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On Markov Chain Approximations to Semilinear
Partial Differential Equations Driven by Poisson

Measure Noise

Michael A. Kouritzin, Hongwei Long,* and Wei Sun

Department of Mathematical and Statistical Sciences, University of

Alberta, Edmonton, Canada

ABSTRACT

We consider the stochastic model of water pollution, which mathemat-

ically can be written with a stochastic partial differential equation driven by

Poisson measure noise. We use a stochastic particle Markov chain method

to produce an implementable approximate solution. Our main result is the

annealed law of large numbers establishing convergence in probability of

our Markov chains to the solution of the stochastic reaction-diffusion

equation while considering the Poisson source as a random medium for the

Markov chains.

Key Words: Stochastic reaction diffusion equations; Markov chains;

Poisson processes; Annealed law of large numbers.
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1. INTRODUCTION AND NOTATION

Based upon Kallianpur and Xiong,[7] we consider a stochastic pollution

model which characterizes the transport of contaminants (e.g. chemical or

bacterial) in a moving sheet of water. Suppose that there are r sources of

contamination located at different sites k1,. . .,kr in the water region E ¼

½0; L1� £ ½0; L2�: The r sources disperse contaminants at the jump times of

independent Poisson processes N1(t),· · ·, Nr(t). The magnitude of the j th

contaminant released by the i th source is A
j
i; where {A

j
i; j ¼ 1; 2; . . .; i ¼

1; . . .; r} are independent random variables that are independent of {N1,. . ., Nr},

and {A
j
i; j ¼ 1; 2; . . .} has common distribution Fi(da). The contaminants are

initially distributed in the area Bðki; 1Þ ¼ {x : jx 2 kij , 1} , ð0; L1Þ £ ð0; L2Þ

according to a proportional function ui(x) satisfying

uiðxÞ $ 0 and

Z
Bðki;1Þ

uiðxÞdx ¼ 1:

Each ui is continuous and zero off B(ki,1). Upon release, the contaminants

diffuse and drift in the water sheet. Also, there is the possibility of nonlinear

reaction of the contaminants due to births and deaths of bacteria or chemical

adsorption, which refers to adherence of a substance to the surface of the porous

medium in groundwater systems. Reaction is modeled by nonlinear term R(u)

below.

The stochastic model described above can be written mathematically as

follows (abbreviating ›1 U ›
›x1

; ›2 U ›
›x2

; D U ›2
1 þ ›2

2; and 7 U ð›1 ›2Þ
T Þ

›

›t
uðt; xÞ ¼DDuðt; xÞ2 V ·7uðt; xÞ þ Rðuðt; xÞÞ

þ
Xr

i¼1

X1
j¼1

A
j
iðvÞuiðxÞ1t¼t

j
i
ðvÞ; x [ ½0; L1� £ ½0;L2�; ð1:1Þ

subject to

›1uðt; L1; x2Þ ¼ ›1uðt; 0; x2Þ ¼ 0; ›2uðt; x1; L2Þ ¼ ›2uðt; x1; 0Þ ¼ 0;

uð0; xÞ ¼ u0ðxÞ;

where u(t,x) denotes the concentration of a dissolved or suspended

substance, D . 0 denotes the dispersion coefficient, V ¼ ðV1;V2Þ with

V1 . 0; V2 ¼ 0 denotes the water velocity, R(·) denotes the nonlinear

reaction term, {t
j

i ; j [ Zþ} are the jump times of the independent Poisson

processes NiðtÞði ¼ 1; 2; · · ·; rÞ with parameters hi, and u0(x) denotes
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the initial concentration of the contaminants in the region ½0; L1� £ ½0; L2�:
All the random variables A

j
i and t

j
i (or Ni(t)) are defined on some

probability space (V,F,P). Moreover, we assume that R : ½0;1Þ! R is

continuous with

Rð0Þ $ 0 and
u.0
sup

RðuÞ

1 þ u
, 1; ð1:2Þ

and for some q $ 1 and K . 0; we have the local Lipschitz condition

jRðuÞ2RðvÞj#Kju2 vjð1þjuj
q21

þjvj
q21

Þ; jRðuÞj#Kð1þuqÞ: ð1:3Þ

Let us define a differential operator A ¼ DD2 V ·7 with Neumann

boundary conditions in both variables. We take the initial domain D0(A) of A
to be { f [ C2ðEÞ : ›1 f ð0; x2Þ ¼ ›1 f ðL1; x2Þ ¼ ›2 f ðx1; 0Þ ¼ ›2 f ðx1; L2Þ ¼ 0};
where C2(E) denotes the twice continuously differentiable functions on E.

Letting rðxÞ ¼ e22cx1 and c ¼ V1

2D
; we can rewrite A as

A ¼ D
1

rðxÞ

›

›x1

rðxÞ
›

›x1

� �
þ

›2

›x2
2

� �
:

In the sequel, ðH;, ·; · .Þ is the Hilbert space L 2(E,r(x)dx). Then,

(A,D0(A)) is symmetric on H and admits a unique self-adjoint extension with

domain DðAÞ ¼ {f [ H : j7f j; Df [ H and ›1 f ð0; x2Þ ¼ ›1 f ðL1; x2Þ ¼

0; ›2 f ðx1; 0Þ ¼ ›2 f ðx1; L2Þ ¼ 0}: We define random process Q(t) by

Qðt; x;vÞ ¼
Xr

i¼1

uiðxÞ
XNiðtÞ

j¼1

A
j
iðvÞ for t $ 0; x [ ½0; L1� £ ½0; L2�;v [ V;

and find that the equation (1.1) can be rewritten as

duðt; xÞ ¼ ½Auðt; xÞ þ Rðuðt; xÞÞ�dt þ dQðt; xÞ; uð0Þ ¼ u0: ð1:4Þ

We consider mild solutions

uðtÞ ¼ TðtÞu0 þ

Z t

0

Tðt 2 sÞRðuðsÞÞds þ

Z t

0

Tðt 2 sÞdQðsÞ ð1:5Þ

of our stochastic partial differential equation (SPDE) (1.4), where T(t) is the

C0-semigroup generated by the operator A.

For any separable Hilbert space V, CV[0,T ] and DV[0,T ] denote

respectively the V-valued continuous and càdlàg functions h such that
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hðtÞ [ V for all 0 # t # T : For càdlàg functions h, we define

hðt2Þ U
0 t ¼ 0;

limsbthðsÞ 0 , t # T :

(

We shall use the notations C,C(N,l),C(T) and so on, for finite constants

(depending on N, l or T etc.), which may be different at various steps in the

proofs of our results.

In this note, we shall discuss unique DH[0,T ]-valued solutions and

Markov chain approximations to SPDE (1.4). In Ref.[11], Kouritzin and Long

established the quenched law of large numbers for the Markov chain

approximations to SPDE (1.4) for each fixed path of the Poisson sources and

gave an annealed law of large numbers, where the Poisson source is treated as

a random medium, as a corollary. It turns out that a more general annealed

result is possible if alternative methods are used. In this note, we shall use a

different method to establish a general annealed law of large numbers for the

Markov chain approximations of the stochastic reaction diffusion model. We

remark that our hypotheses (to follow in section 3) are weaker than those given

in Ref.[11] In Ref.[11], uniform boundedness was imposed on u0. Here, we only

require that the expectation of u0 is bounded. Also, there is significant

difference between our current proof method and the one used in Ref.[11] In

Ref.[11], a relative compactness method and Skorohod representation theorem

were crucial in the proof of laws of large numbers. In this note, we directly

apply Cauchy criterion (convergence in probability) to our Markov chains and

utilize the nice regularity property of Green’s function. The current method is

clearer and more elegant, especially for people with stronger analysis vis-à-vis

probability background.

The contents of this note are organized as follows: In Section 2, we review

the Markov chain approximations to our pollution model (1.4) via the

stochastic particle method and the random time changes approach. In Section

3, we show that there exists a unique mild solution to (1.4) and prove the

annealed law of large numbers.

2. CONSTRUCTION OF MARKOV CHAIN

The Markov chain approximation discussed in this paper is motivated by

the stochastic particle simulation method for differential equations studied by

Kurtz,[12] Arnold and Theodosopulu,[1] Kotelenez,[8,9] Blount,[3 – 5] and

Kouritzin and Long.[11] They proved that a sequence of Markov chain

approximations converges to the unique solution of a reaction-diffusion or
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stochastic reaction diffusion equation in probability. Stochastic limits were

considered in Ref.[11] In this case, the Markov chain approximations have two

kinds of randomness, which are the external fluctuation coming from the

Poisson sources and the internal fluctuation in implementing the reaction and

diffusion.

Here, we state some necessary background and results from Ref.[11] for

our later development. We denote by {ðlp;fpÞ}p¼ð p1; p2Þ[ðN0Þ
2 the eigenvalues

and eigenfunctions of A (see Lemma 2.1 of Kouritzin and Long[11] for their

expressions). Now, we introduce the discretized approximation operator AN of

A. We divide ½0; L1Þ £ ½0; L2Þ into L1N £ L2N cells of size 1
N
£ 1

N
:

Ik U
k1 2 1

N
;
k1

N

��
£

k2 2 1

N
;
k2

N

��
; k ¼ ðk1; k2Þ; k1 ¼ 1; 2; . . .; L1N;

k2 ¼ 1; 2; . . .; L2N:

We also define the class of cells where the contaminants can enter

KN
i ¼ k : Ik , Bðki; 1Þf g; i ¼ 1; 2; · · ·; r:

Let H N ¼ {w [ H : w is constant on each Ik}. We define the following

discrete gradients:

,
7Nxi

f ðxÞ ¼ N f

�
x þ

ei

2N

�
2 f

�
x 2

ei

2N

�� �
;

7þ
Nxi

f ðxÞ ¼ N f

�
x þ

ei

N

�
2 f ðxÞ

� �

and

72
Nxi

f ðxÞ ¼ N f

�
x 2

ei

N

�
2 f ðxÞ

� �
; i ¼ 1; 2;

where e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ: We define AN by

ANf ðxÞ U D
1

r
~7Nx1

ðr ~7Nx1
Þ þ DNx2

� �
f ðxÞ; ð2:1Þ
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where

DNx2
f ðxÞ ¼ 27þ

Nx2
ð72

Nx2
f ÞðxÞ

¼ N 2 f

�
x þ

e2

N

�
2 2f ðxÞ þ f

�
x 2

e2

N

�� �
:

In order to take the boundary conditions into account for the discretized

approximation scheme, we extend all function f [ H N to the region

[2 1
N
; L1 þ

1
N
� £ ½2 1

N
; L2 þ

1
N
� by letting

f ðx1; x2Þ ¼ f

�
x1 þ

1

N
; x2

�
; x1 [

�
2

1

N
; 0

�
; x2 [ ½0; L2�;

f ðx1; x2Þ ¼ f

�
x1 2

1

N
; x2

�
; x1 [

�
L1; L1 þ

1

N

�
; x2 [ ½0; L2�;

f ðx1; x2Þ ¼ f

�
x1; x2 þ

1

N

�
; x1 [ ½0; L1�; x2 [

�
2

1

N
; 0

�
;

f ðx1; x2Þ ¼ f

�
x1; x2 2

1

N

�
; x1 [ ½0; L1�; x2 [

�
L2; L2 þ

1

N

�

and denote this class of functions by HN
bc: Then, HN

bc is the domain of AN. We

denote by {lN
p ;f

N
p }

ðL1N21;L2N21Þ
p¼ð p1;p2Þ¼0 the eigenvalues and eigenfunctions of AN.

For their precise expressions, we refer to Lemma 2.2 of Kouritzin and

Long.[11] For p ¼ ð p1; p2Þ [ N2
0; let jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 þ p2
2

p
:

Let T NðtÞ ¼ expðANtÞ: Then, fN
p are eigenfunctions of T N(t) with

eigenvalues exp{lN
p t}: Now, we describe the stochastic particle systems. Let

l ¼ lðNÞ be a function such that lðNÞ!1 as N !1: l 21 can loosely be

thought of as the “mass” or the “amount of concentration” of one particle. We

let nk(t) denote the number of particles in cell k at time t for k ¼ ðk1; k2Þ [
{1; . . .; L1N} £ {1; . . .; L2N} and also, to account for our Neumann boundary

conditions, we set

n0;k2
ðtÞ ¼ n1;k2

ðtÞ; nL1Nþ1;k2
ðtÞ ¼ nL1N;k2

ðtÞ; k2 ¼ 1; . . .; L2N;

nk1;0ðtÞ ¼ nk1;1ðtÞ; nk1;L2Nþ1ðtÞ ¼ nk1;L2NðtÞ; k1 ¼ 1; . . .; L1N:

Particles undergo diffusion between adjacent cells, and give births or die

in each cell due to reaction. For the transition rates of particles evolving in

cells, we refer to Kouritzin and Long.[11] Let (V̄, F, P̄) be another¯
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probability space on which is defined independent standard Poisson

processes {X
k;R
þ;N ;X

k;R
2;N ;X

k;1
þ;N ;X

k;1
2;N ;X

k;2
þ;N ;X

k;2
2;N}

ðL1N;L2NÞ
k¼ð1;1Þ ; {X

k;1
þ;N ;X

k;1
2;N ; k ¼

ð0; k2Þ}
L2N
k2¼1 and {X

k;2
þ;N ;X

k;2
2;N ; k ¼ ðk1; 0Þ}L1N

k1¼1: We define the product

probability space ðV0;F 0; P0Þ ¼ ðV £ �V;F^ �F ; P £ �PÞ: In the sequel, brc

denotes the greatest integer not more than a real number r. For any real a,

aþ U a _ 0 and a2 U 2ða ^ 0Þ: Then, from Ethier and Kurtz[6] and

Kouritzin and Long,[11] we have for k [ {ð1; 1Þ; . . .; ðL1N; L2NÞ}

nN
k ðtÞ¼nN

k ð0ÞþX
k;R
þ;N l

Z t

0

RþðnN
k ðsÞl

21Þds

� �

2X
k;R
2;N l

Z t

0

R2ðnN
k ðsÞl

21Þds

� �
þ
X2

i¼1

X
k;i
þ;N

Z t

0

dþi;Nðn
N
k ðsÞÞds

� ��

2X
k;i
2;N

Z t

0

d2i;Nðn
N
k ðsÞÞds

� ��
2
X2

i¼1

X
k2ei;i
þ;N

Z t

0

dþi;Nðn
N
k2ei

ðsÞÞds

� ��

2X
k2ei;i
2;N

Z t

0

d2i;Nðn
N
k2ei

ðsÞÞds

� ��

þ
Xr

i¼1

X1
j¼1

bluiðkÞA
j
iþ0:5c1t$t

j
i
1k[KN

i
; ð2:2Þ

where d1;NðnkÞ¼DN 2e2 c
Nnkþe1

2DN 2e
c
Nnk and d2;NðnkÞ¼DN 2nkþe2

2

DN 2nk:
Equation (2.2) is our Markov chain approximation to equation (1.4) that

can be implemented directly on a computer. We let {GN
t }t$0 be the smallest

right continuous standard filtration such that {X
k;R
s;Nðl

R t

0
RsðnN

k ðsÞl
21ÞdsÞ;X

k;i
s;N

ð
R t

0
dsi;Nðn

N
k ðsÞÞdsÞ;s ¼ þ;2; i ¼ 1; 2}

ðL1N;L2NÞ
k¼ð1;1Þ ; {X

k;1
s;Nð
R t

0
ds

1;Nðn
N
k ðsÞÞdsÞ;s ¼

þ;2; k ¼ ð0; k2Þ}
L2N
k2¼1; and {X

k;2
s;Nð
R t

0
ds2;Nðn

N
k ðsÞÞdsÞ;s ¼ þ;2; k ¼

ðk1; 0Þ}L1N
k1¼1 as well as{Ni; i ¼ 1; 2; . . .; r} are adapted to {GN

t }:

To get the concentration in each cell, we divide nN
k ðtÞ by l

uNðt; xÞ ¼
XL1N

k1¼1

XL2N

k2¼1

nN
k ðtÞ

l
1kðxÞ; ð2:3Þ

where 1k(·) denotes the indicator function on Ik. Then, from, (2.2) it follows
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that

uNðtÞ ¼ uNð0Þ þ

Z t

0

ANuNðsÞds þ

Z t

0

RðuNðsÞÞds þ Z NðtÞ þQNðtÞ;

ð2:4Þ

where

QNðt; ·Þ ¼
Xr

i¼1

XNiðtÞ

j¼1 k[KN
i

X
l21bluiðkÞA

j
iðvÞ þ 0:5c1kð·Þ;

Z NðtÞ U
XðL1N;L2NÞ

k¼ð1;1Þ

l21 ZN
k;R;þðtÞ þ ZN

k;R;2ðtÞ þ
X2

i¼1

ZN
k;iðtÞ2 ZN

k2ei;i
ðtÞ

� �" #
1k;

and

ZN
k;R;þðtÞ ¼ X

k;R
þ;N l

Z t

0

RþðnN
k ðsÞl

21Þds

� �
2 l

Z t

0

RþðnN
k ðsÞl

21Þds;

ZN
k;R;2ðtÞ ¼ 2X

k;R
2;N l

Z t

0

R2ðnN
k ðsÞl

21Þds

� �
þ l

Z t

0

R2ðnN
k ðsÞl

21Þds;

ZN
k;iðtÞ ¼ X

k;i
þ;N

Z t

0

dþi;Nðn
N
k ðsÞÞds

� �
2 X

k;i
2;N

Z t

0

d2i;Nðn
N
k ðsÞÞds

� �

2

Z t

0

di;Nðn
N
k ðsÞÞds; i ¼ 1; 2

are L2- martingales with respect to {GN
t } under probability measure P0 (see

Lemma 2.5 of Kouritzin and Long[11]). By variation of constants and (2.4), it

follows that uNðtÞ ¼ uNðt;v0Þ satisfies

uNðtÞ ¼ T NðtÞuNð0Þ þ

Z t

0

T Nðt 2 sÞRðuNðsÞÞds

þ Y NðtÞ þ

Z t

0

T Nðt 2 sÞdQNðsÞ; ð2:5Þ

where

Y NðtÞ ¼

Z t

0

T Nðt 2 sÞdZ NðsÞ:
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3. LAW OF LARGE NUMBERS: ANNEALED APPROACH

In this section, we shall prove the law of large numbers for u N via

annealed approach, which means that Ni(t) and A
j
i are considered to be random

variables, and the Markov chain u N evolves in this random medium. As

already mentioned in Section 2, u N is defined on the product probability space

ðV0;F 0;P0Þ ¼ ð �V; �F ; �PÞ £ ðV;F ;PÞ: For f : E ! R; let k f k1 ¼

supx[Ej f ðxÞj: In the sequel, we always consider the Skorohod metric d on

DH[0,T ] so that (DH[0,T ],d) is a complete separable metric space. We

introduce the following hypotheses (abbreviating E0 U EP0 Þ :

Hypotheses

(i) kE0ðu
Nð0Þ2qk1 # C , 1:

(ii) {l(N)} is any sequence satisfying lðNÞ!1 as N !1:
(iii) kuNð0Þ2 u0k! 0 in probability P0.

(iv) kuNð0Þk1 # CðN; lÞ , 1:
(v) The distribution of the deposit magnitudes satisfiesR

Rþ a2qFiðdaÞ , 1:
(vi) E0ku0k1 # c0 , 1:

We have the following annealed law of large numbers:

Theorem 3.1. Let the Hypotheses be fulfilled. Then, there exists a pathwise

unique mild solution u to (1.4) and

t#T
supkuNðtÞ2 uðtÞk! 0 ð3:1Þ

in probability P0 as N ! 1.

Remark 3.2. Let {Nk}1k¼0 be an increasing sequence in N such that Nk !1

as k !1: We define ~V ¼
Q1

m¼0
~Vm; where ~Vm ¼ DRL1Nm£L2Nm ½0;1Þ: Set ~F ¼

^1
m¼0Bð ~VmÞ; which is the s-algebra generated by open sets under Skorohod

topology and countable products. From Lemma 2.5 of Kouritzin and Long,[11]

we know that nNðtÞ ¼ {nN
k ðtÞ}

ðL1N;L2NÞ
k¼ð1;1Þ is well defined, and for each v [ V

there exists a unique probability measure P̃v on (Ṽ, ~F ) such that �Pð �v [ �V :

nNm1 ð �v;vÞ [ A1; . . .n
Nmj ð �v;vÞ [ AjÞ ¼ ~Pvð ~v [ ~V : ~vm1

[ A1; . . .; ~vmj
[

AjÞ for all Ai [ BðDRL1Nmi £L2Nmi ½0;1ÞÞ; i ¼ 1; . . .; j; j ¼ 1; 2; . . .: Moreover,

we have that for each B [ ~F ; v! ~PvðBÞ is (V,F)-measurable, and
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v!
R
~V

f ðv; ~vÞ ~Pvðd ~vÞ is F-measurable for each bounded measurable

function f. We can write

P0ðdv0Þ ¼ ~Pvðd ~vÞPðdvÞ; v0 ¼ ðv; ~vÞ:

The statements of Lemma 3.3 and Lemma 3.4 of Ref.[11] are still valid if we

replace Ẽv by E0. We may just take expectations with respect to P.

Lemma 3.3. For 2b [ ½1; 2q�;

s# t
supkE0ðu

NðsÞÞ2bk1 # Cðt; l; kE0ðu
Nð0ÞÞ2bk1Þ , 1;

where C is decreasing in l.

Proof. Our proof follows the proof of Lemma 3.5 of Ref.[11]. The only

significant modification is to estimate the expectation (under P0) of the last

term on the right-hand side of (3.12) in the proof of Lemma 3.5 of Ref.[11]. In

fact, letting sNðkÞ ¼
R

Ik
rðxÞdx and using (3.22) in the proof of Lemma 3.5 of

Ref.[11], we have

E0

Z t

0

T Nðt 2 sÞdQNðsÞ; ðsNðkÞÞ
211k

� �����
����
2b

# 22b E0

Xr

i¼1

kuik1
XNiðtÞ

j¼1

A
j
i

�����
�����
2b

þl22bE0 N1ðtÞ þ · · · þ NrðtÞj j
2b

0
@

1
A:

ð3:2Þ

Recalling that {Ni, i ¼ 1,2,. . .,r} are independent Poisson processes with

parameters hi, we set

N ið½0; t� £ BÞ ¼
XNiðtÞ

j¼1

1BðA
j
iÞ;

which is a Poisson measure with characteristic measure miðBÞ ¼ hiFiðBÞ:
Denote by ~N iðdsdaÞ the compensated martingale measure of Ni(dsda). Wald’s

equation gives

E0

XNiðtÞ

j¼1

A
j
i

" #
¼ thi

Z
Rþ

aFiðdaÞ ¼ thiai; ai U

Z
Rþ

aFiðdaÞ: ð3:3Þ
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Applying Jensen’s inequality and Burkholder’s inequality, we find that

E0

Xr

i¼1

kuik1
XNiðtÞ

j¼1

A
j
i

�����
�����
2b

# r 2b21
Xr

i¼1

kuik
2b
1 ·E0

XNiðtÞ

j¼1

A
j
i

�����
�����
2b

# r 2b21
Xr

i¼1

kuik
2b
1 ·E0 thiai þ

Z t

0

Z
Rþ

a ~N iðdsdaÞ

����
����
2b

# r 2b21
Xr

i¼1

kuik
2b
1 ·22b21 ðthiaiÞ

2b þ E0

Z t

0

Z
Rþ

a ~N iðdsdaÞ

����
����
2b

" #

# ð2rÞ2b21
Xr

i¼1

kuik
2b
1 t 2bh

2b
i a

2b
i þ CðbÞE0

Z ·

0

Z
Rþ

a ~N iðdsdaÞ

� �b
t

( )
:

ð3:4Þ

When b # 1; we have by Jensen’s inequality

E0

Z ·

0

Z
Rþ

a ~N iðdsdaÞ

� �b
t

# thi

Z
Rþ

a2FiðdaÞ

� �b

; ð3:5Þ

and otherwise (when b . 1) we have by Jensen’s inequality that

E0

Z ·

0

Z
Rþ

a ~N iðdsdaÞ

� �b
t

¼E0

XNiðtÞ

j¼1

ðA
j
iÞ

2

" #b

¼
X1
n¼0

E0

XNiðtÞ

j¼1

ðA
j
iÞ

2

 !b
������NiðtÞ¼n

2
4

3
5P0 NiðtÞ¼nð Þ

#
X1
n¼0

nb21E0

Xn

j¼1

ðA
j
iÞ

2b

�����NiðtÞ¼n

" #
P0ðNiðtÞ¼nÞ

¼E0 ðNiðtÞÞ
b

� �Z
Rþ

a2bFiðdaÞ:
ð3:6Þ
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Thus, by (3.4), (3.5), (3.6) and Hypothesis (v), one has that

E0

Xr

i¼1

kuik1
XNiðtÞ

j¼1

A
j
i

�����
�����
2b

#CðtÞ:

Therefore, noting E0jN1ðtÞþ · · ·þNrðtÞj
2b
#CðtÞ; we have by (3.2) that

E0

DZ t

0

T Nðt2sÞdQNðsÞ;ðsNðkÞÞ
211k

E����
����
2b

#Cðt;lÞ,1:

Now, the lemma follows from the proof of Lemma 3.5 of Ref.[11] A

Lemma 3.4. supt#TkY NðtÞk! 0 in probability P0 as N !1:

Proof. Note that Lemma 3.6 of Kouritzin and Long[11] is still valid under our

new Hypotheses if we replace ~Pv by P0 and ~Ev by E0. Since the proof is

almost the same as that of Lemma 3.6 (iv) of Ref.[11], we omit the details here.

Immediately from Lemma 3.7 of Ref.[11], we have the following lemma.

Lemma 3.5. For almost all v0 [ V0

t#T
sup

""""
Z t

0

T Nðt 2 sÞdQNðsÞ2

Z t

0

Tðt 2 sÞdQðsÞ

""""! 0 as N !1:

The remainder of the development differs substantially from Ref.[11]

Lemma 3.6. There exists a càdlàg H-valued process w such that

supt#TkuNðtÞ2 wðtÞk! 0 in probability P0 as N !1:

Proof. We apply Cauchy criterion to prove our statement. It follows from

(2.5) that for N;M [ N

kuNðtÞ2 uMðtÞk #kT NðtÞuNð0Þ2 T MðtÞuMð0Þk þ kY NðtÞk þ kY MðtÞk

þ

Z t

0

T Nðt 2 sÞdQNðsÞ2

Z t

0

T Mðt 2 sÞdQMðsÞ

""""
""""

þ

Z t

0

T Nðt 2 sÞRðuNðsÞÞds 2

Z t

0

Tðt 2 sÞRðuNðsÞÞds

""""
""""

þ

Z t

0

T Mðt 2 sÞRðuMðsÞÞds 2

Z t

0

Tðt 2 sÞRðuMðsÞÞds

""""
""""
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þ

Z t

0

kTðt 2 sÞ RðuNðsÞÞ2 RðuMðsÞÞ
# $

kds

U VN;M
t þ

Z t

0

kTðt 2 sÞðRðuNðsÞÞ2 RðuMðsÞÞÞkds: ð3:7Þ

We claim that supt#T V
N;M
t ! 0 in probability as N;M !1 (in any way). This

is true by Hypothesis (iii), Trotter-Kato theorem, Lemma 3.4, and Lemma 3.5

if we can prove that

t#T
sup

Z t

0

T Nðt 2 sÞRðuNðsÞÞds 2

Z t

0

Tðt 2 sÞRðuNðsÞÞds

""""
""""

converges to zero in probability when N !1: Note that

Z t

0

T Nðt 2 sÞRðuNðsÞÞds 2

Z t

0

Tðt 2 sÞRðuNðsÞÞds

¼
jpj#n

X Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞldsfN
p 2

Z t

0

expðlpðt 2 sÞÞ

�

£ kfp;RðuNðsÞÞldsfp

�
þ

jpj.n

X Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞldsfN
p

2
jpj.n

X Z t

0

expðlpðt 2 sÞÞkfp;RðuNðsÞÞldsfp: ð3:8Þ

For jpj – 0; c1jlpj # jlN
p j # c2jlpj and jlpj $ c3jpj

2
(see Lemma 2.1 and

Remark 2.3 of Kouritzin and Long[11]). So, by Cauchy-Schwarz inequality, we

have

Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞlds

� �2

#

Z t

0

expð2lN
p ðt 2 sÞÞds

� �
·

Z t

0

kfN
p ;RðuNðsÞÞl2ds

� �

# Cjpj
22

Z t

0

kfN
p ;RðuNðsÞÞl2ds:
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Thus,

jpj.n

X Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞlds

� �2

# Cn22

Z t

0 p

X
kfN

p ;RðuNðsÞÞl2ds # Cn22

Z T

0

k1;R2ðuNðsÞÞlds:

It follows by (1.3), Hypothesis (i) and Lemma 3.3 that

E0
t#T
sup

jpj.n

X Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞldsfN
p

""""""
""""""

22
4

3
5 #

CðTÞ

n2
:

Similarly, we can show that

E0
t#T
sup

jpj.n

X Z t

0

expðlpðt 2 sÞÞkfp;RðuNðsÞÞldsfp

""""""
""""""

22
4

3
5 #

CðTÞ

n2
:

Note that for fixed p, jlN
p 2 lpj þ kfN

p 2 fpk1 ! 0 as N !1 and

supp;Nðkf
N
p k1 þ kfpk1Þ , 1 (see Lemma 2.1, Lemma 2.2 and Remark 2.3

of Ref.[11]) Therefore, by Lemma 3.3, it follows that for p fixed,

t#T
sup

Z t

0

expðlN
p ðt 2 sÞÞkfN

p ;RðuNðsÞÞldsfN
p

""""
2

Z t

0

expðlpðt 2 sÞÞkfp;RðuNðsÞÞldsfp

""""
1

converges to zero in probability as N !1: Thus,

t#T
sup

Z t

0

T Nðt 2 sÞRðuNðsÞÞds 2

Z t

0

Tðt 2 sÞRðuNðsÞÞds

""""
""""! 0 ð3:9Þ

in probability as N !1:

Next, we come back to the inequality (3.7). We remark that the semigroup

T(t) is defined by ðTðtÞf ÞðxÞ ¼
R

E
Gðt; x; yÞf ðyÞrðyÞdy; x [ E; where G(t;x,y) is

the Green’s function corresponding to A and is given by

Gðt; x; yÞ ¼
p

X
expðlptÞfpðxÞfpðyÞ; t $ 0:
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Moreover, using Lemma 2.1 of Ref.[11], we find that for any t [ [0,T ], there

exists a constant cðTÞ . 0 such that

Z
E

Gðt; x; yÞj j
2rðxÞdx ¼

Xð1;1Þ

p¼ð0;0Þ

e2lptf2
pðyÞ

# C
X1
p1¼0

e2l1
p1

t
X1
p2¼0

e2l2
p2

t

¼ C 1 þ
X1
p1¼1

exp 22
Dp2

L2
1

p2
1 þ Dc2

� �
t

% & !

£ 1 þ
X1
p2¼1

exp 22
Dp2

L2
2

p2
2t

% & !

# C 1 þ

Z 1

0

exp 22
Dp2

L2
1

tx2

% &
dx

� �

£ 1 þ

Z 1

0

exp 22
Dp2

L2
2

tx2

% &
dx

� �

¼ C 1 þ
L1

2
ffiffiffiffiffiffiffiffiffiffiffi
2Dpt

p

� �
1 þ

L2

2
ffiffiffiffiffiffiffiffiffiffiffi
2Dpt

p

� �
# cðTÞ·t21:

By using Minkowski’s integral inequality, (1.3), and Cauchy-Schwarz

inequality, we find that

Tðt 2 sÞðRðuNðsÞÞ2 RðuMðsÞÞÞ
"" ""

¼

Z
E

Z
E

Gðt 2 s; x; yÞðRðuNðs; yÞÞ2 RðuMðs; yÞÞÞrðyÞdy

� �2

rðxÞdx

( )1
2

#

Z
E

Z
E

jGðt 2 s; x; yÞj
2
rðxÞdx

% &1
2

jRðuNðs; yÞÞ2 RðuMðs; yÞÞjrðyÞdy

# CðTÞðt 2 sÞ2
1
2

Z
E

juNðs; yÞ2 uMðs; yÞjð1 þ juNðs; yÞj
q21
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þ juMðs; yÞj
q21

ÞrðyÞdy

# CðTÞðt 2 sÞ2
1
2kuNðsÞ2 uMðsÞk

Z
E

ð1 þ juNðs; yÞj
q21

%

þjuMðs; yÞj
q21

Þ2rðyÞdy
o1

2

: ð3:10Þ

For convenience, let

f ðsÞ ¼

Z
E

ð1 þ juNðs; yÞj
q21

þ juMðs; yÞj
q21

Þ2rðyÞdy

% &1
2

:

The following method is motivated in part by Kouritzin.[10] Substituting (3.10)

into (3.7), we get

kuNðtÞ2 uMðtÞk # VN;M
t þ CðTÞ

Z t

0

ðt 2 sÞ2
1
2f ðsÞkuNðsÞ2 uMðsÞkds a:s:

ð3:11Þ

By Lemma 3.3, it is easy to see that for t [ [0,T ]

E0

Z t

0

ðt 2 sÞ2
1
2f ðsÞds # CðTÞ , 1

and consequentlyZ t

0

ðt 2 sÞ2
1
2f ðsÞds , 1; a:s:

By iterating (3.11) n times, we get

kuNðtÞ2 uMðtÞk

#
s#t
supVN;M

s 1 þ CðTÞ

Z t

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t 2 s

p ds

�
þ · · · þ ðCðTÞÞn

£

Z t

0

Z s

0

· · ·

Z sn22

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t 2 s

p · · ·
f ðsn21Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sn22 2 sn21
p dsn21· · ·ds1ds

�
þ ðCðTÞÞnþ1

£

Z t

0

Z s

0

· · ·

Z sn21

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t 2 s

p · · ·
f ðsnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sn21 2 sn
p kuNðsnÞ2 uMðsnÞkdsn· · ·ds1ds;

ð3:12Þ

If q ¼ 1; then f ðsÞ # C , 1: This case is much simpler than the case of
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q . 1: So, we only deal with the later case here. For q . 1, by applying

Hölder’s inequality and Young’s inequality, we find

Z t

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t 2 s

p ds #

Z t

0

ðt 2 sÞ2
1
2

h i 2q
qþ1

ds

� �qþ1
2q

·

Z t

0

f
2q

q21ðsÞds

� �q21
2q

#
q þ 1

2q

Z t

0

ðt 2 sÞ2
q

qþ1ds þ
q 2 1

2q

Z t

0

f
2q

q21ðsÞds

¼
q þ 1

2q
·ðq þ 1Þt

1
qþ1 þ

q 2 1

2q

Z t

0

f
2q

q21ðsÞds: ð3:13Þ

Similarly, for k $ 1 with s0 ¼ s; we have

Z t

0

Z s

0

· · ·

Z sk21

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
t 2 s

p · · ·
f ðskÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sk21 2 sk
p dsk· · ·ds

#

Z t

0

Z s

0

· · ·

Z sk21

0

ðt 2 sÞ2
q

qþ1· · ·ðsk21 2 skÞ
2

q
qþ1dsk· · ·ds

% &qþ1
2q

£

Z t

0

Z s

0

· · ·

Z sk21

0

f
2q

q21ðsÞ· · ·f
2q

q21ðskÞdsk· · ·ds

% &q21
2q

#
q þ 1

2q
·ðq þ 1Þ

Gð 1
qþ1

Þ
� �k

Gð1 þ 1
qþ1

Þt
kþ1
qþ1

Gð1 þ kþ1
qþ1

Þ
þ

q 2 1

2q
·

R t

0
f

2q
q21ðsÞds

� �kþ1

ðk þ 1Þ!
:

Therefore, it follows from (3.12) that

t#T
supkuNðtÞ2 uMðtÞk

#
t#T
supVN;M

t 1 þ
q þ 1

2q

Xn

k¼1

ðq þ 1Þ
Gð 1

qþ1
Þ

� �k21

Gð1 þ 1
qþ1

ÞT
k

qþ1ðCðTÞÞk

Gð1 þ k
qþ1

Þ

2
64

þ
q 2 1

2q

Xn

k¼1

ðCðTÞÞk

k!

Z T

0

f
2q

q21ðsÞds

� �k
#
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þ
t#T
supkuNðtÞ2 uMðtÞk·ðCðTÞÞnþ1 q þ 1

2q
·ðq þ 1Þ

Gð 1
qþ1

Þ
� �n

Gð1 þ 1
qþ1

ÞT
nþ1
qþ1

Gð1 þ nþ1
qþ1

Þ

2
4

þ
q 2 1

2q
·

1

ðn þ 1Þ!

Z T

0

f
2q

q21ðsÞds

� �nþ1
#
: ð3:14Þ

Let

hðTÞ ¼

Z T

0

f
2q

q21ðsÞds:

By applying Hölder’s inequality, Hypothesis (i) and Lemma 3.3, we have

E0½hðTÞ� ¼

Z T

0

E0 f
2q

q21ðsÞ
h i

ds

¼

Z T

0

E0

Z
E

ð1 þ juNðs; yÞj
q21

þ juMðs; yÞj
q21

Þ2rðyÞdy

� � q
q21

ds

# C

Z T

0

E0

Z
E

ð1 þ juNðs; yÞj
2q
þ juMðs; yÞj

2q
Þdy

� �
ds

# C1ðTÞ , 1: ð3:15Þ

supt#TkuNðtÞ2 uMðtÞk is almost surely finite for fixed N and M by the fact that

t ! kuNðtÞk is càdlàg and the argument on page 110 of Billingsley.[2] Thus, it

is easy to see that the last term on the right hand side of (3.14) tends to zero

almost surely as n !1: So, by letting n !1 in (3.14), we find that

t#T
supkuNðtÞ2 uMðtÞk

#
t#T
supVN;M

t

qþ 1

2q
þ
ðqþ 1Þ2

2q

X1
k¼1

Gð 1
qþ1

Þ
� �k21

Gð1þ 1
qþ1

ÞT
k

qþ1ðCðTÞÞk

Gð1þ k
qþ1

Þ

0
B@

þ
q2 1

2q
·exp{CðTÞhðTÞ}

1
A; ð3:16Þ

which tends to zero in probability as N;M !1 by (3.15) and the fact that
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supt#T V
N;M
t converges to zero in probability. It follows that for each positive

integer n there exists a number Nn such that

P0
t#T
supkuNðtÞ2 uMðtÞk$

1

2n

 !
,

1

2n

if N;M $ Nn: Without loss of generality, we may assume that {Nn} is strictly

increasing. Let

An ¼ v0 [V0 :
t#T
supkuNi ðtÞ2 uNj ðtÞk,

1

2n
for all i; j $ n

( )

and A ¼ lim sup An: It is easy to find that P0ðAÞ ¼ 1: Then, for each v0 [ A;

i;j!1
lim

t#T
supkuNiðt;v0Þ2 uNjðt;v0Þk ¼ 0:

Note that ðDH½0;T�; supt#Tk·kÞ is a complete non-separable metric space.

Thus, for each v0 [ A; there exists wðv0Þ[ DH½0;T� such that

j!1
lim

t#T
supkuNjðt;v0Þ2wðt;v0Þk ¼ 0: ð3:17Þ

For v0 not in A, we define w(v0) as any fixed point of DH[0,T ]. By the

measurability of w(t,·) for each t [ ½0;T� and the càdlàg property, we have that

w : V0 ! ðDH½0;T�;dÞ is measurable. Finally, it is easy to see that

P0
t#T
supkuNðtÞ2wðtÞk. 1

 !
# P0

t#T
supkuNðtÞ2 uNjðtÞk.

1

2

 !

þP0
t#T
supkuNjðtÞ2wðtÞk.

1

2

 !
:

ð3:18Þ

If we choose Nj . N and N sufficiently large, then the right hand side of (3.18)

can be made arbitrarily small. This means that supt#TkuNðtÞ2wðtÞk! 0 in

probability as N ! 1. A
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Lemma 3.7. Let w be the limit process from Lemma 3.6. Then for

1 # b # 2q

t#T
supE0kwbðtÞ; 1l # CðTÞ , 1: ð3:19Þ

Proof. By Lemma 3.6, there is a subsequence {Nj} such that uNj ðtÞ! wðtÞ in

H almost surely for each t [ ½0; T�: It follows that ðuNj ðt; xÞÞb ! wbðt; xÞ a.e.

x [ E almost surely. Therefore, by Tonelli’s theorem and Fatou’s lemma, we

find that

E0kwbðtÞ; 1l ¼ E0

Z
E

wbðt; xÞrðxÞdx #

Z
E

j!1
lim infE0 ðuNjðt; xÞÞb

� �
rðxÞdx

# L1L2supNsupt#TkE0ðu
NðtÞÞbk1 # CðTÞ , 1: A

Finally, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. We have already proved that supt#TkuNðtÞ2

wðtÞk! 0 in probability in Lemma 3.6. Thus, we only need to show that w(t) is

a unique mild solution to (1.4). By (2.5), we have with wð0Þ ¼ u0;

wðtÞ ¼ TðtÞwð0Þ þ

Z t

0

Tðt 2 sÞRðwðsÞÞds þ

Z t

0

Tðt 2 sÞdQðsÞ

þ
X4

i¼1

1i
NðtÞ; ð3:20Þ

where

11
NðtÞ ¼ wðtÞ2

Z t

0

Tðt 2 sÞdQðsÞ2 uNðtÞ2

Z t

0

T Nðt 2 sÞdQNðsÞ

� �
;

12
NðtÞ ¼ ðT NðtÞuNð0Þ2 TðtÞwð0ÞÞ þ Y NðtÞ;

13
NðtÞ ¼

Z t

0

T Nðt 2 sÞRðuNðsÞÞds 2

Z t

0

Tðt 2 sÞRðuNðsÞÞds;

and

14
NðtÞ ¼

Z t

0

Tðt 2 sÞ RðuNðsÞÞ2 RðwðsÞÞ
� �

ds:

Whereas supt#Tk1
1
NðtÞk! 0 in probability P0 by Lemmas 3.5 and 3.6,
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supt#Tk1
3
NðtÞk! 0 in probability by (3.9). By Trotter-Kato theorem and

Lemma 3.4, we have that supt#Tk1
2
NðtÞk! 0 in probability P0. For 14

NðtÞ; we

have by the argument in (3.10) and (3.13) that

k14
NðtÞk #

Z t

0

kTðt 2 sÞ RðuNðsÞÞ2 RðwðsÞÞ
� �

kds

# CðTÞ
t#T
supkuNðsÞ2 wðsÞk·

Z t

0

ðt 2 sÞ2
1
2gðsÞds

# CðTÞ
t#T
supkuNðsÞ2 wðsÞk

ðq þ 1Þ2

2q
·T

1
qþ1 þ

q 2 1

2q

Z T

0

g
2q

q21ðsÞds

� �
;

where

gðsÞ ¼

Z
E

ð1 þ juNðs; yÞj
q21

þ jwðs; yÞj
q21

Þ2rðyÞdy

% &1
2

:

By Lemmas 3.3 and 3.7, we easily find that E0

R T

0
g

2q
q21ðsÞds , 1: Thus, by

Lemma 3.6, it follows that supt#Tk1
4
NðtÞk! 0 in probability P0. Now, from

(3.20), we find that w(t) is a mild solution of (1.4). The last task is to prove the

uniqueness. If R is Lipschitz, then the uniqueness follows from standard

arguments. For the non-Lipschitz case, we define for each n [ N

RnðxÞ ¼

RðxÞ if jxj # n;

R nx
jxj

� �
otherwise:

8<
:

Then, Rn is Lipschitz by (1.3). Let us denote by u n the solution of (1.4) with Rn

instead of R. Let tn ¼ inf{t : kunðtÞk1 # n}: Then, {tn} is a non-decreasing

sequence of stopping times and unþ1ðtÞ ¼ unðtÞ;;t # tn: Let t ¼ supntn and

uðtÞ ¼ unðtÞ;;t # tn: Then, u(t) is a unique solution to (1.4) up to time t. We

shall prove that t ¼ 1 a:s: For any t . 0; we have by (1.2) some constant C

independent of n such that

unðt; xÞ ¼ TðtÞuð0; xÞ þ

Z t

0

Tðt 2 sÞRnðu
nðs; xÞÞds þ

Z t

0

Tðt 2 sÞdQðs; xÞ

# TðtÞuð0; xÞ þ

Z t

0

Tðt 2 sÞRþ
n ðu

nðs; xÞÞds þ

Z t

0

Tðt 2 sÞdQðs; xÞ

# kuð0Þk1 þ Ct þ C

Z t

0

kunðsÞk1ds þ
Xr

i¼1

XNiðtÞ

j¼1

kuik1A
j
i:
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It follows that

kunðt ^ tnÞk1 # kuð0Þk1 þ Ct ^ tn þ C

Z t^tn

0

kunðsÞk1ds

þ
Xr

i¼1

XNiðt^tnÞ

j¼1

kuik1A
j
i;

and consequently,

E0kunðt ^ tnÞk1 # E0kuð0Þk1 þ Ct þ C

Z t

0

E0kunðs ^ tnÞk1ds

þ
Xr

i¼1
kuik1hit

Z
Rþ

aFiðdaÞ:

By Gronwall’s inequality, we find

E0kunðt ^ tnÞk1 # CðtÞ , 1:

It is easy to see that

P0ðt # tÞ # P0ðtn # tÞ # P0 kunðt ^ tnÞk1 $ n
# $

#
E0kunðt ^ tnÞk1

n
#

CðtÞ

n

which tends to zero as n !1: So, P0ðt # tÞ ¼ 0;;t . 0; i.e. t ¼ 1; a.s.
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