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On Almost-Sure Bounds for the LMS Algorithm 
Michael A. Kouritzin 

Abstract- Almost-sure (as.) bounds for linear, constant-gain, 

generd pseudo-stationarity and dependence conditions on the 
driving data { J ~ k , k  = 1 , 2 , 3  ,... }, { Y k , l i  = 0 , 1 , 2  ,... } as. 
convergence and r a t s  of a.s. convergence (as the algorithm gain 
c + 0) are established for the LMS algorithm 

second-order stochastic processes defined on a common prob- 
ability space. A basic problem of adaptive filtering is to find 

best ,nean-square linear approximation to +k+l in terms 
of the CoKLPonents of yk, i.e. find a deterministic sequence, 
{fk}rZ0, in gd,  which minimizes 

adaptive filtering algorithms are investigated. For instance, under 

hi+, hfk + ~ Y L ( I , ! I ~ + ~  - Y T k i )  
subject to some nonrandom initial condition hg = ho. In partic- 
ular, defining {gi}p=o by gg = ho and 

g;+, = g; + F(EIYkCI'A+Il - E [ I ' k C ] g ;  ) 
fork = 0.1.Z.. . , 

we show that for any > 0 

maxo5k5 , , -~ lh~  - -+ 0 as -+ 0 as. 

and under a stronger dependency condition, we show that for 
any 0 < C 5 1 and 7 > 0, 

maXosk<7r-C Ih; - sfkl 

converges (as e -+ O)la.s. at a rate marginally slower than 
O((c2-Clog log(c-c))z). Then, under a stronger pseudo- 
stationarity assumption it is shown that similar results hold if the 
sequences {g;}r=o, c > 0 in the above results are replaced with 
the solution g o ( . )  of a nonrandom linear ordinary differential 
equation, i.e. we have 

maxo5,5L,f-CJ ( h i  - g " ( c k ) (  + 0 as 6 + 0 as., 

E { I + ! I ~ + ~  - ~ , T f k } ~  for k = 0,1 ,2 , .  . . (1.1) 

If E(YkYkr) is nonsingular for each k 2 0, then it is 
immediately apparent that {fk}P& is uniquely defined by 

fk e (E'[Y~Y,TI)-'E[~,/~~+~Y~] for r~ = 0,1,2, .  . . (1.2) 

However, in practice {EIYkYz]}r=O and {E[q!~k+lYk]}~?~ 
often are not readily discernible so (1.2) is of no direct use. 
Consequently, stochastic estimates of { fk}& generated by 
adaptive algorithms, with either decreasing or constant gain, 
must suffice. The linear, decreasing-gain algorithm 

hk+l = hk + Pk Yk("k+l - Yzhk), (1.3) 

where {pk}r=o is a sequence of real numbers converging 
to zero as k -+ cc) and {hk(w), k = 0 , 1 , 2  ,... } forms 
our parameter estimates, is well-suited for ascertaining the 
minimum of (1.1) when fk is independent of k .  This algorithm 
has been studied extensively in the almost-sure case by, e.g., 
Eweda and Macchi [6] and Heunis [ 113. On the other hand, 
it is well-noted that constant-gain adaptive-filtering algorithms 

where we can attach a rate to this convergence under the stronger provide Of {fk}r=0 tracking 
dependency condition. 

The almost-sure bounds contained in this paper complement 
previously developed weak convergence results in Kushner and 

19841 and, as will be seen, are "near optimal". Moreover, the 
proofs used to establish these bounds are quite elementary. 

Index Terms- Adaptive filtering, almost-sure bounds, method 

when {fk} r=o fluctuates with time; however, few almost-sure 
results hav'e been developed for the constant-gain version of 
(1.3). 

arising from basic linear constant-gain adaptive-filtering algo- 
rithms such as the following LMS algorithm: 

Shwartz UEEE Trans. Information Theory, IT-WZ), 177-1829 this paper we examine the linear stochastic recursion 

of averaging. h&+, = h; + EYk($k+l - Y:h;), (1.4) 

I. INTRODUCTION where the gain E > 0 is a small constant, and {&, k = 
I, 2 , 3 , .  . .} and {Yk, k = 0,1 ,2 , .  . .} are processes defined 
as above &hich "drive" the algorithm. The limiting properties 

E > ha,,e heen investigated by Kushner and Shwa* in 
[12] using the theory of weak convergence of probability 
measures. 1 Jnder reasonably general conditions on the driving 

complement some of the asymptotic limits achieved in [12] 

nonrandom recursion, g i ,  obtained from 

S mentioned in the editorial of Macchi [16], adaptive 

stochastic approximation to estimate some nonrandom, optimal 
sequence of parameters, has wide-ranging and multifaceted ap- 
plications in engineering. Suppose that {d 'k ,  k = 1 , 2 , 3 ,  . . 

A in the general Of a (as E --$ 0) of the stochastic processes {h i ,  = 0,1 ,2 , .  . .}, 

and {Yk, = O, 172,. . .) are, !RWand Rid-valued~ processes { q , / j k :  = 1 , 2 , 3 , .  . .} and {yk, = 0,1 ,2 , .  . .}, we 

with &na,\t-sure bounds on the deviation between hi  and a 
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Then, we assume (limiting the possible fluctuations in 
{fk}T=O) boundedness of {EYEy!q+1}& and { E K q T } f " = o  
and existence of a matrix A and a vector b such that 

1 N-l 

1 N-l  

A - - N E ( X x T )  = O(N-'),  
1 =o 

(1.6) b - E(YE$~+I) = O(N- l ) ,  

and we use the method of averaging to obtain a reasonably 
tight a.s. bound on the deviation between h', and go(&), where 
go(T), 0 5 T 5 1 is defined by the linear ordinary differential 
equation 

(1.7) 

Under mild stationary conditions, the nonrandom trajectory 
{g;}TE0 will tend towards and then track the trajectory 
{fk}r=o provided E > 0 is chosen appropriately (see, for 
example, Solo [ 191 on the difficulty of choosing E ) .  However, 
unlike decreasing-gain adaptive algorithms, the effect of the 
driving stochastic processes on the right hand side of (1.4) does 
not diminish in time and, regardless of the value of E > 0, 
{ h', , IC = 0,1  , 2, . . .} will eventually experience excursions 
away from the sequence {fk}y=o with probability one. Still, 
large excursions should occur less frequently when E is small 
and the almost-sure bounds between {h i ,  IC = 0,1,2, .  , .} and 
{g;}T=o mentioned above can be proven over time frames 
such as 0 5 IC I ye-< for any 0 < < 5 1 , y  > 0. Such 
results, established in this paper, might be used to show that 
{h i ,  IC = 0,1,2,  . . .} must initially tend towards the optimal 
sequence { fk}r=o with probability one and to provide further 
direction about the choice of E .  

In Section I1 we provide the regularity conditions which will 
be imposed, state the main results of this paper (Proposition 
2.1 and Proposition 2.2) and provide some examples which 
indicate the scope of these regularity conditions. Section 3 
contains the proofs of Propositions 2.1 and 2.2, and Section 
IV is a short discussion on the significance of these results. 
Finally, Appendix A is a collection of technical results required 
for the proofs in Section 111. We mention that, in order to 
economize on notation and include algorithms other than the 
LMS algorithm given in (1.4), we generalize (1.4) and (1.5) 
slightly to the form 

(1.8) 

l = O  

g0(7) = -Ag"(7) + b . 

hi+, = hi + E(bk - Akh',) 

and 

(1.9) 

where for some integer A4 2 1 and all IC = 0,1,2, .  . . 

and 
k 

Clearly, the class of algorithms defined by (1.8), (l.lO), 
and (1.11) includes the LMS algorithm, as well as other 
adaptive-filtering algorithms, discussed for example in [7]. All 
regularity conditions will be given with reference to the vector- 
and matrix-valued random processes { b k ,  k = 0,1 ,2 , .  . .} 
and {Ale, IC = 0,1,2,. . .} respectively so this whole class of 
adaptive filterng algorithms can be studied at once. 

11. MAIN RESULT 
Suppose that (0, F, P ) is a probability space on which an 

?RZdxd-valued :stochastic process { A l ( w ) ,  E = 0,1 ,2 , .  . .} and 
an !Rd-valued stochastic process {b l (w) ,  1 = O! 1 , 2 , .  . .} are 
defined. Furtkkermore, suppose that EAl and Ebl are well 
defined for each I = 0,1,2,  . . . Then, the following conditions 
on { A l ,  I = O1l l2 , . . .}  and {b l ,  1 = 0, l 1 2 : .  . .} will be 
assumed for Proposition 2.1 (the first principal result of this 
paper): 

(CO) A ~ ( . J )  is symmetric and positive semi-definite for 
each w E R and 1 = 0,1 ,2 , .  . . 
(Cl)  For each pair of integers 1 5 s , t  5 d, the ( ~ , t ) ~ ~  
component of Al 4 Al - EA( and the sth component of 
bl A bl - Ebl satisfy the following moment bounds: 

I I 2m 

for some real constants m 2 1, c ,  > 0 and all integers 
O I p < q < m .  
(C2) There is a constant c' > 0 such that 

N - 1  

N - 1  

where 1x1 denotes the Euclidean norm of d-dimensional 
I ,  

JAY I 
U G S d  IYI  

vector z and lllAlll A sup - is the corresponding 

matrix norm of d by d matrix A. 
In preparation for the statement and development of the 

main results we define, for each E > 0, a stochastic process 
{h i ,  IC = 0 , 1 , 2 , .  . .} on (52, F, P )  and a nonrandom sequence 
{g',}LI by 

h',+,l:w) = h',(w) + E(bk(w) - Ak(w)h;(w))  
for k = 0 , 1 , 2 , . . . , ~ ~ 5 2 ,  (2.1) 

and 

g;+1 = g; + E(Ebk - E[Ak]  9;) 
f o r k = 0 , 1 , 2  , . . . ,  (2.2) 

subject to gi = hg(w)  = ho, a fixed nonrandom vector. 
Moreover, we use the notation that logo(.) = IC and logk(x) = 
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log(logk-l(a)) for all large enough a > 0 and all integers 
k 2 1 (for simplicity we take the log function to be such that 
210g(") = a). Also, La] denotes the largest integer not larger 
than a for all a > 0. 

Remark 2.1: By (2.2) and Condition (C2) it follows that for 
any y > 0 and 0 < ( 5 1 there is a constant er,< > 0 such that 

k-1 

(2.3) 

for all o 5 k 5 ~ y t - ~ ] ,  o < t 5 y+ so using ( ~ 2 )  again, 
we can define 

. N-I 

." 
(2.4) 

We now give our first main result which is stated in terms of 
a nondecreasing sequence {$ ( l ) }F ,  to be explained following 
the statement of the proposition. The function w ---t L ( w )  in 
Proposition 2.1 will depend on $ ( . ) , m , r  and < but not E. 

Thus, the following result is a rate of almost-sure convergence 
in terms of algorithm gain t > 0. 

Proposition 2. I :  Suppose {$(Z)}& is a nondecreasing, 
positive sequence such that & < CO. Then, under 
Conditions (CO), (Cl) and (C2), given any y > 0 and 
0 < < 5 1 there exists a function w -+ L(w)  almost-surely 
finite such that for each 0 < E I i: 

if m = 1 or 

where m 2 1 is the constant of (Cl). 
Notice that larger values of m in Condition (Cl) diminish 
the effect of the asymptotically (as t + 0) diverging term 
($(E-<))& and thereby produce sharper almost sure bounds 
on the right hand side of (ii) for small values of E. 

Example 2.1: Suppose K. is a large positive integer and U 

is a small positive real number. Then, defining €0 5 3 to be 
a real number such that log,(tiC) 2 1 and 

x < €0 

A { :.p(.) log,(a). . -log,-,(a)(log,(x))l+~ x2t0,  

we obtain ihe following bound from Proposition 2.1: 

... log,_,(t-C))&(log,(t-C))~ i f m  > 1, 

for all 0 < t 5 to .  On the other hand, in the simple case where 
d = 1, A ~ ( , J )  0 for all k and w and { b k ,  k = 0,1,2, .  . .} is 
an i.i.d. sequence such that Ebf < 00, one obtains from (2. l),  
(2.2) and Strassen's functional law of the iterated logarithm 
(see [21, Theorem 31) that 

I k-1 I 

= O(~1-6 ( log , ( t -C) )~ )  (2.6) 

and no mxe-accelerated rate of convergence is possible. 
Hence in o i r  more general setting with our modest conditions 
(see below) we obtain rates of convergence close to those 
known to te optimal in the simpler setting. 

One sees from Conditions (Cl) and Jensen's inequality that 
smaller values of m 2 1 constitute a less stringent condition 
but from Proposition 2.1 small values of m also provide a 
looser a s .  bound for small enough t. In fact, it is possible to 
obtain a s .  convergence of 

without the rates of convergence in Proposition 2.1 under the 
milder version of (Cl): 
(Cl') For cach set of integers 1 I s, t 5 d and 0 5 p < 
q < CO, suppose 

I 12 

6 )  E p q  5 ( q - p + l ) f ( q - p + l ) ,  
1 =p 

where { f( !)}E1 is any positive-valued, nondecreasing se- 
quence such that < CO and liminf f(KZ)/f(Z) > 
1 for some integer K 2 2. 

Proposit#bn 2.2: Under Conditions (CO), (Cl') and (C2), it 
follows that for any y > 0 

l-+w 

max 
o g c <  [r.-'J 

Ih',(w) - g;1 --f O as t -+ O as .  

Example 2.2: Suppose for all n E { 1 , 2 , 3 , .  . .}, some 
K',  x > 0 and some integer ,f? 2 1 

f ( n )  
A{ IC' l < n < n o  

IC'n/(Iog(n)log2(n). . . logp-,(n)(logp(.))'+") otherwise 

and no = no(P,x,K')  is chosen large enough that f(.) is 
nondecreasing. With this f ( . )  we obtain from Proposition 2.2 
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almost-sure convergence under dependency conditions similar 
to what Serfling (see Stout [20, Theorem 3.7.31) used to obtain 
his strong law of large numbers. 

Condition (CO) is a very mild condition which should be 
true in most applications including the ones mentioned in the 
introduction, Conditions (Cl) and (Cl') define mild forms 
of dependence in the processes {All 1 = 0 , 1 , 2 , .  . .} and 
{ b l ,  1 = 0 , 1 , 2 , .  . .}, suitable for a wide range of applications, 
and Condition (C2) expresses a very weak type of pseudo- 
stationarity for {All 1 = 0 , 1 , 2 , .  . .} and { b l ,  I = 0 , 1 , 2 , .  . .}. 
We now motivate Conditions (Cl) and (Cl') by letting ( 1  

represent some component, of A I  or some component, 
bj"), of bl and amassing several examples where {&, E = 
0 , 1 , 2 , . .  .} will yield a moment bound like those in (Cl) 
or (Cl'). For simplicity of notation let [ I  = 0 - E(l for 
E = 0 , 1 , 2 ,  . . . in the following examples. 

Example 2.3: As mentioned in Eweda and Macchi [6, p. 
12 11, decaying-covariance assumptions suit data-transmission 
problems in which adaptive-filtering algorithms, such as the 
ones mentioned in the introduction, might be used. Suppose 
{ ( l ,  1 = 0, 1 , 2 , .  . .} is a second-order process (i.e. { c l ,  1 = 

0 , 1 , 2 , .  . .} is a zero-mean process with 
1 = 0 , 1 , 2 , .  . .) satisfying the following 
condition: 

(2.7) 

Then there exists a constant c > 0 such that for any 0 5 p 5 
q < c o  

a a  a w  

k=p l=k k=p l=k 
(2.8) 

Thus a bound like (Cl) is satisfied with m = 1. Moreover, if 
there is a positive-valued, nondecreasing sequence 
such that 

( K  an integer 2 2) and 

k+n-1 

then it follows that (Cl') is satisfied although (Cl) may not be. 
Before our next example (on strong mixing processes) we 

state without proof a third proposition which will only be used 
within the confines of Example 2.4. 

Proposition 2.3: Let 6 > 0 and m > 1 be constants, let 
p and q be any positive integers such that q 2 p and let 
{Uk, p 5 k 5 g} be a %-valued, zero-mean stochastic process 
on (0,3, P )  satisfying the following moment bound 

Moreover, let {a( I)};;: be a nonincreasing sequence such that 

max 
DEo{uh,  p<k<r) 

( P ( D  n E )  - P(D)P(E)I I a(1) 
E E C { <  ,.+i> 

for all integers T ,  1 such that T ,  T + 1 E { p , p  + 1 , .  . . , q } .  
Then, there exists a constant Cm,M,6 > 0 such that 

Remark 2.2: Given the bounds on strong mixing processes 
(see for example Yokoyama [22, Theorems 1 and 21, Berbee 
[ l ,  Lemma 3 21 and Doukhan and Portal [5, Theorems 11.3 
and 11.4]), the above moment bound is not overly surprising. 
It can be proqed in the continuous time setting by adapting 
arguments in GerencsCr [8, Theorem 1.11. The discrete time 
version then follows via a construction similar to the one used 
in Example 2.5. 

Example 2.4: Strong mixing conditions are widely used in 
the literature ;md appear to be satisfied by a fairly substantial 
class of procc:sses including a wide variety of ARMA pro- 
cesses (see for example Mokkadem [17]). Suppose {tl, I = 
0 , 1 , 2 , .  . .} is a R-valued second-order process satisfying the 
following strong mixing condition: There exists a monoton- 
ically nonincreasing sequence { q ( l ) } p O o  and real constants 
S > 0, m 2 1 such that 

SUP SUP IP(D n E)-P(D)P(E)I <a&), 

(2.9) 

k2° DEu{EJ, j:=k+l,k+l+l, } 

E E U I E , ,  3=0,1 ,  > k l  

for 1 = 0,1,'2,. . . and 

g- [at(l)] + m ( l + 6  <m. (2.10) 

Moreover, suppose the process {&, 1 = 0 , 1 , 2 , .  . .} also 
satisfies the moment condition: 

1 =o 

(2.1 1) 

where S > 0 m d  m 2 1 are the same constants as in (2.10). 

such that 
Then by Proposition 2.3, there exists a constant cm > 0 

2 m  

E C 6  I c m ( q - ~ + l ) ~  (2.12) LP I 
for all integers 0 5 p 5 q < co which establishes Condition 
(CI). Alternatively, suppose (2.1 1) is satisfied with m = 1 and 
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suppose (2.10) is replaced with 

* -1  .- - 
[q(E)]h 5 f(n) for all n 2 1 (2.13) 

1=0 

and some f(.) as in the previous example and Condition (Cl’). 
Then using Proposition 2.3 (with m = l), it follows that (Cl’) 
is satisfied. 

Example 2.5: In this example we consider the “stably gen- 
erated” processes adopted by Davis and Vinter (see [3,  Defi- 
nition 5.1.11) and the “L-mixing” processes of GerencsCr [8]. 
With this in mind, we assume that 

1 )  for some y 2 1, we have that 

sup EI<II.I2q < 00, 
k20 

2) there exists a family of n-algebra pairs { (Fk, Fc), k 2 
0) such that Fj c 3 k  c F and Fc c FT c F for 
all integers 0 5 j 5 k ,  Fk is independent of .Fz for 
all integers k 2 0, <A is Fk-measurable for all integers 
k 2 0 and 

k=O 

where y 2 1 is the constant of 1 above and 

The processes described above are variations on the “expo- 
nentially stable” mixing processes introduced by Ljung (see 
S3 on page 772 of Ljung [14]) and have been found useful 
in studying inference in control theory. In particular, they 
have the useful property that a stable linear dynamical system 
driven by a process satisfying 1 and 2 generates an output 
which also satisfies 1 and 2 (see Lemma 2.4 on page 172 
of [8] for a statement and proof of the continuous time 
version of this property and note that the discrete version is 
proved analogously). From Theorem 1.1 of [8] one sees that 
(Cl)  holds for m = y when { E l ,  1 = 0.1 ,2 , .  ..} satisfies 
1 and 2 above. Theorem 1.1 of [8] is actually stated in 
a continuous-time context for L-mixing processes, but the 
desired discrete-time version for processes satisfying 1 and 
2 follows by converting the given discrete-time process, {&}, 
into a right-continuous, piecewise-constant, continuous-time 
process, i.e. letting U ,  = & for w E [k, k + I), k = 0.1,2,  . . . 
and applying Theorem 1.1 of [8] (which continues to hold 
under sufficient generality) to this continuous-time process. 
Finally, it is again possible to weaken 2 in a similar manner 
to what was done in Example 2.4 above and still satisfy (Cl’). 

Remark2.3: In the above example, it is immediately ob- 
vious that L-mixing processes satisfy I and 2. Moreover, 
suppose that {<k, k = 0 , l . Z . .  . .} satisfies I above and 
(similar to Davis and Vinter [3, p. 2171) that {uk. --oc < k < 
m} is an independent sequence of random variables such that 
& is n(u1, --oo < 1 5 k}-measurable for all k = 0,1 ,2 , .  . .. 
Moreover, suppose there exist constants c > 0 and X E (0, l )  
such that for all integers k ,  3 with k 5 j + I, k 2 1 

there is a random variable [ j [ k ]  measurable with respect to 
n{uj-k+l. . . . , uj} and satisfying 

Then, it follows by Jensen’s inequality for conditional expec- 
tations that 

for all intvgers k 5 j+l, k 2 1 and { < l ,  1 = 0.1 .2 , .  . .} will 
also satisfj 2 of Example 2.3 with 3 k  n{ul, -m < 1 5 k }  
and Fz 4 n{ul, k < 1 < CO}. 

Examplc- 2.6: In [15], Longnecker and Serfling define a 
general class of mixing processes, the so-called “weak multi- 
plicative” processes, which satisfy quasi-orthogonality depen- 
dence reshictions. Rather than repeat the definitions here we 
refer the n:ader to Section 2 of [15] where some half-dozen 
precise formulations of this concept are given. From Section 
4 of [15], it is seen that if { < I ,  1 = 0.1 ,2 , .  . .} is weak 
multiplicat we then condition (Cl) holds for some positive 
integer m. 

Example 2.7: Suppose that { < l 3  I = 0.1.2, .  . .} is a mar- 
tingale difference sequence satisfying S U ~ ~ , ~  EIE112” < cc for 
some v 2 I. Then {&, 1 = 0,1 ,2 , .  . .}satisfies (Cl) with 
m = v .  This follows directly from Burkholder’s inequality 
(see Hall and Heyde [lo, Theorem 2.101) if v = 1 or from 
Theorem 3.7.8 of Stout [20] if v > 1. 

Now, w(: motivate Condition (C2) via a simple example: 
Example 2.8: Consider the dynamical system described by 

subject to yo = 1, where d k ,  n k  may vary with time 
and { u k ,  k = 0,1 ,2 ,  ...} is a sequence of independent 
N(0, l )  random variables. Suppose we have access to cor- 
rupted versions of yk and Uk defined by Gk(w) = yk(w) + 
pk(w)  and ek(w)  = uk(w) + & ( U )  and where { p k ,  k = 
0 , 1 , 2 , .  . .} and {Ck, k = 0,1 ,2 , .  . .} are sequences of zero- 
mean i.i.d. random variables mutually independent of each 
other and of {uk, k = 0, I, 2 , .  . .}. Using the LMS algorithm 
to estimate d k , n k ,  we obtain the recursion 

hi,, = h,; + ~ ( b k ( w )  - &(U)  h i )  for k = 0 , 1 , 2 , .  . . , 

subject to some initial guess hi at [do where b k  = 
[$k+l$k Y’k+lekIT and 

(i) If d k ,  7Lk are constant for all k and 0 < Idol < 1. Then 
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it follows that independent of E such that for each w E R 

so E+; varies with time; consequently, stationarity con- 
ditions such as those assumed in Eweda and Macchi [6] 
are not actually satisfied. However, it is easily seen that 
Condition (C2) is satisfied and thus (C2) is a more natural 
assumption for ARMA processes with transient behavior. 

(ii) If d k ,  7?,k vary with time it seems unreasonable to insist 
that E A k  and E b k  are time-invariant. 

111. PROOFS OF PROPOSITIONS 2.1 AND 2.2 

In this section we establish Proposition 2.1 and Proposition 
2.2 as stated in Section 2. The proofs of Proposition 2.1(i), 
Proposition 2.l(ii) and Proposition 2.2 are all very similar so 
we will prove Proposition 2.l(ii) first and then describe the 
changes required for Proposition 2.l(i) and Proposition 2.2. 
Proof of Proposition 2.1 (ii): We assume that < E (0,1] has 

already been chosen and, to simplify notation, that y = 1. Fix 
an w E R and an E E (0, +I .  We have by (2.1) and (2.2) that 

k-1 k - 1  k-1 

l = O  1 =o l=O 

for any k E { 1 ,2 , .  . . ,  LE-^]}, where A, 
bl 

AI - EA1 and 
bl - Ebl for 1 = 0,1 ,  . . . , Le-']. Hence, we have by (3.1) 

E - 1  \ 

1=0 

for k = 0,1, .  . . , LE-'] and using the discrete Bellman- 
Gronwall inequality (see Desoer and Vidyasagar [4, page 2541) 
on (3.2) and the fact that < 5 1 

1 %  - dc1 

(3.4) 

where i, is the integer such that 2-if-1 < e< 5 2-ic and 
f l  ' ' = * 91 ("T'" for all 1 = 0,1 ,2 , .  . . , k d  T E 8 such that 

Now, using (2.2), (C2), (2.3), and the discrete Bellman- 
5 T 5 Z!ic+l. 

Gronwall inequality, we discover that T -+ f F p  whence 

is right continuous and the supremum term in (3.4) is 
F-measurable. Hence, we have by the monotone convergence 
theorem and Lemma A.l (ii) that there is a constant a$, > 0 
such that 

(3.5) 

and since 
almost-surely finite such that 

& < 03 we have a function w + N ( w )  

for all w E R and i = 1 , 2 , 3 , .  . .. Similarly, using the 
monotone convergence theorem, and Lemma A.2(ii) there 
exists a function w -+ K ( w )  almost-surely finite such that 

j - 1  j - 1  for all w E R and i = 1,2,3,  . . .. Substituting (3.6) and (3.7) 
into (3.4) yields the existence of some H ( w )  almost surely 
finite such that: .( l<Ey-CJ lzA1gil + I < ~ ~ - ~ J  l ~ b l l }  

1=0 + N ( W ) ) 2 + ( $ ( 2 9 &  

5 f f ( w ) ~ ' - ~ ( $ ( e - ' ) ) ~  (3.8) 

for all w E R and 0 < E 5 f and Proposition 2.1 (ii) follows 
when y 5 1; the case where y > l  follows similarly defining 
i ,  to be the integer such that 2Tif-' < tC/y 5 2-i* and 

replacing fT" with fFc l '  

(3-3) 

for k = 0 , 1 , .  . . , LE-']. Now, by (3.3) and Lemma AS 
there exists a function w --+ M ( w )  almost-surely finite and 

1  SI(''*)^ . 
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Proof of Proposition 2.1 (i): We follow the same path as 
for Proposition 2.l(ii) but use Lemma A.l(i) and Lemma 
A.2(i) in place of Lemma A.l(ii) and Lemma A.2(ii) and 
replace (3.5) with 

af 2(i + 2)2 00 

5 C i2,4(2i) < 00. 
Z=1 

After repeating the work in (3.6) and (3.7), (3.8) becomes: 

~h;(w) - g;1 5 ~ ( w ) t l - f  ( l o g t - ~ ) ( + ~ ( E - ~ ) ) b  max 
O<k< L t - C J  

(3.9) 
for all w E R and 0 < E 5 f so we have the case where y 5 1 

0 
Finally, we prove Proposition 2.2 which assumes only 

Condition (Cl') rather than (Cl). However, its proof requires 
only a trivial modification of the proof of Proposition 2.1. 

Proof of Proposition 2.2: For ease of notation we will as- 
sume that y = 1. Now it follows from (3.4) of the proof of 
Proposition 2.1 (ii) that 

and the case where y > 1 follows similarly. 

(3.10) 

for each w E R and E E (0,1], where i, is the integer such 
that 2Ti*+' < t 5 and f? !! g;lT. Moreover, it follows 
from the monotone convergence theorem, Lemma A. 1 (iii) and 
Condition (Cl') that there is a constant c1 > 0 such that 

(3.1 1) 

where f ( . )  is the function defined in Condition (Cl'). Hence, 
we have that 

(3.12) 
Similarly, using the monotone convergence theorem and 
Lemma A.2 (iii), we have that 

IV. DISCUSSION 
In the preceding sections, we have shown that under mild 

stationarity and dependency conditions one can bound the dif- 
ference between the random recursion (2.1) and the nonrandom 
recursion (2.2). Under additional stationarity conditions on the 
processes [ b k ,  k = 0,1 ,2 ; .  . .} and {Ak, k = 0 ,1 ,2 , .  . .} 
one can associate a "limiting ordinary differential equation" 
with the recursion (2. l), whose (nonrandom) solution defines 
the limiting behaviour of { h i ,  k = 0,1 ,2 , .  . .} as E + 0. 
Such a result is an immediate consequence of Proposition 2.2 
if there is sufficient regularity in the nonrandom sequences 
{Ebk} ancl { E A k }  to allow one to apply (a discrete-time 
version of) the classical averaging principle of Bogoliubov- 
Krylov-Miiropolskii [2] to the nonrandom recursion (2.2). For 
example, i '  

and the following limits exist 

. A--1 ~ N-I 
1 

N-+m N lim -L EA1 = A, lim - Ebl = b (4.2) 
1 =0 1=0 

N+m lv 

for some d-vector b and d by d matrix A, then it follows from 
Lemma A.7 that for any y > 0 

(4.3) 

as E  --+ 0 ,  where g o ( . )  is the solution of the differential 
equation 

g0(7: = -Ago( . )  + b subject to go(0) ho. (4.4) 

Combining (4.3) with Proposition 2.2 one sees that if (4.1) 
and (4.2) hold, in addition to Conditions (CO) and (Cl') of 
Section 2, then 

This result complements Theorem 1 of [ 121 which establishes 
the convergence in probability of the quantity on the left of 
(4.5) to zeio as E -+ 0, under conditions somewhat related to 
those above (see the Remark on page 179 of [12]). Moreover, 
one can also get almost-sure rate bounds for the convergence in 
(4.5) merely by assuming enough regularity for the sequences 
{EAk} ancl { E b k } .  Indeed if, instead of (4.2), one has 

with a similar bound for the { E b k }  sequence, then it follows 
by Lemma:; A.8 and A.9 that for any y > 0, 0 < < 5 1 

Proposition 2.2 follows by substituting (3.12) and (3.13) into 
(3.10). 0 
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and hence from Proposition 2.1 one sees that 

(4.8) 

is, for almost all w,  either ~ ( € l - ~ ( l o ~ € - c ) ( ~ ( € - c ) ) $ )  or 
O(cl-$(+(c-c))k) depending on whether m = 1 or m > 1 
in (Cl). 

The above a s .  rate bounds are all slightly slower than 
O(el-i), which is very slow convergence indeed. The ques- 
tion then arises as to what extent it is possible to improve these 
bounds under perhaps more stringent conditions. We note first 
of all that if one defines { X ' ( T ) ,  0 5 T 5 l} by 

X ' ( T )  !I E-qhL;(w) - g y k € ) )  
for T E [kc,  kt + E ) ,  X: = 0,1,. . . , [t-'J, (4.9) 

then one expects from the weak convergence analysis in [12, 
Section VI that, under suitable strengthening of the regularity 
conditions in Section 2, the family of processes { X ' ( . ) }  
converges weakly to some limiting Gauss-Markov process, 
as E -+ 0. This at once implies that for a.a. w the rate of 
convergence in (4.5) cannot be faster than O ( E ~ ) .  Actually, 
based on the functional law of the iterated logarithm for sums 
of random variables, we believe that the quantity in (4.8) can 
be shown to be of the form O((t2-c loglogt-c)$) for a.a. w 
and that no further improvement in this rate bound is possible. 
However, this will likely require an involved proof as well 
as regularity conditions much more stringent than those of 
Section 11. As illustrated in Example 2.1, this paper establishes 
an as .  convergence rate almost as good as this best bound 
under very general conditions and by a very simple proof. 

APPENDIX 

Technical Results 

This appendix contains various technical results used to 
support the proofs in Section I11 and substantiate the claims 
made in Section IV. The first two results, Lemma A.l and 
Lemma A.2, are used directly in the proofs of Propositions 
2.1 and 2.2. 

Lemma A.]: Under Condition (C2) and either Condition 
(CI) or (CI') of Section 2 there exists a constant a $ y  > o 
such that 

for all 1 5 U 5 V 5 2U if (Cl) is satisfied with m = 1, 

for all 1 5 U 5 V 1. 2U if (Cl) is satisfied with some 
m > 1, or 

for all 1 5 U 5 V 5 2U if Condition (Cl') is satisfied, where 

A l  (9; being defined in 
(2.2) for each E > 0) for 1 = 0 ,1 ,2 , .  . . and T 2 1. Here, 
0 < C 5 1, 2 1 are constants, and f(.) is the function of 
Condition (C 1'). 

Proof: Consider (i), (ii) and (iii) simultaneously and fix 
a U and V such that 1 5 U 5 V 5 2U. Then it follows by 
(2.2) of Section 2 that 

115 
Al - EA1 and fFc'y 2 g,(y'T) 

Now by (2.4) of Section 2 

li-1 1-1 I 2m 

17-2 i-1 I 2* 
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for each w E R. Hence by (A.l) and (A.2) there exists a 
number c1 > 0 independent of U and V such that 

where i51(s’t) denotes the ( ~ , t ) ~ ~  component of Al. However, 
by (C1) 

or by (Cl’) 

2 

E iii”’t) I (Q - p + l ) f ( q  - p + 1) (A.5) Ill. I 
for all integers p , q , s , t  such that 0 5 p 5 q < LVJ and 
1 I: s, t 5 d.  (i) follows from (A.3), (A.4) and Theorem A.3, 
where we use {X l ,  Z = 0,1,2, .  . .} = {ii[s9t), 1 = 0 ,1 ,2 , .  . .} 
for each 1 5 s, t 5 d and g ( i , j )  = cm( j  - i + 1) for all 
integers 0 5 i 5 j .  Similarly, (ii) and (iii) follow from (A.3), 
(A.4), (A.5) and Theorem A.4, where g(n) = cmnm for all 
integers n 2 1 when we are proving (ii) and g(n)  = n f ( n )  

0 
Lemma A.2: Under Condition (C2) and either Condition 

(Cl) or Condition (Cl’) of Section 2 there exists a constant 
pm > 0 such that 

for all integers n 2 1 when we are proving (iii). 

for all V 2 1 if (Cl)  is satisfied with m = 1, 

for all V 2 1 if (Cl)  is satisfied with some m > 1, 

for all V 2 1 if (Cl’) is satisfied, where bl A 61 - E61 for 
1 = 0,1,  2 , .  . . and f(.) is the function of Condition (Cl’). 

Pro08 Similar to the proof of Lemma A.l. 0 
The following theorem is a trivial extension to Serfling’s 

maximal iriequality (see [20, Theorem 2.4.11). It is used to 
establish Lemma A.l (i) and Lemma A.2 (i) above. 

Theorem A.3: Let X O ,  X I ,  . . . , X,-l (n 2 1) be real- 
valued random variables such that 

where g(-,  .) is a nonnegative function 

g ( i , j )  + g(j + 1, IC) I g(4 I C )  for all 

Then 

satisfying 

0 5 i 5 j  < IC < n. 

The following maximal inequality is an immediate con- 
sequence of Lai and Stout’s maximal inequality (see [13, 
Theorem 51). It is used to establish Lemma A.l (ii), (iii) and 
Lemma A.2 (ii), (iii) above. 

Theorem A.4: Let X O ,  X I , .  . . , X,-1 (n 2 1) be real- 
valued random variables. Suppose there is a constant v > 0 
and a positive, nondecreasing function g(Z), 1 = 1 ,2 ,3 , .  . . 
satisfying 

liminfg(KZ)/g(Z) > K 
1 - 0 0  

for some integer K 2 2 and 

E ~k I g ( j  - i + 1) for all integers o 5 i 5 j < n. 
I k I i  1 ”  

Then there exists a constant A (independent of .n) such that 

Next, in Lemma AS, we establish the uniform (with respect 
to E) bound which is required in the proofs of Propositions 2.1 
and 2.2. Since Condition (Cl) clearly implies Condition (Cl’), 
Lemma A.5 holds under the hypothesis of Proposition 2.1 as 
well as those of Proposition 2.2. 

LemmaA5: Under Conditions (CO), (Cl’) and (C2) of 
Section 2 there exists a function M : R -+ (0,001 almost 
surely finite such that 

1=0 

for all w E R and 0 < t 5 7 ,  where y > 0 is some constant. 
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Proof: We will just prove the result in the case where 
y = 1 since the case y # 1 is virtually identical. Fix an 

it follows by Condition (C2) (i) that there is some c1 > 0 
such that 1=0 

Substituting (A.lO) into (A.12) we find 

w E Q, an E E (0,1] and a pair of integers 1 5 s, t 5 d. Then [€-'I -1 

E l l lA l (w) l l l  L M ( w ) ,  (A.13) 

where N ,  A [e- ' ]  and a!"t) respectively iifSYt) is the (3 ,  t)th 
component of A1 respectively Al A1 - EAl. Now we have 
by Condition (Cl') (i) that 

for all integers j 2 0 and n 2 1, where f(.) is the function 
of Condition (Cl'). Hence, it follows by Theorem A.6 (to 

where M ( w )  d .  L ( w )  is almost surely finite. U 
The following strong law of large numbers, Theorem A.6, is 

a slight modification of Lai and Stout's law of large numbers 
[13, Theorem 71 and is proved in exactly the same manner 
as their resul. (let p = 2, g(n) = n f (n )  and replace their 
log terms with n / f ( n ) ) .  We use Theorem A.6 in line (A.8) 
of Lemma A 5. 

Theorem A.6: Suppose that { X z ,  i = 0,1 ,2 , .  . .} is a se- 
quence of rardom variables such that 

follow) that where { f(n) :.rL1 is a nonnegative, nondecreasing sequence 
satisfying the constraints given in Condition (Cl') of Section 

We now commence establishing the as yet unproven asser- 
tions of Section IV. The first result, Lemma A.7, is used in 
Section IV in conjunction with Proposition 2.2 to prove that 

lim max Ihk(w) - g0(kE)l = o a s .  , 

E iiis't) + 0 as n -+ cc a s .  (A& 11. Then 1:~: xi -+ o almost surely. 
1=0 

From (A.8) and (A.6) we obtain a function w -+ L ~ , t ( w )  
almost surely finite and independent of E such that 

;;: DSkS L r t - c J  
5 L,,,(w) for all w E Q (A.9) 

1=0 where go(.) i s  the solution of the differential equation given 

so letting L ( w )  = d .  maxl<s,t<dLs,t(w) for all w E R it 
must follow that 

LE--' J -1 

I I I E  E A ~ ( ~ ) ~ I I  5 ~ ( w )  for all w E a. ( A . ~ o )  

Now since each Al (w)  is symmetric and positive semi- 
definite, there exists a d by d matrix 4 ( w )  such that A l ( w )  = 
Pl(w)PT(w) for all 1 = 0,. . . , LE-'] - 1 and w E Q (see for 
example Proposition D.1.2 of Davis and Vinter [3]). Hence 
fixing w E Q 

1=0 

LE-'  J -1 Lt-lJ-1 [€-I1 -1 

1 1 1  ~ ~ 1 1 1 2  ajiyi)= IP,Te;12 ( ~ . 1 1 )  
1 =o 1=0 l = O  

in (4.4). 
LemmaA.7: Suppose { b l ,  1 = 0,1 ,2 , .  . .} and {Al, 1 = 

0,1 ,2 , .  . .} are respectively Rd- and Ridxd-valued (nonran- 
dom) sequences, b is a d-vector and A is a d by d-matrix' 
such that 

1 N - l  
and lim suplll- E Al - = 0. 

l = O  
N-CC N 

Then, it follows that for any constant y > 0 

for a = 1,2,  . . . , d, where ei is the ith unit vector and by basic 

14 and 15 of [9]) we have by letting pji") denote the (z,j)th 
component of Pl that 

max 19; - gO(~k)l t o as t -+ 0, (A. 14) 
properties of induced matrix norms (see for example pages O < k < l r ~ - ' J  

where {gi, k = 0,1 ,2 , .  . .} and go(.)  are defined by 

g;+l = 9;: + e(bk  - Akg;) for all k 2 0, E > 0,  (A.15) 

[€-'J -1 Le-'J -1 
j0(i-:i = b - Ago(.) for all 0 5 7 5 1 (A. 16) 2 111~ll11 . lllP?lll L IIIAllll. 

1=0 1=0 

(A.12) subject to g; = go(0) is some fixed (independent of E) vector. 
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Proof: Fix a 6 > 0, an t > 0 and an integer IC such that 
1 5 IC 5 (yt-'j and define E _ _  lgo(T)l. Then, 

IC-1 

+ IllAllll . 1g0(4 - gEI (A.17) 

and defining AI A Al -A and $1 A b l -  b for all 1 = 0,1,2,  . . . , 
we have for any n > 0 that 

1 =o 

! E ( b l  - A1go(tl)) - l k ( b  - Ag"(ts))ds 
1=0 

1=0 

LktnJ - 1 + e  
+ e  

i=O 

l t r l k < n .  
i < k  

where for each i E (0, 1 , 2 , .  . . L ICmJ}  

I ~ ? > ~  !& { [it-'n-'1, [ i t - ln - l ]  

+1,. . . , [ ( i  + 1)tC1n-'1 - l}. ( A . 1 9 )  

(In the above line and in the remainder of this proof we use 
[z1 to represent the smallest integer not smaller than 2 where 
2 is any real number.) Hence, if we make n large enough that 

and 

then we have by ( A . 1 8 ) ,  (A.20) and (A.21) an ~ ( 6 )  > 0 such 
that 

YP 6 5 t - ( ~  + P E )  + 5 exp(-Py) + 2 ( ~  + P E ) ( ~ L - '  + 6) 

5 Sexp(-Py) for all t < to(6). 
2 

( A . 2 2 )  

The lemma follows from ( A . 1 7 ) ,  (A.22) and the discrete 

Next, under more stringent conditions than Lemma A.7, 
we obtain (by combining Lemmas A.8 and A.9) a rate of 
convergence in ( A . 1 4 ) .  In preparation for the statement of 
Lemma A . 8  and Lemma A.9, we presuppose a (nonrandom) 
sequence, {Al. I = 0 ,1 ,2 . .  . .}, of d by d matrices, a 
(nonrandor?) sequence, { b l ,  1 = 0,1 ,2 , .  . .}, of &vectors, 
a d by d matrix, A, and a &vector, b. Finally, we define 
{g ; ,  IC = ( , 1 , 2 , .  . .} and go( . )  as in (A.15) and (A.16) above 
and an additional sequence {vi, k = 0 , l .  2. . . .} by 

Bellman-Gronwall inequality. U 

for all IC 2 0 , t  > 0, (A.23) 

subject to ,$, = g6 = go(0) for all t > 0, where N ,  2 ~ - c / '  
for some constant 0 < 5 1. 

Lemma A.8: Suppose 

suplllAllll < CO and suplbll < CO. 
120 120 

(A.24) 

Then, there exists a c > 0 independent of E such that 

max lg' v'I < ~ t ' - ~ / '  for all t > 0. (A.25) 
O ~ K l r e - i ]  IC - - 

Proof: Lemma A.8 follows by an adaptation to the 
discrete-tinie setting of the arguments used to establish Lemma 
3.2.9 of Smders and Verhulst [18 ]  

Lemma A.9: Suppose (A.24) is satisfied and 

Then, there, is a c > 0 independent of t such that 

max 1.; - go(tk)( I: cc?-c/2 for all t > 0. (A.27) 
O<k<[re-CJ 

Proof: Lemma A.9 follows by an adaptation to the 
discrete-time setting of the arguments used to establish Lemma 
3.3.2 of Sanders and Verhulst [18]. 
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