
RESIDUAL AND STRATIFIED BRANCHING PARTICLE FILTERS

BY MICHAEL A. KOURITZIN

University of Alberta

Abstract. A class of discrete-time branching particle filters is introduced with
individual resampling: If there are Nn particles alive at time n, N0 = N , an ≤
1 ≤ bn, L̂i

n+1 is the current unnormalized importance weight for particle i and

An+1 = 1
N

Nn∑
i=1

L̂i
n+1, then weight is preserved when L̂i

n+1 ∈ (anAn+1, bnAn+1).

Otherwise,

⌊
L̂i
n+1

An+1

⌋
+ρin offspring are produced and assigned weight An+1, where ρin

is a Bernoulli of parameter
L̂i
n+1

An+1
−
⌊

L̂i
n+1

An+1

⌋
. The algorithms are shown to be stable

with respect to the number of particles and perform better than the bootstrap
algorithm as well as other popular resampled particle filters on both tracking
problems considered here. Moreover, the new branching filters run significantly
faster than these other particle filters on tracking and Bayesian model selection
problems.

1. Introduction

Nonlinear filtering deals with determining the distribution of the current state of
a non-observable, random, dynamic signal X given the history of a distorted, cor-
rupted partial observation process Y living on the same probability space (Ω,F , P)
as X. Bayesian model selection, sometimes done while filtering, deals with deter-
mining which of a class of signal models {X(i)}i∈I best fits the observed values of Y
by pairwise Bayes’ factor comparison. For many practical problems each potential
signal is a time-homogeneous discrete-time Markov process {Xn, n = 0, 1, 2, ...},
living on some complete, separable metric space (E, ρ), with initial distribution π0
and transition probability kernel K. The observation process takes the form (Y0 = 0
and) Yn = h (Xn−1) +Vn for n ∈ N, where {Vn}∞n=1 are independent random vectors
with common strictly positive, bounded density g that are independent of X, and the
sensor function h is a mapping from E to Rd. Then, the objective of filtering is to
compute the conditional probabilities πn (A) = P

(
Xn ∈ A

∣∣FYn), n = 1, 2, ..., for all

Borel sets A or, equivalently, the conditional expectations πn (f) = EP
(
f (Xn)

∣∣FYn)
2010 Mathematics Subject Classification. Primary 60G35; Secondary 62M20, 60G09, 60J80.
Key words and phrases. Particle Filter, Branching Process, Bayesian Model Selection.
Correspondence to: Department of Mathematical and Statistical Sciences, University of Alberta,

Edmonton (Alberta), Canada T6G 2G1. Email address: michaelk@ualberta.ca.
1

2 M. KOURITZIN

for bounded functions f : E → R, where FYn
.
= B{Yl, l = 1, ..., n} is the in-

formation obtained (meaning the σ-algebra generated) from the back observations
{Yl, l = 1, ..., n}. The objective of Bayes factor model selection is to compare the
ratio B12

n of marginal likelihoods between potential signal models X(1) and X(2) with
respect to some reference probability measure Q.

To do both filtering and model selection, a reference probability measure Q is
introduced under which the signal, observation process {(Xn, Yn+1), n = 0, 1, ...}
has the same distribution as the signal, noise process {(Xn, Vn+1), n = 0, 1, ...} does
under P . Hence, the observations are i.i.d. random vectors with strictly positive
bounded density g and are independent of X under measure Q. All the observation
information is absorbed into the likelihood process {Ln, n = 1, 2, ...} transforming
Q back to P , which in our case has the form

dP

dQ

∣∣∣
FX
∞∨FY

n

= Ln =
n∏
j=1

αj(Xj−1), with αj(x) =
g (Yj − h (x))

g (Yj)
, (1.1)

so Ln = αn(Xn−1)Ln−1 and L0 = 1. (Here and in the sequel, FXn = B(Xj, j ≤ n)
and FX∞ = B(Xj, j ≥ 0) are the σ-algebras generated by {Xj, 0 ≤ j ≤ n} and
Xj, j ≥ 0 respectively.) The following (well-known) discrete Girsanov’s theorem
constructs the real probability P from the reference Q.

Theorem 1. Suppose that Ω = (E ×Rd)∞, F = B((E ×Rd)∞), {Xn, n = 0, 1, ...}
and {Yn, n = 1, 2, ...} are independent processes on (Ω,F , Q), the {Yn} are i.i.d.
with strictly-positive, bounded density g on Rd and Vn

.
= Yn − h(Xn−1) for all n =

1, 2, ... Then, there exists a probability measure P such that (1.1) holds, {Vn, n =
1, 2, ...} are i.i.d. on (Ω,F , P) with density g and {Xn} is independent of {Vn} with
the same law as on (Ω,F , Q).

The unnormalized filters are then

σn (f) = EQ
(
Lnf (Xn)

∣∣FYn) , (1.2)

so σ0 = π0, as L0 = 1 and FY0 = {∅,Ω} and the filter satisfies πn (f) = σn(f)
σn(1)

by Bayes rule. Moreover, the Bayes factor satisfies B12
n = σ

(1)
n (1)

σ
(2)
n (1)

, where σ
(i)
n (f) =

EQ

(
L
(i)
n f

(
X

(i)
n

) ∣∣∣∣FYn), with L
(i)
n =

n∏
j=1

αj(X
(i)
j−1), is the unnormalized filter for sig-

nal model X(i). Therefore, we can combine Bayesian model selection and filtering
(for each potential signal) by constructing approximations (denoted SNn below) to
the unnormalized filter for each candidate signal model. As words of caution, our
setting is certainly not the most general possible for our unnormalized and branch-
ing particle filter approach as we do not want to over complicate the setting and
conditions while introducing new methods. Indeed, it is anticipated that with some
work other observation models can be used and some form of Lookahead Sequential
Monte Carlo strategy related to those considered in Lin et. al. (2013) could be

BRANCHING PARTICLE FILTERS 3

developed based upon our branching particle algorithms. However, there are also in-
teresting situations like rare event importance sampling (see Le Gland and Oudjane
(2006)) that appear ill-suited for our approach, even with a more general setting.

1.1. Background. Particle filters are utilized widely and the original (resampled)
interacting particle filters have been intensely studied (see e.g. Del Moral and Miclo
(2000) and Cappe et. al. (2007) for an overview and historical account). However,
particle filters performance depends heavily upon at least two factors:

• The importance density proposals used for sampling, and
• The resampling method used,

with both being active areas of investigation and the later claim being justified
in e.g. Del Moral et. al. (2000), Douc et. al. (2005) and Hol et. al. (2006).
Moreover, resampling is the most difficult and critical step to parallelization as is
pointed out in Murray et. al. (2016) so effective replacement by branching may be
even more valuable in parallel implementations. Furthermore, resampled particle
filters approximate the actual filter πn so prior filter estimates must be stored to
perform Bayes factor model selection. On the other hand, the weighted particle
filter (credited to Handschin (1970), Handschin and Mayne (1969)) approximates
the unnormalized particle filter σn, is the most basic particle filter and is embarass-
ingly computer parallelizable. More generally, branching particle filters, like those
introduced by Crisan and Lyons (1997), can have model selection capabilities, ef-
fective resampling and be highly parallelizable. However, branching particle filters
suffer from dramatic particle swings and difficult analysis - or do they? Herein, we
introduce and analyze branching particle filters that avoid the weighted-particle-
filter particle spread problems yet still have immediate model selection capabilities.
They include the weighted particle filter as the extreme zero-resampling case and
a branching variation of the better algorithm in Del Moral et. al. (2000) as the
fully-resampled case. They are stable with respect to particle number swings and
can be analyzed using exchangeability (in lieu of independence). In order to focus
just on our branching scheme, we ignore possible (large, problem-dependent) gains
attainable by using alternative importance sampling density proposals and stick to
sampling from the signal dynamics.

There are many approaches to reducing resampling noise in the basic bootstrap
filter. For example, researchers brought in importance sampling and delayed bulk
resampling methods (see e.g. Del Moral et. al. (2012)). Others have introduced less
noisy types of resampling, which we discuss below. However, there are few studies
like Ballantyne et. al. (2000) of the practical partially-resampled algorithms where
decisions are made on a particle-by-particle basis with the aim of only removing the
poor particles and splitting the best particles (in an unbiased manner). Kouritzin
and Sun (2005) do obtain L2-rates of convergence for a partially-resampled algo-
rithm in a specific setting. Our present work introduces new classes of branching
particle filters, motivates their use and sets up a framework for studying them. We
refer the reader to standard texts Bain and Crisan (2008) and Del Moral (2004)

4 M. KOURITZIN

for motivation and theoretical background of particle filters as well as filtering in
general.

The first, and still popular, model selection procedures in particle filters used
prediction error methods (see e.g. Djurić (1999)). Our methods are Bayes factor
based, motivated by Kass and Raftery (1995), and used in Kouritzin and Zeng
(2005a), Kouritzin and Zeng (2005b) and Kouritzin (2015). As is shown in these
later papers, one merely needs the unnormalized filters or filter ratio processes to
employ these methods. Therefore, our branching particle approximations of the un-
normalized filter are most appropriate. Although not considered here, particle filters
and, more generally, particle integration techniques as discussed in Del Moral et.
al. (2013) are also important in applied probability, Bayesian statistics, numerical
physics, probabilistic machine learning, and engineering sciences (see e.g. Andrieu
et. al. (2014), Andrieu et. al. (2010), Del Moral et. al. (2013)).

1.2. Motivation. Our goal now is to motivate the use of our novel branching par-
ticle filters so we summarize the results that will be presented differently in Section
4. First we compare existing methods to one of the methods introduced herein.

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Execution Time (s)

E
rr

o
r

(m
)

Bootstrap

Residual Resampling

Stratified Resampling

Systematic Resampling

Combined Resampling

Minimum Variance

Combined Branching

Figure 1. Average Error of Test Model

Figure 1 displays error versus execution time in meters per second on one of the
problems considered herein. The bootstrap, residual, stratified, systematic, com-
bined and minimum variance algorithms displayed here are all standard resampled
particle filters used in practice and re-explained within. The Combined Branching
method is one of the simpler algorithms introduced herein. There are still two algo-
rithms introduced below that significantly outperform this new Combined Branch-
ing one but are modestly more complicated. One can see that original bootstrap
algorithm behaves poorly compared to the other standard resampled algorithms.

BRANCHING PARTICLE FILTERS 5

However, it may be surprising how much better one can do yet using the algo-
rithms introduced within, which merely change the amount and type of resampling
or branching used. We will step through our novel residual, combined, dynamic and
effective branching particle algorithms that give a nice tradeoff between simplicity
and performance.

44.5

45

45.5

46

46.5

47

500 2000 10000 50000

Particle Number

A
v

e
ra

g
e

E
rr

o
r

(m
)

Residual Branching

Combined Branching

Dynamic Branching

Effective Particle

Figure 2. Average Error of Range Only Model

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

500 2000 10000 50000

Particle Number

A
v

e
ra

g
e

 E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Residual Branching

Combined Branching

Dynamic Branching

Effective Particle

Figure 3. Average Execution Time of Range Only Model

Figures 2 and 3 display our new methods on a second model considered herein.
The residual branching particle filter is the simplest, followed by the combined. It
is not obvious which of the dynamic or effective particle methods one should choose
as the execution time is slightly less for the dynamic. This is discussed in Section 4.

6 M. KOURITZIN

1.3. Notation. We use standard notation where possible:

bzc is the largest integer less than z ≥ 0 and {z} = z − bzc.

y ∨ z =

{
y if y > z
z if y ≤ z

is the larger value.

G ∨ H is the smallest σ-algebra containing both G,H when they are σ-algebras.

∀ stands for all (what follows).
..= is used for pseudocode assignment.

U ∼ F is used for creation of random variable U with distribution F .

B(S) is the Borel σ-algebra on topological space S.

B({Za, a ∈ A}) is the σ-algebra generated by the random variables {Za, a ∈ A}.
P is the real world probability measure with EP denoting expectation with P .

Q (with expectation EQ) is the reference probability with pure noise observations.

σ is the unnormalized filter constructed with respect to reference measure Q.

QY (·) = Q(·
∣∣FY∞) so QY (A) = Q(A

∣∣FYn) a.s. for A ∈ FX∞∨FYn since the observations
are i.i.d. and independent of the signal and particles under Q.

1.4. Computer Specifications. All experiments are performed on the same com-
puter system, consisting of a Lenovo Y410P Laptop with a 4th generation Intel Core
i7-4700MQ processor, 8GB PC3-12800 DDR3L SDRAM 1600 MHz memory, 1TB
5400 RPM hard disk, Windows 8.1 64 bit operating system and the C++ compiler
from Visual Studio 2015.

1.5. Layout. In the next section, we discuss resampled (Bootstrap-related) parti-
cle filters for tracking and model selection problems. In particular, multinomial,
residual, stratified, systematic, combined residual-stratified and minimum variance
schemes are considered. Our class of branching particle filters is introduced and
studied in Section 3. The common complaints of unstable particle numbers as well
as unpredictable results and speed of branching filters are largely overcome. We
also give variants/improvements that use stratified and state-dependent branching.
Indeed, it is shown in Section 4 that our most basic branching algorithm can be
significantly faster and more accurate at tracking than all the bootstrap variant
algorithms considered here. We then study improved branching algorithms that
give yet better performance or require less computation time. The resampling and
branching operations required for the various algorithms have been tabulated and are
included in the online Supplemntary Materials (see Appendix A). Finally, the proof
of our stability result, establishing boundedness of particle numbers and weights,
has also been relegated to the online Supplemntary Materials (see Appendix B).

2. Resampled Particle Filters

In this section, we review the resampled particle filters, starting with the original
bootstrap algorithm of Gordon et. al. (1993), but also including: Residual resampling

BRANCHING PARTICLE FILTERS 7

of Liu and Chen (1998), Stratified resampling of Kitagawa (1996), Combined
Residual-Stratified resampling discussed in Douc et. al. (2005), Minimum Variance
resampling of Crisan (2001) and Systematic resampling of Carpenter et. al. (1999).
1 These algorithms overcome the increasing variance weight problem of the weighted
filter pointed out in Doucet et. al. (2000), only require O(N) in operations for N
particles due to a clever idea of Carpenter et. al. (1999) and were shown to be
unbiased in Douc et. al. (2005). We also explain how to use these algorithms in
model selection problems.

2.1. Basic Bootstrap Algorithm. The bootstrap particle filter was a breakthrough
in sequential data estimation and its convergence properties have been studied in
e.g. Del Moral and Miclo (2000). However, it has limitations in terms of model
selection, parallelizability, performance and speed. For clarity, we summarize the
algorithm:

Initialize:
{
Xk

0

}N
k=1

are independent initial particle samples of π0, VN+1 = 1

Repeat: for n ..= 0, 1, 2, ... do

(1) Weight by Observation: L̂kn+1
..= αn+1

(
Xk
n

)
for k ..= 1, 2, ..., N

(2) Normalize Weight: wkn+1
..=

L̂k
n+1

L̂n+1
for k ..= 1, 2, ..., N , where L̂n+1

..=
N∑
i=1

L̂in+1

(3) Evolve Independently:

P (X̂k
n+1 ∈ Γk ∀ k|FX

n ∨ FYn) ..=
N∏
k=1

K(Xk
n,Γk) ∀Γk

(4) Estimate πn+1 by: PNn+1
..=

N∑
k=1

wkn+1δX̂k
n+1

.

(5) Resample: pi ..=
i∑

k=1

wkn+1 for i ..= 1, ..., N , j ..= N − 1

Repeat: for k ..= N,N − 1, ..., 2, 1 do

• Draw [0, 1]-uniform Uk and set Vk ..= U
1
k
k Vk+1

• While Vk ≤ pj set j ..= j − 1

• Set Xk
n+1

..= X̂j+1
n+1

Remark 1. There are a few things to note about our version of the bootstrap algo-
rithm:

(1) Our use of the Carpenter et. al. (1999) improvement dramatically improves
the efficiency of this algorithm as well as the Residual to follow.

(2) We extract our estimate before resampling to avoid excess noise.

1Some real-time applications are not conducive to sudden switches to slow times so we limit
ourselves to procedures where the resampling is essentially evenly spread out over time.

8 M. KOURITZIN

(3) We have called our algorithm Basic Bootstrap here because many authors
see (e.g. Murray et. al. (2016)) use the Bootstrap algorithm to refer to any
algorithm that samples from the signal dynamics and weights by the likeli-
hood. We will not follow this nomenclature because it would mean all our
resampled methods would be labeled the bootstrap algorithm. Instead, we will
follow the alternative terminology, drop the Basic from the Bootstrap Algo-
rithm henceforth and label the other algorithms by their resampling method,
which is what is important to us.

(4) The conditioning in Step (3) is with respect to the back observations as well
as all particles after the previous resampling step.

The multinomial resampling introduces excess noise that degrades performance.

2.2. Residual Resampling. Liu and Chen (1998) introduced residual resampling
to reduce resampling noise in the bootstrap filter. The idea is to keep particles
at the higher-weight sites (those with weight above the average) so fewer particles
are redistributed and less resampling noise is introduced, reducing the number of
uniform random variables used from N to some random R defined below.

The bootstrap algorithm is modified by replacing step (5) by the following:

(5) Preserve: S ..= 0

Repeat: for j ..= 1, 2, ..., N do
– k ..= 0
– While k < bNwjn+1c set k ..= k + 1, XS+k

n+1
..= X̂j

n+1

– S ..= S + k

(6) Resample: R ..= N − S; pi
..=

i∑
k=1

{Nwk
n+1}
R

for i ..= 1, ..., N ; j ..= N − 1

Repeat: for k ..= N,N − 1, ..., 2, S + 1 do

– Draw [0, 1]-uniform Uk and set Vk ..= U
1
k
k Vk+1

– While Vk ≤ pj set j ..= j − 1

– Set Xk
n+1

..= X̂j+1
n+1

The reduced resampling noise results in improved performance and speed.

2.3. Stratified Resampling. Kitagawa (1996) reduced the randomness in the
(bootstrap) uniform random variables to an interval of length 1

N
and avoided the

need for ordering the uniforms. The bootstrap algorithm, given above, is easily
modified for this improvement by replacing Step (5) with:

(5) Resample: pi ..=
i∑

k=1

wkn+1 for i ..= 1, ..., N , j ..= 1

Repeat: for k ..= 1, 2, ..., N do
– Draw

[
k−1
N
, k
N

]
-uniform Uk

– While Uk ≥ pj set j ..= j + 1

– Set Xk
n+1

..= X̂j
n+1

BRANCHING PARTICLE FILTERS 9

Each uniform above has variance 1
12N2 versus 1

12
for the bootstrap. This smaller

uniform variance translates into smaller particle system variance in the resampling.

2.4. Systematic Resampling. Carpenter et. al. (1999) modified the stratified
resampling to be more computationally efficient at the cost of giving up conditional
independence. Only one uniform random variable is used. Step (5) simply becomes:

(5) Resample: pi ..=
i∑

k=1

wkn+1 for i ..= 1, ..., N , j = 1

Draw
[
− 1
N
, 0
]
-uniform U

Repeat: for k ..= 1, 2, ..., N do
– Set Uk ..= U + k

N
– While Uk ≥ pj set j ..= j + 1

– Set Xk
n+1

..= X̂j
n+1

Systematic resampling can in theory behave poorly (see Douc et. al. (2005)). It
can also behave very well (see Hol et. al. (2006)).

2.5. Combined Resampling. Since the Residual and Stratified resampling meth-
ods reduce the randomness in different ways, the combination might produce a yet
better method (see Douc et. al. (2005)). Step (5) in the bootstrap is replaced with:

(5) Preserve: S ..= 0

Repeat: for j ..= 1, 2, ..., N do
– k ..= 0
– While k < bNwjn+1c set k ..= k + 1, XS+k

n+1
..= X̂j

n+1

– S ..= S + k

(6) Resample: R ..= N − S; pi
..=

i∑
k=1

{Nwk
n+1}
R

for i ..= 1, ..., N ; j ..= 1

Repeat: for k ..= 1, 2, ..., R do

– Draw
[
k−1
R
, k
R

]
-uniform Uk

– While Uk ≥ pj set j ..= j + 1

– Set XS+k
n+1

..= X̂j
n+1

Combined Resampling clearly improves Residual Resampling but it is unclear if it
improves Stratified. Stratified uses N random variables with variance 1

12N2 while

Combined resampling uses R random variables with variance 1
12R2 . Which produces

less resampling noise is not obvious without further analysis.

2.6. Minimum Variance Scheme. Crisan (2001) introduced the Minimum Vari-
ance branching particle system. Since this scheme actually uses a fixed number of
particles, we will consider it a resampling scheme. It is similar to the Combined Re-
sampling method in the sense it uses residuals as well as negative correlations but
has a very different implementation. Modifying the description of this algorithm

10 M. KOURITZIN

in Bain and Crisan (2008) slightly to be more efficient, we replace Step (5) in the
bootstrap with:

(5) Particle Numbers: NN
n+1

..= N , W ..= N

Repeat: for j ..= 1, 2, ..., N − 1 do

– Nj
n+1

..= bNwjn+1c
– Draw [0, 1]-uniform Uj

– If {Nwjn+1}+ {W −Nwjn+1} < 1 and Uj ≤
{Nwj

n+1}
{W} then

Nj
n+1

..= Nj
n+1 + NN

n+1 − bW c
– else if {Nwjn+1}+ {W −Nwjn+1} ≥ 1 and Uj ≥

{Nwj
n+1}−{W}
1−{W} then

Nj
n+1

..= Nj
n+1 + NN

n+1 − bW c
– else if {Nwjn+1}+ {W −Nwjn+1} ≥ 1 and Uj <

{Nwj
n+1}−{W}
1−{W} then

Nj
n+1

..= Nj
n+1 + 1

– for k ..= 0, ...,Nj
n+1 − 1 do XNN

n+1−k
n

..= X̂j
n+1

– NN
n+1

..= NN
n+1 − Nj

n+1, W
..= W −Nwjn+1

The real difference from the Combined Resampling method is instead of using Strat-
ified Uniforms to create the negative correlations, we code the negative correlations
into the pseudocode. The main difference between the algorithm above and that
in Bain and Crisan (2008) is that we note 1 − Uj is [0, 1]-uniform if Uj is and use
this to make the algorithm slightly more efficient. Notice, W and NN

n+1 keep track
of the remaining weight and particles to place. We reorder the particles, i.e. the
first becomes the last and vice versa, in order to avoid extra operations related to
tracking the number of particles placed as well as those left to place.

As the name suggests, the advantage of this method is that the weight-equalizing
resampling is done in the minimum variance manner. This implies that the jth

particle with (normalized) weight wj will be resampled into either bNwjc particles
with probability 1−{Nwj} or dNwje with probability {Nwj}, whereas the previous
methods had a (small) chance of producing more than dNwje particles. In this way,
the Minimum Variance method looks good. However, the larger number of uniform
random variables used compared to the Combined Method (N versus R) may require
more execution time. It will be interesting to see which algorithm, the Combined
Resampling or the Minimum Variance, is more effective on our problems.

2.7. Chopthin Algorithm. While this article was under review, Gandy and Lau
(2016) introduced a novel noise reduction algorithm, called the Chopthin algorithm,
that works with e.g. systematic and stratified resampling. Basically, this algorithm
follows these resampling methods until final production of the new particles. Then,
instead of doing complete resampling and resetting all (normalized) weights to one, it
does partial resampling by thinning the low weight particles and splitting some of the
high weight particles in such a way that the expected number of particles remains the
same. In this way both particles and weights must be propogated and the number of

BRANCHING PARTICLE FILTERS 11

particles is random. However, the amount of resampling noise can be dramatically
reduced. This algorithm shares some of the advantages of our algorithms introduced
herein. However, the Combined Resampling algorithm also reduces the resampling
noise in the Stratified algorithm. Indeed, it is not clear that the Stratified/Chopthin
will be better than Combined Resampling on most problems and the Combined
Resampling method has the advantages of not needing to propogate weights and of
having a constant number of particles. We do not compare our algorithms to the
Chopthin algorithm due to its essentially simultaneous introduction. However, it
should be noted that our algorithms win mostly on speed and on the ease of model
selection. Adding the Chopthin algorithm will not help on either of these and our
algorithms compare most favorably to the Combined Resampling method.

2.8. Model Selection. In most real tracking problems, one never knows the best
model of reality and should let the data decide, leading to the combined problem of
model selection and tracking. The unnormalized filter total mass σn(1) gives Bayes
factor of the observations containing a given signal model (i.e. Yj = h(Xj−1) + Vj
for j ≤ n) to pure noise (i.e. Yj = Vj for j ≤ n). The ratio of unnormalized

filters B12
n = σ

(1)
n (1)

σ
(2)
n (1)

for two different models (Yj = h(X1
j−1) + Vj for j ≤ n and

Yj = h(X2
j−1) + Vj for j ≤ n) gives the Bayes factor for signal 1 versus signal 2.

Del Moral and Miclo (2000, p. 16) recover the unnormalized filter allowing model
selection with bootstrap-type algorithms. By Bayes rule and (1.2), one finds that

πn−1(αn) =
σn−1(αn)

σn−1(1)
=

σn(1)

σn−1(1)
⇒ σn(1) =

n∏
m=1

πm−1(αm), (2.1)

where αm is defined in (1.1). Hence, to do model selection in the bootstrap-type
algorithms, one can just add the following after step (1):

(1a) Model Selection: σn+1(1) = σn(1) L̂n

N
, where L̂n =

N∑
i=1

L̂in.

We then need not calculate L̂n in step (2) but must add σ0(1) = 1 to the initialize.

3. Branching Particle Filters

In this section, we introduce a class of branching particle filters. We no longer
necessarily have full resampling but rather allow partial resampling and weight prop-
agation. In one extreme case, we have the weighted particle filter where no resam-
pling takes place and weights are always propagated. In the other extreme case,
we have a fully resampled particle filter, which can be thought of as a branching
alternative to the residual resampling or combined resampling particle filter. In be-
tween, we have a whole class of branching particle filters with a flexible amount of
resampling that affords an effective tradeoff between weight variance increase (the
weighted particle issue) and resampling noise (the bootstrap particle issue). We first
describe the branching particle filters in terms of uniform random variables {Uk

n}
used to create the branching variables {ρkn} in two different ways.

12 M. KOURITZIN

The following branching Markov process {SNn , n = 0, 1,} approximates the
unnormalized filter {σn, n = 0, 1, ...} in terms of the observations as follows:

Initialize:
{
Xk

0

}N
k=1

are independent samples of π0, N0
..= N , Nn

..= 0 for all n ∈ N
and Lk0 ..= 1 for k ..= 1, ..., N .

Repeat: for n ..= 0, 1, 2, ... do

(1) Weight by Observation: L̂kn+1
..= αn+1

(
Xk
n

)
Lkn for k ..= 1, 2, ...,Nn

(2) Evolve Independently:

QY (X̂k
n+1 ∈ Γk ∀ k|FX

n ∨ FU
n+1)

..=
Nn∏
k=1

K(Xk
n,Γk) ∀Γk

(3) Estimate σn+1 by: SNn+1
..=

1

N

Nn∑
k=1

L̂kn+1δX̂k
n+1

and πn+1(f) by
SNn+1(f)

SNn+1(1)
.

(4) Average Weight: An+1
..= SNn+1(1)

Repeat (5-6): for k ..= 1, 2, ...,Nn do

(5) Resampled Case: If L̂kn+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Number: Nk
n+1

..=
⌊
L̂k
n+1

An+1

⌋
+ρkn+1, with ρkn+1 a

(
L̂k
n+1

An+1
−
⌊
L̂k
n+1

An+1

⌋)
-

Bernoulli
(b) Resample: LNn+1+j

n+1
..= An+1,XNn+1+j

n+1
..= X̂k

n+1 for j ..= 1, ...,Nk
n+1

(c) Add Offspring Number: Nn+1
..= Nn+1 + Nk

n+1

(6) Non-resample Case: If L̂kn+1 ∈ (anAn+1, bnAn+1) then

Nn+1
..= Nn+1 + 1, LNn+1

n+1
..= L̂kn+1, X

Nn+1

n+1
..= X̂k

n+1

Remark 2. We extract our estimate before resampling to avoid excess noise. Key
steps (5,6) determine the new number of particles Nn+1 and weights Lkn+1 in an un-

biased manner. When the prior weight L̂kn+1 for particle k is extreme we do residual-
style branching, splitting particles as deterministically as possible in (5). The result
is zero or more particles all having the average weight at the same location as the

parent. When the prior weight L̂kn+1 is not extreme we run a weighted particle step
in (6). The flexibility in this class of algorithms is in how we determine “extreme”.

Remark 3. An+1, Lkn+1 and L̂kn+1 actually depend upon the initial number of parti-
cles N . Occasionally, we will stress this fact by relabeling An+1 as AN

n+1.

We are not the first to use branching particle filters for tracking. Indeed, we were
inspired by Crisan and Lyons (1997), Crisan et. al. (1998) and Ballantyne et. al.
(2000). However, our algorithms differ from the ones in those papers and our goals
are also different.

After establishing the appropriate bounds on Nn+1 in Theorem 2 to follow, we
can easily see that this algorithm is also O(N). Indeed, a careful comparison of
this algorithm to the prior ones leads us to the believe that the constant implied in

BRANCHING PARTICLE FILTERS 13

the O(N) notation for the branching algorithm may be smaller than that for the
bootstrap, especially when the Resampled Case does not occur too often. We will
establish this fact experimentally below. Since σn is estimated both model selection
and filtering can be done simultaneously without adding the additional step.

3.1. Residual Branching Filter. Like resampled filters, there are various ways to
introduce the randomness, in this case the {ρkn+1}Nn

k=1 for unbiased branching. The
choice affects performance and implementation ease. A simple possibility is:

i) Let {Uk
n+1}Nn

k=1 be independent [0, 1]-Uniform RVs.
ii) Set ρkn+1

..= 1
Uk
n+1≤

(
L̂kn+1
An+1

−
⌊

L̂kn+1
An+1

⌋).

In this way, the {ρkn+1}Nn
k=1 are independent of each other and everything else. The

reason for the Residual Branching labeling is, similar to Residual Resampling, we
first create as many particles as we can deterministically and then we allocate the
remaining offspring using independent uniform random variables. Note also we do
not generate all Nn of the {Uk

n+1} and the {ρkn+1} since they are not used in Step
(6) of the algorithm.

3.2. Combined Branching Filter. We can add stratified resampling to help con-
trol the number of particles and improve performance. When an ≈ bn, we:

i) Let {Vk
n+1}Nn

k=1 be independent with Vk
n+1 ∼

[
k−1
Nn
, k
Nn

]
-Uniform and Uk

n+1
..=

Vp(k)
n+1, where p is a random permutation of {1, 2, ..., Nn} uniformly distributed

over the set of all permutations.
ii) Set ρkn+1

..= 1
Uk
n+1≤

(
L̂kn+1
An+1

−
⌊

L̂kn+1
An+1

⌋).

Then, the {ρkn+1}Nn
k=1 are exchangeable but not independent of each other. (They

are actually negatively correlated, which is desireable for particle control.) The
advantage of this approach is it is not possible to get mostly large or mostly small
uniform random numbers so the number of particles will vary less.

In the usual case, where an � bn so many particles are not resampled, there is a
better stratified method. We replace (5-6) in the basic branching algorithm with:

5) Non-resample count: l ..= 0

6) For k ..= 1, 2, ...,Nn do

If L̂kn+1 /∈ (anAn+1, bnAn+1) then: L̂k−ln+1
..= L̂kn+1, X̂k−l

n+1
..= X̂k

n+1

Otherwise: l ..= l + 1, Lln+1
..= L̂kn+1, Xl

n+1
..= X̂k

n+1

7) Let Nn+1
..= l, {Vk

n+1}Nn
k=l+1 be independent with Vk

n+1 ∼
[
k−1
Nn−l ,

k
Nn−l

]
-

Uniform, p be a random permutation of {l + 1, l + 2, ...,Nn}, Uk
n+1

..= Vp(k)
n+1

8) For k ..= l + 1, l + 2, ...,Nn do

Nk
n+1

..=
⌊
L̂k−l
n+1

An+1

⌋
+ 1

Uk
n+1≤

(
L̂k−l
n+1

An+1
−
⌊

L̂k−l
n+1

An+1

⌋)

14 M. KOURITZIN

LNn+1+j
n+1

..= An+1,XNn+1+j
n+1

..= X̂k−l
n+1 for j ..= 1, ...,Nk

n+1

Nn+1
..= Nn+1 + Nk

n+1

3.3. Resampling Control. To put our claim of improved particle control into
perspective, we first consider the issue with popular earlier-generation branching
particle algorithms. Of course, we do not include the constant-particle, minimum-
variance branching algorithm as we have already re-labeled that as a resampled
method. Instead, we look at the (complete) branching algorithms as presented in
Crisan et. al. (1999). In the proof of Proposition 2.1 of this paper, it is shown that
their branching particle filters satisfy

E[Nn+1|Fn] = Nn, (3.1)

where Fn is all the information about the particle system up to time n and Nn is
the number of particles alive at time n. This equation implies that, if the number of
particles starts to drift up or down, then there is nothing to pull it back. Invariably
the number of particles become too small or too large to be workable at some time.
Switching to our algorithms, we find the extreme complete branching case is when
an = bn = 1. Then, examining our branching algorithm, we find (by Step (5a)) that
the total expected number of particles after resampling is:

Nn∑
j=1

E[Nj
n+1

∣∣σ{Nn, L̂1
n+1, ..., L̂

Nn
n+1}] =

Nn∑
j=1

N L̂jn+1∑Nn

k=1 L̂kn+1

= N (3.2)

regardless of what Nn is or whether residual or combined branching is used. This
is very different than the prior algorithms since we always expect to return to the
initial number of particles not the last number. This particle control becomes yet
more pronounced when combined with the negatively correlated ρ’s produced by the
stratified scheme within the combined branching particle algorithm. Moreover, in
the other extreme case, we choose an = 0 and bn =∞ and find that no resampling
takes place. We then have the weighted particle filter, which has a constant number
of particles.

In general, the amount of and conditions for branching is controlled by the pa-
rameters an, bn. Suppose that an = 0 and bn = 1. Then, we only branch the
below-average weight particles and expect fewer particles after branching. Hence,
there needs to be some condition to keep the number of particles constant. That
condition can easily be verified to be:∑Nn

j=1 1L̂j
n+1∈(anAn+1,bnAn+1)

L̂jn+1∑Nn

j=1 1L̂j
n+1∈(anAn+1,bnAn+1)

= SNn+1(1), (3.3)

that is the average weight of the particles that do not branch is equal to the average
weight that do. This condition is difficult to ensure in practice but we can clearly
limit our interest to 0 ≤ an ≤ 1 ≤ bn if we want some semblance of particle control.

In practice, we have found good results in keeping the number of particles fairly
constant when an and bn have geometric center

√
anbn of 1. This is related to the

BRANCHING PARTICLE FILTERS 15

facts that the weights start at 1, multiply as the observations arrive, are non-negative
and have mean 1. Even though it works well in practice, we are not ready to suggest
that geometric center of 1 property should be a rule. Rather, it should be an area
of future investigation. Still, we will stick to the geometric center 1 here and take
an = 1

rn
and bn = rn for some rn ∈ [1,∞]. More unbiased particle control could

be added to retain even particle numbers. However, we are yet to see an example
where it is warranted (see the results below).

The new multiplicative weight update has the form αn(Xn−1) = g(Yn−h(Xn−1))
g(Yn)

,

which adapts for noisy observations. However, it does not account well for only
having partial measurements of the signal. As a simple example, if we have range
only measurements of a position-velocity model in the plane, then one observation
has no information about velocity and only partial measurement of position. If
complete resampling were used, then particles would (with high probability) accu-
mulate on an arc with matching velocities and other positional component. If these
velocities are all wrong (which can easily happen with a finite number of particles),
then the majority of the particles will head in the wrong direction.2 To avoid these
types of situations, one should generically choose a larger rn when it would take
several observations to get a good idea about whole signal. Indeed, we are yet to see
a problem where either no resampling or full resampling (like the resampled particle
filters) preforms best. Hence, we expect to use an rn ∈ (1,∞).

In our Residual and Combined methods, we have taken rn ≡ r to be constant but
that can be a poor choice. For example, it is very likely that a different amount of
resampling should be done in the situation of a few high weights, reflecting (possibly
false) confidence that these particles are better than the others, compared to fairly
even weights. We have adaptive resampling when rn depends upon the branching
particle system. One example of this is dynamic branching, where

rn = exp

c
 1

Nn

Nn∑
k=1

(ln L̂kn+1)
2 −

(
1

Nn

Nn∑
k=1

ln L̂kn+1

)2


q
2

 ,

with c, q > 0. To understand rn, we note that we start with a variance in the square
brackets, which must be non-negative, take it to the power q

2
and then multiply it

by positive constant c so rn must be at least 1. A larger q > 1 (smaller q < 1), with
c adjusted to maintain the same average amount of branching, would be used in
the situation where one wanted more resampling when system entropy low (high).3

To explain, we imagine ξk = ln L̂kn+1 − lnAn+1 are independent, zero-mean and
Gaussian. Then, rn with q = 1 would correspond to a relatively fixed (67% when
c = 1) number of particles being resampled regardless of disorder. Taking q < 1
and compensating with c > 1 to maintain the same average amount of resampling

2Similarly, for bearing-only measurements the particles would accumulate in a line of sight,
matching state information of a few particles that could be wrong.

3System entropy refers to the amount of disorder or unevenness in the weights, which in turn
indicates wide variety in perceived quality of the particles’ states.

16 M. KOURITZIN

would then cause more resampling at times when there is more entropy. This is
investigated experimentally below. Actually, it is not clear whether more or less
resampling4 should be done in the high entropy case as is explained immediately
below. Hence, the prudent thing to do is let the data tell us which q are good for a
problem of interest.

Another, more direct, way to handle uneven weights is through the effective num-
ber of particles estimate, N eff , as discussed in Doucet et. al. (2000). In our setting,
the effective and non-effective particle estimates are:

Neff
n+1 =

N2A2
n+1

Nn∑
k=1

(
L̂n+1

)2 , Nnoneff
n+1 = Nn+1 − Neff

n+1.

It very reasonable to anticipate better results when branching either more or fewer
particles in the situation there are few effective ones. A first intuition might lead us
to the conclusion that it is better to branch more in order to obtain more effective
particles immediately. However, reviewing the range (and bearing) only example
mentioned previously also leads us to the realization that this too could be wrong.
We do not assume either a priori but rather in effective particle branching set

rn =
ceffNeff

n+1 + cnoneffNnoneff
n+1

Nn+1

= cnoneff + (ceff − cnoneff)
Neff
n+1

Nn+1

(3.4)

for experimentally determined constants ceff , cnoneff > 0 and let the data decide.

3.4. Stability and Particle Control. Most authors have rejected branching par-
ticle filters due to possible instability of the number of particles as well as the
computational consequences of this instability. Perhaps, this is due to the particle
number drift property highlighted in (3.1) for earlier-generation branching particle
filters. This rejection was too hasty. Yes, our algorithms too can fail. During resam-

pling, there is a possibility of immediately killing all particles if max
j≤Nn−1

N L̂jn∑Nn

i=1 L̂in
< 1.

Ironically, this can only happen if there are more particles than at start. However,
it may still be possible to degenerate immediately to one particle when Nn ≤ N .
Conversely, it is not possible to increase by more than N − 1 particles in one step.
Weight variation is also a big concern: Ljn can become very uneven as N increases.
Some regularity results are required to ensure that there are enough effective par-
ticles and moment bounds to justify the anticipation of rate of convergence results
as N →∞.

The following uniform bounds ensure the risk of such system irregularity decreases
exponentially in the initial number of particles, a first step in disproving the opinion
branching particle filters are unstable in the number of particles. Let B(Rd) be the
bounded and C++(Rd) be the strictly-positive continuous functions on Rd.

4This decision may well be problem dependent.

BRANCHING PARTICLE FILTERS 17

Theorem 2. Suppose residual branching with 0 ≤ an < bn ≤ ∞; h ∈ B(Rd); and
g ∈ C++(Rd). Then, there are εn > 0, Cn > 1 and DN

n ∈ σ {Nl, l ≤ n} such that
DN
n+1 ⊂ DN

n for all n = 0, 1, 2...; QY
(
DN
n

)
≥ 1− 2ne−εnN for N ≥ 1; and

1

Cn
≤ Nl

N
,Lil,AN

l ≤ Cn ∀i ∈ {1, ...,Nl}, l ∈ {0, ..., n} on DN
n−1.

For ease of assimilation, we provide a direct corollary of this Theorem. The second
claim follows from (1.1) and Bayes rule.

Corollary 1. Supppose the conditions of Theorem 2 hold. Then, for any fixed n
there are εn > 0, Cn > 1 and Kn > 1 such that

QY

(
1

Cn
≤ Nl

N
,Lil,AN

l ≤ Cn ∀i ∈ {1, ...,Nl}, l ∈ {0, ..., n}
)
≥ 1− 2ne−εnN

and

P

(
1

Cn
≤ Nl

N
,Lil,AN

l ≤ Cn ∀i ∈ {1, ...,Nl}, l ∈ {0, ..., n}

∣∣∣∣∣FYn
)
≥ 1−Kne

−εnN

for N = 1, 2, ...

This shows the probability of approaching extinction or explosion decays expo-
nentially in the initial number of particles.

Remark 4. There are no new assumptions in Theorem 2 as the sensor function
h was bounded and the noise density g was strictly postive and continuous in our
Girsanov’s theorem. This setting is reasonably general, handling both the Cauchy
and Normal densities used in our examples. Moreover, our purpose is to introduce
novel and superior particle methods in a clear a manner and leave potential technical
generalizations (of these bounds and the algorithms) to future work. Still, it is
acknowledged that neither the Girsanov theorem stated here nor Theorem 2 are as
general as possible but rather are stated under conditions that will prove convenient
for establishing a central limit theorem.

Remark 5. There are two vital aspects to this result: 1) The number of particles
and weights remain uniformly bounded up until any fixed final time of interest n.
(The value of Cn may depend upon n.) These are theoretical bounds established
without any model specifics that are meant to supplement the observed simulation
bounds (given immediately below). These bounds will be used in further theoretical
work that will give more precise probabilistic behaviour of the algorithm. 2) The
theorem also says the algorithm remains well behaved for at least one step into the
future on the large exchangeable set DN

n . This part of the theorem will be important
for future theoretical work like Marcinkiewicz law of large numbers and central limit
theorems for these algorithms.

Remark 6. This result is for residual branching but adding stratification as in com-
bined, dynamic and effective particle branching reduces particle number fluctuation
through the negatively correlated ρ’s. This is illustrated below for combined branch-
ing.

18 M. KOURITZIN

Remark 7. This theorem is proved in Appendix B.

We now look at particle variation experimentally. The expected number of parti-
cles is always the initial number N for complete branching by (3.2). Figure 4 shows
that there is very little variation around the mean over long periods of time. We
plot the standard deviation as a percentage of the initial number of particles N over
the first 5000 time points versus method and N .

0

1

2

3

4

5

6

Residual N=500 Residual N=10000 Combined N=500 Combined N=10000

Method

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

%
)

Range Only Model

Test Model

Figure 4. Branching Particle Number Variation over 5000 Time Steps (s)

Figure 4 shows the particle number fluctations are very modest, especially for the
combined method where negative correlations are used. It also shows that the rela-
tive fluctations decrease in the initial number of particles used. While these results
are random, they were typical of several retrials of these and other experiments.
Certainly, the results to follow on speed and performance are supportive of small
particle variations.

We summarize two of the particle variation experiments performed: When N =
500 initial particles were used with the Range Only model (defined in Section 4),
the Residual Branching particle numbers were in the range 473−522 approximately
67% of the 5000 time points, meaning one standard deviation was 24.5 or 4.9%.
The Combined Branching algorithm showed a significant improvement, having the
typical range of 492− 508 and one standard 8 or 1.6% over the 5000 points. When
N = 10, 000 initial particles were used in the Test model the one standard deviation
rangers were 9739−10181 and 9968−10032 for the residual and combined methods
respectively. (These correspond to 2.21% and 0.32% variations).

We can make the following experimental conclusions:

(1) The particle numbers did not vary much, provided enough particles were
used to be able to estimate the signal reasonably. Indeed, we will see below
that the particle variations did not adversely affect error nor execution speed.

BRANCHING PARTICLE FILTERS 19

(2) Combined Branching did a better job of keeping the number of particles
constant than the basic Residual Branching.

(3) The relative variation of the number of particles decreased in the number
of initial particles. It is speculated that a law of large numbers effect takes
place.

(4) While it is easy to add (extra, unbiased) particle control to keep even par-
ticle numbers, there is no evidence of need from these experiments. There
is already some particle control through the constant expected number of
particles and in the negative correlations when using stratified random vari-
ables.

4. Comparison of Tracking and Model Selection

Effective parallelization of resampled particle filters is difficult (see e.g. Vergé
et. al. (2013) for a good attempt). This is reason enough to choose our branch-
ing particle filters over the resampled ones as they have a strong advantage5 when
parallelizing (as will be shown in future work). However, we can also consider all al-
gorithms with single-processor implementations on tracking problems and on model
selection. The rest of this section is organized as follows: We first introduce the two
simple problems, our Test and Range-Only problems, that will be used for compar-
ison purposes. Then, we compare the various resampled particle systems discussed
above on these problems. Next, we compare the worst of our branching algorithms
to the best resampled particle system discussed above and show even this most
basic branching algorithm significantly outperforms all resampled particle systems.
Finally, we compare all our branching algorithms to determine which variation per-
forms the best. For consistency, all results herein are either a typical path or an
average over 200 different sample paths of 35 time steps. (We reduce our number of
time steps from 5000 in Subsection 3.4 down to 35 because of the inefficiency of the
bootstrap and other resampled particle systems. We could have easily considered
a much larger number of time steps if we were only running our branching particle
filters. However, it took us weeks to get simulations we needed for the resampled
particle systems on our limited computer resources.)

4.1. Test Model. The Test Model refers to the scalar signal and observation pair:

Xn = 0.95Xn−1 + 0.3Wn, Yn = Xn−1 + Vn,

where X0, {Wn} and {Vn} are independent with standard Cauchy distribution. This
is a linear, non-Gaussian filtering problem. The Kalman filter does not apply since
the noise is Cauchy. Indeed, conditional expectations of state do not exist since the
noise is so heavy-tailed. However, this problem is in other respects simple.

For model selection, we introduce alternative models and show that we select the
correct one. We keep most of the Test Model the same and just vary two coefficients:

5When a particle branches it only needs its own information as well as the total weight of all
particles. It does not need the locations nor weights of other particles.

20 M. KOURITZIN

Model Number Signal Equation Observation Equation
-2 Xn = 0.93Xn−1 + 0.28Wn Yn = Xn−1 + Vn
-1 Xn = 0.94Xn−1 + 0.29Wn Yn = Xn−1 + Vn
0 Xn = 0.95Xn−1 + 0.3Wn Yn = Xn−1 + Vn
1 Xn = 0.96Xn−1 + 0.31Wn Yn = Xn−1 + Vn
2 Xn = 0.97Xn−1 + 0.32Wn Yn = Xn−1 + Vn

Hence, the real model is model 0, the null model.

4.2. Range Only Model. The Range Only Model refers to the four dimensional
signal and scalar observation model:

Position Velocity

Xn = αXn−1 + Un−1 + 0.3αn Un = 0.95Un−1 + γn−1

Zn = αZn−1 + Vn−1 + 0.3βn Vn = 0.95Vn−1 + θn−1

α = 0.5, Yn =
√
X2
n−1 + Z2

n−1 + 0.1ψn,

Table 1. Range Only Model

where X0, Z0, U0, V0, {γn}, {θn}, {αn}, {βn}, {ψn} are independent. X0, Z0 have 10
times the standard Cauchy distribution and U0, V0 have 5 times the standard Normal
distribution. Signal noise sources γn and θn have standard normal distribution while
αn and βn have standard Cauchy distribution. ψn is the observation noise with
standard Cauchy distribution. This is a nonlinear problem but is otherwise simple.

The idea of this model comes from radar detection. Suppose that there is a radar
station at the origin in the plane, (Xn, Zn) describes the position of a ship and
(Un, Vn) its velocity. The radar produces a noise-corrupted distance observation
between the ship and itself, which is Yn in our model. The objective of this problem
is to estimate the state of the ship using the (back) observations.

For model-selection alternative models, we will keep most of the Range Only Model
the same and just vary the coefficient in front of Xn−1 and Zn−1 slightly:

Model Number Signal Parameter Observation Equation

-2 α = 0.48 Yn =
√
X2
n−1 + Z2

n−1 + 0.1ψn
-1 α = 0.49 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
0 α = 0.50 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
1 α = 0.51 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn
2 α = 0.52 Yn =

√
X2
n−1 + Z2

n−1 + 0.1ψn

Hence, the real model is model 0 with the others differing slightly through α.

BRANCHING PARTICLE FILTERS 21

4.3. Comparison within Resampled Particle Systems. First, we compare re-
sampled particle systems based on error (of root-mean-square type between posi-
tional tracking estimation and the real value) versus execution time. For our Test
Model, the error is defined as

error =

√√√√ 1

n

n∑
k=1

(πNk (f)− f(Xk))2, f(x) =

 30 : x > 30
x : −30 ≤ x ≤ 30

−30 : x < −30
.

where πNk is the filter approximation at time instant k and N particles and Xk is
the signal. The results for the Test Model are shown in Figure 5 for the algorithms
defined in Section 2. The actual points shown are for N = 100, 400, 2000 and 10000
for the Test Model.

4.9

5.4

5.9

6.4

6.9

7.4

7.9

8.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Execution Time (s)

E
rr

o
r

(m
)

Bootstrap

Residual Resampling

Stratified Resampling

Systematic Resampling

Combined Resampling

Minimum Variance

Figure 5. Resampled Particle Filters on Test Model

All five improved resampling methods show a significant improvement over the
bootstrap. All these methods approach the optimal filter as the number of particles,
hence execution time, increases. In difficult real life problems, one often has to limit
the execution time and performance with limited execution time is important.

Residual and combined resampling preserve some particles without resampling
saving some of the resampling computations. The stratified, combined and system-
atic resampling, save computations related to ordering the uniform random variables
in the bootstrap method. For simple signal models (like Test), a large portion of the
time is consumed generating and ordering the uniform resampling random numbers.
This is efficiently done with stratification so it is reasonable that stratified, combined
and systematic method can improve the speed of the Test Model greatly. The min-
imum variance method’s power allows comparison with fewer particles hence fewer
random numbers and less ordering.

22 M. KOURITZIN

For our Range Only Model, the error is

error =
1

n

n∑
k=1

√
(πNk (gx)− g(Xk))2 + (πNk (gz)− g(Zk))2,

where πNk is the normalized filter approximation at time instant k and N initial
particles, Xk, Zk are the positional components of the real signal,

g(x) =

 1000 : x > 1000
x : −1000 ≤ x ≤ 1000

−1000 : x < −1000
.

and gx, gz denote g applied to the x and z (positional) components of the signal.
The result for Range Only Model are shown in Figure 6 for the algorithms defined
in Section 2. The actual points shown are 500, 2000, 10000 and 50000 for the Range
Only Model.

45

46

47

48

49

50

51

52

53

54

0 1 2 3 4 5 6

Execution Time (s)

E
rr

o
r

(m
)

Bootstrap

Residual Resampling

Stratified Resampling

Systematic Resampling

Combined Resampling

Minimum Variance

Figure 6. Resampled Particle Filters on Range Only Model

With slightly larger signals such as our Range Only Model, which has a four
dimensional signal, a lot of time is spent copying particles. Thus, the execution time
may depend more on how many particles need to be copied or resampled. Hence, it
is also reasonable that residual and combined methods, which reduce the number of
particles resampled, can improve execution time. Naturally, the systematic method
is very fast as it only uses one uniform random variable. These speed factors are
reflected in the corresponding points in Figure 6 being further left.

To combine performance and speed, we define the “Bootstrap Factor” as:

Bootstrap Factor =
tbootstrap

t
,

where tbootstrap and t are the execution times for the bootstrap and method of interest
to reach a fixed error. We use error = 5.0 in the Test Model and error = 46.0 in

BRANCHING PARTICLE FILTERS 23

the Range Only Model, then show the minimum particle number, execution time
and “Bootstrap Factor” for both in Tables 2 and 3.

N Time (s) Bootstrap Factor

Bootstrap 20000 1.9152 1
Residual Resampling 20000 1.6399 1.1679
Stratified Resampling 10000 0.7947 2.4099

Systematic Resampling 25000 1.5582 1.2291
Combined Resampling 10000 0.6976 2.7454

Minimum Variance Scheme 9500 0.8131 2.3554

Table 2. Bootstrap Factor of Test Model with fixed Error = 5.0

The Bootstrap Factor compares speed of a method to the bootstrap filter for a
given performance, combining accuracy and efficiency factors. Combined Resam-
pling is the best method for both models with Bootstrap Factors of 2.7454 and
6.5116. However, every branching algorithm will significantly outperform this.

N Time (s) Bootstrap Factor

Bootstrap 60000 6.9134 1
Residual Resampling 50000 5.0141 1.3788
Stratified Resampling 10000 1.1844 5.8522

Systematic Resampling 50000 4.5857 1.5076
Combined Resampling 10000 1.0617 6.5116

Minimum Variance Scheme 10000 1.2641 5.4690

Table 3. Bootstrap Factor of Range Only Model with fixed Error = 46.0

4.4. Comparison between Branching and Resampled Particle Systems. In
this section, we compare the best resampled particle systems to the most basic of our
new branching systems. We will use the same models, error definitions and numbers
of particles as in previous sections. We show that the new branching algorithms can
improve both performance and execution time. For now, we use (an, bn) = (1/r, r),
where r ∈ [1,∞] is referred to as the branching parameter. All particles will branch
when r = 1, which we call complete resampling. No particle will branch when
r = ∞, which means we have the weighted particle filter. We found a good fixed
choice of r for the Test Model was 2.25 and for the Range Only Model was 5. (Later,
we will explore better methods with state-dependent r.)

The results for the Test Model are shown in Figure 7 for the algorithms defined in
Section 3. The actual points shown are for N = 100, 400, 2000 and 10000 particles.

24 M. KOURITZIN

4

4.5

5

5.5

6

6.5

7

7.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Execution Time (s)

E
rr

o
r

(m
)

Combined Resampling

Minimum Variance

Residual Branching

Combined Branching

Figure 7. Branching Filter Improvement on Test Model

Residual branching is much better than the best resampled systems, combined
resampling and minimum variance. Combined branching is yet better. A close in-
spection shows that the new branching methods win on both speed and performance
(for fixed particles), especially speed.

The result for Range Only Model are shown in Figure 8 for the algorithms defined
in Section 3. The actual points shown are for N = 500, 2000, 10000 and 50000.

45

46

47

48

49

50

51

52

0 1 2 3 4 5 6

Execution Time (s)

E
rr

o
r

(m
)

Combined Resampling

Minimum Variance

Residual Branching

Combined Branching

Figure 8. Resampled Particle Filters on Range Only Model

Again, the basic new branching algorithms demonstrate a significant improvement
over the resampled systems.

BRANCHING PARTICLE FILTERS 25

To evaluate the advantage of branching on both performance and speed, we pro-
vide the Bootstrap Factor in Tables 4 and 5. In the Test Model, residual branching
is 91.2 and 33.2 times better than bootstrap and combined resampled respectively.
In Range Only Model, the improvement is also significant at 36.7148 and 5.64. Our
better branching algorithms will be shown below to outperform yet a lot more.

N Time (s) Bootstrap Factor

Bootstrap 20000 1.9152 1
Combined Resampling 10000 0.6976 2.7454

Residual Branching 400 0.0210 91.2000
Combined Branching 150 0.0085 225.3176

Table 4. Bootstrap Factor of Test Model with Error 5.0

N Time (s) Bootstrap Factor

Bootstrap 60000 6.9134 1
Combined Resampling 10000 1.0617 6.5116

Residual Branching 2000 0.1883 36.7148
Combined Branching 500 0.0480 144.0292

Table 5. Bootstrap Factor of Range Only Model with Error 46

Model selection ability is also extremely important. For comparison purposes,
we fix the initial number of particles to be N = 10, 000 for all model selection
experiments and show the execution time for model selection in Table 6. Residual
branching is the fastest for model selection as it was for tracking. Indeed, branching
has another small inherent advantage here since model selection is based upon the
unnormalized filter, which is already computed in the branching methods.

Model Test Model Range Only Model

Bootstrap 1.213 1.613
Combined Resampling 0.960 1.602

Residual Branching 0.736 1.347

Table 6. Average Execution Time (s) of Model Selection

Inasmuch as the results are similar for both the Test and Range Only mod-
els, we just demonstrate these three algorithm on our Range Only Model. Define

Bayes Factor = σ0(1)
σk(1)

, where k ∈ {−2,−1, 0, 1, 2} is the index for the different

models described in Subsections 4.1 and 4.2. All three algorithms select the correct
model convincingly. It appears from the pictures that bootstrap had the hardest
time distinguishing models, Combined Resampling distinguished the correct model
from model 1 the best, while Residual Branching distinguished the other three best.

26 M. KOURITZIN

5 10 15 20 25 30
5

0

5

10

15

20

Time

B
a
y
e
s
 F

a
c
to

r

(s)

Model (2)

Model (1)

Model (1)

Model (2)

Figure 9. Bootstrap Model Selection of Range Only Model

Typically, bootstrap has the most difficult time distinguishing models and residual
branching is slightly better at distinguishing models than combined resampling.

5 10 15 20 25 30
5

0

5

10

15

20

Time

B
a
y
e
s
 F

a
c
to

r

Model (2)

Model (1)

Model (1)

Model (2)

(s)

Figure 10. Combined Resampling Model Selection of Range Only Model

5 10 15 20 25 30
5

0

5

10

15

20

Time

B
a
y
e
s
 F

a
c
to

r

Model (2)

Model (1)

Model (1)

Model (2)

(s)

Figure 11. Residual Branching Model Selection of Range Only Model

4.5. Comparison within Branching Particle Systems. There are many ways
to produce unbiased branching filters. The residual branching and combined branch-
ing algorithms, introduced in Subsections 3.1 and 3.2, are two of the simplest to

BRANCHING PARTICLE FILTERS 27

implement. Hitherto, we have taken an and bn in these algorithms constant. How-
ever, the performance and speed can improve if an and bn depend on the system
state at time step n. Hence, now we consider a dynamic rn such that an = 1

rn
and

bn = rn will depend on system state in two different ways. We call these two imple-
mentations Dynamic Branching and Effective Particle Branching as mentioned in
Subsection 3.3.

We continue performance versus execution time and “Bootstrap Factor” but now
within branching particle systems. Insomuch as the conclusions to be formed on
the Test and Range Only models would be very similar, we conserve space and only
present our experimental results on the dynamic and effective particle methods for
the Range Only model. In particular, we apply residual branching (with r = 5), com-
bined branching (with r = 5), dynamic branching and effective particle branching
to our Range Only Model. It turns out that this good choice of r = 5 translates into
branching about three quarters of the time in the residual and combined methods.
Also, since combined branching (where stratified random numbers are used) out-
performs residual branching, we use both residual and stratified techniques within
dynamic and effective particle branching. For clarity, these approaches differ from
combined branching by replacing a fixed r with a state dependent rn as defined in
Subsection 3.3.

For dynamic branching, we set q to be different value and find the best c, which
means the minimum error, and show the results in Table 7. It shows that the
resampling percentage is always around 76%, which is a similar amount as used in
with the good choice of static r in the residual and combined branching filters.

q c Error (m) resampling percent

0.5 0.80 46.3298 76.19%

1.0 0.60 45.8457 76.21%

1.5 0.36 45.9732 76.51%

2.0 0.25 46.3665 76.52%

Table 7. Average Error of dynamic branching method with 500 particles

However, this table demonstrates that the conditions for branching, not just the
overall amount of branching, affect error. The error is minimal with q = 1, which
corresponds to a constant amount of branching regardless of system entropy. The
Residual and Combined methods would correspond to the case of more branching
when there is more entropy and the case q = 2 would correspond to the case of more
branching when there is less entropy. Indeed, we will see below that this dynamic
branching with q = 1 beats combined branching at all particle numbers considered.

28 M. KOURITZIN

For effective particle branching, we consider the following cnoneff and ceff choices:

ceff cnon Error (m) ceff cnon Error (m) ceff cnon Error (m)

1 2 64.5101 1 16 45.7550 2 8 45.9141

2 1 46.2599 16 1 46.4342 8 2 47.7404

1 4 45.9427 1 32 48.2642 2 16 45.8674

4 1 53.0337 32 1 50.0621 16 2 53.2428

1 8 45.9082 2 4 56.0850 2 32 46.5672

8 1 46.1202 4 2 49.2555 32 2 54.7030

Table 8. Average Error with Different ceff and cnoneff and 500 particles

The results in Table 8 show that ceff = 1 and cnoneff = 16 for rn in (3.4) is the
best choice to minimize error. This means that more resampling would be done
when there are fewer effective particles for the Range Only problem.

We compare residual, combined, dynamic and effective particle branching errors
versus execution time in Figure 12. The actual points shown are for N = 500, 2000,
10000 and 50000 initial particles.

44.5

45

45.5

46

46.5

47

0 1 2 3 4 5

Execution Time (s)

E
rr

o
r

(m
)

Residual Branching

Combined Branching

Dynamic Branching

Effective Particle

Figure 12. All Branching Particle Filters on Range Only Model

Both state-dependent branching methods outperform the combined branching
method. The effective particle method produces the smallest error for given particles

BRANCHING PARTICLE FILTERS 29

and seems to be the best method. However, the dynamic branching is faster than
effective particle branching so we also consider Bootstrap Factor. Table 9 shows
dynamic branching is best on a bootstrap performance per computation point of
view. We can at least conclude that state-dependent branching is worthwhile.

N Time (s) Bootstrap Factor

Residual Branching 2000 0.1883 36.7148
Combined Branching 500 0.0480 144.0292
Dynamic Branching 350 0.0412 167.8009

Effective Particle Branching 320 0.0465 148.6753

Table 9. Bootstrap Factor of Range Only with Error 46.0

To demonstrate the significant improvement of branching systems over resampled
systems, we show typical Test Model and Range Only Model error versus time.

Figure 13. typical case in Test Model (m/s)

Figure 14. typical case in Range Only Model (m/s)

30 M. KOURITZIN

5. Conclusions

Based upon our experimental and theoretical results, we suggest the following:

(1) There are branching particle methods that do not suffer from particle swings.
(2) There are branching particle methods whose tracking performance and exe-

cution times can compare most favorably to the traditional resampled par-
ticle systems that have widespread appeal.

(3) Practioners should now consider the Combined, Dynamic and Effective Par-
ticle branching algorithms introduced herein.

(4) The Bootstrap Factor defined herein is a reasonable way to compare particle
filtering methods.

(5) Branching particle filters also compare favorably on model selection problems
and have the added advantage of using the unnormalized filter for ease of
computing Bayes factor.

6. Acknowledgements

Partial funding in support of this work was provided by an NSERC discovery
grant.
The author is indebted to Xingpu Wang for his help with the simulations.
The author is also indebted to the referees who provided most useful suggestions to
improve the presentation of the results.

7. Appendix A: Discussion of Algorithmic Operations

Supplementary material related to this article can be found online.

8. Appendix B: Proof of Theorem 2

Supplementary material related to this article can be found online.

References

C. Andrieu, N. Chopin, A. Doucet, S. Rubenthaler (2014). Exact sampling using
branching particle simulation <hal-00737040v3>.

C. Andrieu, A. Doucet and R. Holenstein (2010). Particle Markov chain Monte
Carlo methods. J.R. Statist. Soc. B 72 269-342.

A. Bain and D. Crisan (2008). Fundamentals of Stochastic Filtering. Springer,
Berlin.

D. J. Ballantyne, H. Y. Chan, and M. A. Kouritzin (2000). A novel branching
particle method for tracking. In Signal and Data Processing of Small Targets (O.
E. Drummond, ed.) SPIE 4048 277-287.

O. Cappe, S. J. Godsill, and E. Moulines (2007). An overview of existing methods
and recent advances in sequential Monte Carlo. Proceedings of the IEEE 95,
899-924.

J. Carpenter, P. Clifford and P. Fearnhead (1999). An Improved Particle Filter for
Nonlinear Problems. IEE Proc. Radar Sonar Navigation 146, 2-7.

BRANCHING PARTICLE FILTERS 31

D. Crisan (2001). Particle filters - a theoretical perspective. In A. Doucet, N. de
Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice,
chapter 2, p. 17-42. Springer, Berlin.

D. Crisan, P. Del Moral and T. Lyons (1999). Discrete Filtering Using Branching
and Interacting Particle Systems Markov Processes and Related Fields 5, 28
pages.

D. Crisan, J. Gaines and T. Lyons (1998). Convergence of a branching particle
method to the solution of the Zakai equation. SIAM J. Appl. Math. 58, 1568-
1590.

D. Crisan and T. Lyons (1997). Nonlinear filtering and measure valued processes.
Prob. Theory Related Fields 109, 217-244.

P. Del Moral (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle
Systems with Applications, Springer, Berlin.

P. Del Moral, A. Doucet and A. Jasra (2012). On adaptive resampling strategies for
sequential Monte Carlo methods. Bernoulli 18, 252-278.

P. Del Moral, P.E. Jacob, A. Lee, L.M. Murray and G.W. Peters (2013). Feynman-
Kac Particle Integration with Geometric Interacting Jumps. Stochastic Analysis
and Applications 31(5):830-871.

P. Del Moral, M.A. Kouritzin and L. Miclo (2001). On a class of discrete generation
interacting particle systems. Electronic Journal of Probability 6: Paper No. 16,
26 p.

P. Del Moral and L. Miclo (2000). Branching and Interacting Particle Systems
Approximations of Feynman-Kac Formulae with Applications to Non-Linear Fil-
tering. Séminaire de Probabilités XXXIV, Ed. J. Azéma, M. Emery, M. Ledoux
and M. Yor. Lecture Notes in Mathematics, Springer-Verlag Berlin, Vol. 1729,
1-145.

P.M. Djurić (1999). Monitoring and selection of dynamic models by Monte Carlo
sampling. In Proceedings of the IEEE Workshop on Higher Order Statistics, une
1999, 191–194.

R. Douc, O. Cappé and E. Moulines (2005). Comparison of resampling schemes
for particle filtering. In Proceedings of the 4th International Symposium on Image
and Signal Processing and Analysis 64-69.

A. Doucet, S.J. Godsill and C. Andrieu (2000). On Sequential Monte Carlo Sampling
Methods for Bayesian Filtering. Statistics and Computing, 10, 197-208.

A. Gandy and F. D-H. Lau (2016). The chopthin algorithm for resampling. IEEE
Transactions on Signal Processing 64, 4273-4281.

N. Gordon, D. Salmond and A. F. M. Smith (1993). Novel approach to nonlinear
and non-Gaussian Bayesian state estimation. Proc. Inst. Elect. Eng., F, 140,
107-113.

J.E. Handschin (1970). Monte Carlo Techniques for Prediction and Filtering of
Non-Linear Stochastic Processes. Automatica 6, 555-563.

J.E. Handschin and D.Q. Mayne (1969). Monte Carlo Techniques to Estimate the
Conditional Expectation in Multi-stage Non-linear Filtering. International Jour-
nal of Control 9, 547-559.

32 M. KOURITZIN

J. D. Hol, T. B. Schön and F. Gustafsson (2006). On resampling algorithms for
particle fiters. In Proceedings of the IEEE Nonlinear Statistical Signal Processing
Workshop, Cambridge, UK, pp. 79-82.

R.E. Kass and A.E. Raftery (1995). Bayes factors. Journal of the American Statis-
tical Association 90: 773-795.

G. Kitagawa (1996). Monte-Carlo filter and smoother for non-Gaussian nonlinear
state space models. J. Comput. Graph. Statist. 1, 1-25.

M. A. Kouritzin (2015). Microstructure Models with Short-Term Inertia and Sto-
chastic Volatility. Mathematical Problems in Engineering vol. 2015, Article ID
323475, 17 pages.

M.A. Kouritzin and W. Sun (2005). Rates for Branching Particle Approximations
of Continuous-Discrete Filters. The Annals of Applied Probability 15, 2739-2772.

M.A. Kouritzin and Y. Zeng (2005). Bayesian Model Selection via Filtering for a
Class of Micro-movement Models of Asset Price. International Journal of Theo-
retical and Applied Finance 8, 97-122.

M.A. Kouritzin and Y. Zeng (2005). Weak convergence for a type of conditional ex-
pectation: application to the inference for a class of asset price models. Nonlinear
Analysis, Theory, Methods & Applications, Series A 60 231-239.

F. Le Gland and N. Oudjane (2006). A sequential particle algorithm that keeps the
particle system alive. In Stochastic Hybrid Systems: Theory and Safety Critical
Applications, Henk Blom and John Lygeros, editors, Lecture Notes in Control and
Information Sciences 337, pp. 351-389, Springer, Berlin.

M. Lin, R. Chen, and J. S. Liu (2013) Lookahead Strategies for Sequential Monte
Carlo. Statist. Sci. 28: 69-94.

J.S. Liu and R. Chen (1998). Sequential Monte-Carlo methods for dynamic systems.
Journal of the American Statistical Association 93: 1032-1044.

L.M. Murray, A. Lee and P.E. Jacob (2016). Parallel Resampling in the Particle
Filter. Journal of Computational and Graphical Statistics 25: 789-805.

C. Vergé, C. Dubarry, P. DelMoral and E. Moulines (2013). On parallel implemen-
tation of sequential Monte Carlo methods: the island particle model. Statistics
and Computing, 23: 91-107.

