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ABSTRACT

We consider the stochastic model of water pollution, which mathemat-
ically can be written with a stochastic partial differential equation driven by
Poisson measure noise. We use a stochastic particle Markov chain method
to produce an implementable approximate solution. Our main result is the
annealed law of large numbers establishing convergence in probability of
our Markov chains to the solution of the stochastic reaction-diffusion
equation while considering the Poisson source as a random medium for the
Markov chains.

Key Words: Stochastic reaction diffusion equations; Markov chains;
Poisson processes; Annealed law of large numbers.

*Correspondence: Hongwei Long, Department of Mathematical and Statistical
Sciences, University of Alberta, Edmonton, Canada T6G 2G1; Fax: 1-780-492-6826;
E-mail: long@math.ualberta.ca.

419

DOI: 10.1081/SAP-120019293 0736-2994 (Print); 1532-9356 (Online)
Copyright © 2003 by Marcel Dekker, Inc. www.dekker.com



u)ﬁlil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

420 Kouritzin, Long, and Sun
1. INTRODUCTION AND NOTATION

Based upon Kallianpur and Xiong,!”! we consider a stochastic pollution
model which characterizes the transport of contaminants (e.g. chemical or
bacterial) in a moving sheet of water. Suppose that there are r sources of
contamination located at different sites kj,...,k, in the water region E =
[0,L;]1 X [0, L,]. The r sources disperse contaminants at the jump times of
independent Poisson processes Nj(f), -+, N{#). The magnitude of the j th
contaminant released by the i™ source is A/, where {4}, j=1,2,...,i=
1,...,r}areindependentrandom variables that are independent of {Ny,. .., N, },
and {Al,j=1,2,...} has common distribution F(da). The contaminants are
initially distributed in the area B(k;, &) = {x : [x — x| < &} C (0,L;) X (0,L,)
according to a proportional function 6;(x) satisfying

0;(x) = 0 and / 0i(x)dx = 1.
B(ki,e)

Each 6; is continuous and zero off B(k;e&). Upon release, the contaminants
diffuse and drift in the water sheet. Also, there is the possibility of nonlinear
reaction of the contaminants due to births and deaths of bacteria or chemical
adsorption, which refers to adherence of a substance to the surface of the porous
medium in groundwater systems. Reaction is modeled by nonlinear term R(u)
below.

The stochastic model described above can be written mathematically as
follows (abbreviating 9, := 0, = A= a% + 6%, and V := (9 32)7)

9 9
axp ? oxy ?

%u(l,x) =DAu(t,x) — V-Vu(t, x) + R(u(t, x))

F MWy ¥ € 0.LIXIOLL (1)
i=1 j=

subject to

alu(t7 L17x2) = a1’/1(1‘7 0,)62) = 07 azl/t(l,thz) = aZM(tvxlvo) = 07

u(0,x) = uo(x),

where u(z,x) denotes the concentration of a dissolved or suspended
substance, D > 0 denotes the dispersion coefficient, V = (V,V,) with
Vi >0, V2 =0 denotes the water velocity, R(-) denotes the nonlinear
reaction term, {7/,j € Z,} are the jump times of the independent Poisson
processes N;(#)(i =1,2,---,r) with parameters m);, and ug(x) denotes
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Markov Chain Approximations 421

the initial concentration of the contaminants in the region [0, L] X [0, L,].
All the random variables A} and 7/ (or Nir)) are defined on some
probability space ({,F,P). Moreover, we assume that R:[0,00)— R is
continuous with

R(u)
R(0) =0 and sup
w>01+u

<

o0, 1.2)

and for some ¢ =1 and K > 0, we have the local Lipschitz condition
IR(w) = RV = Klu—v|(1+ul® "+ |7, R =K1 +u?).  (1.3)

Let us define a differential operator A = DA — V-V with Neumann
boundary conditions in both variables. We take the initial domain Dy(A) of A
tobe {f € CHE) : 01 f(0,x2) = 81 f(L1,x2) = d2f(x1,0) = d2f(x1,Lp) = 0},
where CZ(E) denotes the twice continuously differentiable functions on E.

Letting p(x) = ¢ "> and ¢ = ;—5, we can rewrite A as

1 9 0 02
= D D —— — [ .

A L’(x) 0x1 <p(x) 3x1) " M%]

In the sequel, (H,< .- >) is the Hilbert space Lz(E,p(x)dx). Then,
(A,Dy(A)) is symmetric on H and admits a unique self-adjoint extension with
domain D(A)={f € H:|Vfl, Af €H and 9,f(0,x) =3, f(L1,x3) =
0, 92f(x1,0) = d2f(x1,Ly) = 0}. We define random process O(r) by

Ni(t)

O x,0) =Y 60 Alw) for 1=0,x € [0,Li]1X[0,Lo], 0 € O,
i= =1

i=1 J

and find that the equation (1.1) can be rewritten as
du(t, x) = [Au(t, x) + R(u(t, x))dt + dO(,x), u(0) = uy. (1.4)

We consider mild solutions

u(t) = T(Oup + / T(t — s)R(u(s))ds + / T(t — 5)dO(s) (1.5)
0 0

of our stochastic partial differential equation (SPDE) (1.4), where T(7) is the
Co-semigroup generated by the operator A.

For any separable Hilbert space V, C[0,7] and Dy[0,7] denote
respectively the V-valued continuous and cadlag functions 4 such that
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422 Kouritzin, Long, and Sun

h(t) € V for all 0 = ¢ = T. For cadlag functions &, we define

0 7=0,
MT)= 9 limgoh(s) 0<7=T.

We shall use the notations C,C(N,l),C(T) and so on, for finite constants
(depending on N, [ or T etc.), which may be different at various steps in the
proofs of our results.

In this note, we shall discuss unique Dy[0,T]-valued solutions and
Markov chain approximations to SPDE (1.4). In Ref.!'"), Kouritzin and Long
established the quenched law of large numbers for the Markov chain
approximations to SPDE (1.4) for each fixed path of the Poisson sources and
gave an annealed law of large numbers, where the Poisson source is treated as
a random medium, as a corollary. It turns out that a more general annealed
result is possible if alternative methods are used. In this note, we shall use a
different method to establish a general annealed law of large numbers for the
Markov chain approximations of the stochastic reaction diffusion model. We
remark that our hypotheses (to follow in section 3) are weaker than those given
in Ref.!' " In Ref."" Y, uniform boundedness was imposed on 1. Here, we only
require that the expectation of u, is bounded. Also, there is significant
difference between our current proof method and the one used in Ref.'! In
Ref.!"", a relative compactness method and Skorohod representation theorem
were crucial in the proof of laws of large numbers. In this note, we directly
apply Cauchy criterion (convergence in probability) to our Markov chains and
utilize the nice regularity property of Green’s function. The current method is
clearer and more elegant, especially for people with stronger analysis vis-a-vis
probability background.

The contents of this note are organized as follows: In Section 2, we review
the Markov chain approximations to our pollution model (1.4) via the
stochastic particle method and the random time changes approach. In Section
3, we show that there exists a unique mild solution to (1.4) and prove the
annealed law of large numbers.

2. CONSTRUCTION OF MARKOYV CHAIN

The Markov chain approximation discussed in this paper is motivated by
the stochastic particle simulation method for differential equations studied by
Kurtz,m] Arnold and Theodosopulu,[” Kotelenez,[g’g] Blount,B’s] and
Kouritzin and Long."'"" They proved that a sequence of Markov chain
approximations converges to the unique solution of a reaction-diffusion or
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Markov Chain Approximations 423

stochastic reaction diffusion equation in probability. Stochastic limits were
considered in Ref."" ' In this case, the Markov chain approximations have two
kinds of randomness, which are the external fluctuation coming from the
Poisson sources and the internal fluctuation in implementing the reaction and
diffusion.

Here, we state some necessary background and results from Ref.!'!! for
our later development. We denote by {(A,, ¢,)} p=(p1, p)EWNG)? the eigenvalues
and eigenfunctions of A (see Lemma 2.1 of Kouritzin and Long"" for their
expressions). Now, we introduce the discretized approximation operator A" of
A. We divide [0,L;) X [0, L,) into LiN X LN cells of size X 1 :

kl_lkl kz_lkZ
I = — | X — |, k= (k1,ky),ky = 1,2,...,LiN
k |: N 7N) |: N 7N)7 (17 2)71 ) s L4V,

ky=1,2,...,L,N.
We also define the class of cells where the contaminants can enter
KY ={k: I, C B(k;,&)},i=1,2,--,r.

Let HN = {¢ € H: ¢ is constant on each I;}. We define the following
discrete gradients:

Vi f@) = N[f(x+§v> —f(x - %ﬂ ,
Vi f) =N [f (x + ;) - f(X)}
and
Vi f®) =N[f<x - eﬁ) —f(x)], i=12,
where e; = (1,0) and e, = (0, 1). We define A" by

1~ -
ANf(x):=D [; Vi (PVix,) + ANXZ]f (), 2.1
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424 Kouritzin, Long, and Sun

where

Ay, f(0) = =V, (Vo N

:Nz[f(x—i—j;) — 2f(x) +f<x—€1;)}

In order to take the boundary conditions into account for the discretized
approximation scheme, we extend all function f € HY to the region
[— 4, Li + 11X [~ 4, Ly + 11 by letting

flxi,x) = <x1 +;], ) x; € [ 0>,X2 € [0, L]
1 1
fx,x) = ( ,xz),xl |:L17L1 +— >,x2 € [0, Ly];

1 1
fx,x)=f <x1,x2+ ,x1 € [0, L], Xze{ Nvo);

1 1
f(xlaxz) :f<x17x2 _N))xl e [03L1]7x2 € |:L23L2 +N)

and denote thls class of functions by HY . Then, HY is the domain of A". We
denote by {AY b ¢N }I(,L'Z,l LZL)ZA(’) D the eigenvalues and eigenfunctions of A",
For their precise expressions, we refer to Lemma 2.2 of Kouritzin and

Long.!"! For p = (P1,p2) € NG, let Ipl = /p? + p3.

Let TV = exp(A t). Then, d)N are eigenfunctions of T M) with
eigenvalues exp{)\N t}. Now, we descrlbe the stochastic partlcle systems. Let
[=1I(N) be a functlon such that I(N) — o0 as N—o00. [ can loosely be
thought of as the “mass” or the “amount of concentration” of one particle. We
let ni(#) denote the number of particles in cell k at time ¢ for k = (ky,k;) €
{1,...,LiN} X {1,...,L,N} and also, to account for our Neumann boundary
conditions, we set

ok, (1) = i, (D), ANt =npNe@), ke =1,..., LN,

i o) = ng (D), Mgy Love1 () = g ov(@®), ki =1,...,LiN.

Particles undergo diffusion between adjacent cells, and give births or die
in each cell due to reaction. For the transition rates of particles evolving in
cells, we refer to Kouritzin and Long.m] Let (), F, P) be another
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probability space on which is defined independent standard Poisson
kR yhl okl yk2 LiN,LoN k1 okl o
processes {X_HV,X Xy X2 X0 X N}§c=](1,1§ ) (X3 X2y k=

(0,k2)}2Y, and {)E}N, ké},\,,k—(kl,O)}klNl We define the product

probability space (Qo, Fo, Po) = (X Q, FRF, P X P). In the sequel, |7]
denotes the greatest integer not more than a real number r. For any real a,
at:=av0 and a~ = —(a A0). Then, from Ethier and Kurtz'® and
Kouritzin and Long,[”] we have for k € {(1,1),...,(LiN, L,N)}

Y () =n{ 0)+ X35, < /0 tR+<nﬁ ()1 ‘)ds)
- x5 (z /0 'S (n (s)l ! )ds) + 2_21: [X’if,v ( /0 ts{,v(nﬁf (s))ds)
-Xy ( /0 t6;N<n§X (s))dsﬂ 2_21: [ b G ( /0 [6,TN<n£ie,. <s))ds>
- X ( /0 t%(niv-e,(s))dsﬂ

r 00

+3 Y UORAT+O.5 s gy, 2.2)

i=1 j=1

where &) y(ny) = DN2e ’ﬁnkﬂl —DNZ%evn; and Oy N(ny) = DNane2 -
DN*ny.

Equation (2.2) is our Markov chain approximation to equation (1.4) that
can be implemented directly on a computer. We let {QN }i=0 be the smallest
right continuous standard filtration such that {XU N(l fo ‘T(nlk\' ()~ Hds), X
JoBoyl (s)ds), o=+, —,i = 1,2}{VEY  (XEN(fo 87yl (5)ds), o =
+, =k =0,k )2, and (XN o8y (s))ds), o0 = +, — k =
(ki, 0}, as well as{N;,i=1,2,...,r} are adapted to {G'}.

To get the concentration in each cell, we divide nf () by [

LN LLN N(t)

Wan=3 3 % 1), 23)

ki=1ky=

where 1,(-) denotes the indicator function on ;. Then, from, (2.2) it follows
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426 Kouritzin, Long, and Sun

that

uM (@) = u™ ) + / AVuN (s)ds + / Ru™(s))ds + ZN (1) + OV (1),
0 0

(2.4)
where
r Ni(t) ‘
OV, =" > 17 U6AL @) + 0.5]14(),
=1 j=1kek?

(LiN,L,N) 2
V0= 3 1| 20+ Zi 0+ > (2N = 7, ) |1,
i=1

k=(1,1)

and

Zig (0 ZX]iljv (l / R (1 ()] _')dS) =1 / R* (! ()1~ )ds,
, ; ;
t t
VAOES —X’i’fN(z / R(njj(s)zl)ds> +1 / R™(nY (s)l Vyds,
0 0

Zyi( = X5y ( / Sy (s))ds) —Xk_’"N< / Oy (s))ds)
Ry w0

t
- [amionas, i=1.2
0

are £°- martingales with respect to {Qf’ } under probability measure Py (see
Lemma 2.5 of Kouritzin and Longm]). By variation of constants and (2.4), it
follows that u™ () = u™(z, wy) satisfies

uN @) = TV OuM0) + / TN — $)Rw™ (s))ds
0

+YVo) + / TVt — 5)d®" (s), (2.5)
0
where

YN = / TN — $)dZV (s).
0
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3. LAW OF LARGE NUMBERS: ANNEALED APPROACH

In this section, we shall prove the law of large numbers for u® via
annealed approach, which means that N,(¢) and A’l- are considered to be random
variables, and the Markov chain u™ evolves in this random medium. As
already mentioned in Section 2, 1" is defined on the product probability space
(907-7:0;”:00): (Q7~7_:7 ﬂj))x(ﬂ7fv P) For f: E_)Rv let ”f”oo =
supceg| f(x)]. In the sequel, we always consider the Skorohod metric d on
Dyl0,T] so that (Dy[0,T],d) is a complete separable metric space. We
introduce the following hypotheses (abbreviating [ := EP) :

Hypotheses

® B (0l = € < 0.
(i) {I(N)} is any sequence satisfying I[(N) — o0 as N — 0.
@iii) [lu™(0) — uoll — 0 in probability P.
(iv) Nu¥O)llo = C(N, 1) < o0.
(v) The distribution of the deposit magnitudes satisfies
Jw+ @*Fi(da) < oo.
(vi)  Eolluglleo = co < o0.

We have the following annealed law of large numbers:

Theorem 3.1. Let the Hypotheses be fulfilled. Then, there exists a pathwise
unique mild solution u to (1.4) and

lsggllu'\’(t) —u@®)||—0 (3.1

in probability Py as N — oo.

Remark 3.2.  Let {Ni};2, be an increasing sequence in N such that Ny — oo
as k — 00, We define Q) = I OQm, where Q,, = = Dyrivmxiann [0, 00). Set F=
o l’)’(Qm)7 which is the o-algebra generated by open sets under Skorohod
topology and countable products. From Lemma 2.5 of Kouritzin and Long,!'"!
we know that n™(r) = {ny (t)};L‘é\I'%N) is well defined, and for each w € ()
there exists a unique probablhty measure P on (Q F) such that P(a@ € )
nNm(@, w) € Ay, ...n" (ww)EA)—lP“’(wEQ.wmlEA],..., Dy €
A) for all A; € B(Dgrivmxivm [0,00)),i=1,...,j; j=1,2,.... Moreover,
we have that for each BE F, w— P“’(B) is (0, }') measurable and
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w— fQ f(w, @P®(d@) is F-measurable for each bounded measurable
function f. We can write

Po(dwp) = P(d@)P(dw), wy = (w, @).

The statements of Lemma 3.3 and Lemma 3.4 of Ref.!"" are still valid if we
replace E“ by [Fy. We may just take expectations with respect to P.

Lemma 3.3. For2p € [1,2¢q],
supllEo(t(5)*lleo = C(1, 1, o (1" (0)Pllee) < e0,

where C is decreasing in L.

Proof. Our proof follows the proof of Lemma 3.5 of Ref.''!. The only
significant modification is to estimate the expectation (under Py) of the last
term on the right-hand side of (3.12) in the proof of Lemma 3.5 of Ref.!'! In
fact, letting on (k) = flk p(x)dx and using (3.22) in the proof of Lemma 3.5 of
Ref.! l], we have

2B
Eo

< / tT”(r — 5)dO"(s), (aN<k)>‘11k>
0

2B
H PR IN (1) + -+ + NP

Ni(t)

>l A

i=1 j=1

= 223 IE()

(3.2)

Recalling that {N,i=1,2,...,r} are independent Poisson processes with
parameters 7;, we set

Ni(n)

Ni([0,11x B) =) 15(4),
j=1

which is a_Poisson measure with characteristic measure w;(B) = n;Fi(B).
Denote by N ;(dsda) the compensated martingale measure of N(dsda). Wald’s
equation gives

Ni@)
Eo [ZA{.] =t / aF(da) = tna;, a; = / aF(da). (3.3)
=1 Ry Ry
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Applying Jensen’s inequality and Burkholder’s inequality, we find that

N PP

leell ZAJ

Eo

Ny |2

ZA’
t 5 2B

tniai+// aN (dsda)
0 JR,

/ / aN (dsda) ]

s(zr)ZB‘lee,-llif{ P ZB-l-C(B)[Eo[ | ] (dsda)] }
=1 R,

(3.4)

< r2- 12"0”2’3 Eo

— a 2
= 22" 161K
i=1

=" 12”9”23 2% llan, P + Eo

When B = 1, we have by Jensen’s inequality

. B B
E, [ / / a/(/i(dsda)} = (mi / azFi(da)> , (3.5)
0 JR, ‘ R,

and otherwise (when 8 > 1) we have by Jensen’s inequality that

Ni(t)
Eo [ / / alN; (dsda)] =k, lZ(A’)]
Ry
00 N;i(t)
Z (Z(Aff) Ni(ty=n|Po(Nit)=n)

<Znﬁ IIE() [Z(AJ)2B

j=1

Ni(t)= n] Po(N:(H)=n)

— B [(Vi(1))*] / *PF(da). 56

Ry
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Thus, by (3.4), (3.5), (3.6) and Hypothesis (v), one has that
28
=C(1).

Ni(®)

B> ll6lS_ 4
i=1 =

Therefore, noting [Eo|N 1(t)+--'+Nr(t)|ZB = C(t), we have by (3.2) that
2p
=C(t,]) <oo.

E

S

( / T 50" (5. (on (k) 1)
0

Now, the lemma follows from the proof of Lemma 3.5 of Ref.!'! O

Lemma 3.4. sup,<7||[YV (@)l — 0 in probability Py as N — .

Proof. Note that Lemma 3.6 of Kouritzin and Lgng“ s still valid under our
new Hypotheses if we replace P by P, and E® by [E,. Since the proof is
almost the same as that of Lemma 3.6 (iv) of Ref.['!! we omit the details here.

[11]

Immediately from Lemma 3.7 of Ref." ", we have the following lemma.

Lemma 3.5. For almost all wy € ()

sup — 0 as N— oo,

=T

/ TV — )dON(s) — / T(r — 5)dO(s)
0 0

The remainder of the development differs substantially from Ref.!'!!

Lemma 3.6. There exists a cadlag H-valued process ¢ such that
sup;=7|lu™(t) — @(t)|| = 0 in probability Py as N — oo.

Proof. We apply Cauchy criterion to prove our statement. It follows from
(2.5) that for N.M € N

lu™ @) — u™ @l <ITY @)™ ©) — TY Ou™O)ll + 1YY @)l + 1YY @)l

+ / TV — $)dON(s) — / TY(t — )dOM(s)
0 0

+ / TVt — $)Rw™ (s))ds — / T(t — s)R(u™(s))ds
0 0

t

+ / TM(t — $)Rw™(s))ds — / T(t — s)Ru™M(s))ds
0 0
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t
+/ 17z — ) (R@" () — RuM(s))lds
0

= yNM 4 / 7t — 5)R@™(s)) — Rw™(5)))llds. (3.7)
0

We claim that sup,STVﬁV’M — 0 in probability as N, M — oo (in any way). This
is true by Hypothesis (iii), Trotter-Kato theorem, Lemma 3.4, and Lemma 3.5
if we can prove that

/ TVt — )R (s))ds — / T(t — $)Ru™ (s))ds
0 0

sup
=T

converges to zero in probability when N — oo. Note that

/ TN — $)Rw™ (5))ds — / T(t — s)Ru™ (s))ds
0 0

—Z{ / exp(Ay (1 — )¢, R ()))ds ) — /O exp(A,(t — 5))

Ipl=n

><<¢,,,R<uN<s>)>ds¢p] +3 /0 exp(AY(t = )XY, R (5)ds )

Ipl>n

/ expOA(t — )y, R ()5, (3.8)

Ipl>n

For |p| # 0, c1|A,] = I/\NI = 2|A,| and |A,] = C3|p| (see Lemma 2.1 and
Remark 2.3 of Kouritzin and Long[l Y. So, by Cauchy-Schwarz inequality, we
have

t 2
< /0 exp(XY (1 — )XY, R(uN<s>)>ds>

= ( / texp(2)\2’ (t - s))ds> : ( / t<¢fj R (s))>2ds>
0 0

= clpl” [ (@) R as
0
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Thus,

¢ 2
> ( /0 exp(A) (1 — )N, R(uN(s))>dS>

Ipl>n

t T
=Cn* / > () R (s))Yds = Cn 2 / (1, R*u" (s))ds.
0P 0

It follows by (1.3), Hypothesis (i) and Lemma 3.3 that

2

! c(T
Fo |supl >~ / exp(A) (1 = )}y, Ru™ (s))ds )y s%.
= p>n /0
Similarly, we can show that
2
! c(T
£ |sup| S / expO (0 = )y, RV sty | | =50
= p>n /0

Note that for fixed p, |/\11;/ -l + |I¢:[]:’ — ¢plle—0 as N— oo and
supp,N(llqb,[:]”oo + ll¢ylloo) < 00 (see Lemma 2.1, Lemma 2.2 and Remark 2.3
of Ref.!! l]) Therefore, by Lemma 3.3, it follows that for p fixed,

sup
=T

/0 expON(r — ) RV ()pdsg)

- /O exp(Ap(t = )Xy, Rw" (s)))ds ¢,

00

converges to zero in probability as N — oo. Thus,

sup
t=T

-0 (3.9)

/ TN — $)RW™ (s))ds — / T(t — $)R(u™(s))ds
0 0

in probability as N — 0.

Next, we come back to the inequality (3.7). We remark that the semigroup
1(¢) is defined by (T(1)f)(x) = f £ G x, Y)f(0p(y)dy, x € E, where G(£;x,y) is
the Green’s function corresponding to .4 and is given by

Gt x,y) = Y _expM)p()dy(y), 1= 0.
P
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Moreover, using Lemma 2.1 of Ref.!'! we find that for any ¢ € [0,T], there
exists a constant ¢(7") > 0 such that

(00,00)
/ |G (1, x, ) px)dx = Z M Bl(y)

p=(0,0)
1 2
- CZ o2 Z JRITN
p1=0 p2=0

D 2
—Z—thz}dx)
Ly

L L )
=c(1+ 1+
( 2\/2D7-rt) ( 22D7t

By using Minkowski’s integral inequality, (1.3), and Cauchy-Schwarz
inequality, we find that

=cT)t .

|7 = $)R@™(5)) = RuM ()|

1

2
= { /E { /E G(t — s;x, V)(RUN(s,y)) — Ru™(s, y)))p(y)dy] p(x)dx}

< / { / |G(l—S;X,)’)|2P(x)dx}2|R(uN(S7y))—R(MM(S7y))|P(Y)dy
E E

= C(T)1— 5 / 14V (s,3) — 1M (5, 1L+ [ (s, )]
E



uﬁil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016
™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

434 Kouritzin, Long, and Sun
-1
+1u (s, I Hp)dy

= Tt — 5 Hlu(s) — uM<s>||{ / 1+ 1G5, !
E

a1y b (3.10)

For convenience, let

1

fls)= {/(1 + s+ IuM(S,y)l"_l)ZP(Y)dy}2~
E

The following method is motivated in part by Kouritzin.!'”! Substituting (3.10)
into (3.7), we get

lu™ () — uM @) = VM + C(T) / = ) M) — uM(s)llds  a.s.
0 (3.11)

By Lemma 3.3, it is easy to see that for ¢ € [0,T]
t
Eo / (t — 5) 3 (s)ds = C(T) < o
0
and consequently
! 1
/ (t — ) 2f(s)ds < o0, a.s.
0

By iterating (3.11) n times, we get

™ () — u™ @)l

< supyVM A .
= supV’} (1+C(T) /0 \/t___sds+ + (C(T))

O O N U B
X/o/o /0 i \/snfz—andsnil dslds>+(C(T))

><//$.../Sn71 S ) ™ (s,) = u™(s)llds,: - -dsids,
oo Jo Nt—s  Sa1— S (3.12)

If g =1, then f(s) = C < oo. This case is much simpler than the case of
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q > 1. So, we only deal with the later case here. For ¢ > 1, by applying
Holder’s inequality and Young’s inequality, we find

)

/(t—s) q+1ds+—/fq 1(s)ds
q+1

- 1 ! 2q
——( + Dy —|—q—/fFl(s)ds. (3.13)
2q 2q Jo

Similarly, for k = 1 with 5o = s, we have

L *f(s) Ssi)
dsie - d
/0/0 /0 V=5 Sie1 = sk S
= {/ /S~ . -/SH(t - s)_qq?. co(Sg—1 — sk)_#ds;g . 'ds}ﬁ
0Jo 0
x{ / / / | lfﬂs)--ff—"l(sk)dsk---ds} :
0J0 0

k 41 2 k+1
i (Pkp) T+ (fy £75ds)
=17 g+ ARSI B
2q T+ 2q (k4 1)!

Therefore, it follows from (3.12) that
supllu™ () — u™ ()|
=T

) ! Lyris k
(PGtp) 1A+ T
I+t

q+1)

+1¢
=supV™M |1+ 9472 +1
supV; % ;(q )

g — 1~ (C(T) g
5 > </f '(s)ds)]

k=1
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(Wﬁ)) Ta + #)TZ—ii

I(1+25)

q—l 1 T 2 n+1

+supllu (1) — uMDll-ccy |2 1 g+ 1
=T 2q

Let
T,
WT) = / fa1(s)ds.
0
By applying Holder’s inequality, Hypothesis (i) and Lemma 3.3, we have

T 5
o)) = [ Eo[r7o)as
0
r &
=/ [EoU “+IuN<s,y>|"‘1+|uM<s,y)|4“>2p<y>dy} ®
0 E

T
=c / Eo [ / (1 + (s, ) + |uM<s,y)|2‘f>dy} ds
0 E

= C\(T) < 0. (3.15)

sup;=7|lu™(t) — uM(1)|| is almost surely finite for fixed N and M by the fact that
t — |[u™(9)|| is cadlag and the argument on page 110 of Billingsley."” Thus, it
is easy to see that the last term on the right hand side of (3.14) tends to zero
almost surely as n— . So, by letting n — o0 in (3.14), we find that

supllu(t) — u™ @)l
=T

k-1 .
oo 1 1 q+1 k
= supyr [ 4L @t 1)22 (F(‘i“)) P+ GpTHCD)
=r | 2 9 T(+5

qg—1

+ exp{C(TWT)} |, (3.16)
2q

which tends to zero in probability as N,M — oo by (3.15) and the fact that
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sup,gTvy’M converges to zero in probability. It follows that for each positive
integer n there exists a number N, such that

1 1
Po [ supllu™(®) —uM®ll = = | <=
=T " n

if N, M = N,,. Without loss of generality, we may assume that {N,} is strictly
increasing. Let

1
A, = {wo € QO : supllui(r) — u™i(@p)|| < 7 for all i,j= n}
=T

and A =limsupA,. It is easy to find that [P4(A) = 1. Then, for each wy € A,

Tim supllu™i(z, wo) — u™i(t, wo)ll = 0.
L7 <T

Note that (Dy[0,T],sup,<rll|l) is a complete non-separable metric space.
Thus, for each wy € A, there exists ¢(wy) € Dg[0,T] such that

lim supl|lu®i(t, wy) — @(t, wy)l| = 0. 3.17)
J7® =T

For wy not in A, we define ¢(wy) as any fixed point of Dy[0,T]. By the
measurability of ¢(z,-) for each ¢ € [0, T] and the cadlag property, we have that
¢: Qo— (Dy[0,T],d) is measurable. Finally, it is easy to see that

Po <lsgglluN(t) - ol > 8> =Py (fgglluN(t) —uMi@)|| > g)

+P (suplluN/m — o0l > f) .
=T 2
(3.18)

If we choose N; > N and N sufficiently large, then the right hand side of (3.18)
can be made arbitrarily small. This means that sup,<r|lu™(f) — ¢(#)|| — 0 in
probability as N — oo, ]
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Lemma 3.7. Let ¢ be the limit process from Lemma 3.6. Then for
1=B8=2gq

supEo(@? (1), 1) = C(T) < oo. (3.19)
=T

Proof. By Lemma 3.6, there is a subsequence {N;} such that uMNi(t) = (1) in
H almost surely for each 7 € [0, T]. It follows that (u™i(r, x))? — ¢P(1,x) a.e.
x € E almost surely. Therefore, by Tonelli’s theorem and Fatou’s lemma, we
find that

Eo(@h(0,1) = B0 [ ¢80, 0pds = [ timinfE [ 1.0 oy
E E
= LiLysupysup,=rllEou” (1)Pllee = C(T) < c0. O
Finally, we are in a position to prove Theorem 3.1.
Proof of Theorem 3.1. We have already proved that sup,=r|lu™(f) —

¢(?)|| — 0 in probability in Lemma 3.6. Thus, we only need to show that ¢(?) is
a unique mild solution to (1.4). By (2.5), we have with ¢(0) = uy,

t

o(t) = T(H)e((0) + / T(t — s)R(¢@(s))ds + / T(t — 5)dO(s)
0 0

4
+ ) e, (3.20)
i=1
where

en() = () — /O T(t — $)dO(s) — <uN(t) - /0 TN(t—s)d®N(s)>,

ex () = (TN(u"(0) — T(1)(0)) + Y™ (1),

t

ey(t) = /0 TN — $)RW™ (s))ds — /0 T(t — $)Ru™ (s))ds,

and

(0 = [ T~ 9[Ru" ) ~ Rg(s)]ds.
0

Whereas sup,=rlle} (1)l — 0 in probability Py by Lemmas 3.5 and 3.6,
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sup,=7lley (Ol — 0 in probability by (3.9). By Trotter-Kato theorem and
Lemma 3.4, we have that sup,=7|le%(t)|l — 0 in probability Py. For &), we
have by the argument in (3.10) and (3.13) that

eyl = /0 T = ) [Ru™(9) — R(g(s))] llds

= CDspllas) = el / (1 — 5) tg(s)ds
= 0

1)? -1 (T 5
= C(T)supllu™(s) — ¢(s)ll {Mr— . / gf—ms)ds}
(=T 2q 2qg Jo

where
1

2
g(s) = { /E (1+ [, + |¢(s,y)|q—1)zp<y)dy} :
By Lemmas 3.3 and 3.7, we easily find that [E, fOTg%(s)ds < 00. Thus, by
Lemma 3.6, it follows that sup,=z[lex, ()|l — 0 in probability Py. Now, from
(3.20), we find that ¢(7) is a mild solution of (1.4). The last task is to prove the
uniqueness. If R is Lipschitz, then the uniqueness follows from standard
arguments. For the non-Lipschitz case, we define for each n € N

Rx) if |x] =n,

Rn ()C) = R (ﬁ) otherwise.

Then, R, is Lipschitz by (1.3). Let us denote by u " the solution of (1.4) with R,,
instead of R. Let 7, = inf{¢ : ||u"(®)|lc = n}. Then, {7,} is a non-decreasing
sequence of stopping times and u"1(¢) = u"(t), Vt < 7,. Let 7= sup, 7, and
u(t) = u"(t),Vt = 7,. Then, u(?) is a unique solution to (1.4) up to time 7. We

shall prove that 7= o0 a.s. For any ¢ > 0, we have by (1.2) some constant C
independent of n such that

u"(t,x) = T(Hu(0,x) + / T(t — )R, (u"(s,x))ds + / T(t — 5)dO(s, x)
0 0

= T(u(0,x) + / T — s)R:(u"(s,x))ds + / T(t — s)dO(s, x)
0 0

r Ni1)

t .
= IO+ Cr+ € [ M @)llads + 3> 6114
0

i=1 j=1
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It follows that

AT,

1"t A 7l = 4Ol + Ct A 7 + C / 1" (5l mdis
0

r Ni(tAT,

) .
+Z Zl 11610 A7,
= J=

and consequently,

t

Eollu"(t A T)lleo = Eollu(0)lle + Ct + C/ Eollu"(s A )lloods
0

#3 Mol |a i),
R

By Gronwall’s inequality, we find
[E()”un(t A Tn)”oo = C(t) < 00,
It is easy to see that

Po(r = 1) = Po(ry = 1) = Po(llu"(t A 1)llee = 1)

= [E()”I/tn(l A Tn)”oo = @
n n

which tends to zero as n— . So, Po(7=1) =0,V > 0, i.e. 7= o0, a.s.
O
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