α = ω̂ = (ω̂1, · · · , ω̂n) =
Qα(uωt ) be the α-quantile of uωt . Then, there exist K, δ, ε > 0, independent of t and
ω, such that ∫{

x ∈ Rn : max
1≤j≤n

|xj| ≥ K
} |uωt (x)|dx ≤ ε, (3.15)

max
1≤j≤n

|ω̂j| ≤ K, (3.16)

and

inf
{
uωt (x) : max

1≤j≤n
|xj| ≤ K

}
≥ δ. (3.17)

Fix α ∈ (0, 1)n and K, δ, ε > 0. Denote by S = Sα,K,δ,ε the collection of density
functions h on Rn such that∫{

x ∈ Rn : max
1≤j≤n

|xj| ≥ K
} |h|dx ≤ ε, max

1≤j≤n
| (Qα(h))j | ≤ K,

and inf
{
h(x) : max

1≤j≤n
|xj| ≤ K

}
≥ δ. (3.18)

Then, S is a convex set.

Proof. Choose
0 < ε < min (α1, · · · , αn, 1− α1, · · · , 1− αn) .

Then, by Proposition 3.7, there exists K > 0 such that (3.15) is true. Inequality
(3.16) also holds true, due to the fact that∫ −K

−∞
dxj

∫
Rn−1

uωt (x)
∏

i 6=j,1≤i≤n

dxi ≤
∫
{x∈Rn:max1≤j≤n |xj |≥K}

|uωt (x)|dx ≤ ε ≤ αj,
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and ∫ ∞
K

dxj

∫
Rn−1

uωt (x)
∏

i 6=j,1≤i≤n

dxi ≤ 1− αj,

for all j = 1, . . . , n. The inequality (3.17) is a straightforward consequence of
Proposition 3.8.

In the next step, we prove the convexity of set S. Let h1, h2 ∈ S. For any β ∈ [0, 1],
h = βh1 + (1− β)h2 is still a density function, and the first and the last properties
in (3.18) are trivial for h. It suffices to show that for any β ∈ [0, 1],

Qα(βh1 + (1− β)h2) ≤ K,

which is true, because∫ −K
−∞

dxj

∫
Rn−1

(βh1(x) + (1− β)h2(x))
∏

i 6=j,1≤i≤n

dxi

=β

∫ −K
−∞

dxj

∫
Rn−1

h1(x)
∏

i 6=j,1≤i≤n

dxi + (1− β)

∫ −K
−∞

dxj

∫
Rn−1

h2(x)
∏

i 6=j,1≤i≤n

dxi

≤βαj + (1− β)αj = αj,

and ∫ ∞
K

dxj

∫
Rn−1

(βh1(x) + (1− β)h2(x))
∏

i 6=j,1≤i≤n

dxi ≤ 1− αj,

for all j = 1, . . . , n. The proof of this proposition is completed. �

In the following, we will present a version of the Feynman-Kac formula for time-
inhomogeneous PDE cited from [13, pages 131–132, Theorem 2.2].

Theorem 3.10. Assume that σ : [0, T ] × Rn → Rn ⊗ Rn, b : [0, T ] × Rn → Rn are
continuous in (t, x) and are Lipschitz continuous in x ∈ Rn uniformly in t ∈ [0, T ].
Suppose that c : [0,∞)× Rn → R is continuous and bounded and that f : Rn → Rn

is continuous and of polynomial growth. Denote

aij(t, x) =
n∑
k=1

σikσjk(t, x) or we can write a = (aij)
n
i,j=1 := σσ∗ .

Then for any (t, x) ∈ (0, T ]× Rn, the following stochastic differential equation{
dX t,x

s = σ
(
t− s,X t,x

s

)
dWs + b

(
t− s,X t,x

s

)
ds, s ∈ [0, t],

X t,x
0 = x ,

(3.19)
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has a unique solution {X t,x
s , 0 ≤ s ≤ t}. Assume that the following PDE

∂

∂t
ut(x) =

1

2

n∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
ut(x) + 〈b(t, x),∇ut(x)〉+ c(t, x)ut(x) ,

u0(x) = f(x) ,

(3.20)

has a unique solution u so that its first and second derivatives with respect to both
time and spatial variables are all continuously bounded on bounded domain. Then

ut(x) = E
[
f
(
X t,x
t

)
exp

(∫ t

0

c(t− s,X t,x
s )ds

)]
. (3.21)

Note that the Hypotheses (H1)-(H5) imposed on coefficients F and σ in SDE (2.2)
imply that all the conditions required on functions σ, b, and c in Theorem 3.10 hold
true. Additionally, Hypothesis (I) implies that f is uniformly bounded on Rn. In
other words, we can write the next proposition immediately.

Proposition 3.11. Assume Hypotheses (H1)-(H5) and (I). The density of the
solution to SDE (2.2), satisfying the PDE (2.3), can be written by the Feynman-
Kac formula (3.21) with σ(t, x) and b(t, x) replaced by Dσ(t, ωt, x) and F (t, ωt, x)
respectively, and c defined as in (2.6).

Proposition 3.12. Assume that hypotheses (H1)-(H5) hold true. Let uω be the
solution to (2.3) with initial condition f satisfying hypothesis (I). Then, we have for
any t0 > 0,

U ′ := sup
t∈[t0,T ]

ω∈Cb([0,T ];Rn)

(∫
Rn

sup
|y|≥r

uωt (y)2
(
|r|4n+ε−1 + rn−1

)
dr

+

∫ ∞
0

[
sup
|z|≥λ
|∇uωt (z)|4

] (
λ4n−1+ε + λn−1

)
dλ

)
<∞. (3.22)

Proof. We shall show that the second term in (3.22) is uniformly bounded. The
uniform boundedness of the first term can be proved similarly. Using Proposition
3.11, for any t ∈ [0, T ] and x ∈ R, we can write

uωt (x) = E
(
f(Xω,t,x

t ) exp

(∫ t

0

c
(
t− s, ωt−s, Xω,t,x

s

)
ds

))
,
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where Xω,t,x is the solution to (3.19) with σ(t, x) and b(t, x) replaced by Dσ(t, ω(t), x)
and F (t, ω(t), x). Differentiating this expression with respect to x, we have

∇uωt (x) =E
[

exp

(∫ t

0

c
(
t− s, ω,Xω,t,x

s

)
ds

)
∇f(Xω,t,x

t )∇Xω,t,x
t

+ f(Xω,t,x
t ) exp

(∫ t

0

c
(
t− s, ωt−s, Xω,t,x

s

)
ds

)
∫ t

0

∇c
(
t− s, ωt−s, Xω,t,x

s

)
∇Xω,t,x

s ds

]
.

Due to hypotheses (H4), we know that c, ∇c are both bounded functions. By
Cauchy-Schwarz’s and Minkowski’s inequalities, we can show that

∣∣∇uωt (x)
∣∣ ≤C[∥∥|∇f(Xω,t,x

t )|
∥∥

2

∥∥|∇Xω,t,x
t |

∥∥
2

+
∥∥f(Xω,t,x

t )
∥∥

2

∫ t

0

∥∥|∇Xω,t,x
s |

∥∥
2
ds.

(3.23)

Note that for any r ∈ (0, t), ∇Xω,t,x
r satisfies the following equation

∇Xω,t,x
r =In +

∫ r

0

∇(Dσ)
(
t− s, ωt−s, Xω,t,x

s

)
∇Xω,t,x

s dWs

+

∫ r

0

∇F
(
t− s, ωt−s, Xω,t,x

s

)
∇Xω,t,x

s ds.

From Burkholder-Davis-Gundy’s and Jensen’s and Minkowski’s inequalities it follows
that ∥∥|∇Xω,t,x

r |
∥∥2

2
≤n+ T

1
2

∫ r

0

∥∥|∇F (t− s, ωt−s, Xω,t,x
s

)
∇Xω,t,x

s |
∥∥2

2
ds

+

∫ r

0

∥∥|∇(Dσ)
(
t− s, ωt−s, Xω,t,x

s

)
∇Xω,t,x

s |
∥∥2

2
ds

≤n+ C(κ, T )

∫ r

0

∥∥|∇Xω,t,x
s |

∥∥2

2
ds.

By Gronwall’s inequality, we obtain∥∥|∇Xω,t,x
r |

∥∥
2
≤
√
neC(κ,T )r ≤

√
neC(κ,T )T .

Inserting this inequality into (3.23), we obtain∣∣∇uωt (x)
∣∣ ≤C(κ, T )

(∥∥|∇f(Xω,t,x
t )|

∥∥
2

+
∥∥f(Xω,t,x

t )
∥∥

2

)
.
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This implies∫ ∞
0

[
sup
|z|≥λ
|∇uωt (z)|4

] (
λ4n−1+ε + λn−1

)
dλ

≤C
∫ ∞

0

[
sup
|z|≥λ

(∥∥|∇f(Xω,t,z
t )|

∥∥
2

+
∥∥f(Xω,t,z

t )
∥∥

2

)4
] (
λ4n−1+ε + λn−1

)
dλ

≤C

(∫ ∞
0

[
sup
|z|≥λ

(∫
Rn
|∇f(x)|2pωt (x, z)dx

)2
] (
λ4n−1+ε + λn−1

)
dλ

+

∫ ∞
0

[
sup
|z|≥λ

(∫
Rn
|f(x)|2pωt (x, z)dx

)2
] (
λ4n−1+ε + λn−1

)
dλ

)
:=C(D1 +D2), (3.24)

where pωt (·, ξ) is the probability density of the solution to (2.2) with initial condition
Xω

0 = ξ ∈ Rn. Applying Theorem 3.3 and Jensen’s inequality, we can show that

D1 ≤C
∫ ∞

0

[
sup
|z|≥λ

∫
Rn
|∇f(x)|4 CT

tn2/2
exp

(
−|T

−1
t (θω(t, z)− x)|2

CT

)
dx

]
(
λ4n−1+ε + λn−1

)
dλ. (3.25)

Now that hypothesis (I) implies that∫
Rn
|∇f(x)|4dx ≤

∫ ∞
0

sup
|x|≥λ
|∇f(x)|4λn−1dλ ≤ U (3.26)

and

sup
|x|≥δ
|∇f(x)| ≤ δ−1

∫ δ

0

sup
|x|≥λ
|∇f(x)|dλ ≤ δ−1U, (3.27)

for any δ > 0. Using (3.26) we obtain∫
Rn
|∇f(x)|4 CT

tn2/2
exp

(
−|T

−1
t (θω(t, z)− x)|2

CT

)
dx

=

∫
|x|≤δ
|∇f(x)|4 CT

tn2/2
exp

(
−|T

−1
t (θω(t, z)− x)|2

CT

)
dx

+

∫
|x|>δ
|∇f(x)|4 CT

tn2/2
exp

(
−|T

−1
t (θω(t, z)− x)|2

CT

)
dx

≤ CT
tn2/2

e
(t−(2n−1)∨t−1)δ2

CT U exp

(
−|T

−1
t (θω(t, z))|2

CT

)
+ CT

∫
Rn

1{|θω(t,z)−Tt(y)|>δ}|∇f(θω(t, z)− Tt(y))|4 exp

(
−|y|

2

CT

)
dy,
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where in the second part of the last inequality we perform a change of variable
x→ y = T −1

t (θω(t, z)− x).

By Lemma 3.5, we have that

|θω(t, z)| ≥ (e−κT |z| − κT )1{|z|≥eκT κT}.

This implies that∫ ∞
0

CT
tn2/2

e
(t−(2n−1)∨t−1)δ2

CT U

[
sup
|z|≥λ

exp

(
−|T

−1
t (θω(t, z))|2

CT

)] (
λ4n−1+ε + λn−1

)
dλ

≤ CT
tn2/2

e
(t−(2n−1)∨t−1)δ2

CT U

∫ ∞
eκT κT

exp

(
−(t−2n+1 ∧ t−1)(e−κTλ− κT )2

CT

)
(
λ4n−1+ε + λn−1

)
dλ

+
CT
tn2/2

e
(t−(2n−1)∨t−1)δ2

CT U

∫ eκT κT

0

(
λ4n−1+ε + λn−1

)
dλ ≤ C, (3.28)

for some C depending on n,CT , t0, T, ε, κ and U . Similarly, on the set

{|z| ≥ λ} ∩ {|θω(t, z)− Tt(y)| > δ},
we can deduce that

|θω(t, z)− Tt(y)| ≥ δ ∨ (e−κTλ− κT − |Tt(y)|).
Therefore, it follows from (3.27) that∫ ∞

0

[
sup
|z|≥λ

∫
Rn

1{|θω(t,z)−Tt(y)|>δ}|∇f(θω(t, z)− Tt(y))|4 exp

(
−|y|

2

CT

)
dy

]
(
λ4n−1+ε + λn−1

)
dλ

≤
∫
Rn

∫ ∞
0

[
sup

|z̃|≥δ∨(e−κTλ−κT−|Tt(y)|)
|∇f(z̃)|4

] (
λ4n−1+ε + λn−1

)
e
− |y|

2

CT dλdy

≤
∫
Rn

∫ ∞
0

1{e−κTλ−κT−|Tt(y)|<δ}

[
sup
|z̃|≥δ
|∇f(z̃)|4

] (
λ4n−1+ε + λn−1

)
e
− |y|

2

CT dλdy

+

∫
Rn

∫ ∞
0

1{e−κTλ−κT−|Tt(y)|≥δ}

[
sup

|z̃|≥e−κTλ−κT−|Tt(y)|
|∇f(z̃)|4

]
(
λ4n−1+ε + λn−1

)
e
− |y|

2

CT dλdy

≤δ−1U

∫
Rn

∫ eκT (δ+κT+|Tt(y)|)

0

(
λ4n−1+ε + λn−1

)
dλe

− |y|
2

CT dy + e(4n+ε)κT

∫
Rn

∫ ∞
0

e
− |y|

2

CT

×
[

sup
|z̃|≥τ
|∇f(z̃)|4

] (
|τ + κT + |Tt(y)||4n−1+ε + |τ + κT + |Tt(y)||n−1

)
dτdy

≤C, (3.29)
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where C > 0 depends on n,CT , t0, T, ε, κ, U and δ. Combining (3.25), (3.28) and
(3.29) we see that D1 is bounded. Using a similar argument, we can prove that D2 is
bounded uniformly in t ∈ [t0, T ] and ω ∈ Cb([0, T ];Rn). The proof of this proposition
is then completed. �

Remark 3.13. The main difficulty in the above proof is to show the integrability
over an unbounded domain with respect to λ. After (3.27) we divided the integral
domain into |x| ≤ δ and |x| > δ is for simplicity because even if we use |x| ≤ δ

√
t

and |x| > δ
√
t, we cannot get rid of the t0 in the statement (3.22).

4. Proof of the main results

Now, we are ready to prove Theorems 2.4 and 2.5. In the first subsection we shall
prove the existence and uniqueness of the local solution to PDE (2.7) up to a small
time t0.

4.1. Local solution. In this subsection, we aim to apply the Banach fixed point
theorem to prove a local version of Theorem 2.5 (see Proposition 4.4 for a local
version). First, we need to bound the distance of quantiles by the distance of
distributions. The following lemma is known (see e.g. [18]). We rewrite a short proof
for the sake of completeness.

Lemma 4.1. Let α ∈ (0, 1)n and let K, δ, ε be positive constants. Denote by S the
collection of density functions satisfying (3.18). Then, for any h1, h2 ∈ S,

|Qα(h1)−Qα(h2)| ≤
√
n(2K)−(n−1)δ−1|h1 − h2|L1 . (4.1)

Proof. Since h1, h2 ∈ S, where S is a convex set, we know that for any β ∈ (0, 1),

hβ := βh1 + (1− β)h2 ∈ S
as well. Write ω̂(β) = (ω̂1(β), . . . , ω̂n(β)) = Qα(hβ).

By definition of the quantile, for any j = 1, · · · , n, we have∫ ω̂j(β)

−∞
dxj

∫
Rn−1

hβ(x)
∏
k 6=j

dxk = αj. (4.2)

Differentiating both sides of (4.2) with respect to β yields

ω̂′j(β)

∫
Rn−1

hβ(x)
∏
k 6=j

dxk

∣∣∣∣
xj=ω̂j(β)

+

∫ ω̂j(β)

−∞
dxj

∫
Rn−1

(h1(x)− h2(x))
∏
k 6=j

dxk = 0 .

Thus

ω̂′j(β) = −
[ ∫

Rn−1

hβ(x)
∏
k 6=j

dxk

∣∣∣∣
xj=ω̂j(β)

]−1 ∫ ω̂j(β)

−∞
dxj

∫
Rn−1

(h1(x)− h2(x))
∏
k 6=j

dxk.
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It follows that

|Qj
α(h1)−Qj

α(h2)| = |ω̂j(1)− ω̂j(0)| =
∣∣∣∣ ∫ 1

0

ω̂′j(β)dβ

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

∫ ω̂j(β)

−∞ dxj
∫
Rn−1 (h1(x)− h2(x))

∏
k 6=j dxk∫

Rn−1 hβ(x)
∏

k 6=j dxk
∣∣
xj=ω̂j(β)

dβ

∣∣∣∣
≤ |h1 − h2|L1

∣∣∣∣ ∫ 1

0

[ ∫
Rn−1

hβ(x)
∏
k 6=j

dxk

∣∣∣∣
xj=ω̂j(β)

]−1

dβ

∣∣∣∣. (4.3)

Recall that hβ ∈ S. This implies that max1≤j≤n |ω̂j(β)| ≤ K, and thus by (3.18) we
have ∫

Rn−1

hβ(x)
∏
k 6=j

dxk

∣∣∣∣
xj=ω̂j(β)

≥
∫

[−K,K]n−1

hβ(x)
∏
k 6=j

dxk

∣∣∣∣
xj=ω̂j(β)

≥
∫

[−K,K]n−1

δ
∏
k 6=j

dxk ≥ (2K)n−1δ.

As a consequence, we have

|Qj
α(h1)−Qj

α(h2)| ≤ (2K)−(n−1)δ−1|h1 − h2|L1 ,

for all j = 1, . . . , n, which yields the lemma. �

The next proposition describes the dependence of the solution of (2.3) with respect
to ω. It will be used to bound the distance of distributions of the solutions to (1.5)
by the quantiles.

Proposition 4.2. Let the hypotheses (H1)-(H5) be satisfied. Let u(1) = uω
(1)

and

u(2) = uω
(2)

be the solutions to equation (2.3) corresponding to the continuous
functions ω = ω(1) and ω = ω(2) respectively and with the same initial condition f
satisfying hypothesis (I). Then, the following inequality holds true

sup
s∈[0,t]

|u(1)
s − u(2)

s |L1 ≤ C0

(
t+
√
t
)

sup
s∈[0,t]

|ω(1)
s − ω(2)

s |, ∀ t ∈ [0, T ] , (4.4)

where C0 is a positive constant independent of ω(1), ω(2) and t.

Proof. Recall that the equation (2.3) has a unique solution. Then, by the Feynman-
Kac formula (Theorem 3.10), for i = 1 and 2, we can write

u
(i)
t (x) = E

(
f(X

(i),t,x
t ) exp

(∫ t

0

c(i)
(
t− s,X(i),t,x

s

)
ds

))
,
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where X(i),t,x = Xω(i),t,x is the solution to (3.19) with the initial condition X
(i),t,x
0 = x

and the coefficients

a(i)(t− s, x) = a(t− s, ω(i)
t−s, x), b(i)(t− s, x) = b(t− s, ω(i)

t−s, x),

c(i)(t− s, x) = c(t− s, ω(i)
t−s, x),

for all t ∈ [0, T ] and x ∈ Rn with a, b and c being defined by (2.4)-(2.6) respectively.
Thus, we have∫

Rn
|u(1)
t (x)− u(2)

t (x)|dx

=

∫
Rn

E
[
f(X

(1),t,x
t ) exp

(∫ t

0

c(1)
(
t− s,X(1),t,x

s

)
ds

)
− f(X

(2),t,x
t ) exp

(∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

)]
dx

=

∫
Rn

E
{
f(X

(1),t,x
t )

[
exp

(∫ t

0

c(1)
(
t− s,X(1),t,x

s

)
ds

)
− exp

(∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

)]}
dx

+

∫
Rn

E
[(

f(X
(1),t,x
t )− f(X

(2),t,x
t )

)
exp

(∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

)]
dx

=I1 + I2. (4.5)

Due to hypothesis (H4), we know that the function c is uniformly bounded on
[0, T ] × Rn × Rn by 2κ, and Lipschitz continuous. Then, the first term of (4.5) is
bounded by using the mean value theorem as follows:

I1 =

∫
Rn

E
[
f(X

(1),t,x
t )

(
exp

(∫ t

0

c(1)
(
t− s,X(1),t,x

s

)
ds

)
− exp

(∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

))]
dx

≤e2κT

∫
Rn

E
[
f(X

(1),t,x
t )

(∫ t

0

c(1)
(
t− s,X(1),t,x

s

)
ds−

∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

)]
dx

=e2κT

∫
Rn

E
[
f(X

(1),t,x
t )

(∫ t

0

c
(
t− s, ω(1)

t−s, X
(1),t,x
s

)
− c

(
t− s, ω(1)

t−s, X
(2),t,x
s

)
ds

)]
dx

+ e2κT

∫
Rn

E
[
f(X

(1),t,x
t )

(∫ t

0

c
(
t− s, ω(1)

t−s, X
(2),t,x
s

)
− c

(
t− s, ω(2)

t−s, X
(2),t,x
s

)
ds

)]
dx

≤cκ,T
∫ t

0

|ω(1)
t−s − ω

(2)
t−s|ds

∫
Rn

E[f(X
(1),t,x
t )]dx

+ cκ,T

∫
Rn

E
[
f(X

(1),t,x
t )

∫ t

0

|X(1),t,x
s −X(2),t,x

s |ds
]
dx

=cκ,T (I11 + I12) , (4.6)
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where cκ,T is a positive constant depending on κ and T . For i = 1, 2, denote by

p
(i)
t (·, x) the probability density of X

(i)
t and write θ(i) = θω

(i)
the solution to (3.4)

with ω = ω(i). Then, by Theorem 3.3 and Corollary 3.6, we have

∫
Rn

E[f(X
(1),t,x
t )]dx =

∫
R2n

f(y)p
(1)
t (y, x)dydx

≤ CT

∫
R2n

f(y)t−n
2/2 exp

−C−1
T

n∑
i=1

(
θ

(1)
i (t, x)− yi

ti−
1
2

)2
 dxdy

≤ CT

∫
R2n

f(y) exp
(
−C−1

T |z|
2
)

det
(
∇(θ(1))−1 (t, y − Tt(z))

)
dzdy

≤ CT e
nκT

∫
Rn
f(y)dy

∫
Rn

exp
(
−C−1

T |z|
2
)
dz

≤ CT e
nκT (CTπ)

n
2 . (4.7)

Hence,

I11 ≤C1t sup
s∈[0,t]

|ω(1)
s − ω(2)

s |, (4.8)

for some positive constant C1 independent of ω(1), ω(2) and t. On the other hand,
for any p ≥ 1, we can deduce that, for some constant cn,p > 0 depending on n and p,

E
∣∣X(1),t,x

t −X(2),t,x
t

∣∣2p
≤ cn,p

[ n∑
i=1

E
(∫ t

0

(
Fi(t− s, ω(1)

t−s, X
(1),t,x
s )− Fi(t− s, ω(2)

t−s, X
(2),t,x
s )

)
ds

)2p

+ E
(∫ t

0

(
σ(t− s, ω(1)

t−s, X
(1),t,x
s )− σ(t− s, ω(2)

t−s, X
(2),t,x
s )

)
dWs

)2p ]
. (4.9)
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By hypothesis (H1) and the Burkholder-Davis-Gundy and Jensen’s inequalities, we
have

E
∣∣X(1),t,x

t −X(2),t,x
t

∣∣2p
≤ cn,pκ

[
t2p−1

(∫ t

0

|ω(1)
t−s − ω

(2)
t−s|2pds+

∫ t

0

E|X(1),t,x
s −X(2),t,x

s |2pds
)

+ E
(∫ t

0

(
|ω(1)
t−s − ω

(2)
t−s|+ |X(1),t,x

s −X(2),t,x
s |

)2

ds

)p ]
≤ cn,p,κ

[
t2p−1

(∫ t

0

|ω(1)
t−s − ω

(2)
t−s|2pds+

∫ t

0

E|X(1),t,x
s −X(2),t,x

s |2pds
)

+ tp−1

∫ t

0

|ω(1)
t−s − ω

(2)
t−s|2pds+ tp−1

∫ t

0

E|X(1),t,x
s −X(2),t,x

s |2pds
]

≤ cn,p,κ(t
p + t2p) sup

s∈[0,t]

|ω(1)
t−s − ω

(2)
t−s|2p + cn,p,κ(t

2p−1 + tp−1)

∫ t

0

E|X(1),t,x
s −X(2),t,x

s |2pds.

An application of Gronwall’s inequality yields that

E
∣∣X(1),t,x

t −X(2),t,x
t

∣∣2p ≤ cn,p,κ(t
p + t2p)ecn,p,κ(T 2p+T p) sup

s∈[0,t]

|ω(1)
s − ω(2)

s |2p. (4.10)

By Fubini’s theorem, Hölder’s inequality and (4.10), we get that

I12 =

∫ t

0

∫
Rn

E
[
f(X

(1),t,x
t )|X(1),t,x

s −X(2),t,x
s |

]
dxds

≤
∫ t

0

∫
Rn
‖f(X

(1),t,x
t )‖2

∥∥|X(1),t,x
s −X(2),t,x

s |
∥∥

2
dxds

≤ cn,p,T sup
s∈[0,t]

|ω(1)
s − ω(2)

s |
∫ t

0

∫
Rn
‖f(X

(1),t,x
t )‖2dxds, (4.11)

for some positive constant cn,p,T depending on n, p and T . Notice that by Theorem
3.3, Corollary 3.6 and Cauchy-Schwarz’s inequality, we can deduce that∫
Rn
‖f(X

(1),t,x
t )‖2dx =

∫
Rn

(∫
Rn
f(y)2p

(1)
t (y, x)dy

) 1
2

dx

≤
√
CT

tn2/4

∫
Rn

(∫
Rn
|f(y)|2 exp

(
C−1
T |T

−1
t (θ(1)(t, x)− y)|2

)
dy

) 1
2

dx

≤
√
CT

tn2/4

(∫
R2n

|f(y)|2 exp
(
C−1
T |T

−1
t (θ(1)(t, x)− y)|2

) (
|θ(1)(t, x)|

n+ε
2 ∨ 1

)2

dydx

) 1
2

×
(∫

Rn

(
|θ(1)(t, h)|

n+ε
2 ∨ 1

)−2

dh

) 1
2

.
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By changing of variables x→ z = T −1
t (θ(1)(t, x)− y) and h→ l = θ(1)(t, h), we can

write∫
Rn
‖f(X

(1),t,x
t )‖2dx

≤
√
CT

[ ∫
R2n

det
(
∇
(
θ(1)
)−1

(t, y + Tt(z))
)
|f(y)|2e−

|z|2
CT

(
|Ttz + y|n+ε ∨ 1

)
dzdy

] 1
2

×
[∫

Rn
det
(
∇
(
θ(1)
)−1

(t, l)
) (
|l|−(n+ε) ∨ 1

)
dl

] 1
2

≤cn,ε,T
√
CT e

nκT

(∫
R2n

f(y)2 exp
(
−C−1

T |z|
2
) (
|z|n+ε + |y|n+ε + 1

)
dzdy

) 1
2

×
[∫

Rn

(
|l|−(n+ε) ∨ 1

)
dl

] 1
2

. (4.12)

Recall that f > 0 is a probability density satisfying hypothesis (I). (4.12) tells us
that ∫

Rn
‖f(X

(1),t,x
t )‖2dx ≤ C, ∀t ∈ [0, T ], (4.13)

where C > 0 depends on CT , n, p, κ, ε, T and U . Combining inequalities (4.11) and
(4.13), we finally obtain

I12 ≤ C1t sup
s∈[0,t]

|ω(1)
s − ω(2)

s |, (4.14)

for some C1 independent of ω(1), ω(2) and t.

In the next step, we estimate the term I2 in (4.5). By Cauchy-Schwarz’s inequality
and the fact that c is uniformly bounded, we can write

I2 ≤
∫
Rn
‖f(X

(1),t,x
t )− f(X

(2),t,x
t )‖2

∥∥∥∥ exp

(∫ t

0

c(2)
(
t− s,X(2),t,x

s

)
ds

)∥∥∥∥
2

dx

≤ e2κT

∫
Rn
‖f(X

(1),t,x
t )− f(X

(2),t,x
t )‖2dx. (4.15)

To bound the above integral, we first claim the following version of the mean value
theorem. For any x, y ∈ Rn, the following inequality holds true:

|f(x)− f(y)| ≤ 2 sup
|x|∧|y|≤|z|≤|x|∨|y|

|∇f(z)||x− y|. (4.16)
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Before proceeding with the proof of (4.16), let us make a brief remark for this
inequality. Typically, by applying the first order Taylor expansion, one gets

|f(x)− f(y)| ≤
∫ 1

0

|∇f(λx+ (1− λ)y)||x− y|dλ

≤ sup
λ∈[0,1]

|∇f(λx+ (1− λ)y)||x− y|. (4.17)

This estimate is not sharp enough compared with (4.16). For example, consider a
situation that ∇f decrease to 0 at infinity, e.g. f(x) = exp(−|x|2). Then, in case
both x and y are far away from 0, the quantity sup|x|∧|y|≤|z|≤|x|∨|y| |∇f(z)| in (4.16) is
very small. But in (4.17), one can only tell supλ∈[0,1] |∇f(λx+ (1− λ)y)| is bounded
by a fixed constant, since the segment {λx+ (1− λ)y : λ ∈ [0, 1]} may be closed to 0
even if |x| ∧ |y| � 0. As in (4.15), we need to integrate with respect to x. Thus, the
bound (4.16) and Condition (I) are applied for obtaining the desired result.

To establish (4.16), we consider a plane P such that 0, x, y ∈ P. Without loss
of generality, suppose that |x| ≤ |y|. Let x′ be the intersection of the straight line
connecting 0 and y, and the circle O centered at 0 with radius |x|. Applying the
fundamental theorem of calculus to the path integral of ∇f along the (shorter) arc
x→ x′ on O, and then along the straight line x′ → y, we obtain immediately,

|f(x)− f(y)| ≤ sup
|x|≤|z|≤|y|

|∇f(z)|(|x̃x′|+ |y − x′|) , (4.18)

where x̃x′ denotes the arc length. Since the angle between the ray x′y and the line
x′x is greater than or equal to π/2, we see that both x̃x′ and |y − x| are less than or
equal to |y− x|. Thus, inequality (4.16) follows immediately from (4.18). It is worth
noticing that we do not apply the mean value theorem on the straight line x→ y.
Since if so, we have |f(x)−f(y)| ≤ |∇f(ξ)||x−y|, where the point ξ = t0x+(1− t0)y
for some t0 ∈ [0, 1]. We can have |ξ| ≤ |x| ∨ |y|. However, we cannot guarantee
|ξ| ≥ |x| ∧ |y|, which is critical in the following immediate application.

Using (4.16) and Cauchy-Schwarz’s inequality, we can write

‖f(X
(1),t,x
t )− f(X

(2),t,x
t )‖2

≤
∥∥g(|X(1),t,x

t | ∧ |X(2),t,x
t |

)∥∥
4

∥∥X(1),t,x
t −X(2),t,x

t

∥∥
4
, (4.19)

where g : R+ → R is given by

g(λ) := sup{|∇f(z)| : |z| ≥ λ}, ∀λ ≥ 0.

Notice that g(λ1 ∧ λ2) ≤ g(λ1) + g(λ2) for all λ1, λ2 ≥ 0. It follows that∫
Rn

∥∥g(X(1),t,x
t ∧X(2),t,x

t

)∥∥
4
dx

≤
∫
Rn

∥∥g(X(1),t,x
t

)∥∥
4
dx+

∫
Rn

∥∥g(X(2),t,x
t

)∥∥
4
dx. (4.20)
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Therefore, proceeding with a similar argument to that in (4.12) and (4.13) and
recalling hypothesis (I), we deduce that∫

Rn
‖g(X

(1),t,x
t )‖4dx

≤
√
CT

tn2/4

(∫
R2n

|g(|y|)|4 exp
(
C−1
T |T

−1
t (θ(1)(t, x)− y)|2

) (
|θ(1)(t, x)|

3(n+ε)
4 ∨ 1

)4

dydx

) 1
4

×
(∫

Rn

(
|θ(1)(t, x)|

3(n+ε)
4 ∨ 1

)− 4
3
dx

) 3
4

≤cn,ε
√
CT e

nκT

(∫
R2n

|g(|y|)|4 exp
(
−C−1

T |z|
2
) (
|z|3(n+ε) + |y|3(n+ε) + 1

)
dzdy

) 1
2

×
[∫

Rn

(
|z|−(n+ε) ∧ 1

)
dz

] 1
2

≤ C, (4.21)

for some constant C > 0 depending on CT , n, p, κ, ε and U . Combining inequalities
(4.10), (4.15), (4.19) - (4.21), we get

I2 ≤ C2

√
t+ t2 sup

s∈[0,t]

|ω(1)
s − ω(2)

s |. (4.22)

Therefore, inequality (4.4) follows by inserting inequalities (4.8), (4.14) and (4.22)
into (4.5). As we can see from (4.13) and (4.21), the constant C0 appearing in
inequality (4.4) depends on the initial condition through U. �

Remark 4.3. In formulation (4.15), the function c(2)(t − s,X
(2),t,x
s ) is bounded

because of the hypothesis (H4). This means that the integrability in x has to be

guaranteed by that of the term ‖f(X
(1),t,x
t )− f(X

(2),t,x
t )‖2. This is the reason that

we assume the integrability hypothesis (I) on ∇f .

Proposition 4.4. Assume that the conditions in Theorem 2.5 hold true. Then, there
exists t0 > 0 such that (2.7) with initial condition f has a unique solution on the
interval [0, t0].

Proof. For any continuous function ω ∈ C([0, T ],Rn) by a similar argument to that
in Proposition 4.2, we have that

lim
s→t
|uωt − uωs |L1 = 0.

Then, it follow from (4.1) that

lim
s→t
|Qα(uωt )−Qα(uωs )| ≤ lim

s→t

√
nK1−nδ−1|uωt − uωs |L1 = 0.

In other words, Qα(uωt ) is a continuous function in t.

We shall use the Banach fixed point theorem to prove the proposition. Fix a t0 > 0
satisfying the condition given by (4.28) below. Let C([0, t0],Rn) be the Banach
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space of all continuous functions with the sup norm. For any ω ∈ C([0, t0],Rn), let
uω : [0, t0]× Rn be the (unique) solution to (2.3) associated with ω. Define

B = {(ω, uω), ω ∈ C([0, t0],Rn)} ⊆ C([0, t0],Rn)⊕ C([0, t0], L1(Rd)) (4.23)

with the norm

‖(ω, uω)‖B = sup
0≤t≤t0

|ω(t)|+ sup
0≤t≤t0

|uωt |L1 . (4.24)

We claim that B is a closed set of the Banach space C([0, t0],Rn)⊕C([0, t0], L1(Rd)).

In fact, if (ω(n), uω
(n)

) ∈ B converges to (ω, v) ∈ C([0, t0],Rn)⊕C([0, t0], L1(Rd)), then

ω(n) → ω in C([0, t0],Rn) and uω
(n) → v in C([0, t0], L1(Rd)). Thus, ω ∈ C([0, t0],Rn).

Solving (2.3) associated with ω, we obtain uω ∈ C([0, t0], L1(Rd)). By (4.4), we know

that uω
(n) → uω in C([0, t0], L1(Rd)). This implies that v = uω. In other word, B is

closed and hence it is also a Banach space.

Fix α = (α1, · · · , αn) ∈ Rn. Let K, δ, ε > 0 be defined in (3.15)-(3.17). Now, we
define a mapping M : B→ B as follows

M(ω, uω) = (M1(ω, uω),M2(ω, uω)) , (4.25)

where (ω, uω) ∈ B and {
M1(ω, uω) = Qα(uω· ) ,

M2(ω, uω) = uQα(uω· ) .

Let ω(1) and ω(2) be continuous functions on [0, t0] with values in Rn, and let u(1)

and u(2) be the solutions to equation (1.5) associated with ω = ω(1) and ω = ω(2)

respectively, and with the same initial condition f . Lemma 4.1 and Proposition 4.2
imply that

sup
0≤t≤t0

|Qα(uω
(1)

t )−Qα(uω
(2)

t )| ≤C0

√
n(2K)1−nδ−1

(
t0 +
√
t0
)

sup
t∈[0,t0]

|ω(1)
t − ω

(2)
t |

(4.26)

and

sup
0≤t≤t0

|uQα(uω
(1)
· )

t − uQα(uω
(2)
· )

t |L1

≤C0

(
t0 +
√
t0
)

sup
s∈[0,t0]

|Qα(uω
(1)

s )−Qα(uω
(2)

s )|

≤C0

√
n(2K)1−nδ−1

(
t0 +
√
t0
)

sup
t∈[0,t0]

|uω(1)

t − uω(2)

t |L1 . (4.27)

Choose t0 > 0 such that

C0

√
n(2K)1−nδ−1

(
t0 +
√
t0
)

= L < 1 . (4.28)

Then, from (4.26)-(4.27) it follows that the mapping M defined by (4.25) is a
contraction map on B. It has then a fixed point (ω, uω) ∈ B. By our construction,
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we see that uω satisfies (2.3) with ω = Qα(uωt ). This means that u = uω satisfies
(2.7).

To show the uniqueness, we assume v is another solution to (2.7). Letting
ω′ = Qα(v) = {Qα(vs)|s ∈ [0, t0]}, replacing Qα(v) by ω′ in (2.7), we see that v is
also a solution of (2.3) with ω′. Thus, (ω′, v) is a fixed point ofM. By the uniqueness
of the fixed point of map M, we complete the proof of the proposition. �

4.2. Global solution and proof of main result. In the previous subsection, we
proved that (2.7) has a unique solution u on [0, t0] when t0 is small enough. A natural
question is whether this solution can be uniquely extended to any time interval. A
positive answer is given in this subsection by using Proposition 3.12.

Proof of Theorem 2.5. By Proposition 4.4, there exists t0, such that (2.7) has a
unique solution on [0, t0]. Consider (2.7) with t ≥ t0 and with initial condition
f = ut0 . Proposition 3.12 can be applied to find that there exists t1 > 0 depending
on the initial condition f = ut0 only through U ′ given by (3.22) such that equation
(2.7) has a unique solution on [t0, t0 + t1]. Notice that U ′ is independent of t ∈ [t0, T ].
This allows us to extend the solution of (2.7) repeatedly to the interval [0, t0 + nt1]
until time t0 + nt1 ≥ T . In other words, (2.7) has a unique solution on the whole
time interval [0, T ]. �

Proof of Theorem 2.4. Under the hypotheses (H1)-(H5) and (I), the Theorem 2.5
implies that the α-quantile of any weak solution to SDE (1.5) is the same function
on [0, T ]. Therefore, the existence of a unique strong solution of SDE (1.5) is a
straightforward result of Theorem 3.2. �
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