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The mean-field stochastic partial differential equation (SPDE)
corresponding to a mean-field super-Brownian motion (sBm) is ob-
tained and studied. In this mean-field sBm, the branching-particle
lifetime is allowed to depend upon the probability distribution of the
sBm itself, producing an SPDE whose space-time white noise co-
efficient has, in addition to the typical sBm square root, an extra
factor that is a function of the probability law of the density of the
mean-field sBm. This novel mean-field SPDE is thus motivated by
population models where things like overcrowding and isolation can
affect growth. A two step approximation method is employed to show
the existence for this SPDE under general conditions. Then, mild mo-
ment conditions are imposed to get uniqueness. Finally, smoothness
of the SPDE solution is established under a further simplifying con-
dition.

1. Introduction. The classical mean-field theory was widely used in statistical
mechanics to study e.g. the derivation of Boltzmann or Vlasov equations in the kinetic
gas theory. This theory has also been applied in quantum mechanics, quantum chem-
istry and so forth. In the late 2000’s, Larsy and Lions (see [27] and references therein)
generalized this theory to approximate the Nash equilibrium with a large number of
players that can be described as a system of exchangeable stochastic differential equa-
tions (SDEs). Moreover, there is a series of more recent papers focusing on mean-field
backward SDEs (see [1, 5, 6] etc.). Still, it is natural to extend the mean-field theory
for SDEs to infinite dimension and, in particular, consider mean-field stochastic partial
differential equations (SPDEs). Yet, hitherto little has been done. To the authors’ best
knowledge, there are only a very limited number of works on mean-field SPDEs (see
[12, 39]).

The mean-field SPDE we study arises from a Dawson-Watanabe-style, high-density
branching-process limit with some naturally modified branching mechanism. Suppose
that there is a population of particles, each performing Brownian motions on R, with
exponentially distributed lifetimes. At the end of each individual particle’s life, it gives
birth to a number of offsprings according to the Dawson-Watanabe branching mecha-
nism. Then, it is well-known (c.f. Perkins [33]) that the empirical measures Xn

t of this
Dawson-Watanabe branching particle system converges to the super-Brownian motion
(sBm), described by a measure-valued stochastic partial differential equation. Further-
more, the one dimensional sBm Xt, considered as an MF (R)-valued process, has a
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Lebesgue density X(t, x) for all t ∈ R+ almost surely. Thus from the random field point
of view, one can write (c.f. Xiong [44]) the sBm as the unique weak random field solution
to the following SPDE

∂

∂t
Xt(x) = 1

2∆Xt(x) +
√

γXt(x)Ẇ (t, x) ,

where γ > 0 is the branching rate, ∆ denotes the Laplacian operator in space and
Ẇ = ∂2

∂t∂xW is the space-time white noise on R+ ×R (i.e. W is the Brownian sheet).
Suppose now in the finite particle prelimit that each individual branching particle’s

lifetime is affected by the entire population (perhaps through overcrowding or isola-
tion) so it dies and branches accordingly. Then, in the limit, the branching rate γ (or
more precisely the particle lifetime) depends upon the probability distribution of the
population. This leads us to consider the following mean-field sBm, whose Lebesgue
density X(t, x) satisfies the following SPDE

∂

∂t
Xt(x) = 1

2∆Xt(x) + σ
(
t, x,PXt(x)

)√
Xt(x)Ẇ (t, x),(1)

where PXt(x) is the probability law of the real valued random variable Xt(x).
Superprocesses or branching processes have been widely applied in natural sciences.

The use of branching processes to approximate large-scale networks is one of those
successful examples (c.f. [13, 40]), while large-scale networks are employed to model
real-world problems such as the spread of diseases (c.f. Strogatz [36]), the evolution
of complex biochemical reaction systems (c.f. [2, 17]), and so on. This approximation
is based on the fact that the global structures of a complex network are determined
by their local properties and the network behaves locally like a tree structure (see
Eckhoff [13]). A typical example is that the homogeneous Erdős-Rényi random graph
can be adequately approximated by the Poisson-Galton–Watson process (c.f. Van Der
Hofstad [40]). Additionally, if one takes the spatial movement into consideration, the
associated branching particle system could be a good replacement of the branching
process in the approximation of corresponding networks with spatial motion. In fact,
the sBm can be understood as a type of scaling limit of the reaction network {S →
2S,S → ∅} with the same reaction rates and where the molecules of species S move
as independent Brownian motions (c.f. [4, 34, 35, etc.] for other types of scaling of
reaction networks with spatial motions). Assuming the reaction rates depend also on
the distribution of species in the system, the corresponding scaling limit should satisfy
a mean-field sBm of the form (1). Other than the sBm, the scaled Λ-Fleming-Viot
branching system converges to a stochastic Fisher-KPP equation (c.f. [3, 15]), which
describes the population evolution of competing species. We are interested in knowing
whether the techniques used in this paper could be potentially applied to derive a
mean-field stochastic Fisher-KPP equation or other SPDEs arising from the large-scale
networks with distribution dependent coefficients and consequently to establish the
existence, uniqueness and regularity results of the solution.

On the other hand, one may also obtain this equation (1) from the average of weakly
interacting sBm’s (cf. Overbeck [31]). Let XN = (X1, . . . ,XN ) be an N -type sBm’s that
is the solution to the martingale problem: for any ϕ = ϕ1 ⊗ · · · ⊗ ϕN with ϕi ∈ S(R) the
Schwartz space of functions on R for all i = 1, . . . ,N , the process

MN
t (ϕ) = XN

t (ϕ) − XN
0 (ϕ) −

∫ t

0
XN

s (∆ϕ)ds

is a continuous square integrable martingale with quadratic variation

⟨MN (ϕ)⟩t =
N∑

j=1

∫ t

0

∫
R

σ
(
s, x,

1
N

N∑
i=1

δXi
s(x)

)2
(ϕj(x))2Xj

s (dx)ds.
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Then, as N → ∞, 1√
N

∑N
i=1 X i shall heuristically converges to a random filed satisfying

equation (1) with σ(t, x,µ) = σ(t, x,E(Xµ)) where Xµ denotes a random variable of
distribution µ. Some related results can be found in e.g. Overbeck [30]. We are not
going to justify this limit in the present paper.

We shall focus on the existence, uniqueness and regularity of the solution to equation
(1). The first difficulty that we encounter is that there exists no readily-applicable, fully-
developed theory on the Fokker-Planck-Kolmogorov equation associated with (1). So,
we cannot follow the approach used in finite dimensional case (c.f. [1, 5, 6]) to study
the existence and uniqueness of solutions to the associated Fokker-Planck-Kolmogorov
equation first, and then to solve the mean field equation.

Nevertheless, the anticipation of solutions to (1) is well justified. Due to the appear-
ance of the branching character (the

√
Xt(x) factor in front of the noise), it is natural

to use a branching particle system to approximate this equation. Assuming that such
approximation is done and some high-density limit exists, one presumably obtains that
every limit point X = Xt(dx,ω) is an MF (R)-valued Markov process. One should be
careful, that this limiting process X is different from the stochastic McKean-Vlasov
equation as in Dawson and Vaillancourt [10]. Indeed, the noise coefficient in (1) is a
function of the probability law PXt of the solution Xt as a finite random measure. In
comparison, coefficients in [10] as functions of finite measures depend on the random
measure Xt itself. Notice that PXt is a probability measure on the space of finite mea-
sures MF (R). If we want to show that Xt satisfies equation (1) in certain sense, we
need to verify the absolute continuity of Xt with respect to the Lebesgue measure for all
t > 0 almost surely, namely, the existence of Xt(x,ω) such that Xt(dx,ω) = Xt(x,ω)dx.
This (random) measure Xt(dx,ω) may or may not have such a Lebesgue density. The
classical methods to check absolute continuity are based on the moment duality or
Laplace functional and require an explicit form of the corresponding martingale prob-
lem, whereas the presentation of the martingale problem for our limit X depends on
σ(t, x,PXt(x)), which is not well-defined without the absolute continuity of Xt. This
dilemma is one of the main difficulties in studying solutions to (1). Further, even if
the absolute continuity is established so Xt(dx,ω) = Xt(x,ω)dx, the law (now as a
measure of R) of Xt(x) is not a continuous functional of PXt(x) with respect to the
Wasserstein metric. Thus, σ(t, x,PXt(x)) has some intrinsic singularity with respect to
the probability measure PXt(x), which will force us to use non-standard methods.

To overcome these difficulties in the context of existence, we apply a two-step approx-
imation (see e.g. Ji et al. [23]). Let P(R+) denote the collection of all Borel probability
measures on R+ equipped with the weak topology, and let M(R;P(R+)) be the col-
lections of measurable functions on R with values in P(R+). In the first step, we fix
δ > 0, and prove the existence of the pair (Xδ, Y δ) that solves the equation

∂

∂t
Xδ

t (x) = 1
2∆Xδ

t (x) + σ̃δ(t, x,PY δ
t
)
√

Xδ
t (x)Ẇ (t, x),

Y δ
t (x) =

∫
R

pδ(x − y)Xδ
t (dy),

(2)

with a non-random initial condition X0 ∈ MF (R), where pδ(x) = 1√
2πδ

e− x2
2δ denotes

the heat kernel, PY δ
t

= PY δ
t (·) is understood as an element in M(R;P(R+)), and σ̃δ :

R+ ×R× M(R;P(R+)) → R+ is given by

σ̃δ(t, x,Γ) =
∫
R

dypδ(x − y)σ
(
t, y,Γ(y)

)
.(3)

In the next step, we prove the tightness of {Xδ}δ>0 and {Y δ}δ>0 in the space C([0, T ]×
R;R) for any T > 0. Then, we can find a random field limit point in distribution as
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δ ↓ 0. This will prove the existence of equation (1), once it is shown that X satisfies the
equivalent martingale problem (MP): for all ϕ ∈ S(R),

Mt(ϕ) = ⟨Xt, ϕ⟩ − ⟨X0, ϕ⟩ − 1
2

∫ t

0
⟨Xs, ϕ⟩ds(4)

is a square integrable martingale with quadratic variation

⟨M(ϕ)⟩t =
∫ t

0

∫
R

σ(s, x,PXs(x))2ϕ(x)2Xs(dx)ds.(5)

The uniqueness problem for equation (1) is much more involved. Overbeck [31] ap-
pears relevant to this problem. However, this work requires (e.g. [31, Proposition 3.3])
that σ(t, x,PXt(x)) is differentiable in time and twice differentiable in space, with all
derivatives being uniformly bounded. Suppose that σ is differentiable in the third ar-
gument in certain sense and consider using the chain rule. Then, applying Overbeck’s
result, one still needs to define and verify the differentiability of PXt(x) in x, which
seems challenging without more artificial assumptions.

Instead, motivated by the fact that a distribution is often uniquely determined by
its moments, we impose the condition that σ(t, x,PXt(x)) depends on the moments
of Xt(x). Firstly, we find an “almost” explicit moment formula for Xt(x) under mild
hypotheses that ensures the existence of X assuming σ(s, x,PXs(x)) is known. Using
this formula, under the moment conditions, we can show the uniqueness of moments of
any solution Xt(x) to (1). Then, the weak uniqueness of solutions to equation (1) can
be proved by studying its (unique) log-Laplace equation.

After we establish the existence and uniqueness of solutions to (1), we also study the
regularity of the moments of the solution to (1). As the diffusion coefficient involves a
square root that is not Lipschitz, the Picard iteration fails to get a convergent sequence
in L2(Ω × [0, T ] × R). However, using the Picard iteration for the moments, one may
get a convergent sequence in C([0, T ] × R). This allows us to get the time and spatial
regularity of the moments of the solution to (1). On the other hand, the regularity of
the moments also implies the differentiability of σ(t, x,PXt(x)) in both t and x. One
may obtain the uniqueness by Overbeck’s theorem.

Inspired by the regularity of moments, our result may potentially be extended to
higher dimensions in the following way. Let Xt denote the sBm in Rd with d ≥ 2.
Then, Xt does not have an almost sure Lebesgue density (c.f. Dawson and Hochberg
[8]), namely Xt(dx)/dx is not a real-valued random field. But we can instead consider
E(Xt(dx))/dx, which is the first moment of the “density” of Xt if we formally exchange
the order of differentiation and integration by Fubini theorem. Recall the fact that in
one dimensional case, the density of the sBm’s is only 1/2 − ϵ Hölder continuous for
any ϵ ∈ (0,1/2) in space, but the moment is differentiable. Hence, it is reasonable to
expect that in general E(Xt(dx))/dx, the Radon-Nikodym derivative of the moment of
the distribution function of the sBm with respect to the Lebesgue measure, exists as a
real-valued (deterministic) function on Rd, although Xt(dx)/dx does not exist as a real-
valued random field itself. Suppose now that σ depends on the moment of the density
of the sBm in terms of E(Xt(dx))/dx. Then, the corresponding mean-field martingale
problem can be well formulated analogously to (4) and (5). Because of the limitation of
space, we only focus on the one-dimensional case in this paper, and leave the problem
in higher dimensions for future work.
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2. Main results. To present the main results of this paper. We shall first introduce
(recall) some notation and hypotheses which will be used.

We denote by R the set of real numbers, by R+ the set of nonnegative numbers, and
by N = {1,2, . . .} the set of natural numbers. Notation S(Rd) and S ′(Rd) are used for
the space of Schwartz functions and its dual space, respectively, on Rd for all d ∈ N. Let
MF (R) be the set of all finite measures on R, let P(R+) be the collection of all Borel
probability measures on R+ equipped with the weak topology, namely, limn→∞ Pn = P
in P(R+), denoted by Pn ⇒ P, if

lim
n→∞

∫
R+

ϕ(x)Pn(dx) =
∫
R+

ϕ(x)P(dx),

for all ϕ ∈ S(R). We write M(R;P(R+)) for the collections of measurable functions on
R with values in P(R+). For any x ∈ R, notation δx denotes the Dirac delta measure
at x. We sometimes use δ for a small positive number, it should not be confused with
the delta function δx. Finally, we also remark that in the present paper, notation C, c1
and c2 are used for nonnegative constants that may vary from line to line.

Hypothesis 1. (i) σ2 is positive and bounded, that is, there exists a positive con-
stant K0 such that

0 < σ2(t, x,µ) ≤ K0

for all (t, x,µ) ∈ R+ ×R× P(R+).
(ii) σ2 is continuous with respect to all the arguments, in the sense that for any

(tn, xn) → (t, x) ∈ R+ ×R and µn ⇒ µ in P(R+), it follows that

lim
n→∞

σ2(tn, xn, µn) = σ2(t, x,µ).

Hypothesis 2. For any (t, x,µ) ∈ [0, T ] ×R× P(R+),

σ2(t, x,µ) = f(t, x,E[Xµ],E[X2
µ], . . . ,E[XN

µ ]) ,

where N ∈ N, Xµ is a random variable with distribution µ and f is a continuous
function on [0, T ] × R × RN

+ that is positive and bounded. Moreover, f is assumed to
be differentiable in the last N spatial arguments with bounded derivatives.

In the next hypothesis, we let N in Hypothesis 2 to be infinity. Before stating the
hypothesis, let us first introduce the following Hilbert space of real sequences. For any
γ ∈ R, the Hilbert space Hγ is a collection of real sequences, namely, x = (xi)i∈N with
xi ∈ R for all i ∈ N, equipped with inner product

⟨x, y⟩Hγ =
∞∑

n=1
(n!)−2γxnyn,(6)

for all x = (xi)i∈N and y = (yi)i∈N.

Hypothesis 3. Let H = Hγ with γ > 3
2 , and let H+ = {x = (xi)i∈N ∈ H : xi ≥

0,∀i ≥ 1}. Then, σ can be represented as σ(t, x,µ)2 = f(t, x,E[Xµ],E[X2
µ], . . . ) for some

measurable function f on [0, T ] ×R× H+ that is positive and bounded. Moreover, f is
Lipschitz in y ∈ H+ with uniform constant in (t, x) ∈ [0, T ] ×R, namely,

sup
(t,x)∈[0,T ]×R

|f(t, x, y1) − f(t, x, y2)| ≤ L∥y1 − y2∥H,

for all y1, y2 ∈ H+ with some constant L > 0.
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Remark 2.1. (i) Hypothesis 1, which seems the most general one among Hypothe-
ses 1, 2 and 3, ensures the existence of the solution to (1). To obtain the uniqueness,
we need to assume that σ is of a special form as in Hypothesis 2 or 3.

(ii) Hypothesis 1 is inconsistent with Hypothesis 2 or 3. Consider the simplest ex-
ample that σ2(t, x,µ) = f(E[Xµ]) with f ∈ C∞

c (R), the space of infinitely differen-
tiable functions with compact support, such that f(0) ̸= f(1). Then, Hypothesis 2
holds for σ. For any n = 1,2, . . . , let µn be the counting measure on {0, n} with
µn(0) = 1 − 1/n and µn(n) = 1/n. Then, µn ⇒ δ0 in the weak topology. However,
limn→∞ σ2(t, x,µn) = f(1) ̸= f(0) = σ(t, x, δ0). In fact, except for some trivial cases,
like σ ≡ 1, any σ that satisfies Hypothesis 2 or 3 does not satisfy Hypothesis 1.

(iii) Because of (ii), the existence result under Hypothesis 1 can not be transferred
to situations satisfying Hypothesis 2 or 3. In Section 3, we only prove the existence
under Hypothesis 1. This proof can be modified to cover cases under other hypotheses
(see Remark 3.2).

Next, we state the last hypothesis about the initial condition X0.

Hypothesis 4. X0 ∈ MF (R) has a bounded density, still denoted by X0, such
that X0 ∈ H1,2(R), namely, ∥X0∥1,2 = ∥X0∥2 + ∥∇X0∥2 < ∞.

Now, we are ready to state the main results of the present paper.

Theorem 2.2. Assume X0 satisfying Hypothesis 4. Then, equation (1) with initial
condition X0 has a weak solution on any time interval [0, T ] under one of Hypotheses
1, 2 and 3. Additionally, the solution is unique in distribution under either Hypothesis
2 or 3.

We organize this paper as follows: In Section 3, we prove the existence of the solution
to equation (1). Section 4 is devoted to a moment formula for any solution to (1) and
some related estimates. This formula will be the key to the uniqueness result provided in
Section 5. In the last Section 6, we study the regularity of the moments of the solution.

3. The existence. In this section, we prove the existence of the solution to equa-
tion (1) by using two-step approximation. The approximating equation (2) is studied
in Sections 3.1 and 3.2. This will help us to provide a proof of the existence of solutions
to equation (1) in Section 3.3.

3.1. Branching particle approximation. Let I = {α = (α0, . . . , αN ) : N ∈ N, α0 ∈
N, αi ∈ {1,2},1 ≤ i ≤ N}}. The set I is used to label all possible particles in the
system. Thus by definition of I , we see that each particle is allowed to generate at
most 2 offspring. For any α = (α0, . . . , αN ), we write α − 1 = (α0, . . . , αN−1). Then,
α − 1 is uniquely determined as the mother of particle α and we can define α − 2,
α − 3, ... and α − N = (α0) iteratively. Write {Bα : α ∈ I} for a family of independent
one-dimensional Brownian motions.

Let n ∈ N be a scaling parameter and let δ > 0 be a smoothing parameter. Consider
a branching particle system on R with initial distribution Xδ,n

0 = 1
n

∑Kn
i=1 δxi for some

Kn ∈ N , the number of initial particles and xi ∈ R the initial position of each particle
for all 1 ≤ i ≤ Kn. Denote by ξα

t the position of each particle, and by

Xδ,n
t = 1

n

∑
α∼nt

δξα
t
,
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the empirical measure of the system where the summation over α ∼n t is among all
particles “alive” at time t (to be defined later). We also associate a smoothing random
field Y δ,n on R+ ×R given by

Y δ,n
t (x) = ⟨Xδ,n

t , pδ(x − ·)⟩ =
∫
R

pδ(x − y)Xδ,n
t (dy).

The lifetime of each particle α is controlled by an independent exponential clock. The
parameter of each clock is nσ̃2

δ (t, ξα
t ,PY δ,n

t
), where σ̃δ is defined as in (3) with some

measurable function σ : R+ × R × P(R+) → R+. This means for any living particle
α at time t ≥ 0 with position ξα

t , the probability that she dies in the time interval
[t, t + ∆t) is

nσ̃2
δ

(
t, ξα

t ,PY δ,n
t

)
∆t + o(∆t).

Each individual leaves behind 0 or 2 offspring with equal probability when she dies.
N(α) is used for the number of offspring of particle α. Denote by βδ,n(α) and ζδ,n(α)
the birth and death time of particle α. If particle α − 1, the parent of particle α, does
not branch any offspring, namely N(α − 1) = 0, then we write βδ,n(α) = ζδ,n(α) = ∞.
Moreover, we say α is alive at time t, if βδ,n(α) ≤ t < ζδ,n(α).

The initial position of each particle inherits her mother’s death position, and its
motion can be described by Bα before she dies. To be more precise, for any βδ,n(α) ≤
t < ζδ,n(α),

ξα
t = ξα−1

βδ,n(α)− + Bα
t − Bα

βδ,n(α).

Let σ̃δ be given as in (3). It is clear that under one of Hypotheses 1, 2 and 3, σ̃δ is
also positive and bounded. By using the classical tightness arguments (c.f. Dawson et
al. [11, Lemmas 2.3 and 2.4]), one can easily show the following lemma.

Lemma 3.1. Fix δ > 0. Assume Hypothesis 1 and Xδ,n
0 ⇒ X0 ∈ MF (R) as n → ∞.

Then,

(i) {Xδ,n; t ≥ 0}n∈N is a tight family of processes with sample paths in D(R+,MF (R))
with limit in C(R+,MF (R)).

(ii) Let Xδ denote a limit point of Xδ,n and

Y δ
t (x) = ⟨Xδ

t , pδ(x − ·)⟩.

Then, (Xδ, Y δ) is a solution of the following MP: for all ϕ ∈ S(R),

M δ
t (ϕ) := ⟨ϕ,Xδ

t ⟩ − ⟨ϕ,Xδ
0⟩ − 1

2

∫ t

0
⟨∆ϕ,Xδ

s ⟩ds(7)

is a continuous square integrable martingale such that M0(ϕ) = 0 and

⟨M δ(ϕ)⟩t =
∫ t

0
ds

∫
R

ϕ2(x)σ̃2
δ (s, x,PY δ

s (x))Xδ
s (dx).(8)

Proof. Inasmuch as the proof of property (i) is quite standard, we omit it for the
sake of brevity. It also follows by standard arguments that M δ

t (ϕ), given by (7), is a
continuous square integrable martingale. It remains to prove its quadratic variation
satisfies equation (8). Let {Xδ,nk}k∈N be a subsequence of {Xδ,n}n∈N with limit Xδ in
D(R+,MF (R)). By Skorohod representation theorem, we assume this convergence is
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almost surely. Then, by classical tightness arguments (c.f. Wang [42, Corollary 7.3]),
we know that

⟨M δ(ϕ)⟩t = lim
k→∞

⟨M δ,nk(ϕ)⟩t,

where M δ,nk is a S ′(R)-valued martingale given by

M δ,nk
t (ϕ) = 1

nk

∑
ζδ,nk (α)<t,α∼nk

βδ,nk (α)

ϕ(ξα
ζδ,nk (α)−)(N(α) − 1),

with N(α) defined as before, the offspring number of particle α and α ∼n t meaning
particle α is alive at time t in the n-th approximation. The quadratic variation of M δ,n

can be written as

⟨M δ,nk(ϕ)⟩t =
∫ t

0
lim
∆s↓0

E
[
M δ,nk

s+∆s(ϕ)2 − M δ,nk
s (ϕ)2∣∣F δ,nk

s

]
∆s

ds.

Following the idea of Dawson et al. [11, Lemma 2.3], one can show that

⟨M δ,nk(ϕ)⟩t =
∫ t

0
ϕ2(x)σ̃δ

(
t, x,P

Y
δ,nk

t (x)
)2

Xδ,nk
s (dx)ds.

Letting k → ∞, we find that Xδ,nk
t → Xδ

t a.s. for all t ∈ R+. Thus for fixed δ > 0, one
has that

Y δ,nk
t (x) = ⟨Xδ,nk

t , pδ(x − ·)⟩ → ⟨Xδ
t , pδ(x − ·)⟩ = Y δ

t (x)

for any (t, x) ∈ R+ × R as k → ∞. Therefore, equation (8) is a consequence of the
continuity and boundedness of σ and the dominated convergence theorem. The proof
of this lemma is complete.

Remark 3.2. Note that in the proof of Lemma 3.1, the continuity condition of σ
is used when evaluating the limit of quadratic variation of M δ,nk

t (ϕ). Instead, assume
Hypothesis 2 or 3. Due to the tightness argument again, it holds that for every m ∈ N,
E[(Y δ,nk

t (x))m] is bounded uniformly in k ∈ N, (t, x) ∈ [0, T ]×R for any T > 0. Concern-
ing the fact that Y δ,nk

t (x) → Y δ(x) almost surely, and thus in probability, the conver-
gence is also in Lm(Ω) for all m ∈ N. As a result, limk→∞ E[(Y δ,nk

t (x))m] = E[(Y δ
t (x))m]

for all m ∈ N and (t, x) ∈ R+ × R. This proves equation (8) under either Hypothesis 2
or 3, and hence the result as in Lemma 3.1 holds as well.

3.2. Moment duality and existence of solution to (2). Let (Xδ, Y δ) be a solution to
MP (7) and (8) with initial condition X0 ∈ MF (R). In this section, we prove that Xδ

t

has a Lebesgue density almost surely. To this end, we need to provide moment formulas
for ⟨Xδ

t , ϕ⟩ with some function ϕ ∈ S(R). The moment formula can be derived by the
method of moment duality (c.f. Dawson and Kurtz [9]).

For any t ∈ [0, T ], µ ∈ MF (R), n ∈ N, ϕ ∈ C2
b (Rn), we define functions F and Gδ as

follows,

F (µ, (n,ϕ)) = ⟨µ⊗n, ϕ⟩ =
∫
Rn

µ⊗n(dyn)ϕ(yn),(9)

and

Gδ(t, µ, (n,ϕ)) = 1
2⟨µ⊗n,∆nϕ⟩ +

∑
1≤i<j≤n

⟨µ⊗(n−1),Φδ
ij(t)ϕ⟩,(10)
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where yn is short for (y1, . . . , yn) ∈ Rn, ∆n denotes the n-dimensional Laplacian opera-
tor in space and Φδ

ij(t)ϕ is a function of n − 1 variables with the i-th and j-th variables
of ϕ coalesced, and then multiplying by σ̃2

δ (t, xi,PY δ
t (xi)), namely,

Φδ
ij(t)ϕ(x1, . . . , xn−1) =σ̃2

δ (t, xi,PY δ
t
)(φijϕ)(x1, . . . , xn−1),(11)

with the coalescing operator φij given by

(φijϕ)(x1, . . . , xn−1) = ϕ(x1, . . . , xj−1, xi, xj , . . . , xn−1).

Then, we have the next lemma, whose proof is just an application of Itô’s formula, we
skip it for the sake of conciseness and refer readers to Xiong [44, Lemma 1.3.2] for a
similar result.

Lemma 3.3. Let (Xδ, Y δ) be a solution to MP (7) and (8) with initial condition
X0 ∈ MF (R). Then, for any n ∈ N and ϕ ∈ S(Rn), the process

F (Xδ
t , (n,ϕ)) −

∫ t

0
Gδ(s,Xδ

s , (n,ϕ))ds(12)

is a martingale.

In the next step, we define the moment dual of Xδ. Given n ∈ N, let {τk}1≤k≤n−1
be independent exponential random variables. For each k, the parameter of τk is 1

2(n −
k + 1)(n − k). Let ηk =

∑k
i=1 τi for all k = 1, . . . , n − 1, and by convention η0 = 0 and

ηn = ∞. Then, we define an N-valued decreasing Markov process starting at n, by

nη−
k

= n − k + 1, nηk
= n − k,

for k = 1, . . . , n − 1 and nt = 1 for all t ≥ ηn−1. Then, we can also write

nt =
n∑

k=1
(n − k + 1)1ηk−1≤t<ηk

.(13)

Let {Sδ
k(t) : 1 ≤ k ≤ n−1, t > 0} be a collection of independent random variables defined

as follows. For any k = 1, . . . , n − 1 and t > 0, Sδ
k(t) is uniformly distributed on {Φδ

ij(t) :
1 ≤ i < j ≤ k} where Φδ

ij(t) are defined as in (11). We also write T ⊗k for the the
semigroup generated by 1

2∆k on Rk for all k = 1, . . . , n, namely,

T ⊗k
t φ(xk) =

∫
Rk

dyk

k∏
i=1

pt(xi − yi)φ(yk)

for all φ ∈ C2
b (Rn), the space of bounded functions on R with bounded first and second

derivatives. Let ϕ ∈ S(Rn), we define a stochastic process f δ
t starting at f0 = ϕ by

f δ
t = T ⊗n−k

t−ηk
Sδ

n−k+1(ηk)T ⊗n−k+1
τk

· · ·Sδ
n−1(η2)T ⊗(n−1)

τ2 Sδ
n(η1)T ⊗n

τ1 ϕ,(14)

provided ηk ≤ t < ηk+1 with k = 0, . . . , n − 1.

Lemma 3.4. Let F , Gδ, nt and ft be given as in (9), (10), (13) and (14) respectively.
Define a function Hδ by

Hδ(t, µ, (k,ϕ)) = Gδ(t, µ, (k,ϕ)) − 1
2k(k − 1)F (µ, (k,ϕ))
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for all t ∈ R+, µ ∈ MF (R), n ∈ N and ϕ ∈ C2
b (R). Then, for any µ ∈ MF (R), the

process

F (µ, (nt, f
δ
t )) −

∫ t

0
Hδ(s,µ, (ns, f

δ
s ))ds(15)

is a martingale.

Before providing the proof, we remark here that the smoothness of σ (see (3)) ensures
that as a function of x, σ̃δ(t, x,PY δ

t (x)) is in C2
b (R). Thus f δ

t ∈ C2
b (Rnt) for all t ∈ R+. It

is necessary to make sense of Hδ(t, µ, (nt, f
δ
t )) that involves a Laplacian operator acting

on f δ
t .

Proof of Lemma 3.4. The proof of this lemma can be done as an application of
Either and Kurtz’s result [16, Proposition 4.1.7] by showing that

lim
∆t↓0

1
∆t

E
[(

F (µ, (nt+∆t, f
δ
t+∆t)) − F (µ, (nt, f

δ
t ))

)∣∣(nt, f
δ
t )

]
= Hδ(t, µ, (nt, f

δ
t ))(16)

for all t ∈ R+. Without loss of generality, we only prove equality (16) on the set {nt = k}
for some k = 1, . . . , n. Recall that

{nt = k} = {ηn−k ≤ t < ηn−k+1},

τn−k+1 = ηn−k+1 − ηn−k is an exponential random variable with parameter 1
2k(k − 1) if

k > 1 and τn = ∞. We see
E

[(
F (µ, (nt+∆t, f

δ
t+∆t)) − F (µ, (nt, f

δ
t ))

)∣∣(nt, f
δ
t )1nt=k

]
= I1 + I2 + o(∆t),(17)

where
I1 = E

[(
F (µ, (k, f δ

t+∆t)) − F (µ, (k, f δ
t ))

)
1{nt+∆t=k}

∣∣(nt, f
δ
t )1nt=k

]
and

I2 = E
[(

F (µ, (k − 1, f δ
t+∆t)) − F (µ, (k, f δ

t ))
)
1{nt+∆t=k−1}

∣∣(nt, f
δ
t )1nt=k

]
.

Suppose that k > 1. Then, by the memoryless property of exponential random variables,
we have

I1 =
(
⟨µ⊗k, T ⊗k

∆t f δ
t ⟩P(τn−k+1 > ∆t) − ⟨µ⊗k, f δ

t ⟩
)
1{nt=k}.

This implies that

lim
∆t↓0

1
∆t

I1 = 1
2

(
⟨µ⊗k,∆kf δ

t ⟩−k(k − 1)⟨µ⊗k, f δ
t ⟩

)
1{nt=k}.(18)

On the other hand, since Φδ
ij is uniformly distributed, it follows that

I2 =
∑

1≤i<j≤k

2
k(k − 1)E

[
⟨µ⊗(k−1), T

⊗(k−1)
∆t−τn−k+1

Φδ
ij(t + τn−k+1)T ⊗k

τn−k+1
f δ

t ⟩

1{τn−k+1≤∆t<τn−k+1+τn−k}
∣∣(nt, f

δ
t )

]
1{nt=k} − ⟨µ⊗k, f δ

t ⟩1{nt=k}.

Notice that if k > 2, we have
E

[
⟨µ⊗(k−1), T

⊗(k−1)
∆t−τn−k+1

Φδ
ij(t + τn−k+1)T ⊗k

τn−k+1
f δ

t ⟩1{τn−k+1≤∆t<τn−k+1+τn−k}
∣∣(nt, f

δ
t )1nt=k

]
=

∫ ∆t

0
ds

∫ ∞

∆t−s
dr⟨µ⊗(k−1), T

⊗(k−1)
∆t−s Φδ

ij(t + s)T ⊗k
s f δ

t ⟩

× 1
2k(k − 1)e− 1

2 k(k−1)s × 1
2(k − 1)(k − 2)e− 1

2 (k−1)(k−2)r

=1
2k(k − 1)

∫ ∆t

0
ds⟨µ⊗(k−1), T

⊗(k−1)
∆t−s Φδ

ij(t + s)T ⊗k
s f δ

t ⟩e− 1
2 k(k−1)se− 1

2 (k−1)(k−2)(∆t−s),
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and for k = 2, the following equality holds

E
[
⟨µ⊗(k−1), T

⊗(k−1)
∆t−τn−k+1

Φδ
ij(t + τn−k+1)T ⊗k

τn−k+1
f δ

t ⟩1{τn−k+1≤∆t<τn−k+1+τn−k}
∣∣(nt, f

δ
t )1nt=k

]
=1

2k(k − 1)
∫ ∆t

0
ds⟨µ⊗(k−1), T

⊗(k−1)
∆t−s Φδ

ij(t + s)T ⊗k
s f δ

t ⟩e− 1
2 k(k−1)s.

Therefore,

lim
∆t↓0

1
∆t

I2 =
∑

1≤i<j≤k

⟨µ⊗(k−1),Φδ
ij(t)f δ

t ⟩1{nt=k}.(19)

Equality (16) follows from (17)-(19). Hence, by Proposition 4.1.7 of Ethier and Kurtz
[16], the process given by (15) is a martingale. The proof of this lemma is complete.

Proposition 3.5. Let (Xδ, Y δ) be a solution to MP (7) and (8) with initial con-
dition X0 ∈ MF (R), and let (nt, ft) be the pair of processes defined as in (13) and (14)
respectively with n0 = n ∈ {1,2, . . .} and f0 = ϕ ∈ S(Rn). Then, we have

E
[
F (Xδ

t , (n,ϕ))
]

= E
[
F (X0, (nt, f

δ
t )) exp

( ∫ t

0

ns(ns − 1)
2 ds

)]
.

Proof. The proof follows from the development of Dawson and Kurtz [9, Corol-
lary 3.3], with minor adjustments due to the fact that Xδ

t and (nt, f
δ
t ) are time-

inhomogeneous vis-á-vis time-homogeneous Markov processes. We omit the details for
the sake of conciseness.

Proposition 3.6. Let (Xδ, Y δ) = (Xδ, ⟨Xδ, pδ(x − ·)⟩) be a solution to MP (4)
and (5) with initial condition X0 ∈ MF (R). Then, for every t ∈ R+, Xδ

t has a Lebesgue
density. Moreover, identifying Xδ

t (x) as the density of Xδ
t , the pair (Xδ, Y δ) satisfies

equation (2) for some space-time white noise W .

Proof. Following the idea of Wang [41, Theorem 2.1], as an application of Propo-
sition 3.5, we can show that Xδ is absolutely continuous with respect to the Lebesgue
measure. Then, by proceeding along a similar argument as in Dawson et al. [11, The-
orem 1.2], it can be proved that the density, still denoted by Xδ, together with Y δ

satisfies equation (2). The proof is quite standard, we omit it in the present paper.

3.3. Convergence of Xδ and Y δ. Fix a time horizon [0, T ]. In this section, we will
show the convergence of {Xδ}δ>0 as δ ↓ 0. We need the following tightness criteria for
probability measures on C([0, T ] ×R;R).

Lemma 3.7. A family P of probability measures on C([0, T ] × R;R) is precompact
if

(i) lim
A↑∞

sup
P∈P

P(|Xt(0)| > A) = 0.

(ii) For each x ∈ R and ρ > 0,

lim
ϵ↓0

sup
P∈P

P
(

sup
0≤s≤t≤T,|t−s|<ϵ

|Xt(x) − Xs(x)| > ρ
)

= 0.

(iii) For every R > 0 and ρ > 0,

lim
ϵ↓0

sup
P∈P

P
(

sup
0≤t≤T,−R≤x≤y≤R,|x−y|<ϵ

|Xt(x) − Xt(y)| > ρ
)

= 0.
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Proof. Results for probability measures on space of one parameter processes are
well-known (c.f. Stroock and Varadhan [38, Theorem 1.3.2]). Multi-parameter cases are
quite similar, we omit the proof for the sake of conciseness. We also refer readers to Hu
et al. [19, Appendices A.2 and A.3] for similar criteria.

The next lemmas show the uniform boundedness of the moments of Xδ
t (x) and its

increments in time and in space.

Lemma 3.8. Let (Xδ, Y δ) be a weak solution to (2) with initial condition X0 ∈ MF .
Suppose that X0 has a bounded density, still denoted by X0. Then, for all n ∈ N,

sup
δ∈(0,1)

sup
(t,x)∈[0,T ]×R

(
E[Y δ

t (x)n] +E[Xδ
t (x)n]

)
< ∞.(20)

Proof. We prove this lemma following the idea in Xiong [44, Lemma 1.4.5]. By
using the moment duality (see Proposition 3.5), we can write

E[Y δ
t (x)n] = E

[〈
(Xδ

t )⊗n, pδ(x − ·)⊗n〉]
= E

[〈
X⊗nt

0 , f δ
t

〉
exp

(1
2

∫ t

0
ns(ns − 1)ds

)]
,(21)

where (f δ
t , nt) is the moment dual process of Xδ

t as in Section 3.2 with f δ
0 = pδ(x − ·)⊗n

and n0 = n. Notice that the exponential term in (21) is bounded by e
1
2 n(n−1)T . It suffices

to estimate the following quantity

E
[〈

X⊗nt
0 , f δ

t

〉]
=

n−1∑
k=0

E
[〈

X
⊗(n−k)
0 , f δ

t

〉
1{nt=n−k}

]
=

n−1∑
k=0

E
[〈

X
⊗(n−k)
0 , f δ

t

〉
1{ηk≤t<ηk+1}

]
.

If k = 0, by using the semigroup property of the heat kernel and the nonnegativity and
symmetry in space variables of f δ, we can easily show that

E
[〈

X⊗n
0 ,f δ

t

〉
1{η0≤t<η1}

]
=

∫
Rn

X⊗n
0 (dyn)T ⊗n

t f0(yn)E[1{τ1>t}]

=
∫
Rn

X⊗n
0 (dyn)

∫
Rn

dznp
(n)
t (yn − zn)p(n)

δ (x⊗n − zn)e− n(n−1)
2 t

=⟨X0, pt+δ(x − ·)⟩ne− n(n−1)
2 t ≤ ∥X0∥n

∞,

where x⊗n denotes a point on Rn with each coordinate being x and p
(n)
t (xn − yn) :=∏n

i=1 pt(xi − yi). Similarly, if k = 1, we deduce that

E
[〈

X
⊗(n−1)
0 , f δ

t

〉
1{η1≤t<η2}

]
=E

[ ∫
Rn−1

X
⊗(n−1)
0 (dyn−1)

(
T n−1

t−η1Sδ
n(η1)f δ

η−
1

)
(yn−1)1{η1≤t<η2}

]
≤∥σ∥2

∞E
[ ∫

Rn−1
X

⊗(n−1)
0 (dyn−1)

∫
Rn−1

dzn−1p
(n−1)
t−η1 (yn−1 − zn−1)

×
∑

1≤i<j≤n

2(φijf
δ
η−

1
)(zn−1)

n(n − 1) 1{η1≤t<η2}

]
.

Firstly, by the symmetry of p
(n)
t (x⊗n − ·), we can write

∑
1≤i<j≤n

E
[ ∫

R2n−2
X

⊗(n−1)
0 (dyn−1)dzn−1p

(n−1)
t−η1 (yn−1 − zn−1)

2(φijf
δ
η−

1
)(zn−1)

n(n − 1)
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× 1{η1≤t<η2}

]
=E

[ ∫
R2n−2

X
⊗(n−1)
0 (dyn−1)dzn−1p

(n−1)
t−η1 (yn−1 − zn−1)

(
φ12p

(n)
η1+δ(x⊗n − ·)

)
(zn−1)

× 1{η1≤t<η2}

]
.

We estimate the above integral using the semigroup property of the heat kernel and
the fact that pt(x) ≤ (2πt)− 1

2 , and get

E
[ ∫

R2n−2
X

⊗(n−1)
0 (dyn−1)dzn−1p

(n−1)
t−η1 (yn−1 − zn−1)

(
φ12p

(n)
η1+δ(x⊗n − ·)

)
(zn−1)

× 1{η1≤t<η2}

]
=E

[〈
X

⊗(n−2)
0 , p

(n−2)
t+δ (x⊗n−2 − ·)

〉 ∫
R2

X0(dy)dzpt−η1(y − z)pη1+δ(x − z)21{η1≤t<η2}

]
≤⟨X0, pt+δ(x − ·)⟩n−1E

[
(2π(η1 + δ))− 1

2 1{η1≤t<η2}
]
.

Recall that by definition η1 = τ1. As a consequence, we have

E
[〈

X
⊗(n−1)
0 , f δ

t

〉
1{η1≤t<η2}

]
≤ c1∥X0∥n−1

∞ ∥σ∥2
∞E[τ− 1

2
1 ].

For general k, similar to the case k = 1 one can find by iteration that

E
[〈

X⊗k
0 , f δ

t

〉
1{ηk≤t<ηk+1}

]
≤ c1cn

2 ∥σ∥2(n−k)
∞ E

[ n−k∏
i=1

τ
− 1

2
i

]
,

for some universal constants c1, c2 > 0. Notice that {τk : k = 1, . . . , n − 1} are indepen-
dent exponential random variables with parameter 1

2(n − k + 1)(n − k) respectively.
Furthermore, for any λ > 0, we can show that

λ

∫ ∞

0
s− 1

2 e−λsds ≤ λ
( ∫ ϵ

0
s− 1

2 ds + ϵ− 1
2

∫ ∞

ϵ
e−λsds

)
= 2λϵ

1
2 + ϵ− 1

2 e−λϵ

for all ϵ > 0. Choosing ϵ = λ−1, we get λ
∫ ∞

0 s− 1
2 e−λsds ≤ 3λ

1
2 . It follows that

E
[〈

X⊗k
0 , f δ

t

〉
1{ηk≤t<ηk+1}

]
≤ c1cn

2 ∥σ∥2(n−k)
∞

n−1∏
i=k

(i(i + 1))
1
2 ≤ c1cn

2 n!,

which implies that
E

[〈
X⊗nt

0 , f δ
t

〉]
≤ c1cn

2 (n + 1)!.(22)
Combining (21) and (22), and observing that nt is a decreasing process, we have

sup
δ∈(0,1)

sup
(t,x)∈[0,T ]×R

E[Y δ
t (x)n] ≤ c1cn

2 (n + 1)!e
1
2 n(n−1) < ∞.(23)

In the next step, we replace pδ by pϵ in (21) and construct the moment dual process
f δ,ϵ with f δ,ϵ

0 = pϵ. By the same argument, we get
sup

δ∈(0,1)
sup

(t,x)∈R+×R
sup
ϵ>0

E
[〈

(Xδ
t )⊗n, pϵ(x − ·)

〉]
< ∞.

Thus, by Fatou’s lemma and the fact that limϵ↓0
〈
(Xδ

t )⊗n, pϵ(x − ·)⊗n
〉

= Xδ
t (x)n for

almost every x ∈ R almost surely, we get
sup

δ∈(0,1)
sup

(t,x)∈[0,T ]×R
E[Xδ

t (x)n] < ∞,(24)

as well. The proof of this lemma is complete by combining inequalities (23) and (24).
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In the next lemma, we provide the estimates for time and spatial increments of Y δ

that will be used in the proof of Hölder continuity of Y δ.

Lemma 3.9. Let (Xδ, Y δ) be a weak solution to (2) with initial condition X0 ∈
MF (R) satisfying Hypothesis 4. Then for any α ∈ (0,1) and n ≥ 1, there exists a con-
stant C > 0 such that

E
[
|Y δ

t (x) − Y δ
t (y)|2n]

≤ C(|x − y|nα ∨ |x − y|n)(25)
and

E
[
|Y δ

t (x) − Y δ
s (x)|2n]

≤ C|t − s|
1
2 n(26)

for all 0 ≤ s < t ≤ T , x, y ∈ R and δ ∈ (0,1).

Proof. We follow the ideas in Konno and Shiga [25, Lemma 2.8]. Write Xδ
t (x) in

the mild formulation,

Xδ
t (x) =

∫
R

pt(x − y)X0(y)dy +
∫ t

0

∫
R

pt−s(x − y)σ̃δ(s, y,PY δ
s
)
√

Xδ
s (y)W (ds, dy).

Then, for any t ∈ [0, T ] and x, y ∈ R, using the semi-group property of the heat kernel
and Burkholder-Davis-Gundy’s inequality, we can write

E
[
|Y δ

t (x) − Y δ
t (y)|2n]

= E
[∣∣∣ ∫

R
(pδ(x − z) − pδ(y − z))Xδ

t (z)dz
∣∣∣2n

]

=E
[∣∣∣ ∫

R
dz(pδ(x − z) − pδ(y − z))

∫
R

dz′pt(z − z′)X0(z′)

+
∫
R

dz(pδ(x − z) − pδ(y − z))
∫ t

0

∫
R

pt−s(z − z′)σ̃δ(s, z′,PY δ
s
)
√

Xδ
s (z′)W (ds, dz′)

∣∣∣2n
]

≤c1 (I1 + I2) ,

where

I1 =
∣∣∣ ∫

R
dz(pt+δ(x − z) − pt+δ(y − z))X0(z)

∣∣∣2n

and

I2 = E
[∣∣∣ ∫ t

0
ds

∫
R

dz(pt−s+δ(x − z) − pt−s+δ(y − z))2σ̃δ(s, z′,PY δ
s
)2Xδ

s (z)
∣∣∣n]

.

The first term is easy to handle. In fact, using Fubini’s theorem, the integration by
parts formula and Cauchy-Schwarz’s inequality, one can show that

I1 =
∣∣∣ ∫

R
dz

∫ x

y
dξ∇pt+δ(ξ − z)X0(z)

∣∣∣2n
=

∣∣∣ ∫
R

dz

∫ x

y
dξpt+δ(ξ − z)∇X0(z)

∣∣∣2n

≤
[ ∫

R
dz

( ∫ x

y
dξpt+δ(ξ − z)

)2]n[ ∫
R

dz|∇X0(z)|2
]n

≤∥X0∥2n
1,2

[ ∫
R

dz

∫ x

y
dξ

∫
R

dξ′pt+δ(ξ − z)pt+δ(ξ′ − z)
]n

= ∥X0∥2n
1,2|x − y|n.(27)

For the second term, by Lemma 3.8, Cauchy-Schwarz’s inequality and the Hölder con-
tinuity of the heat kernel in space, namely (c.f. Xiong [44, Lemma 1.4.4]), for any
α ∈ (0,1), ∫ t

0
ds

∫
R

dz|ps(x − z) − ps(y − z)|2 ≤ C|x − y|α,
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we have

I2 ≤CE
[∣∣∣ ∫ t

0
ds

∫
R

dz′(pt−s+δ(x − z′) − pt−s+δ(y − z′))2σ̃δ(s, z′,PY δ
s
)2Xδ

s (z′)
∣∣∣n]

(28)

≤C sup
δ∈(0,1)

sup
(t,x)∈[0,T ]×R

E
[
|Xδ

t (x)|n
]
∥σ∥2n

∞

×
( ∫ t

0
ds

∫
R

dz′|pt−s+δ(x − z′) − pt−s+δ(y − z′)|2
)n

≤C|x − y|nα,

where the last inequality is due to the Hölder regularity for the heat kernel. Therefore,
inequality (25) is a consequence of (27) and (28). The proof of (26) is very similar, but
using Hölder regularity of the heat kernel in time, namely,∫ s

0
dr

∫
R

dx|pt−r(x) − ps−r(x)|2 ≤ C|t − s|
1
2 .

For the sake of brevity, we omit the remainder of proof of (26). The proof of this lemma
is therefore complete.

Lemma 3.10. Assume Hypothesis 4. Then for any δ > 0, the following properties
hold.

(i) Fix x ∈ R. There exists a nonnegative random variable Zδ(x) ∈ L1(Ω) such that
supδ∈(0,1) E[Zδ(x)] < ∞ and

|Y δ
t (x) − Y δ

s (x)| ≤ Zδ(x)
1
8 |t − s|

1
16(29)

for all s, t ∈ [0, T ].
(ii) Fix R > 0. There exists a nonnegative random variable Z ′

δ,R such that E[Z ′
δ,R] is

uniformly bounded in δ ∈ (0,1), and

|Y δ
t (x) − Y δ

t (y) − Y δ
s (x) + Y δ

s (y)| ≤ (Z ′
δ,R)

1
16 |t − s|

1
32 |x − y|

1
32(30)

for all s, t ∈ [0, T ] and x, y ∈ [−R,R].

Proof. The proof of this lemma is based on (multi-parameter) Garsia–Rodemich–
Rumsey’s inequality (c.f. Hu [18, Theorem 2.1] and Hu and Le [21, Theorem 2.3]). We
only provide the proof of inequality (30). The proof of (29) can be done similarly. Due
to Lemma 3.9, we can write

E
[
|Y δ

t (x) − Y δ
t (y) − Y δ

s (x) + Y δ
s (y)|2n]

≤C
[
E

[
|Y δ

t (x) − Y δ
t (y)|2n]

+E
[
|Y δ

s (x) − Y δ
s (y)|2n]]

≤C(|x − y|nα ∨ |x − y|n)

and

E
[
|Y δ

t (x) − Y δ
t (y) − Y δ

s (x) + Y δ
s (y)|2n]

≤C
[
E

[
|Y δ

t (x) − Y δ
s (x)|2n]

+E
[
|Y δ

t (y) − Y δ
s (y)|2n]]

≤C|t − s|
1
2 n
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for some α ∈ (0,1) and C depending on α. It follows that for any γ ∈ (0,1),
E

[
|Y δ

t (x) − Y δ
t (y) − Y δ

s (x) + Y δ
s (y)|2n]

≤C
[
E

[
|Y δ

t (x) − Y δ
t (y)|2n]

+E
[
|Y δ

s (x) − Y δ
s (y)|2n]]

≤C(|x − y|nα ∨ |x − y|n)γ |t − s|
1
2 (1−γ)n.(31)

In order to apply Garsia–Rodemich–Rumsey’s inequality, we choose α = 3
4 and γ = 1

2 ,
let Ψ : R → R+, ρ1 : [0, T ]2 → R+ and ρ2 : R2 → R+ be given by

Ψ(x) = |x|16, ρ1(t, s) = |t − s|
5

32 and ρ2(x, y) = |x − y|
5

32

respectively, and let

Z ′
δ,R =

∫
[0,T ]2

dsdt

∫
[−R,R]2

dxdyΨ
( |Y δ

t (x) − Y δ
t (y) − Y δ

s (x) + Y δ
s (y)|

ρ1(s, t)ρ2(x, y)
)
.

Then, by Fubini’s theorem for nonnegative functions and inequality (31), we can show
that

E[Z ′
δ,R] ≤C

∫
[0,T ]2

dsdt

∫
[−R,R]2

dxdy(|x − y|
1
2 ∨ |x − y|

3
2 )|t − s|−

1
2 ,

that is uniformly bounded in δ > 0. On the other hand as a consequence of Hu and Le
[21, Theorem 2.3], we have

|Y δ
t (x) − Y δ

t (y) − Y δ
s (x) + Y δ

s (y)| ≤c1

∫ |t−s|

0
ρ1(du)

∫ |x−y|

0
ρ2(dv)Ψ−1

(c2Z ′
δ,R

u2v2

)
≤C(Z ′

δ,R)
1

16 |t − s|
1

32 |x − y|
1

32 .

Here, the constant C is independent of s, t, x and y, and thus can be absorbed into the
random variable Z ′

δ,R. The proof of this lemma is complete.

Proposition 3.11. Assume Hypothesis 4. Then, {Y δ}δ>0 is a tight sequence in
C([0, T ] ×R;R).

Proof. It suffices to verify conditions (ii) and (iii) in Lemma 3.7. For condition (ii),
using Lemma 3.10 (i) and Chebyshev’s inequality, for any x ∈ R,

P
(

sup
0≤s≤t≤T,|t−s|<ϵ

|Y δ
t (x) − Y δ

s (x)| > ρ
)

≤ ρ−8E
[

sup
0≤s≤t≤T,|t−s|<ϵ

|Y δ
t (x) − Y δ

s (x)|8
]

≤Cρ−8E
[

sup
0≤s≤t≤T,|t−s|<ϵ

Zδ(x)|t − s|
1
2
]

≤ Cρ−8ϵ
1
2E[Zδ(x)] → 0

uniformly in δ > 0, as ϵ ↓ 0. This verifies condition (ii).
The proof of condition (iii) is similar. Notice that

|Y δ
t (x) − Y δ

t (y)| ≤ |Y δ
t (x) − Y δ

t (y) − Y δ
0 (x) + Y δ

0 (y)| + |Y δ
0 (x) − Y δ

0 (y)|.
This implies

P
(

sup
0≤t≤T,−R≤x≤y≤R,|x−y|<ϵ

|Y δ
t (x) − Y δ

t (y)| > ρ
)

≤ P1 + P2,

where
P1 = P

(
sup

0≤t≤T,−R≤x≤y≤R,|x−y|<ϵ
|Y δ

t (x) − Y δ
t (y) − Y δ

0 (x) + Y δ
0 (y)| >

ρ

2
)
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and
P2 = P

(
sup

−R≤x≤y≤R,|x−y|<ϵ
|Y δ

0 (x) − Y δ
0 (y)| >

ρ

2
)
.

By a similar argument as in (27), we can show that |Y δ
0 (x) − Y δ

0 (y)| ≤ ∥X0∥1,2|x − y| 1
2

for some constant uniformly in δ > 0. Thus, P2 = 0 for ϵ > 0 that is small enough. The
estimate for P1 can be done as an application of Chebyshev’s inequality and Lemma
3.10 (ii). Finally, we can conclude that

P
(

sup
0≤t≤T,−R≤x≤y≤R,|x−y|<ϵ

|Y δ
t (x) − Y δ

t (y)| > ρ
)

→ 0,

uniformly in δ > 0, as ϵ ↓ 0. Thus condition (iii) holds. Therefore, {Y δ}δ is a tight
sequence in C([0, T ] ×R;R) according to Lemma 3.7.

Proof of Theorem 2.2: existence. We only present the proof under Hypoth-
esis 1. For other situations under Hypothesis 2 or 3, we can modify the proof follow-
ing the idea as in Remark 3.2. Let (Xδ, Y δ) be a solution to (2). Then, by Proposi-
tion 3.11, there exists a sequence δn ↓ such that Y δn is convergent in distribution in
C([0, T ] × R;R) to some random field Y . By the typical tightness argument, one can
show that {Xδn : n ≥ 1} is tight in D([0, T ];MF (R)). Therefore, by taking subsequence
of {Xδn}, we can assume it converges in distribution to some MF (R)-valued process
X . By the Skorohod representation theorem, we can also assume this convergence is
almost surely.

In the next step, we show that (X,Y ) is a weak solution to the following equation
∂

∂t
Xt(x) = 1

2∆Xt(x) + σ(t, x,PYt(x))
√

Xt(x)Ẇ (t, x).

Equivalently, it suffices to show that Xt is a solution to the following martingale problem
(c.f. Stroock and Varadhan [37] and Kurtz [26]), for any ϕ ∈ S(R),

Mt(ϕ) = Xt(ϕ) − X0(ϕ) − 1
2

∫ t

0
Xs(∆ϕ)ds(32)

is a continuous square integrable martingale, with quadratic variation

⟨M(ϕ)⟩t =
∫ t

0
σ(s, x,PYs(x))2ϕ(x)2Xs(dx)ds.(33)

Notice that, using Perkins [33, Theorem II.4.5], we have
⟨M(ϕ)⟩t = lim

n→∞
⟨M δn(ϕ)⟩t

= lim
n→∞

∫ t

0
ds

∫
R

Xδn
s (dx)

( ∫
R

dypδn(x − y)σ(s, y,PY δn
s (y))

)2
ϕ(x)2.

To verify the limit, we compute the following quantity,∣∣∣ ∫ t

0
ds

∫
R

Xδn
s (dx)

( ∫
R

dypδn(x − y)σ(s, y,PY δn
s (y))

)2
ϕ(x)2

−
∫ t

0
ds

∫
R

σ(s, x,PYs(x))2ϕ(x)2Xs(dx)
∣∣∣ ≤ I1 + I2

where

I1 =
∣∣∣ ∫ t

0
ds

∫
R

[( ∫
R

dypδn(x − y)σ(s, y,PY δn
s (y))

)2
− σ(s, x,PYs(x))2

]
ϕ(x)2Xδn

s (dx)
∣∣∣
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and

I2 =
∣∣∣ ∫ t

0
ds

∫
R

dxσ(s, x,PYs(x))2ϕ(x)2(
Xδn

s (dx) − Xs(dx)
)∣∣∣.

It is clear that I2 → 0 as n → ∞ because Xδn → X in D([0, T ];MF (R)). On the other
hand, notice that Xδn

s has a density almost surely. Thus, by Cauchy-Schwarz’s inequality

I1 ≤
( ∫

R
dx

[( ∫
R

dypδn(x − y)σ(s, y,PY δn
s (y))

)2
− σ(s, x,PYs(x))2

]2
ϕ(x)2

) 1
2

×
∫ t

0

( ∫
R

ϕ(x)2Xδn
s (x)2dx

) 1
2 := I11 × I12.

By dominated convergence theorem, we know that I11 → 0 as n → ∞. Furthermore, by
Lemma 3.8, one can show that E[I12] is uniformly bounded in n. As a consequence, it
follows by Fatou’s lemma that

E
[
lim inf
n→∞

I1
]

≤ lim
n→∞

E[I1] = 0.

This implies that lim infn→∞ I1 = 0 almost surely. That is enough to prove (33) because
we can take subsequence so that the above lim infn→∞ can be replaced by limn→∞.

Finally, we complete the proof of this theorem by showing that for any t ∈ [0, T ], the
distribution of Xt and Yt coincide. Indeed, for any ϕ ∈ S(R), we can show that

E[⟨Xt, ϕ⟩] −E[⟨Yt, ϕ⟩] ≤
∣∣E[⟨Xt, ϕ⟩] −E[⟨Xδn

t , ϕ⟩]
∣∣ +

∣∣E[⟨Yt, ϕ⟩] −E[⟨Y δn
t , ϕ⟩]

∣∣
+

∣∣E[⟨Xδn
t , ϕ⟩] −E[⟨Y δn

t , ϕ⟩]
∣∣.

It suffices to show the convergence to 0 of the last term. Recall that Y δn
t (x) =

⟨Xδn
t , pδ(x − ·)⟩ for all (t, x) ∈ [0, T ] ×R. Thus, we can write∣∣E[⟨Xδn

t , ϕ⟩] −E[⟨Y δn
t , ϕ⟩]

∣∣ =E
[∣∣∣ ∫

R
dx

∫
R

dypδn(x − y)(ϕ(x) − ϕ(y))Xt(dx)
∣∣∣]

≤ sup
x∈R

∣∣∣ ∫
R

dypδn(x − y)(ϕ(x) − ϕ(y))
∣∣∣E[⟨Xt,1⟩].

Notice that∣∣∣ ∫
R

dypδn(x − y)(ϕ(x) − ϕ(y))
∣∣∣

≤
∫

|x−y|≤δ
1
3
n

dypδn(x − y)|ϕ(x) − ϕ(y)| + 2∥ϕ∥∞

∫
|x−y|>δ

1
3
n

dypδn(x − y)

≤∥ϕ∥1,∞δ
1
3
n

∫
|z|≤δ

1
3
n

dzpδn(z) + 2∥ϕ∥∞

∫
|z|>δ

− 1
6

n

dz
1√
2π

e− z2
2 → 0,

as n → ∞. As a consequence, we have E[⟨Xt, ϕ⟩] = E[⟨Yt, ϕ⟩] for all ϕ ∈ S(R). The proof
of the existence part of Theorem 2.2 is complete.

4. A moment formula and some estimates. In the proof of Lemma 3.8, we
could presumably obtain a moment formula for Xt(x) based on the method of moment
duality by simply letting δ ↓ 0 in (21). However, as a product of two dependent random
variables, this formula (21) depends on a nonlinear function of the pure jump process
nt and a linear function of f δ

t which is a deterministic process with random jumps. If we
want to write the moment formula in an explicit form, namely without involving further
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expectations of the solution, one needs to deal with all the jumps n → (n−1), (n−1) →
(n −2), etc, until 2 → 1. A simple calculation related to one jump k → (k − 1) is carried
out in the proof of Lemma 3.4. We see that this is already complex. It is difficult for
us to obtain an explicit formula for the higher order moments for the solution by using
the formula derived from (21).

Since the moments play a critical role in our approach, in this section by the mild
formulation for solution Xt(x) and by using Itô’s formula iteratively, we establish an
explicit formula (see Theorem 4.1) for the moments of Xt(x) that satisfies equation
(1). The proof of this theorem is given in Sections 4.1 and 4.2. Afterward, in Section
4.3, an upper bound for the moments is obtained, which will be used in the proof of
uniqueness results in Section 5.

The next theorem presents a moment formula for Xt(x).

Theorem 4.1. Suppose that X0 ∈ MF (R) satisfies Hypothesis 4. Let n ∈ N. Then,
for any (t, x) ∈ [0, T ] ×R, the following equation holds:

E[Xt(x)n] =
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

n∏
i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

×
∫
Tt

n′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

n′∏
i=1

σ(si, zi,PXsi (zi))2,(34)

where the set Jn,n′ of triples (α,β, τ) is defined as in (38) below,

Tt
n′ =

{
sn′ = (s1, . . . , sn′) ∈ [0, T ]n′ : 0 < sn′ < sn′−1 < · · · < s1 < t

}
,(35)

and p(t, x) = pt(x) to avoid long sub-indexes.

Before presenting the proof of Theorem 4.1, let us first take a look at the following
example that may bring us some insight into this moment formula. Let X be a solution
to (1). Then, for any fixed (t, x) ∈ [0, T ] ×R, the following mild formulation holds,

Xt(x) =
∫
R

dypt(x − y)X0(y) +
∫ t

0

∫
R

pt−s(x − y)σ(s, y,PXs(y))
√

Xs(y)W (ds, dy).

Due to the singularity of pt−s(x − y) when t = s, Xt(x) is not a semimartingale in t.
We introduce an auxiliary process Y t = {Y t

s (x) : 0 ≤ s ≤ t, x ∈ R}, where

Y t
s (x) =

∫
R

dypt(x − y)X0(y) +
∫ s

0

∫
R

pt−r(x − y)σ(r, y,PXr(y))
√

Xr(y)W (dr, dy).
(36)

As a process in s it is a semimartingale. Applying Itô’s formula on f(Xt(x)) = Xt(x)n =
(Y t

t (x))n with some n ∈ N, and noticing that σ̂(t, x) = σ(t, x,PXt(x)) is a deterministic
function, we can write

Xt(x)n =
[ ∫

R
dypt(x − y)X0(y)

]n
+ n

∫ t

0

∫
R

pt−s(x − y)σ̂(s, y)
√

Xs(y)Y t
s (x)n−1W (ds, dy)

+ 1
2n(n − 1)

∫ t

0
ds

∫
R

dypt−s(x − y)2σ̂(s, y)2Y t
s (x)n−2Xs(y) .
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Taking expectations on both sides, one gets

E[Xt(x)n] =E[Y t
t (x)n] =

( ∫
R

pt(x − y)X0(y)dy
)n

+ 1
2n(n − 1)

∫ t

0
ds

∫
R

dypt−s(x − y)2σ̂(s, y)2E
[
Y t

s (x)n−2Y s
s (y)

]
.

In other words, E[Y t
t (x)n] can be represented in terms of {E[Y t

s (x)n−2Y s
s (y)] : (s, y) ∈

[0, t]×R}. Applying Itô’s formula to Y t
s (x)n−2Y s

s (y), we can write E(Y t
s (x)n−2Y s

s (y)) in
terms of {E[Y t

r (x)n−4Y s
r (y)Y r

r (z)] : (r, z) ∈ [0, s] × R} and {E[Y t
r (x)n−3Y r

r (z)] : (r, z) ∈
[0, s] × R}. In fact, each time when we apply Itô’s formula to a nominal f of degree
n we have two terms: the first derivative and the second derivative terms. Noticing
that we can write (36) as dY t

s = dY
(t,1)

s + dY
(t,2)

s , the first term containing no unknown
and the second term containing a square root of unknown, the expectation of the first
derivative term of f will produce a degree less (of the unknowns). As for the second
derivative, observe that the second derivative of f is a nominal of degree n − 2 but it
must be multiplied by the quadratic variation of dY

(t,2)
s , a factor of Xs(y). Thus, we

also obtain a nominal of degree n − 1. This means that when we apply Itô’s formula,
we can represent the expectation of the nominal

∏k
i=1(Y ti

ri
)ni of degree n = n1 + · · · + nk

by the expectation of a polynomial of degree n − 1. This iteration can be proceeded a
finite number of times until we arrive at the expectation of a linear function of Y t

s (y),
whose expectation is immediately computed by (36). Then, an explicit formula for
E[Y t

t (x)n] = E[Xt(x)n] is obtained.
Therefore, to provide a moment formula for Xt(x) with rigorous proof, we need to

know the expectation for the form
n∏

i=1
Y ti

tn
(xi),

where n ∈ N and tn = (t1, . . . , tn) ∈ TT
n (see (35)).

4.1. Iteration for power functions. Let n ∈ N, and let f0 : Rn → R be given by
f0(xn) =

∏n
i=1 xi. Consider the iteration as follows.

(0) The 0-th iteration just keeps f0 invariant. Denote by F0 = {f0}, the set of all
outputs in the 0-th iteration.

(1) In the 1-st iteration, we choose f0 ∈ F0, then differentiate f0 twice with respect to
arbitrary arguments and multiply the derivative by y1. Write F1 for the collection
of all non-zero outputs. Then, f1 ∈ F1 if and only if

f1(xn, y1) = ∂2f0

∂xi∂xj
(xn) × y1 = y1

∏
1≤m≤n
m/∈{i,j}

xm,

for some 1 ≤ i < j ≤ n. Thus, an element f1 in F1 will be a function of (n − 1)-
variables.

(2) The 2-nd iteration is very similar. Choose any f1 ∈ F1. Differentiating f1 twice,
then multiplying by y2, and denoting the set of all possible outputs by F2. In this
case, f2 ∈ F2, if and only if

f2(xn,y2) = ∂2f1

∂xi′∂xj′
(xn, y1) × y2 = y1y2

∏
1≤m≤n

m/∈{i,j,i′,j′}

xm,
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for some 1 ≤ i′ < j′ ≤ n and {i′, j′} ∩ {i, j} = ∅; or

f2(xn,y2) = ∂2f1

∂xi′∂y1
(xn, y1) × y2 = y2

∏
1≤m≤n

m/∈{i,j,i′}

xm,

for some 1 ≤ i′ ≤ n and i′ /∈ {i, j}. Thus, an element f2 in F2 will be a function of
(n − 2)-variables.

...
(n) In the n-th iteration, one should choose any function fn−1 ∈ Fn−1 and then dif-

ferentiate it twice and multiply by yn. In fact, Fn−1 consists of the function of
n − (n − 1) = 1 variable, namely, fn−1(xn,yn−1) = yn−1 for all (xn,yn−1) ∈ R2n−1.
Therefore, after this iteration, Fn, the set of non-zero outputs is empty. The whole
iteration stops.
Fix n′ ∈ {0, . . . , n − 1}, and choose any function fn′ ∈ Fn′ . Then, we associate a

multi-index [α,β] = [(α1, . . . , αn), (β1, . . . , βn′)] ∈ {0,1}n+n′ to fn′ , such that

fn′(xn,yn′) =
n∏

i=1
x1−αi

i

n′∏
i=1

y1−βi

i .(37)

Denote by In,n′ the collection of all multi-index [α,β] such that there exists a function
fn′ ∈ Fn′ with the representation (37). In particular, if n′ = 0, then β should be a “0-
dimensional index”, and it will be written as β = ∂. From the definition of Fn′ , it is
easy to see that [α,β] ∈ {0,1}n+n′ is an element of In,n′ , if and only if
(i) βn′ = 0.
(ii) Let |α| =

∑n
i=1 αi and |β| =

∑n′

i=1 βi, then |α| + |β| = 2n′.
For example, assume n = 3. Then,

I3,0 = {[(0,0,0), ∂]},

I3,1 = {[(1,1,0), (0)], [(1,0,1), (0)], [(0,1,1), (0)]},

and
I3,2 = {[(1,1,1), (1,0)]}.

On the other hand, for any [α,β] ∈ In,n′ with 0 ≤ n′ ≤ n−1, there exist 1 ≤ j1 < · · · <
j|α| ≤ n such that αj1 = · · · = αj|α| = 1 and αi = 0 for all i ∈ {1, . . . , n} \ {j1, . . . , j|α|}.
This fact allows us to define a one to one increasing map ια : {1, . . . , |α|} → {1, . . . , n}
such that ια(i) = ji. The function ιβ : {1, . . . , |β|} → {1, . . . , n′} is also defined in a
similar way.

Given any multi-index [α,β] ∈ In,n′ , we can find a unique fn′ ∈ Fn′ satisfying (37).
Notice that fn′ is the output of the n′-th iteration for a function fn′−1 ∈ Fn′−1. But
it is impossible in general to recover this fn′−1 from fn′ , because we do not know
which operator is applied in the n′-th iteration. Similarly, the operator in the k-th
iteration with k = 1, . . . , n′ − 1 is also unknown. Thus, it is reasonable to introduce
a map τ : {1, . . . , |α| + |β| = 2n′} → {1, . . . , n′}, given as follows. If i ≤ |α| and the
differentiation ∂/∂xια(i) occurs in the k-th iteration with k ∈ {1, . . . , n′}, then τ(i) = k;
instead, if i > |α| and ∂/∂yιβ(i−|α|) occurs in the k-th iteration, then τ(i) = k. To be
more precise, given [α,β] ∈ In,n′ , we write Kα,β

n,0 = ∅, and otherwise the set Kα,β
n,n′ with

n′ > 0, is defined to be a collection of maps τ : {1, . . . ,2n′} → {1, . . . , n′} satisfying the
following properties,
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x1 x2 x3 x4 y1 y2
f0(x4) = x1x2x3x4 • • • •
f1(x4, y1) = x2x3y1 • • •
f2(x4, y2) = x2y2 • •

Table 1

(i) For any k ∈ {1, . . . , n′}, there exist exactly two indexes {i1, i2} ∈ {1, . . . ,2n′} such
that τ(i1) = τ(i2) = k.

(ii) For all i ∈ {|α| + 1, . . . ,2n′}, τ(i) > ιβ(i − |α|).
Property (i) means that in each iteration, differentiation occurs twice. Additionally, we
notice that for any k ∈ {1, . . . , n′}, the set Fk consists of functions of (xn,yk). Thus
at the (k + 1)-th iteration, the differentiation ∂

∂yk′
would not occur, if k′ > k. This fact

explains why we need property (ii) to be fulfilled as well. Furthermore, it ensures that
if 1 ≤ i1 < i2 ≤ 2n′ are such that τ(i1) = τ(i2) = 1, then i2 ≤ |α|.

For any n ∈ N and nonnegative integer n′ ≤ n − 1, we denote by
Jn,n′ = {(α,β, τ) : [α,β] ∈ In,n′ , τ ∈ Kα,β

n,n′}.(38)
Note that if n′ = 0, then for any n ≥ 1, (α,β, τ) ∈ Jn,0 if and only if α = 0n, the 0-vector
in Rn, β = ∂ and τ ∈ ∅. In this case, we write Jn,0 = {(0n, ∂, ∂)}. Let us take a look at
the following example of an element in J4,2. Consider

f2(x4,y2) = x2y2 = x1−α1
1 x1−α2

2 x1−α2
2 x1−α4

4 y1−β1
1 y1−β2

2 ∈ F2,

obtained by the iteration given as in Table 1. The associated multi-index to f2 is
[α,β] = [(1,0,1,1), (1,0)]. In this case, |α| = 3, |β| = 1, ια : {1,2,3} → {1,2,3,4}, with
ια(1) = 1, ια(2) = 3, ι(3) = 4, and ιβ : {1} → {1,2}, given by ιβ(1) = 1. On the other
hand, in the first iteration, we differentiate x1 = xια(1) and x4 = xια(3). Thus, τ(1) =
τ(3) = 1. Similarly, in the next iteration, we differentiate x3 = xια(2) and y1 = yιβ(4−3).
It follows that τ(2) = τ(4) = 2.

The next lemmas provide some properties of the set Jn,n′ , which will be used in the
proof of Theorem 4.1.

Lemma 4.2. Let n ∈ N, let n′ ∈ {1, . . . , n − 1}, and let Jn,n′ be given as in (38).
Denote by

J ′
n,n′ =

{
(i, j,α, β, τ) : 1 ≤ i < j ≤ n, (α,β, τ) ∈ Jn−1,n′−1

}
.

Then, there exists a bijection M : Jn,n′ → J ′
n,n′ .

Lemma 4.2 states that any n′ times iteration for an n-variable (product) function can
be decomposed uniquely and reversible to a single iteration for an n-variable function
and an n′ − 1 times iteration for an (n − 1)-variable function.

Take the iteration described in Table 1 as an example. Note that in the first iteration,
we differentiate x1 and x4. Thus, we write (i, j) = (1,4). Then, consider f1(x4, y1) as
a new function f ′

0(x′
3) = x′

1x′
2x′

3 with x′
1 = x2, x′

2 = x3 and x′
3 = y1. Then, by deleting

the row of f0, and the columns of x1 and x4 in Table 1, we get As shown in Table
2, the iteration f1 ⇒ f2 can be understood as f ′

0 ⇒ f ′
1 with f ′

1(x′
3,y′

1) = x′
1y′

1 = x2y2.
Then, the associated triple (α′, β′, τ ′) ∈ J3,1 can be written as α′ = (0,1,1), β′ = (0)
and τ ′ : {1,2} → {1} given by τ ′(1) = τ ′(2) = 1. In this case, it is easy to check that
(i, j,α′, β′, τ ′) ∈ J ′

4,2. Conversely, it is not hard to see that we can also recover (α,β, τ)
as in Table 1 from (i, j,α′, β′, τ ′) ∈ J ′

4,2 with (i, j) = (1,4) and (α′, β′, τ ′) defined as in
Table 2.
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x′
1 = x2 x′

2 = x3 x′
3 = y1 y′

1 = y2
f ′

0(x′
3) = x′

1x′
2x′

3 • • •
f ′

1(x′
3, y′

1) = x′
1y′

1 • •

Table 2

Proof of Lemma 4.2. Choose any (α,β, τ) ∈ Jn,n′ . Then, there exist j1, j2 ∈
{1, . . . , |α|} with j1 < j2 such that τ(j1) = τ(j2) = 1. We define

M(α,β, τ) = (ια(j1), ια(j2), α′, β′, τ ′)
with

α′ = (α1, . . . , αια(j1)−1, αια(j1)+1, . . . , αια(j2)−1, αια(j2)+1, . . . , αn, β1),(39)

β′ = (β2, . . . , βn′),(40)
and

τ ′(i) =


τ(i) − 1, i < j1,

τ(i + 1) − 1, j1 ≤ i < j2 − 1,

τ(i + 2) − 1, j2 − 1 ≤ i ≤ 2n′ − 2.

(41)

It is clear that α′ ∈ {0,1}n−1, β′ ∈ {0,1}n′−1 with β′
n′−1 = βn′ = 0 and |α′| + |β′| =

|α| + |β| − 2 = 2(n′ − 1). In other words, [α′, β′] ∈ In−1,n′−1.
It suffices to show that τ ′ ∈ Kα′,β′

n−1,n′−1. By definition (41) and the fact that τ(j1) =
τ(j2) = 1, it is easy to see that τ ′ : {1, . . . ,2(n′ − 1)} → {1, . . . , n′ − 1}, and for every
k ∈ {1, . . . , n′ − 1}, there exists 1 ≤ i < j ≤ 2(n′ − 1) such that τ ′(i) = τ ′(j) = k.

In the next step, we prove that τ ′(i) > ιβ′(i − |α′|) = ιβ′(i + 2 − |α| − β1) for all
i ∈ {|α′| + 1, . . . ,2(n′ − 1)} = {|α| − 1, . . . ,2(n′ − 1)}. Choose such an i. Noticing that
j2 ≤ |α|, we have i ≥ |α| − 1 ≥ j2 − 1 and thus i + 2 ≥ |α| + 1. As a consequence,

τ ′(i) = τ(i + 2) − 1 > ιβ(i + 2 − |α|) − 1.

On the other hand, β′
ιβ′ (i+2−|α|−β1) is the (i + 2 − |α| − β1)-th non-zero coordinate of

β′. This yields that βιβ′ (i+2−|α|−β1)+1 = β′
ιβ′ (i+2−|α|−β1) is the (i + 2 − |α|)-th non-zero

coordinate of β. In other words,
ιβ′(i + 2 − |α| − β1) + 1 = ιβ(i + 2 − |α|).

It follows that τ ′(i) > ιβ′(i − |α′|) = ιβ′(i + 2 − |α| − β1) for all i ∈ {|α′| + 1, . . . ,2(n′ −
1)} = {|α| − 1, . . . ,2(n′ − 1)}. Consequently, we have τ ∈ Kα′,β′

n−1,n′−1, and thus M maps
Jn,n′ to J ′

n,n′ .
In reverse, for any (i, j,α′, β′, τ ′) ∈ J ′

n,n′ , we can also find a unique (α,β, τ) ∈ Jn,n′

such that M(α,β, τ) = (i, j,α′, β′, τ ′). This proves that the map M is a bijection on
Jn,n′ with values in J ′

n,n′ . The proof of this lemma is complete.

Denote by |Jn,n′ | the number of elements in Jn,n′ . We have the next lemma as a
consequence of Lemma 4.2.

Lemma 4.3. Let Jn,n′ be defined as in (38) with some positive integer n and non-
negative integer n′ ≤ n − 1. Then,

|Jn,n′ | = n!(n − 1)!
2n′(n − n′)!(n − n′ − 1)! ,(42)

where by convention 0! = 1.
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Proof. By definition, we know that Jn,0 = {0n, ∂, ∂} for all n ≥ 1. This yields that
|Jn,0| = 1 which coincides with (42). It suffices to show the case n′ ≥ 1. By Lemma 4.2,
we can write

|Jn,n′ | = 1
2n(n − 1)|Jn−1,n′−1|.

Then, (42) follows by iteration. The proof of this lemma is complete.

4.2. Proof of Theorem 4.1. In this subsection, we provide the proof of Theorem 4.1.
In fact, we can show a generalized version of this theorem (see Proposition 4.4 below).
Let us start this subsection by introducing the following notation.

Let n ∈ N, and let n′ ∈ {1, . . . , n−1}. Fix (α,β, τ) ∈ Jn,n′ . For any tn ∈ TT
n , sn′ ∈ Ttn

n′ ,
xn ∈ Rn and zn′ ∈ Rn′ , we define the following expressions

Aα
n,n′(tn,xn) =

n∏
i=1

( ∫
R

dzpti(xi − z)X0(z)
)1−αi

,(43)

Bβ
n,n′(sn′ ,zn′) =

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

,(44)

Cα,τ
n,n′(tn,xn, sn′ ,zn′) =

|α|∏
i=1

p(tια(i) − sτ(i), xια(i) − zτ(i)),(45)

Dβ,τ
n,n′(sn′ ,zn′) =

2n′∏
i=|α|+1

p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i)),(46)

and

Eα,β
n,n′(sn′ ,zn′) =

n′∏
i=1

σ̂(si, zi)2 =
n′∏

i=1
σ(si, zi,PXsi (zi))2.(47)

By convention, we write

Aα
n,0(tn,xn) =

n∏
i=1

( ∫
R

dzpti(xi − z)X0(z)
)
,

and Bβ
n,0 = Bα,τ

n,0 = Dβ,τ
n,0 = Eα,β

n,0 = 1.

Proposition 4.4. Suppose that X0 ∈ MF (R) satisfies Hypothesis 4. Let n ∈ N,
and let Y be given as in (36). Then, for any tn ∈ TT

n , and xn ∈ Rn,

E
[ n∏

i=1
Y ti

tn
(xi)

]
=

n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

Aα
n,n′(tn,xn)

∫
Ttn

n′

dsn′

∫
Rn′

dzn′Bβ
n,n′(sn′ ,zn′)

× Cα,τ
n,n′(tn,xn, sn′ ,zn′)Dβ,τ

n,n′(sn′ ,zn′)Eα,β
n,n′(sn′ ,zn′),(48)

where Jn and A - E are defined as in (38) and (43)-(47) respectively, Tt
n is defined as

in (35).
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Proof. We prove this proposition by induction in n. If n = 1, it is clear that n′ = 0
and thus

E
[
Y t1

t1 (x1)
]

=E
[
Xt1(x1)

]
=

∫
R

dzpt1(x1 − z)X0(z),

coincides with (48). Suppose that n ≥ 2. Recall that Y satisfies the mild formulation
(36). Thus, one can deduce by Itô’s formula that

E
[ n∏

i=1
Y ti

tn
(xi)

]
= I0 + I1,(49)

where

I0 =
n∏

i=1

∫
R

dzpti(xi − z)X0(z) = Aα
n,n′(tn,xn)

∣∣∣
n′=0

,(50)

and

I1 =
∑

1≤k1<k2≤n

∫ tn

0
ds

∫
R

dzptk1 −s(xk1 − z)ptk2 −s(xk2 − z)σ̂(s, z)2(51)

×E
[
Y s

s (z)
∏

1≤i≤n
i/∈{k1,k2}

Y ti
s (xi)

]
.

Applying the induction hypothesis, we can write the expectation in (51) as follows,

E
[
Y s

s (z)
∏

1≤i≤n
i/∈{k1,k2}

Y ti
s (xi)

]
=

n−1∑
n′=1

∑
(α′,β′,τ ′)∈Jn−1,n′−1

Aα′

n−1,n′−1
(
(tk1,k2

n , s), (xk1,k2
n , z)

)
(52)

×
∫
Ttn

n′−1

dsn′−1

∫
Rn′−1

dzn′−1Bβ′

n−1,n′−1(sn′−1,zn′−1)

× Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s), (xk1,k2
n , z), sn′−1,zn′−1

)
Dβ′,τ ′

n−1,n′−1(sn′−1,zn′−1)

× Eα′,β′

n−1,n′−1(sn′−1,zn′−1),

where tk1,k2
n = (t1, . . . , tk1−1, tk1+1, . . . , tk2−1, tk2+1, . . . , tn) ∈ [0, T ]n−2 and xk1,k2

n is de-
fined in the same way.

Let M be the bijection defined as in Lemma 4.2. Choose (α,β, τ) ∈ Jn,n′ with n′ ≥ 1.
Let (k1, k2, α′, β′, τ ′) = M(α,β, τ) ∈ J ′

n,n′ . Then, due to Lemma 4.2, there exist 1 ≤ j1 <
j2 ≤ |α| such that ια(j1) = k1, ια(j2) = k2, with τ(j1) = τ(j2) = 1. This also yields that
αk1 = αk2 = 1. Recall that α′, β′ and τ ′ are defined as in (39)-(41) respectively. As a
result, we deduce that

Aα′

n−1,n′−1
(
(tk1,k2

n , s), (xk1,k2
n , z)

)
(53)

=
∏

1≤i≤n
i/∈{k1,k2}

( ∫
R

dzpti(xi − z)X0(z)
)1−αi( ∫

R
dyps(z − y)X0(y)

)1−β1

=Aα
n,n′(tn,xn)

( ∫
R

dyps(z − y)X0(y)
)1−β1

,
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Bβ
n,n′

(
(s, sn′−1), (z,zn′−1)

)
(54)

=
( ∫

R
dyps(z − y)X0(y)

)1−β1
n′∏

i=2

( ∫
R

dypsi−1(zi−1 − y)X0(y)
)1−βi

=Bβ′

n−1,n′−1(sn′−1,zn′−1)
( ∫

R
dyps(z − y)X0(y)

)1−β1
,

Cα,τ
n,n′

(
tn,xn, (s, sn′−1), (z,zn′−1)

)
p(s − sτ(|α|+1)−1, z − zτ(|α|+1)−1)β1(55)

=p(s − sτ ′(|α′|), z − zτ ′(|α′|))β1

|α′|−β1∏
i=1

p(tια′ (i) − sτ ′(i), xια′ (i) − zτ ′(i))

× p(tk1 − s, xk1 − z)p(tk2 − s, xk2 − z)

=Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s), (xk1,k2
n , z), sn′−1,zn′−1

)
× p(tk1 − s, xk1 − z)p(tk2 − s, xk2 − z),

Dβ,τ
n,n′

(
(s, sn′−1), (z,zn′−1)

)
(56)

=p(s − sτ(|α|+1)−1, z − zτ(|α|+1)−1)β1

|α′|+|β′|∏
i=|α′|+1

p(sιβ′ (i−|α′|) − sτ ′(i), zιβ′ (i−|α|) − zτ(i))

=Dβ′,τ ′

n−1,n′−1(sn′−1,zn′−1)p(s − sτ(|α|+1)−1, z − zτ(|α|+1)−1)β1 ,

and

Eα,β
n,n′

(
(s, sn′−1), (z,zn′−1)

)
= σ̂(s, z)2Eα′,β′

n−1,n′−1(sn′−1,zn′−1).(57)

Combining equations (51)-(57), we get

I1 =
n−1∑
n′=1

∑
(α,β,τ)∈Jn,n′

Aα
n,n′(tn,xn)

∫
Ttn

n′

dsn′

∫
Rn′

dzn′Bβ
n,n′(sn′ ,zn′)(58)

× Cα,τ
n,n′(tn,xn, sn′ ,zn′)Dβ,τ

n,n′(sn′ ,zn′)Eα,β
n,n′(sn′ ,zn′).

Therefore, formula (48) follows from (49)-(51) and (58) and Lemma 4.2. The proof of
this Proposition is complete.

Having Proposition 4.4, Theorem 4.1 follows immediately.

Proof of Theorem 4.1. Taking (t1, x1) = · · · = (tn, xn) = (t, x) as in Proposition
4.4 and writing A - E explicitly using (43)-(47), then we get equality (34). This com-
pletes the proof of Theorem 4.1.

4.3. Some estimates. In this subsection, we provide some estimates for expressions
related to moments of Xt(x). They will be used in the proof of the uniqueness of
solutions to equation (1) under certain hypotheses (see Section 5).
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Lemma 4.5. Suppose that X0 ∈ MF (R) satisfies Hypothesis 4. Let n ≥ 2 be a pos-
itive integer, and let n′ ∈ {1, . . . , n − 1}. Fix (α,β, τ) ∈ Jn,n′ . Let B - D be given as in
(44)-(46), tn ∈ TT

n and xn ∈ R. Then, for any 1 ≤ j ≤ n′, and s ∈ (0, tn),∫
Ts

n′−j

dsj+1:n′

∫
Ts,tn

j−1

dsj−1

∫
Rn′

dzn′Bβ
n,n′(sj

n′(s),zn′)Cα,τ
n,n′(tn,xn, sj

n′(s),zn′)(59)

× Dβ,τ
n,n′(sj

n′(s),zn′) ≤ c1cn
2 (tn − s) 1

2 j−1s
1
2 (n′−j)

Γ(1
2j)Γ(1

2(n′ − j) + 1)
,

where sj+1:n′ = (sj+1, . . . , sn′), sj
k′(s) = (s1, . . . , sj−1, s, sj+1, . . . , sk′), Ts,tn

j−1 = {(s1, . . . , sj−1) :
s ≤ sj−1 ≤ · · · ≤ s1 ≤ tn}, and c1, c2 > 0 depending on ∥X0∥∞.

Proof. Denote by LHS the left hand side of (59). We prove this lemma by induction
in n. First, we prove (59) for n = 2. We can write J2,1 = {(α,β, τ)}, where α = (1,1),
β = (0) and τ : {1,2} → {1} is given by τ(1) = τ(2) = 1. Thus, under Hypothesis 4,

LHS =
∫
R

dz1
( ∫

R
dzps(z1 − z)X0(z)

)
pt1−s(x1 − z1)pt2−s(x2 − z1)

≤(2π)− 1
2 ∥X0∥∞(t1 + t2 − 2s)− 1

2 ≤ (4π)− 1
2 ∥X0∥∞(t2 − s)− 1

2 .

This proves inequality (59) for n = 2.
In the next step, we prove inequality (59) for any n > 2. Choose n′ ∈ {1, . . . , n − 1}.

Let (α,β, τ) ∈ Jn,n′ , and let (k1, k2, α′, β′, τ ′) = M(α,β, τ) with M defined as in Lemma
4.2.

Assume that j > 1. Then, due to (54)-(56), we have

LHS =
∫
Ts

n′−j

dsj+1:n′

∫
Ts,tn

j−1

dsj−1

∫
Rn′

dzn′

( ∫
R

dyps1(z1 − y)X0(y)
)1−β1

(60)

× p(tk1 − s1, xk1 − z1)p(tk2 − s1, xk2 − z1)Bβ′

n−1,n′−1(sj
2:n′−1(s),z2:n′)

× Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s1), (xk1,k2
n , z1), sj

2:n′(s),z2:n′)Dβ′,τ ′

n−1,n′−1(sj
2:n′(s),z2:n′),

where sj
2:n′(s) = (s2, . . . , sj−1, s, sj−2, . . . , sn′). Notice that the induction hypothesis im-

plies that∫
Ts

n′−j

dsj+1:n′

∫
Ts,s1

j−2

ds2:j−1

∫
Rn′−1

dz2:n′Bβ′

n−1,n′−1(sj
2:n′−1(s),z2:n′)

× Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s1), (xk1,k2
n , z1), sj

2:n′(s),z2:n′)Dβ′,τ ′

n−1,n′−1(sj
2:n′(s),z2:n′)

≤c1cn−1
2 (s1 − s) 1

2 (j−1)−1s
1
2 (n′−j)

Γ(1
2(j − 1))Γ(1

2(n′ − j) + 1)
.

Combining this fact with the boundedness of X0, we obtain the next inequality imme-
diately,

LHS ≤ c1cn−1
2 s

1
2 (n′−j)

Γ(1
2(j − 1))Γ(1

2(n′ − j) + 1)

∫ tn

s
ds1(s1 − s)

1
2 (j−1)−1

×
∫
R

dz1p(tk1 − s1, xk1 − z1)p(tk2 − s1, xk2 − z1)

≤ (4π)− 1
2 c1cn−1

2 s
1
2 (n′−j)

Γ(1
2(j − 1))Γ(1

2(n′ − j) + 1)

∫ tn

s
ds1(s1 − s)

1
2 (j−1)−1(tn − s1)− 1

2
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=
(4π)− 1

2 Γ(1
2)c1cn−1

2 s
1
2 (n′−j)(tn − s) 1

2 j−1

Γ(1
2j)Γ(1

2(n′ − j) + 1)
≤ c1cn

2 s
1
2 (n′−j)(tn − s) 1

2 j−1

Γ(1
2j)Γ(1

2(n′ − j) + 1)
,

provided that c2 ≥ (4π)− 1
2 Γ(1

2).
On the other hand, if j = 1, we can write the following equation analogous to (60),

LHS =
∫
Ts

n′−j

dsj+1:n′

∫
Ts,tn

j−1

dsj−1

∫
Rn′

dzn′

( ∫
R

dyps1(z1 − y)X0(y)
)1−β1

× p(tk1 − s1, xk1 − z1)p(tk2 − s1, xk2 − z1)Bβ′

n−1,n′−1(s2:n′−1,z2:n′)

× Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s1), (xk1,k2
n , z1), s2:n′ ,z2:n′

)
Dβ′,τ ′

n−1,n′−1(s2:n′ ,z2:n′).

By using the induction hypothesis again, we deduce that∫
Ts2

n′−2

ds3:n′

∫
Rn′−1

dz2:n′Bβ′

n−1,n′−1
(
(s2, sj

3:n′−1(s)),z2:n′)

× Cα′,τ ′

n−1,n′−1
(
(tk1,k2

n , s1), (xk1,k2
n , z1), (s2, s3:n′),z2:n′

)
Dβ′,τ ′

n−1,n′−1(sj
2:n′(s),z2:n′)

≤c1cn−1
2 (s − s2)− 1

2 s
1
2 (n′−2)
2

Γ(1
2)Γ(1

2n′)
.

As a consequence, we have

LHS ≤(4π)− 1
2 c1cn−1

2 (tn − s)− 1
2

Γ(1
2)Γ(1

2n′)

∫ s

0
ds2(s − s2)− 1

2 s
1
2 (n′−2)
2 ≤ c1cn

2 (tn − s)− 1
2 s

1
2 (n′−1)

Γ(1
2)Γ(1

2(n′ − 1) + 1)
,

if c2 ≥ (4π)− 1
2 Γ(1

2). This completes the proof of this lemma.

Remark 4.6. From the proof of Lemma 4.5, we see that the term B only con-
tributes in c1cn

2 . It can be relaxed a little bit, namely,

Bβ
n,n′(sn′ ,zn′) =

n′∏
i=1

( ∫
R

dzpsi(zi − z)fi(z)
)1−βi

,

with {fi}i≥1 being a sequence of nonnegative functions on R such that supi≥1 ∥fi∥∞ <
∞. Then, inequality (59) still holds with constants depending on supi≥1 ∥fi∥∞ instead
of ∥X0∥∞.

As a consequence of Lemma 4.5, we have the next proposition immediately.

Proposition 4.7. Assume that X0 ∈ MF (R) satisfies Hypothesis 4 and let X =
{Xt(x) : (t, x) ∈ [0, T ] ×R} be a solution to equation (1). Then,

sup
(t,x)∈[0,T ]×R

E[Xt(x)n] ≤ c1cn
2 (n!)

3
2 ,(61)

with constants c1, c2 > 0 independent of n.

Proof. The case n = 1 is trivial. Suppose that n ≥ 2. Consider moment formula
(34). If n′ = 0, then Jn,0 = {(0n, ∂, ∂)}. This implies that the corresponding summand
is ( ∫

R
dzpt(x − z)X0(z)

)n
≤ ∥X0∥n

∞,
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under Hypothesis 4. Additionally, combining this result with Lemmas 4.3 and 4.5, we
can write

E[Xt(x)n] ≤∥X0∥n
∞ + c1cn

2

n−1∑
n′=1

n′∑
j=1

(
n!(n − 1)!

(n − n′)!(n − n′ − 1)!Γ(1
2j)Γ(1

2(n′ − j) + 1)

×
∫ t

0
(t − s)

1
2 j−1s

1
2 (n′−j)ds

)

=∥X0∥n
∞ + c1cn

2

n−1∑
n′=1

n!(n − 1)!
(n − n′)!(n − n′ − 1)!Γ(1

2n′ + 1)
t

1
2 n′

.

By Stirling’s formula (c.f. Jameson [22, Theorem 1]), one can show that, for any n ∈ N
and n′ ∈ {1, . . . , n − 1},

n!(n − 1)!
(n − n′)!(n − n′ − 1)!Γ(1

2n′ + 1)1
2n′ ≤ c1cn

2 Γ
(3

2n′ + 1
)

≤ c1cn
2 (n!)

3
2 ,

where constants c1 and c2 are independent of n and may vary from line to line. Thus,
inequality (61) follows immediately.

5. Proof of the uniqueness. In this section, we prove the weak uniqueness for
equation (1), or equivalently for MP (7) and (8), under certain conditions. In the clas-
sical theory of Markov processes, there are several approaches to this question. By the
method of duality (c.f. [16, 28]), one can obtain the well-posedness of the martingale
problem by proving the uniqueness of its Laplace transformation (log-Laplace equation).
Besides, the desired uniqueness result can be obtained by studying corresponding his-
torical processes (c.f. [31, 32]). In recent years, a new approach was introduced by Xiong
[43] that connects the weak uniqueness for MP (7) and (8) to the strong uniqueness
of solutions to a backward doubly SDE. This method was successfully employed for
nonlinear Mckean-Vlasov MPs (c.f. [23, 29]).

In this paper, the classic duality, log-Laplace-equation method will be adapted to
prove weak uniqueness. However, the log-Laplace equation for (1) depends on σ and
thus on the distribution of solution(s) to equation (1). Hence, it appears we are not
able to show the uniqueness for the log-Laplace equation without knowing that for
(1) itself. To address this issue, we introduce the following two alternative hypotheses.
Under either hypothesis, we can show that as a function of (t, x), σ̂(t, x) = σ(t, x,PXt(x))
is invariant for any solution X to equation (1). This implies the log-Laplace equation
for any solution to (1) is unique. The well-posedness of (1) is thus straightforward.

5.1. Proof of the uniqueness part of Theorem 2.2 under Hypothesis 2. In this sub-
section, we prove the weak uniqueness for equation (1) under Hypothesis 2. Notice that
under Hypothesis 2, σ depends only on t, x and the moments of Xt(x) up to order N .
The weak uniqueness for the equation will reduce to the uniqueness for moments of
solutions up to order N .

Let X = {Xt(x) : (t, x) ∈ [0, T ] ×R} be a solution to (1), and let u : [0, T ] ×R → RN

be given by
un(t, x) = E[Xt(x)n],

for all n = 1, . . . ,N and (t, x) ∈ [0, T ] ×R. Then, by Theorem 4.1, u is a solution to the
following integral equation with initial condition u(0, x) = (X0(x), . . . ,X0(x)N ),

un(t,x) =
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

n∏
i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

(62)
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×
∫
Tn′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

α∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

n′∏
i=1

f(si, zi, u(si, zi)),

for all n = 1, . . . ,N . In the next proposition, we show the uniqueness of solutions to
(62).

Proposition 5.1. Suppose that X0 ∈ MF (R) satisfies Hypothesis 4. Then, equa-
tion (62) has a unique solution in Cb([0, T ] ×R;RN

+ ).

Proof. The existence in Cb([0, T ] × R;RN
+ ) follows from Theorem 2.2 and Propo-

sition 4.7. It suffices to show the uniqueness. Let v be another solution to (62). Then,
by mean value theorem, for any n′ ∈ N, and (sn′ ,z′

n) ∈ Tt
n′ ×Rn′ ,

n′∏
i=1

f(si, zi, u(si, zi)) −
n′∏

i=1
f(si, zi, v(si, zi))

=
N∑

k=1

n′∑
j=1

∏
1≤i≤n′

i ̸=j

f(si, zi, ξ
i
1, . . . , ξi

N ) ∂

∂ξk
f(si, zi, ξ

j
1, . . . , ξj

N )[uk(sj , zj) − vk(sj , zj)]

≤∥f∥n′

1,∞

N∑
k=1

n′∑
j=1

|uk(sj , zj) − vk(sj , zj)|,

where ξi
k is between uk(si, zi) and vk(si, zi) for all 1 ≤ i ≤ n′ and 1 ≤ k ≤ N and the

last inequality is due to Hypothesis 2. Combining this inequality with equation (62),
we get

|un(t, x) − vn(t, x)| ≤
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

N∑
k=1

n′∑
j=1

∥f∥n′

1,∞

n∏
i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

×
∫
Tn′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

α∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))|uk(sj , zj) − vk(sj , zj)|.

By Lemma 4.5, we deduce that,

sup
x∈R

|un(t, x) − vn(t, x)| ≤C

∫ t

0
ds

n−1∑
n′=1

n′∑
j=1

(t − s) 1
2 j−1s

1
2 (n′−j)

Γ(1
2j)Γ(1

2(n′ − j) + 1)
(63)

×
N∑

k=1
sup
x∈R

|uk(s, x) − vk(s, x)|,

for some constant C > 0 depends on N and ∥f∥1,∞. On the other hand, it is clear that

u1(t, x) = v1(t, x) =
∫
R

dzpt(x − z)X0(z), ∀(t, x) ∈ [0, T ] ×R.
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Thus taking the summation among n = 1, . . . ,N on both sides of (63), and noticing
that

(t − s)
1
2 j−1s

1
2 (n′−j) ≤ (T + 1)

1
2 (N−1)(t − s)− 1

2

for all 1 ≤ j ≤ n′, 1 ≤ n′ ≤ n − 1 ≤ N − 1 and 0 ≤ s ≤ t ≤ T , and

sup
1≤j≤n′≤n−1≤N

[
Γ

(1
2j

)
Γ

(1
2(n′ − j) + 1

)]−1
< ∞,

we can write

h(t) :=
N∑

n=1
sup
x∈R

|un(t, x) − vn(t, x)| ≤ CT,N

∫ t

0
ds(t − s)− 1

2 h(s).(64)

for some universal constant CT,N > 0. As a consequence of a generalized Grönwall
inequality (c.f. Ye et al. [45, Theorem 1]), we get h(t) = 0 for all t ∈ [0, T ]. This proves the
uniqueness of solutions to equation (62), and the proof of this proposition is complete.

Proof of Theorem 2.2: uniqueness under Hypothesis 2. It suffices to show
the weak uniqueness. Fix (t, x) ∈ [0, T ] × R. By Proposition 5.1, we know that
(E[Xt(x)], . . . ,E[Xt(x)N ] remains the same for any solution X to (1). This allows us to
define the following deterministic function σ̂ on [0, T ] ×R+ given by

σ̂(t, x) =
√

f(E[Xt(x)], . . . ,E[Xt(x)N ]).
Then, any weak solution X to (1) is also a weak solution to the following SPDE

∂tXt(x) = 1
2∆Xt(x) + σ̂(t, x)

√
Xt(x)Ẇ (t, x).(65)

Following the standard arguments, one can show that the log-Laplace equation for (65)
is {

∂
∂tvt(x) = 1

2∆vt(x) − 1
2 σ̂(t, x)2vt(x)2,

v0(x) = ϕ(x),
(66)

such that
E

[
− exp(⟨Xt, ϕ⟩)

]
= exp(−⟨X0, vt⟩),

for any nonnegative function ϕ ∈ S(R). It is known that equation (66) has a unique
solution (c.f. Dawson [7, Sections 4.3 and 4.4], and also Engländer and Pinsky [14] for
a detailed study about this type of equations). This yields that the probability law of
X as a measure-valued process is unique. We complete the proof of this theorem.

5.2. Proof of the uniqueness part of Theorem 2.2 under Hypothesis 3. Following
the idea in Section 5.1, consider the following infinite dimensional equation for u =
{un(t, x) : n ∈ {1,2, . . .}, (t, x) ∈ [0, T ] ×R}:

un(t, x) =
n−1∑
n′=1

∑
(α,β,τ)∈Jn,n′

n∏
k=1

( ∫
R

dzpt(x − z)X0(z)
)1−αk

×
∫
Tn′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

k′∏
i=1

f(si, zi, u(si, zi)).(67)
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Let H be the Hilbert space of real sequence with inner product defined by (6). As a
consequence of Theorem 4.1 and Lemma 4.7, equation (67) has a solution u such that
for every (t, x) ∈ [0, T ] × R, u(t, x) belongs to the Hilbert space H. Therefore, assume
Hypothesis 3, the weak uniqueness is a direct result of the following Proposition 5.2.

Proposition 5.2. Suppose that X0 ∈ MF (R) satisfies Hypothesis 4. Then, under
Hypothesis 3, equation (67) has a unique solution in Cb([0, T ] ×R;H+).

Proof. It suffices to show the uniqueness. Suppose v is another solution to (67).
By similar arguments to those in Proposition 5.1, taking account of Lemmas 4.3 and
4.5, Stirling’s formula and Jensen’s inequality, we can write

∥u(t, x)−v(t, x)∥2
H =

∞∑
n=1

1
(n!)2γ

|un(t, x) − vn(t, x)|2

≤
∞∑

n=1

c1cn
2

(n!)2γ

[ n−1∑
n′=1

∑
(α,β,τ)∈Jn,n′

∫ t

0
ds

(t − s) 1
2 n′−1

Γ(1
2n′ + 1)

sup
y∈R

∥u(s, y) − v(s, y)∥H

]2

≤
∞∑

n=1

c1cn
2

(n!)2γ

[ n−1∑
n′=1

n!(n − 1)!
2n′(n − n′)!(n − n′ − 1)!

∫ t

0
ds

n′∑
j=1

(t − s) 1
2 j−1s

1
2 (n′−j)

Γ(1
2j)Γ(1

2(n′ − j) + 1)

× sup
y∈R

∥u(s, y) − v(s, y)∥H

]2

≤
∞∑

n=1

c1cn
2

Γ[(2γ − 3)n]

∫ t

0
ds(t − s)− 1

2 sup
y∈R

∥u(s, y) − v(s, y)∥2
H.

Denote by h(t) = supx∈R ∥u(t, x) − v(t, x)∥2
H. It is clear that the summation in n in

the above expression is finite. Thus,

h(t) ≤ C(γ,T )
∫ t

0
ds(t − s)− 1

2 h(s),

with some constant C(γ,T ) depending on γ and T . Then, a generalized Grönwall
inequality implies that h ≡ 0 and thus u ≡ v. The proof of this proposition is complete.

5.3. Examples. In Sections 3, 5.1 and 5.2, we proved the existence and uniqueness
of solutions to the mean-field sBm (1) under certain hypotheses. It is natural to ask
for some real examples for the function σ, such that the hypotheses we proposed are
satisfied. For simplicity, we assume σ(t, x,µ) = σ(µ) is only a function of the probability
measure. A typical example is that

σ(µ) =
∫
R

g(x)µ(dx)(68)

for some function g. Thus we provide some examples for function g in (68), such that
Hypothesis 2 or 3 is satisfied, which implies the weak existence and uniqueness of
solutions to (1) via the approach in this paper.

Example 1. Let g be a polynomial on R+ given by

g(x) =
N∑

k=0
akxk
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for all x ∈ R+ with some constants a0, . . . , aN ∈ R+. Let h : R × R+ be a Lips-
chitz function that is uniformly bounded by two positive constants. Define function
σ : P(R+) → R+ as follows,

σ(µ)2 = h
( ∫

R
g(x)µ(dx)

)
= h

(
a0 +

N∑
k=1

akE[Xk
µ ]

)
,

for all µ ∈ P(R+), where Xµ ∼ µ. Then, it is clear that Hypothesis 2 holds in this
example.

Example 2. Let g(x) = 2 + cos(x 1
2 ) for all x ∈ R+ and let σ(µ)2 =

∫
R g(x)µ(dx) for

all µ ∈ P(R+). Then, we see that

g(x) = 3 +
∞∑

n=1

(−1)nxn

(2n)!

and thus σ : P(R+) → R+, given by

σ(µ)2 =
∫
R

g(x)µ(dx) = 3 +
∞∑

n=1

(−1)n

(2n)! E[Xn
µ ]

for all µ ∈ P(R+) with Xµ ∼ µ. Choose γ ∈ (3
2 ,2) (see (6)). Then, by using Cauchy-

Schwarz’s inequality, we can show that Hypothesis 3 holds,

|σ(µ)2 − σ(ν)2| =
∣∣∣ ∞∑

n=1

(−1)n

(2n)!
(
E[Xn

µ ] −E[Xn
ν ]

)∣∣∣
≤

( ∞∑
n=1

1
[(2n)!]2−γ

) 1
2
( 1

[(2n)!]γ
(
E[Xn

µ ] −E[Xn
ν ]

)2) 1
2 ≤ Cγ∥XH

µ − XH
ν ∥H,

for any µ, ν ∈ P(R+) such that XH
µ = (E[Xµ],E[X2

µ], . . . ) ∈ H+ and XH
ν ∈ H+.

6. Regularity for moments of the solution. Assume Hypothesis 2. Suppose
also that σ(t, x,µ) = σ(µ) depends only on µ for simplicity. Let X be the solution to
(1). In this section, we will study the regularity for all the moments of Xt(x).

Before the rigorous proof, let us take a look at the following example. Let n = 2 as
in Theorem 4.1. Then, we can write

E[Xt(x)2] =
( ∫

R
dzpt(x − z)X0(z)

)2

+
∫ t

0
ds

∫
R2

dydzpt−s(x − z)2ps(z − y)σ(PXs(z))2X0(y)X0(z).

Taking the derivative in t on both sides, we will get δ2
0 (the square of the Dirac delta

function) as substituting s = t of pt−s(x − z)2, which is difficult to handle. To avoid
this singularity, we perform a change of variable u = t − s. Then, we need to compute
the time derivative of σ(PXt−u(z))2, which depends on all E[Xt−u(z)n], n = 1, . . . ,N .
In order to write a convincing proof, we introduce the following Picard iteration for
moments in Section 6.1. The proof for our main moment regularity result, Theorem
6.5, to follow in Section 6.2, is based on this Picard iteration.
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6.1. Picard iteration for moments. Recall that the diffusion coefficient in equation
(1) involves a square root, that is not Lipschitz around 0. Thus, it is difficult to find
a sequence convergent to the solution to (1) using Picard iteration. Fortunately, the
Picard iteration for the moments is convergent (see Proposition 6.2), which is sufficient
to study the regularity of the moments.

Let X(0) = {X
(0)
t (x) : (t, x) ∈ [0, T ] ×R} be the unique (weak) solution to

X
(0)
t (x) =

∫
R

dzpt(x − z)X0(z) +
∫ t

0

∫
R

pt−s(x − z)σ(PX0(z))
√

X
(0)
s (z)W (ds, dz),(69)

and for all k = 1,2, . . . , let X(k) = {X
(k)
t (x) : (t, x) ∈ [0, T ] × R} be the unique solution

to

X
(k)
t (x) =

∫
R

dzpt(x − z)X0(z) +
∫ t

0

∫
R

pt−s(x − z)σ
(
P

X
(k−1)
s (z)

)√
X

(k)
s (z)W (ds, dz).

(70)

Denote by u
(k)
n (t, x) = E[X(k)

t (x)n] for all n = 1, . . . ,N and k = 0,1,2, . . . . Then, we have
the following results analogue to Theorem 4.1,

u(0)
n (t, x) =

n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

( ∫
R

dzpt(x − z)X0(z)
)n−|α|

×
∫
Tt

n′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

n′∏
i=1

f(X0(zi), . . . ,X0(zi)N )(71)

and

u(k)
n (t,x) =

n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

( ∫
R

dzpt(x − z)X0(z)
)n−α

×
∫
Tt

n′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(t − sτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

n′∏
i=1

f
(
u

(k−1)
1 (si, zi), . . . , u(k−1)

N (si, zi)
)
,(72)

for all n = 1, . . . ,N and k = 1,2, . . . . We will show the convergence of {u(k)}k≥0 in the
next lemma.

Lemma 6.1. Let {u(k)}k≥0 be given as in (71) and (72). Then, it is a convergent
sequence in Cb([0, T ] ×R;RN

+ ) equipped with the supremum norm.

Proof. The proof of this lemma is similar to Proposition 5.1. In fact, by using
Theorem 4.1 and Lemma 4.5, and the fact that for all k = 0,1, . . . , and (t, x) ∈ [0, T ]×R,

u
(k)
1 (t, x) =

∫
R

dzpt(x − z)X0(z),
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we can deduce the next inequality analogously to (64),

h(k)(t) :=
N∑

n=1
sup
x∈R

|u(k+1)
n (t, x) − u(k)

n (t, x)|

≤C

∫ t

0
ds(t − s)− 1

2 h(k−1)(s).

By iteration, we have

h(k)(t) ≤ C

∫
Tt

k

dsk(t − s1)− 1
2 (s1 − s2)− 1

2 · · · (sk−1 − sk)− 1
2 h(0)(sk).(73)

Similar argument as in Lemma 4.7 implies that

sup
t∈[0,T ]

h(0)(t) = sup
t∈[0,T ]

N∑
n=1

sup
x∈R

∣∣E[X(1)
t (x)n] −E[X(0)

t (x)n]
∣∣

is finite. Now, it follows from Hu et al. [20, Lemma 4.5] that

h(k)(t) ≤ C

∫
Tt

k

dsk(t − s1)− 1
2 (s1 − s2)− 1

2 · · · (sk−1 − sk)− 1
2 ≤ Ckt

1
2 k

Γ(1
2k + 1)

.(74)

Finally, by the asymptotic bound of the Mittag-Leffler function (c.f. Kilbas et al. [24,
Formula (1.8.10)]), there exist positive constants c1 and c2 such that

∞∑
k=0

h(k)(t) ≤ c1ec2C2
T ,

for all t ∈ [0, T ]. As a consequence, {u(k)}k≥0 is a Cauchy sequence in Cb([0, T ]×R;RN )
under the supremum norm. The proof of this lemma is complete.

Proposition 6.2. Assume Hypothesis 2 with σ(t, x,µ) = σ(µ) depending only on µ.
Let X be the solution to (1) with initial constitution X0 ∈ MF (R) satisfying Hypothesis
4. Let X(k) be given by (69) and (70). Then, for any n = 1,2, . . . ,

lim
k→∞

E
[
(X(k)

t (x))n]
= E[Xt(x)n].(75)

uniformly in (t, x) ∈ [0, T ] ×R.

Proof. Let u(k) be defined as in (71) and (72) and u be the limit of u(k) in Cb([0, T ]×
R;RN

+ ) as k → ∞. Then, by a common argument, we conclude that u is the solution to
(62). As a result, (75) is true for n ∈ {1, . . . ,N}. On the other hand, suppose n > N .
Using moment formula (34) and Lemma 4.5, we deduce that

sup
x∈R

∣∣E[
(X(k)

t (x))n]
−E[Xt(x)n]

∣∣ ≤Cn,T

∫ t

0
ds(t − s)− 1

2 ∥u − u(k)∥∞

=2Cn,T t
1
2 ∥u − u(k)∥∞,

where Cn,T is a constant depending on n and T . This proves (75) for all n > N . The
proof of this proposition is complete.
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6.2. Regularity analysis for moments. In this section, we will prove that the solution
u to (62) is differentiable in both time and spatial arguments with uniformly bounded
derivatives.

Lemma 6.3. Let X0 ∈ H2,2(R) ∩ C2
b (R). Assume Hypothesis 2 and assume that

σ(t, x,µ) = σ(µ) depends only on µ. For any k = 0,1, . . . , let u(k) = {u
(k)
n (t, x) : n =

1, . . . ,N, (t, x) ∈ [0, T ] × R} be defined iteratively as in (71) and (72). Then, u(k) is
differentiable in time for all (t, x) ∈ (0, T ] ×R and in space for all (t, x) ∈ [0, T ] ×R.

Proof. We only prove the differentiability in time by verifying the next inequality
by induction.

N∑
n=1

sup
x∈R

∣∣∣ ∂

∂t
u(k)

n (t, x)
∣∣∣ ≤

k∑
i=0

Ci+1
0

Γ(1
2(i + 1))

t
1
2 (i−1),(76)

for some universal constant C0 > 0 depends on N , ∥X0∥2,∞, ∥f∥1,∞ and T . The proof
of spatial differentiability can be done in a similar way.

Step 1. Assume k = 0. Recalling moment formula (71), in order to estimate the
derivative of u

(0)
n , it suffices to estimate that for every summand in (71). Choose

(α,β, τ) ∈ Jn,n′ . Then, we have

In,0
α,β,τ :=

n∏
i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

∫
Tn′

dsn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpsi(zi − z)X0(z)
)1−βi

×
|α|∏
i=1

p(t − sτ(i), x − zτ(i))
2n′∏

i=|α|+1
p(sιβ(i−|α|) − sτ(i), zιβ(i−|α|) − zτ(i))

×
n′∏

i=1
f(X0(zi), . . . ,X0(zi)N )

=In,0,1
α,β,τ × In,0,2

α,β,τ ,

(77)

where

In,0,1
α,β,τ =

n∏
i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

and performing a change of variables ri = t − si for all i = 1, . . . , n′,

In,0,2
α,β,τ =

∫
T̂t

n′

drn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

n′∏
i=1

f(X0(zi), . . . ,X0(zi)N ),

with T̂t
n′ = {rn′ = (r1, . . . , rn′) : 0 < r1 < · · · < rn′ < t}. Firstly, it is clear that∣∣∣ ∂

∂t
In,0,1

α,β,τ

∣∣∣ =(n − |α|)
( ∫

R
dzpt(x − z)X0(z)

)n−|α|−1 ∫
R

dzpt(x − z)∆X0(z)

≤(n − |α|)∥X0∥n−|α|
2,∞ .(78)
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Additionally, by Lemma 4.5, we have

∣∣In,0,2
α,β,τ

∣∣ ≤ c1cn
2

n′∑
j=1

∫ t

0
ds

(t − s) 1
2 j−1s

1
2 (n′−j)

Γ(1
2j)Γ(1

2(n′ − j) + 1)
≤ c1cn

2 t
1
2 n′

Γ(1
2n′ + 2)

.(79)

In the next step, we need to compute ∂
∂tI

n,0,2
α,β,τ . If n′ = 0, we have In,0,2

α,β,τ = 1, and thus
∂
∂tI

n,0,2
α,β,τ = 0. On the other hand, suppose that n′ ≥ 1. Then, we have

∂

∂t
In,0,2

α,β,τ = J1 + J2,(80)

where

J1 =
∫
T̂t

n′−1

drn′−1

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

n′∏
i=1

f(X0(zi), . . . ,X0(zi)N )
∣∣∣
rn′ =t

,

and

J2 =
∫
T̂t

n′

drn′

∫
Rn′

dzn′
∂

∂t

[ n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

] |α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

n′∏
i=1

f(X0(zi), . . . ,X0(zi)N ).

Using Lemma 4.5 and observing that ∥f∥∞ < ∞, we find for n′ ≤ n − 1 that

|J1| ≤
∫ t

0
ds

c1cn
2 (t − s) 1

2 n′−1

Γ(1
2n′)

≤ c1cn
2 t

1
2 n′

Γ(1
2n′ + 1)

.(81)

In the next step, we write the derivative explicitly as follows

J2 =
∫
T̂t

n′

drn′

∫
Rn′

dzn′

[ n′∑
j=1

∏
1≤i≤n′

i ̸=j

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

×
∫
R

dzpt−rj (zj − z)∆X0(z)1βj=0

] |α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

n′∏
i=1

f(X0(zi), . . . ,X0(zi)N ) .

Then, it follows from Remark 4.6 that

|J2| ≤ c1cn
2

∫ t

0
ds

(t − s) 1
2 n′−1

Γ(1
2n′ + 1)

≤ c1cn
2 t

1
2 n′

Γ(1
2n′ + 2)

.(82)

Combining inequalities (77)-(82), we get that∣∣∣ ∂

∂t
In,0

α,β,τ

∣∣∣ =
∣∣∣In,0,1

α,β,τ

∂

∂t
In,0,2

α,β,τ + In,0,2
α,β,τ

∂

∂t
In,0,1

α,β,τ

∣∣∣ ≤ c1c2t
1
2 n′−1

Γ(1
2n′ + 1)

.



38

Taking account of Lemma 4.3, it follows that∣∣∣ ∂

∂t
u(0)

n (t, x)
∣∣∣ =

∣∣∣ n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

∂

∂t
In,0

α,β,τ

∣∣∣ ≤ CN,T t− 1
2 .

Step 2. Let k ≥ 1. Then, we can write

∂

∂t
u(k)

n (t, x) =
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

(
In,k,1

α,β,τ

∂

∂t
In,k,2

α,β,τ + In,k,2
α,β,τ

∂

∂t
In,k,1

α,β,τ

)
,(83)

where

In,k,1
α,β,τ = In,0,1

α,β,τ =
n∏

i=1

( ∫
R

dzpt(x − z)X0(z)
)1−αi

and

In,k,2
α,β,τ =

∫
T̂t

n′

drn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

×
|α|∏
i=1

p(rτ(i), x − zτ(i))
2n′∏

i=|α|+1
p(rrτ(i)−ιβ(i−|α|), zτ(i) − zιβ(i−|α|))

×
n′∏

i=1
f(u(k−1)(t − ri, zi)).

By (78) and Lemma 4.5, we get that,
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

∂

∂t
In,k,1

α,β,τ In,k,2
α,β,τ ≤ CN,T(84)

for some constant CN,T independent of k. On the other hand, fixing (α,β, τ) ∈ Jn,n′ ,
we see that

∂

∂t
In,k,2

α,β,τ =J ′
1 + J ′

2 + J ′
3 ,(85)

where

J ′
1 = J ′

1(k) =
∫
T̂t

n′−1

drn′−1

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

×
|α|∏
i=1

p(rτ(i), x − zτ(i))
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

×
n′∏

i=1
f(u(k−1)(t − ri, zi))

∣∣∣∣
rn′ =t

,

J ′
2 = J ′

2(k) =
∫
T̂t

n′

drn′

∫
Rn′

dzn′
∂

∂t

( n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

)

×
|α|∏
i=1

p(rτ(i), x − zτ(i))
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))
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×
n′∏

i=1
f(u(k−1)(t − ri, zi)),

and

J ′
3 = J ′

3(k) =
∫
T̂t

n′

drn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

∂

∂t

( n′∏
i=1

f(u(k−1)(t − ri, zi))
)
.

Notice that J ′
1 and J ′

2 are almost the same as J1 and J2 in Step 1, while different terms
f(u(k−1)(t − ri, zi)), i = 1, . . . , n′, can be simply bounded by ∥f∥∞. Thus, we can write

|J ′
1| ≤ CN,T t− 1

2 and |J ′
2| ≤ CN,T .(86)

Furthermore, using Lemma 4.5 again, we can deduce that

|J ′
3| ≤ CN,T

∫ t

0
ds(t − s)− 1

2

N∑
l=1

sup
x∈R

∣∣∣ ∂

∂s
u

(k−1)
l (s, x)

∣∣∣.(87)

As a result, combining (83)-(87), we have∣∣∣ ∂

∂t
u(k)

n (t, x)
∣∣∣ ≤ CN,T

(
t− 1

2 +
∫ t

0
ds(t − s)− 1

2

N∑
l=1

sup
x∈R

∣∣∣ ∂

∂s
u

(k−1)
l (s, x)

∣∣∣).

Using the induction hypothesis, we have
N∑

n=1
sup
x∈R

∣∣∣ ∂

∂t
u(k)

n (t, x)
∣∣∣ ≤NCN,T

(
t− 1

2 +
k−1∑
i=0

Ci+1
0

Γ(1
2(i + 1))

∫ t

0
ds(t − s)− 1

2 s
1
2 (i−1)

)

=NCN,T t− 1
2 + NCN,T

k−1∑
i=0

Ci+1
0 Γ(1

2)
Γ(1

2 i + 1)
t

1
2 i ≤

k∑
i=0

Ci+1
0

Γ(1
2(i + 1))

t
1
2 (i−1),

provided that C0 ≥
√

πNCN,T . This proves inequality (76). The proof of this lemma is
complete.

Lemma 6.4. Assume conditions in Lemma 6.3. Then,

(i) For any s > 0, ∂
∂tu

(k)(t, x) is convergent uniformly on [s,T ] ×R as k → ∞.
(ii) ∂

∂xu(k)(t, x) is convergent uniformly on [0, T ] ×R as k → ∞.

Proof. We only show property (i). Property (ii) can be proved in a similar way.
Recalling formula (83), and noticing that In,k,1

α,β,τ is invariant in k, we can write∣∣∣ ∂

∂t

(
u(k+1)

n (t, x) − u(k)
n (t, x)

)∣∣∣ =
∣∣∣∣ n−1∑

n′=0

∑
(α,β,τ)∈Jn,n′

(
Gn,1

α,β,τ (k) + Gn,2
α,β,τ (k)

)∣∣∣∣,(88)

where

Gn,1
α,β,τ (k) = In,k,1

α,β,τ

∂

∂t

(
In,k+1,2

α,β,τ − In,k,2
α,β,τ

)
and

Gn,2
α,β,τ (k) =

(
In,k+1,2

α,β,τ − In,k,2
α,β,τ

) ∂

∂t
In,k,1

α,β,τ .



40

Due to Lemmas 4.5 and 6.1, we can show that
n−1∑
n′=0

∑
(α,β,τ)∈Jn,n′

sup
t∈[0,T ]

sup
x∈R

∣∣Gn,2
α,β,τ (k)

∣∣ < c1
ck

2
Γ(1

2k + 1)
.(89)

On the other hand, using inequalities (85) and (86), we get

Gn,2
α,β,τ (k) ≤CN,T

[
t− 1

2 sup
(t,x)∈[0,T ]×R

|u(k)(t, x) − u(k−1)(t, x)| + H(n,k)
]
,(90)

where

H(n,k) =
∫
T̂t

n′

drn′

∫
Rn′

dzn′

n′∏
i=1

( ∫
R

dzpt−ri(zi − z)X0(z)
)1−βi

|α|∏
i=1

p(rτ(i), x − zτ(i))

×
2n′∏

i=|α|+1
p(rτ(i) − rιβ(i−|α|), zτ(i) − zιβ(i−|α|))

×
∣∣∣∣ ∂

∂t

( n′∏
i=1

f(u(k)(t − ri, zi)) −
n′∏

i=1
f(u(k−1)(t − ri, zi))

)∣∣∣∣.
By elementary calculus, we can show that∣∣∣∣ ∂

∂t

( n′∏
i=1

f(u(k)(t − ri, zi)) −
n′∏

i=1
f(u(k−1)(t − ri, zi))

)∣∣∣∣
≤∥f∥n′

1,∞

( N∑
l=1

sup
(r,x)∈[0,T ]×R

∣∣u(k)
l (r, x) − u

(k−1)
l (r, x)

∣∣ n′∑
i=1

N∑
l=1

sup
x∈R

∣∣∣ ∂

∂r
u

(k)
l (ri, x)

∣∣∣
+

n′∑
i=1

N∑
l=1

sup
x∈R

∣∣∣ ∂

∂t
u

(k)
l (ri, x) − ∂

∂t
u

(k−1)
l (ri, x)

∣∣∣).

By inequality (76) and the asymptotic bound of Mittag-Leffler function, we know that
for all k = 0,1, . . . ,

sup
k≥0

N∑
l=1

sup
x∈R

∣∣∣ ∂

∂t
u

(k)
l (t, x)

∣∣∣ ≤ c1t− 1
2 ec2t ≤ CN,T t− 1

2 .

Moreover, it follows from inequality (74) that
N∑

n=1
sup

r∈[0,T ]
sup
x∈R

|u(k)
n (r, x) − u(k−1)

n (r, x)| < c1
ck

2
Γ(1

2k + 1)
.

Therefore, using Lemma 4.5
N∑

n=1
H(n,k) ≤c1

( ck
2

Γ(1
2k + 1)

∫ t

0
dr(t − r)− 1

2 r− 1
2

+
∫ t

0
dr(t − r)− 1

2

N∑
l=1

sup
x∈R

∂

∂r

∣∣u(k)
l (r, x) − u

(k−1)
l (r, x)

∣∣)

≤ c1ck
2

Γ(1
2k + 1)

+ c1

∫ t

0
dr(t − r)− 1

2

N∑
l=1

sup
x∈R

∂

∂r

∣∣u(k)
l (r, x) − u

(k−1)
l (r, x)

∣∣.(91)
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Combining inequalities (88)-(91), we can write
N∑

n=1
sup
x∈R

∣∣∣ ∂

∂t

(
u(k+1)

n (t, x) − u(k)
n (t, x)

)∣∣∣
≤ c1ck

2t− 1
2

Γ(1
2k + 1)

+ c1

∫ t

0
dr(t − r)− 1

2

N∑
n=1

sup
x∈R

∣∣∣ ∂

∂r

(
u(k)

n (r, x) − u(k−1)
n (r, x)

)∣∣∣.
Since ∣∣∣ ∂

∂t

(
u(1)

n (t, x) − u(0)
n (t, x)

)∣∣∣ ≤
∣∣∣ ∂

∂t
u(1)

n (t, x)
∣∣∣ +

∣∣∣ ∂

∂t
u(0)

n (t, x)
∣∣∣

is bounded uniformly in (t, x) ∈ [s,T ] ×R, we can deduce by iteration that
N∑

n=1
sup
x∈R

∣∣∣ ∂

∂t

(
u(k+1)

n (t, x) − u(k)
n (t, x)

)∣∣∣
≤ c1ck

2t− 1
2

Γ(1
2k + 1)

+
k−1∑
i=1

ci+1
1 ck−i

2
Γ(1

2(k − i) + 1)

∫
T̂t

i

dri(t − r1)− 1
2 (r1 − r2)− 1

2 · · · r− 1
2

i

≤c1
ck

2
Γ(1

2k + 1)
t− 1

2 +
k−1∑
i=1

ci+1
1 ck−i

2
Γ(1

2(k − i) + 1)Γ(1
2 i + 1)

.

By Stirling’s formula, one can show that for all i, k ∈ N such that 1 ≤ i ≤ k,

Γ(1
2k + 1)

Γ(1
2(k − i) + 1)Γ(1

2 i + 1)
≤ Ck

for some universal constant C. Therefore, we can write
N∑

n=1
sup
x∈R

∣∣∣ ∂

∂t

(
u(k+1)

n (t, x) − u(k)
n (t, x)

)∣∣∣ ≤ c1
ck

2
Γ(1

2k + 1)
(
1 + t− 1

2
)
.

Therefore, it follows from the asymptotic bound of Mittag-Leffler function that
∞∑

k=1

N∑
n=1

sup
x∈R

∣∣∣ ∂

∂t

(
u(k+1)

n (t, x) − u(k)
n (t, x)

)∣∣∣ ≤ c1ec2
(
1 + t− 1

2
)
.

This proves that ∂
∂tu

(k)(t, x) is convergent uniformly on [s,T ] × R for every s ∈ (0, T ].
The proof of this lemma is complete.

Combining Lemmas 6.1 and 6.4, we get immediately the following theorem.

Theorem 6.5. Let X0 ∈ H2,2(R) ∩ C2
b (R). Assume Hypothesis 2 and assume that

σ(t, x,µ) = σ(µ) depends only on µ. Let X be a solution to (1) with initial condition
X0. Then, E[Xt(x)n] is differentiable at every (t, x) ∈ (0, T ] ×R for all n ∈ N.

Proof. Due to Lemmas 6.1 and 6.4, we know that E[Xt(x)n] is differentiable for all
(t, x) ∈ (0, T ] ×R and n = 1, . . . ,N . If n > N , then we apply Theorem 4.1, and perform
a changing of variable u = t − s. Then, the time differentiability of E(Xt(x)n) reduces
to that of E[(Xt−u(x))n], n = 1, . . . ,N . This is already known. Thus we complete the
proof of time regularity. The spatial regularity can be treated in a similar way. The
proof of this theorem is complete.
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