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Abstract. A class of Fleming-Viot processes with decaying sampling rates and α-stable
motions that correspond to distributions with growing populations are introduced and
analyzed. Almost sure long-time scaling limits for these processes are developed, addressing
the question of long-time population distribution for growing populations. Asymptotics in
higher orders are investigated. Convergence of particle location occupation and inhabitation
time processes are also addressed and related by way of the historical process. The basic
results and techniques allow general Feller motion/mutation and may apply to other measure-
valued Markov processes.

1. Introduction

We consider an M1(Rd)-valued Fleming-Viot process X = (Xt, t ≥ 0) with mutation
generator −(−∆)

α
2 (α ∈ (0, 2]) and sampling rate 1/φ(t) at time t for some positive function

φ defined on R+ = [0,∞). Such Fleming-Viot processes can be obtained by normalizing
and conditioning the total mass of (possibly non-critical) Dawson-Watanabe processes to
have total mass φ(t) for all time t. This was established by Etheridge and March [EM91]
for φ ≡ 1 and by Perkins [Per92] for general nonnegative function φ. Herein, we investigate
the long-time asymptotic of such Fleming-Viot processes when 1/φ satisfies an integrability
condition at infinity. Examples of φ satisfying this integrability condition include t→ eβt for
β > 0 and t→ 1 + tN for N sufficiently large.

To be more precise, we let W = (Wt, t ≥ 0;Pm) be a Dawson-Watanabe process with motion
generator −(−∆)

α
2 on Rd, linear growth β and critical branching rate η > 0 corresponding

to the operator −(−∆)
α
2 u+ βu− η

2
u2 on Rd. Then, W is a measure-valued Markov process

starting at a finite measure m such that

MW
t (f) := Wt (f)−m (f)−

∫ t

0

Ws

(
(−(−∆)

α
2 + β)f

)
ds

is a continuous martingale with quadratic variation 〈MW (f)〉t =
∫ t

0
Ws (ηf 2) ds for all

f ∈ C2
b

(
Rd
)
. (The reader is referred to [Kyp14] for information about stable processes

and to [Per95] as well as [BP01] for describing measure-valued processes as martingale
problems.) W ’s mass growth is subcritical, critical or supercritical if β < 0, β = 0 or β > 0
respectively. The expected total mass is found to be m (1) eβt by substituting f = 1 into the
above equation and taking expectations. Now, suppose a population is projected to grow
according to a positive continuous function φ. Then, following Perkins [Per92], one finds
that the corresponding Fleming-Viot process attained by taking the angular part of W and
conditioning Wt (1) to have total mass φ(t) at every time t yields an M1(Rd)-valued process
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X = (Xt, t ≥ 0), the (α, φ) Fleming-Viot superprocess, starting at µ = m
m(E)

∈ M1(E) and

satisfying the martingale problem: For each f ∈ F
(
(−∆)

α
2

)
(the domain of −(−∆)

α
2 ), the

process

MX
t (f) := Xt(f)− µ(f)−

∫ t

0

Xs(−(−∆)
α
2 f)ds (1.1)

is a continuous martingale with quadratic variation

〈MX (f)〉t =

∫ t

0

ηφ(s)−1
[
Xs

(
f 2
)
−X2

s (f)
]

ds. (1.2)

The law of X is denoted by Pφµ. Technically, to get X from W , we condition on Wt(1) staying
within ε of φ(t) up to T and then let ε→ 0 and T →∞. Also, it does not matter whether the
original Dawson-Watanabe process is supercritical, critical or even subcritical as the resulting
Fleming-Viot after normalizing by W·(1) and conditioning so that W·(1) = φ (that is, after
considering the angular part) satisfies the same martingale problem. If φ is increasing, X can
be considered as a Fleming-Viot process that gives the population distribution for growing
populations.

Properly normalized supercritical superprocesses have recently been shown (see e.g. Wang
[Wan10], Kouritzin and Ren [KR14], Liu et. al. [LRS13], Eckhoff et. al. [EKW15] as well
as the more detailed review in Section 2.7 of [Eng15]) to have almost sure long-time scaling
limits (often called strong laws of large numbers), generalizing the pioneering branching
Markov process work of Watanabe [Wat67] and Asmussen and Hering [AH76]. Traditionally,
superprocesses with ergodic and transient motion models have been handled separately with
different scalings in laws of large number results. However, while considering strong laws
of large numbers for supercritical, (possibly) non-Markov Gaussian branching processes,
Kouritzin et. al. [KLS18] showed that these two cases can be considered together. For
α-stable Dawson-Watanabe processes, the result of [KR14] states that with probability one,
as t→∞,

t
d
α
Wt

Wt(1)
↪→ 1

(2π)d

∫
Rd
e−|θ|

α

dθ λd on
{

lim
t→∞

e−βtWt(1) > 0
}
,

where ↪→ denotes shallow convergence of measures and λd is the Lebesgue measure on Rd. Here
and in the sequel, we ease notation by reducing λd(dθ) to just dθ when appropriate. Shallow
convergence is stronger than vague convergence yet still allows convergence to non-finite
measures like Lebesgue measure. It is defined in [KR14] as

νt ↪→ ν ⇐⇒ νt(f)→ ν (f) , ∀ continuous f : sup
x∈Rd

∣∣∣eε|x|2f (x)
∣∣∣ <∞ for some ε > 0.

1.1. Statement of Main Results. For notational simplicity, we will simply call an α-stable
Fleming-Viot process with with sampling rate 1/φ(t) an (α, φ)-FV process. As explained
previously, (α, φ)-FV processes corresponds to Wt/Wt(1) conditioned so that Wt(1) = φ(t)
for all t. For supercritical Dawson-Watanabe processes, the total mass Wt(1) has expected
mean m(1)eβt for some β > 0. This suggests that if φ(t) = eβt, then we should have the
almost-sure, shallow-topology, long-time limit

t
d
αXt

t→∞
↪−−−→ 1

(2π)d

∫
Rd
e−|θ|

α

dθ λd . (1.3)
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In fact, our first main result shows the above almost sure limit for a larger class of sampling
functions φ.

Theorem 1.1. Assume that µ satisfies∫
Rd
|x|aµ(dx) <∞ for some a > 0 (1.4)

and φ is a positive function on R+ such that∫ ∞
0

s
d
α

+1+ε0
ds

φ(s)
<∞ for some ε0 > 0 . (1.5)

Then, with Pφµ-probability one, the shallow limit (1.3) holds.

In addition, if a test function f ∈ C2
c (Rd) is fixed, all higher order asymptotics of Xt(f)

can be identified. To state our second main result, we prepare some notation. For each
multi-index k = (k1, . . . , kd) ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd, we let

|k| = k1 + k2 + · · ·+ kd , k! = k1!k2! · · · kd! , xk = xk11 x
k2
2 · · ·x

kd
d ,

and define the constant ϑkd,α and the σ-finite signed measure λkd on Rd respectively by

ϑkd,α =
1

(2π)d

∫
Rd
e−|θ|

α

θkdθ and λkd(dy) =
1

k!
ykdy . (1.6)

Obviously, λ0
d is the Lebesgue measure λd.

Theorem 1.2. Let N be a non-negative integer. Assume that µ satisfies (1.4) and φ satisfies∫ ∞
0

s
2N+d
α

+1+ε0
ds

φ(s)
<∞ for some ε0 > 0 . (1.7)

Let f be a function in bE(Rd) ∩ L2(Rd) satisfying∫
Rd
|f(x)||x|Ndx <∞ (1.8)

with its Fourier transform f̂ satisfying∫
Rd
|f̂(ξ)||ξ|αdξ <∞ . (1.9)

Then, Pφµ-almost surely

lim
t→∞

t
N+d
α

∣∣∣∣∣∣∣∣Xt(f)−
∑

k∈Nd:|k|≤N
|k| is even

(−1)
|k|
2 t−

d+|k|
α

(2π)dk!

∫
Rd
f(y)ykdy

∫
Rd
e−|θ|

α

θkdθ

∣∣∣∣∣∣∣∣ = 0 . (1.10)

Written another way, we have Pφµ-almost surely

t
d
αXt(f) =

∑
k∈Nd:|k|≤N
|k| is even

(−1)
|k|
2 t−

|k|
α ϑkd,αλ

k
d(f) + o(t−

N
α ) as t→∞ . (1.11)
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In the above statement, bE(Rd) denotes the space of real-valued bounded measurable
functions on Rd. Theorem 1.2 gives flexible rate-of-convergence information on the convergence

of t
d
αXt to scaled Lebesgue measure, depending upon the conditions assumed and the test

function used. Some of our results herein were later obtained for Dawson-Watanabe processes
[Lê19].

The long-time behaviour of constant rate Fleming-Viot processes has been well studied.
When φ ≡ 1 and α = 2, the long-time behavior of Xt is discussed in Dawson and Hochberg
[DH82]. They show that as time gets large, the measure-valued process (Xt, t ≥ 0) concentrates
within a random (but stationary) distance from a Brownian motion. The possible long-time
distributional limits of even multiple (critical) interacting Fleming-Viot processes are well-
known. For example, the stationary distributions were obtained in Shiga [Shi80a,Shi80b],
Shiga and Uchiyama [SU86] for the two allele case and in Dawson et. al. [DGV95], Dawson
and Greven [DG99] for the general case. These results characterize the possible distributional
limits of interacting Fleming-Viot processes. However, Fleming-Viot processes that admit
almost sure scaling limits do not appear to have been considered.

The proofs of Theorems 1.1 and 1.2 are presented in Subsection 3.2. Our method, discussed
in Subsection 2.2, improves Asmussen and Hering’s technique in [AH76] and converts it to
the language of martingales and stochastic integration. This formulation provides a clear
picture, which may be applicable for superprocesses of both Dawson-Watanabe type and
Fleming-Viot type with general Feller motions or mutation processes.

To illustrate our method further, we consider long-time limits of the occupation time
Yt =

∫ t
0
Xs ds and the inhabitation time, defined for bounded f as Zt(f) = Xt(`f ). Here,

`f (r, y) =

∫ r

0

f(ys)ds ∀r ≥ 0, y ∈ D(Rd), f ∈ bE(Rd), (1.12)

D(Rd) is the space of Rd-valued cadlag paths equipped with Skorohod J1 topology and X is
the (α, φ) Fleming-Viot historical process satisfying the martingale problem:

Mt(h) = Xt(h)− δ0 × µ∗(h)−
∫ t

0

Xs(Ah)ds (1.13)

is a continuous martingale starting at 0 such that

〈M(h)〉t =

∫ t

0

(Xs(h
2)− Xs(h)2)

ds

φ(s)
(1.14)

for all h in the domain of bounded functions D(A) for the historical generator A. (We define
X precisely and relate it to our (α, φ)-FV process below. µ∗ will be a variant of µ, defined on
the historical path space.) However, `f with f = 1O (for an open O) is not bounded, hence
`1O /∈ D(A). Still, the martingale problem (1.13,1.14) does hold for such natural ` = `f since

A`f = bp- lim
t→∞

A`tf (1.15)

exists and
Xt(`f ) = Xt(`

u
f ) and Xt(A`f ) = Xt(A`uf ) ∀u ≥ t, (1.16)

where `uf is the bounded variant of `f . Namely,

`uf (r, y) =

∫ r∧u

0

f(ys)ds ∀r ≥ 0, y ∈ D(Rd), f ∈ bE(Rd),
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for each fixed u that we will show is in D(A). (Herein, bp-lim denotes the bounded, pointwise
limit.) The definition of A`f through the limit (1.15) is established in Lemma 2.13 (to
follow). To show (1.16), we let yt = y(· ∧ t) ∈ D(Rd) for t > 0 and y ∈ D(Rd), consider
E = {(r, yr) : r ≥ 0, y ∈ D(Rd)} as a topological subspace of R+ ×D(Rd), and show that Xt

is supported on
Et = {(r, y) ∈ E : r = t}, (1.17)

which we do below (see Proposition 2.10 and Remark 2.11). Having observed (1.15) and
(1.16), we can define Mt(`f ) by substituting h = `uf in (1.13)

Mt(`f ) := Xt(`
u
f )− δ0 × µ∗(`uf )−

∫ t

0

Xs(A`uf )ds ∀u ≥ t. (1.18)

It also follows from (1.16) that

〈M(`f )〉t = 〈M(`uf )〉t ∀u ≥ t . (1.19)

Remark 1.3. The occupation time Yt(1O) counts the time in O of dead lineages i.e. times of
particles that are not ancestors of living particles, while the inhabitation time Zt(1O) counts
the time of common ancestors multiple times.

Our third main result, connects these two time processes.

Theorem 1.4. Defining `f ,M(`f) respectively as in (1.12), (1.18) and for all t > 0, f ∈
bE(Rd),

γd(t) =

 t1−
d
α if d < α

ln(t ∨ 1) if d = α
1 if d > α

and Nd(f) =


‖f‖L1(Rd) if d < α

‖f‖L1(Rd) +
∫
Rd |f̂(θ)||θ|−αdθ if d = α∫

Rd |f̂(θ)||θ|−αdθ if d > α

.

(1.20)
One has that:

a: Mt(`f ) = Zt(f)− Yt(f) is a FXt+-martingale for f ∈ bE(Rd).

b: M∞(`f ) := limt→∞Mt(`f ) exists a.s. provided that Nd(f) <∞ and
∫∞

0
γ2
d(s)

ds
φ(s)

<∞.

c: Z∞(f) := limt→∞ Zt(f), Y∞(f) := limt→∞ Yt(f) both exist a.s. in R and M∞(`f) =
Z∞(f)− Y∞(f) a.s. provided that M∞(`f ) exists, d > α and Nd(f) <∞.

The proof of parts a, b, and c follow respectively from Proposition 2.14, Proposition 4.4
(i), and the proof of the high dimensional case of Theorem 1.5 as well as Proposition 4.4.

Notice that the martingale {Mt(`f), t ≥ 0} in Theorem 1.4 is with respect to the right
continuous filtration of the the (non-historical) (α, φ)-FV process, which is possible when the
(α, φ)-FV process is defined from the (α, φ)-historical process through (2.37) below.

Hereafter, the cases d < α, d = α and d > α are respectively called low dimension, critical
dimension and high dimension. One can see from Theorem 1.4 that particle time behaviour is
dimensionally dependent as one might expect from the transition from recurrent to transient
particle motion.

While in the context of Dawson-Watanabe processes, long-time asymptotics of occupation
time processes have been studied extensively starting from the work of Iscoe [Isc86], the
corresponding problem for Fleming-Viot processes seems sparse in the literature. As is
known in the context of Dawson-Watanabe processes, the limiting behavior of occupation
times depends on the relation between d and α. Our fourth main result shows the limiting
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behaviour of occupation and inhabitation times for (α, φ)-Fleming-Viot processes will also be
dimensionally dependent. Define

κd(α) =

{
(2π)−d α

α−d

∫
Rd e

−|θ|αdθ if d < α

(2π)−d
∫
Rd e

−|θ|αdθ if d = α
. (1.21)

Theorem 1.5. Suppose φ satisfies ∫ ∞
1

ds

φ(s)
<∞ . (1.22)

Then, in low and critical dimensions (d ≤ α), with Pφµ-probability one, scaled occupation

and inhabitation times Yt
γd(t)

and Zt
γd(t)

both converge shallowly to κd(α)λd. While in high

dimensions (d > α), with Pφµ-probability one, Yt and Zt converge shallowly to some random
measures.

This result relies on Proposition 4.1 (to follow) and is proved at the end of Subsection 4.2.

1.2. Explanation of Sampling Rate Assumptions. We would like to thank an anony-
mous referee for inviting us to speculate around our sampling rate assumptions. Condition
(1.5) can be considered heuristically in two ways: Kouritzin and Ren [KR14] showed the

(shallow) a.s. convergence of t
d
α
Wt

eβt
when W was a superstable process with growth factor

β > 0. However, it is well known (see [AN04]) that e−βtWt(1)→ F a.s. for some non-trivial

random variable F in this case and the limits of t
d
α
Wt

eβt
and t

d
α

Wt

Wt(1)
will only differ by this

factor F (on the set where F > 0). Next, conditioning on Wt(1) to be close to eβt might
not have a huge effect since their ratio converges. Finally, Perkins [Per92]’s argument on
Wt

Wt(1)
conditioned so Wt(1) is eβt has martingale problem (1.1,1.2) with φ(t) = eβt. In this

way, Theorem 1.1 loosely generalizes Kouritzin and Ren [KR14] from φ(t) = eβt to any φ

satisfying (1.5). Secondly, the factor t
d
α on the left of (1.3) is what is needed for a non-trivial

limit in Theorem 1.1 but this factor blows up Xt and its noise Mt. To have an almost sure
limit the noise has to die out fast enough through the φ(s)−1 factor in (1.2). We can think of

the s
d
α factor within the integral of (1.5) as compensation for blowing Xt up by t

d
α and the

integral without this factor as a condition on the noise of X itself. The full force of (1.5) only
comes to bear in Proposition 2.8 through conditions (2.18,2.23). In the proofs of Theorems
1.1 and 1.2, we will decompose Xt(f) as

Xρ(tn)(Ltn−ρ(tn)f) + [Xtn(Ttn+1−tnf)−Xρ(tn)(Ltn−ρ(tn)f)] + [Xt(f)−Xtn(Ttn+1−tnf)],

where Tt is the α-stable semigroup, Lt is an N th order approximation of Tt and ρ is a
sublinear function. It follows from Proposition 3.2 that Xρ(tn)(Ltn−ρ(tn)f) satisfies the stated
scaling limits using Fourier analysis under a lesser condition on φ so the other two terms
can be thought of as errors. The first error term, handled in (2.28), puts constraints on an
auxiliary sequence {cn} while the second error term, handled in (2.29), forces a constraint
on φ depending upon the {cn}. The two constraints are then solved in (3.20) under (1.5).
It would be interesting to know lesser conditions on φ under which one has convergence in
probability but not necessarily almost sure convergence.
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1.3. Article Outline. Section 2 discusses fundamental results of Fleming-Viot processes.
Section 3 focuses on the long-time limit of α-stable Fleming-Viot processes. In Section 4,
long-time asymptotic of the occupation time process as well as the related inhabitation time
process of an α-stable Fleming-Viot process is investigated.

2. Fleming-Viot processes

We use ν(f) and 〈f, ν〉 to denote
∫
fdν for a measure ν and integrable function f . Let

(E, E(E)) be a Polish space with its Borel σ-algebra E(E) and ((ξt)t≥0, (Px)x∈E) be an E-
valued Borel strong Markov process with sample paths in D(E). Hereafter, D(E) is the space
of cadlag paths from R+ := [0,∞) to E equipped with the Skorohod J1 topology. Define the
semigroup on bE(E) (the space of real-valued bounded measurable functions on E) by

Ttf(x) = Pxf(ξt) .

and assume that Tt maps Cb(E) (the space of real continuous bounded functions on E) to
itself. The right-continuity of ξ implies bp-limt→0 Ttf = f for every f ∈ Cb(E). We also
assume ξ is conservative, i.e. Tt1 = 1. Define

Af = bp-lim
t→0

Ttf − f
t

when the limit exists. The domain D(A) of A contains all functions in bE(E) such that the
above limit exists, including the constant function 1 for which A1 = 0. (A,D(A)) is the
so-called weak generator of ξ. It is known ([Per02, Corollary II.2.3]) that D(A) is bp-dense
in bE(E). We adopt the following standard notation:

• MF (E), M1(E) denote the spaces of finite, respectively probability measures.
• (ΩF ,F), (Ω,G) are the sample spaces of (compact-open) continuous mappings

(C([0,∞),MF (E)) respectively C([0,∞),M1(E)) with their respective Borel σ-fields.
• Wt(ω) = ωt, Xt = ωt denote the coordinate mappings on ΩF and Ω respectively.
• F0

t = σ(Ws : s ≤ t), Ft = F0
t+; G0

t = σ(Xs : s ≤ t), Gt = G0
t+.

2.1. Martingale problems. Let E = Rd. For each β ≥ 0, η > 0 and m ∈MF (Rd), there is
a unique probability Pm on (ΩF ,G) such that for all f ∈ D(A)

MW
t (f) = Wt(f)−m(f)−

∫ t

0

Ws(Af + βf)ds (2.1)

is a continuous (Ft)-martingale starting at 0 with quadratic variation

〈MW (f)〉t = η

∫ t

0

Ws(f
2)ds . (2.2)

Pm is the law of the critical or supercritical A-Dawson-Watanabe process with drift β and
branching variance η.

Remark 2.1. There is substantial theory on the existence, uniqueness, path properties and
high density limits for Dawson-Watanabe superprocesses under conditions far more general
than required here. However, the martingale problem and the connection to finite populations
motivate the study of long-time behaviour of our model. Hence, we will expand upon Example
10.1.2.2 in [Daw93] and remind the reader of some basic points in the case E = Rd while
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neglecting details similar to those handled in [Daw93] and [EK86]. It follows from the proofs
of Theorems 9.4.2 and 9.4.3 of [EK86] that the local martingale problem:{

exp(−Wt(f)) +
∫ t

0
exp(−Ws(f))Ws

(
Af + βf − η

2
f 2
)

ds
is a local martingale for all non-negative f ∈ D(A) ,

(2.3)

is well posed. (Technically, one could first follow [EK86, Theorems 9.4.2 and 9.4.3] to get
well-posedness of the martingale problem. Then, for a potential local martingale solution

W , we realize that Mλ
t
.
= exp(−λWt(1)) +

∫ t
0

exp(−λWs(1))
(
λβ − λ2η

2

)
Ws(1)ds is actually

a martingale and use the argument on p. 403 of [EK86] to show Pm[Wt(1)] ≤ m(1) exp(βt).
From there, it follows that any solution to the local martingale problem is a solution to the
martingale problem.) As part of justifying the use of these proofs, we note that (2.3) is the
high density limit of finite branching population models. For example, using the notation

of [EK86] and letting c ∈
(

0, 1
η

)
, we find that the population starting with n individuals,

undergoing independent A-motions with location-independent lifetime rates αn = n
c

and

having offspring probability generating function ϕn(z) = c
(
η
2
− β

n

)
+
(
cβ
n

+ 1− cη
)
z + cη

2
z2

is a well defined model for large enough n and these populations converge (pathwise) to the
solution of (2.3) as n → ∞. Next, it follows from Corollary 2.3.3 of [EK86] that the local
martingale problem in (2.3) is equivalent to the local martingale problem:{

exp
(
−Wt(f) +

∫ t
0
Ws

(
Af + βf − η

2
f 2
)

ds
)

is a local martingale for all non-negative f ∈ D(A) .
(2.4)

However, to go further, we must ensure that W is continuous. This continuity is shown
by following Theorem 4.7.2 of [Daw93] for the case β = 0 and the case β 6= 0 is converted
to the case β = 0 by Dawson’s Girsanov theorem (Theorem 7.2.2 and Lemma 10.1.2.1 of
[Daw93]) with r(µ, y) = β and Q(µ; dx, dy) = δx(dy)µ(dx). (This theorem is stated in terms
of a larger domain but we already have uniqueness for the smaller domain in (2.3).) Now,
by this continuity, the local martingale problem (2.4) is equivalent to the local martingale
problem (2.1-2.2) by e.g. Theorem 6.2 [CW90]. Finally, we show that each MW

t (f) in
(2.1) is a martingale for any continuous local martingale problem solution W by showing
Pm[Wt(1)] ≤ m(1) exp(βt) through stopping and Gronwall’s inequality.

The process {Wt(1)}t≥0 describes the evolution of total mass with life time

tW = inf{t > 0 : Wt(1) = 0} .

Even in the supercritical regime (β > 0), tW is finite with positive probability. Using
the martingale structure of W , we can describe the evolution of the normalized process
W = { Wt

Wt(1)
, 0 ≤ t < tW} as in the following result.

Lemma 2.2. Assume that m 6= 0. Let F t = Ft ∨ σ(Ws(1) : s ≥ 0) and µ = m/m(1). For
every f ∈ D(A)

MW
t (f) = W t(f)− µ(f)−

∫ t

0

1(s < tW )W s(Af)ds , t ≥ 0
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is a continuous (F t)−martingale starting at 0 such that

〈MW
t (f)〉t = η

∫ t

0

1(s < tW )(W s(f
2)−W s(f)2)

ds

Ws(1)
Pm−a.s.

Proof. The case when β = 0 is proved in Perkins [Per92] using Itô formula. If β > 0, the
proof follows analogously, we omit the details. �

Let C+ be the space of continuous functions φ : [0,∞) → [0,∞) such that φ(t) > 0 if
t ∈ [0, tφ) and φ(t) = 0 if t ≥ tφ for some tφ ∈ (0,∞]. Let Qm(1) be the law of W·(1), i.e.

Pm(W·(1) ∈ B) = Qm(1)(B) .

Theorem 2.3 (Perkins [Per92]). For every φ ∈ C+ and µ ∈ M1(E), there is a unique
probability Pφµ on (Ω,G) such that under Pφµ, for all f ∈ D(A),

MX
t (f) = Xt(f)− µ(f)−

∫ t

0

Xs(Af)ds , t < tφ (2.5)

is a continuous (Gt)-martingale starting at 0 and such that

〈MX(f)〉t = η

∫ t

0

(Xs(f
2)−Xs(f)2)φ(s)−1ds ∀t < tφ (2.6)

and Xt = Xtφ for all t ≥ tφ.

Remark 2.4. We will use this theorem in Polish spaces E = Rd and E = E, defined just
above (1.17). It is obtained under the assumption that E is locally compact in Theorem 2
(a) of [Per92]. The proof in [Per92] uses detailed arguments, state augmentation and worthy
martingale measure representation to change the speed of the sampling martingale relative
to the particles motions. This martingale time change argument is then used to infer the
existence and uniqueness of Pφµ from that of the law of the classical Fleming-Viot process, i.e.

P1
µ, which was only known on locally compact spaces. This is the only place in [Per92] where

locally compactness was used. The existence and uniqueness of Fleming-Viot processes on
Polish spaces have been since obtained by Donnelly and Kurtz in [DK96,DK99] based upon
earlier ideas of Dawson and Hochberg [DH82]. Therefore, Perkins’ argument carries through
in the setting of Polish spaces.

The connection between Dawson-Watanabe processes and Fleming-Viot processes with
time-varying sampling rates φ is as follows.

Theorem 2.5 ([Per92, Theorem 3]). For every m ∈ MF (E) \ {0}, set µ = m/m(1). For
Qm(1)–a.a. φ, we have

Pm
(

W

W·(1)
∈ A

∣∣∣∣W·(1) = φ

)
= Pφµ(A) ∀A ∈ G .

[Per92, Theorem 3] is in the setting of locally compact E, which is fine for our purposes as
we only use this theorem in the case of E = Rd to motivate our work.

Corollaries 4 and 5 of [Per92] further establish that for every φ ∈ C+, Pφµ is indeed the

regular conditional law Pm( W
W·(1)

∈ ·|W (1) = φ). Without loss of generality, we assume η = 1

hereafter.
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2.2. Long term asymptotics. Let E = Rd, µ ∈M1(E) and φ ∈ C+ with tφ =∞. Let Pφµ
be the probability law introduced in Theorem 2.3. Recall {Tt}t≥0 is the semigroup generated
by A. In practice, the semigroup Tt usually satisfies some asymptotical property. One
possibility is the following: for each t > 0, there exist a deterministic positive scaling c(t)
and an operator Lt such that

lim
t→∞

c(t)‖Ttf − Ltf‖L∞(E) = 0 . (2.7)

(2.7) becomes trivial if we choose Ltf = Ttf . However, we can choose a different Ltf to our
advantage. When Tt is the symmetric stable semigroup considered in Section 3, Lt can be
chosen as the projection onto a finite dimensional vector space, whose basis are the partial
derivatives of the kernel density pt(x) (see (3.4) and (3.9) to follow).

In the current section, we present a general procedure to study long term asymptotic for
Xt(f) given a test function f ∈ bE(E). The method consists of two steps. One first shows
that Xt(f) and Xρ(t)(Tt−ρ(t)f) have the same asymptotic as t→∞. Hereafter, ρ : R+ → R+

is an increasing sub-linear function, that is ρ satisfies

lim
t→∞

ρ(t)

t
= 0 . (2.8)

This step requires a certain integrability condition of the function 1/φ over R+ (see Proposition
2.7 below). Next, by (2.7), one can further deduce the asymptotic of Xρ(t)(Tt−ρ(t)f) from that
of Xρ(t)(Lt−ρ(t)f). In this second step, having chosen Lt in our favor, we find the asymptotic
of Xρ(t)(Lt−ρ(t)f) directly by other tools. In Section 3, we explain how the procedure can be
applied to study super stable processes and their occupation times.

In the context of Dawson-Watanabe processes with supercritical branching mechanisms,
this method goes back to [AH76] and has been extended to treat superprocesses with more
general Markovian motions (see for instance [LRS13,CS07]). Until recently, it seemed that
Asmussen and Hering’s method required a certain spectral gap assumption on the semigroup
Tt. However, in [KLS18], the same procedure is applied for supercritical branching Gaussian
processes. The treatment presented here contains some simplifications and improvements.

Let us now develop a stochastic integration framework which is an essential tool in our
approach. Letting MX

t (U) = MX
t (1U), we note that for every U, V ∈ E(E),

〈MX(U),MX(V )〉t ≤
∫ t

0

Xs(1U1V )
ds

φ(s)
.

In particular, (MX
t )t≥0 is a worthy martingale measure (see [Wal86, Chapter 2]). For every

adapted process {g(r, z) = gr(z) : r ≥ 0, z ∈ E} satisfying

Pφµ
∫ ∞

0

Xr(g
2
r)

dr

φ(r)
<∞ ,

one can construct the stochastic integral
∫∞

0

∫
E
g(r, z)dMX(r, z) such that

Pφµ
(∫ ∞

0

∫
E

g(r, z)dMX(r, z)

)2

= Pφµ
∫ ∞

0

(Xr(g
2
r)−Xr(gr)

2)
dr

φ(r)
. (2.9)

We refer to [Wal86, Chapter 2] for a detailed construction.
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This worthy martingale measure representation allows us to extend the martingale problem
(2.5,2.6) by an integration by parts argument. In particular, for continuously differentiable ft
in t that satisfies ft ∈ D(A) for all t and Pφµ

∫∞
0
Xr(f

2
r ) dr

φ(r)
<∞, we have that∫ t

0

∫
E

fr(z)dMX(r, z) = Xt(ft)− µ(f0)−
∫ t

0

Xr(Afr)dr −
∫ t

0

Xr(∂rfr)dr (2.10)

is a continuous (Gt)-martingale starting at 0 and such that

〈
∫ ·

0

∫
E

fr(z)dMX(r, z)〉t = η

∫ t

0

(Xr(f
2
r )−Xr(fr)

2)φ(r)−1dr . (2.11)

The particular choice fs =
∫ t−s

0
Trfdr for t fixed and f ∈ bE(E) gives∫ t

s

Xr(f)dr = Xs

(∫ t−s

0

Trfdr

)
+

∫ t

s

∫
E

∫ t−r

0

Tr̄f(z)dr̄dMX(r, z) . (2.12)

Moreover, it follows from (2.5) (and fact tφ =∞) that for every f ∈ bE(E),

Xt(f) = µ(Ttf) +

∫ t

0

∫
E

Tt−rf(z)dMX(r, z) , (2.13)

which is called Green function representation in [Per02, pg. 167]. The representation (2.13)
and (2.9) play a central role in our approach. A direct consequence of (2.13) is the following
identity

Xt(f)−Xs(Tt−sf) =

∫ t

s

∫
E

Tt−rf(z)dMX(r, z) , (2.14)

which holds for every 0 ≤ s ≤ t and f ∈ bE(E). Another consequence of (2.13) is

PφµXt(f) = µ(Ttf) . (2.15)

Lemma 2.6. For every f ∈ bE(E) and t ≥ s ≥ 0, we have

Pφµ
[
(Xt(f)−Xs(Tt−sf))2

]
≤ ‖Tt(f 2)‖∞

∫ t

s

dr

φ(r)
, (2.16)

and

Pφµ

[(∫ t

s

Xr(f)dr −Xs

(∫ t−s

0

Trfdr

))2
]
≤
∫ t

s

∥∥∥∥∫ r

0

Tr̄fdr̄

∥∥∥∥2

∞

dr

φ(r)
. (2.17)

Proof. From (2.14), (2.9) and (2.15)

Pφµ
[
(Xt(f)−Xs(Tt−sf))2

]
≤ Pφµ

∫ t

s

Xr((Tt−rf)2)
dr

φ(r)

≤
∫ t

s

〈Tr(Tt−rf)2, µ〉 dr

φ(r)
.

By Jensen inequality,

Tr(Tt−rf)2 ≤ TrTt−r(f
2) = Tt(f

2) .

Hence, 〈Tr(Tt−rf)2, µ〉 ≤ µ(Tt(f
2)) ≤ ‖Tt(f 2)‖∞. The estimate (2.16) follows. Showing (2.17)

is similar so we omit the detail. �
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Convergence along lattice times. Suppose that f is a function in bE(E). Let {tn}n≥1 be
an increasing sequence diverging to infinity such that∑

n

c(tn)‖Ttnf 2‖∞
∫ tn

ρ(tn)

ds

φ(s)
<∞ (2.18)

and

lim
n→∞

c(tn)

c(tn − ρ(tn))
= 1 . (2.19)

Proposition 2.7. Assuming (2.7), (2.8), (2.18) and (2.19), the following limit holds

lim
n→∞

c(tn)|Xtn(f)−Xρ(tn)(Ltn−ρ(tn)f)| = 0 Pφµ−a.s. (2.20)

Proof. From Lemma 2.6,∑
n

Pφµc(tn)2
[
|Xtn(f)−Xρ(tn)(Ttn−ρ(tn)f)|2

]
≤
∑
n

c(tn)‖Ttnf 2
tn‖∞

∫ tn

ρ(tn)

ds

φ(s)
<∞

by condition (2.18). An application of Borel-Cantelli lemma yields

lim
n→∞

∣∣c(tn)Xtn(f)− c(tn)Xρ(tn)(Ttn−ρ(tn)f)
∣∣ = 0 Pφµ−a.s.

Moreover, noting that Xs(1) = 1 for every s > 0, we have

c(tn)|Xρ(tn)(Ttn−ρ(tn)f)−Xρ(tn)(Ltn−ρ(tn)f)|
≤ c(tn)Xρ(tn)(|Ttn−ρ(tn)f − Ltn−ρ(tn)f |)
≤ c(tn)‖Ttn−ρ(tn)f − Ltn−ρ(tn)f‖∞ ,

which converges Pφµ-a.s. to 0 by (2.7), (2.8) and (2.19). The identity (2.20) follows. �

From lattice time to continuous time. If the cost of replacing c(tn) by c(t) for any
t ∈ [tn, tn+1] is negligible as n → ∞, then previous result can be transfered to continuous
time limit. There are several ways to obtain this. One possibility is the following result while
Section 4 provides another way. Hereafter, cn denotes supt∈[tn,tn+1] c(t).

Proposition 2.8. In addition to the hypothesis in Proposition 2.7, we assume that

lim
n→∞

cn sup
t∈[tn,tn+1]

‖Ttn+1−tf − f‖∞ = 0 , (2.21)

lim
n→∞

cn
c(tn)

= 1 , (2.22)

and ∑
n

cn‖Ttn+1(f
2)‖∞

∫ tn+1

tn

ds

φ(s)
<∞ . (2.23)

Then

lim
n→∞

sup
t∈[tn,tn+1)

c(t)|Xt(f)−Xρ(tn)(Ltn−ρ(tn)f)| = 0 Pφµ−a.s. (2.24)
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Proof. We adopt an argument from [LRS13], which utilizes the properties of the semigroup
Tt and the martingale MX

t at the same time. For every t ∈ [tn, tn+1) we have

|Xt(f)−Xt(Ttn+1−tf)| ≤ Xt(|f − Ttn+1−tf |) ≤ sup
t∈[tn,tn+1]

‖Ttn+1−tf − f‖∞ .

It follows from (2.21) that

lim
n

sup
t∈[tn,tn+1)

c(t)|Xt(f)−Xt(Ttn+1−tf)| = 0 . (2.25)

Hence, to show (2.24), it suffices to prove

lim
n→∞

sup
t∈[tn,tn+1)

c(t)|Xt(Ttn+1−tf)−Xρ(tn)(Ltn−ρ(tn)f)| = 0 Pφµ−a.s. (2.26)

From (2.14) we have

Xt(Ttn+1−tf) = Xtn(Tt−tnTtn+1−tf) +

∫ t

tn

∫
E

Tt−sTtn+1−tf(x)dMX(s, x)

= Xtn(Ttn+1−tnf) +

∫ t

tn

∫
E

Ttn+1−sf(x)dMX(s, x) . (2.27)

Similar to (2.25), we have

lim
n

sup
t∈[tn,tn+1)

c(t)|Xtn(Ttn+1−tnf)−Xtn(f)| = 0.

Together with Proposition 2.7 and (2.22), this yields

lim
n

sup
t∈[tn,tn+1)

c(t)|Xtn(Ttn+1−tnf)−Xρ(tn)(Ltn−ρ(tn)f)| = 0 Pφµ−a.s. (2.28)

Hence, (2.26) follows from (2.27) and (2.28) if we can show that

lim
n
cn sup

t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf(x)dMX(s, x)

∣∣∣∣ = 0 Pφµ−a.s. (2.29)

Fixing ε > 0 and applying the martingale maximal inequality as well as Lemma 2.6 and
(2.14), we have

Pφµ

(
cn sup

t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf(x)dMX(s, x)

∣∣∣∣ > ε

)

≤ ε−2c2
nPφµ

∣∣∣∣∫ tn+1

tn

∫
E

Ttn+1−sf(x)dMX(s, x)

∣∣∣∣2
≤ ε−2c2

n‖Ttn+1f
2‖∞

∫ tn+1

tn

ds

φ(s)
.

Using (2.18), we see that∑
n

Pφµ

(
cn sup

t∈[tn,tn+1]

∣∣∣∣∫ t

tn

∫
E

Ttn+1−sf(x)dMX(s, x)

∣∣∣∣ > ε

)
<∞ .

Applying Borel-Cantelli lemma, we find that (2.29) follows and the proof is complete. �
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Remark 2.9. In view of Proposition 2.7, to study the long-time asymptotic of Xt(f) for
a test function f , we first study the long-time asymptotic of Ttf and identify c(t) and Lt
in (2.7). Then, we establish the long-time limit for Xρ(t)(Lt−ρ(t)f) for a suitable sublinear
function ρ. This procedure will be applied throughout Sections 3 and 4.

2.3. Finite particle motivation. The inhabitation time Zt discussed in the introduction
counts the time spent (in sets) by all ancestors of all particles living at time t. It counts
common ancestors multiple times. It does not count time for particles with no living
descendants. As such it requires genealogical information that is not readily available from
the Flemming-Viot process X itself. We need to construct the historical process X associated
with X.

To motivate historical processes and the difference between occupation and inhabitation
times, we consider a finite particle approximation. Suppose that XN

t = 1
N

∑
α∼t δξαt is a

(Moran particle system empirical measure) pre-high-density limit of X. {ξα}α∈M are particles
that undergo independent A-motions/mutations and are resampled at (time-inhomogeneous)
rate proportional to N(N − 1). At a resampling time one random particle is selected to
move to another random particle’s location. This moved particle disowns her ancestors and
adopts those of the particle to which it jumped. (This common convention is consistent with
Fleming-Viot superprocesses providing distributional information about Dawson-Watanabe
superprocess populations. Sampling is simultaneous deaths and generation of offspring from
some of the dying particles.) Here, the set of multi-indices α keep track of all particles,
whether they are living at t or not, and α ∼ t means particle α is alive at time t. Naturally,
there are N particles alive at any time so XN

t is a probability measure but the actual particles
that are alive is dependent upon which particles are sampled prior to t and multi-indices
α are used to keep track of ancestors. For example, particle (1, 2, 3) would be the parent
ancestor of (1, 2, 3, 1) and (1, 2, 3, 2) for random outcomes where they all exist. Now, let ξα[0,t]
denote the ancestral path of particle α as a D(Rd)-path held constant after t so ξα[0,t](u) = ξαt
for u ≥ t. Then, our times of interest are:

Occupation: Y N
t (1O) =

1

N

∫ t

0

∑
α∼s

1O(ξαs ) ds so Y N
t (f) =

∫ t
0
XN
s (f)ds .

Inhabitation: ZN
t (1O) =

1

N

∫ t

0

∑
α∼t

1O(ξαs ) ds so ZN
t (f) =

∑
α∼t

∫ t

0

f(ξα[0,t](s)) ds.

for O ⊂ Rd and f ∈ B(Rd). Theorem 1.4 in the introduction states that these two times
(after high density limits) only differ by a martingale defined in terms of this function `f i.e.
that the multiple counting of common ancestors is similar to the counting of time spent by
dead lineages. Whereas Y N

t (f) was immediately expressed in terms of the empirical process
XN , one can only easily express the inhabitation time in terms of the

Historical Process: XN
t =

1

N

∑
α∼t

δ(t,ξα
[0,t]

) in P(E) supported on Et.

In particular, ZN
t (f) = XN

t (`f), where `f(t, y
t) =

∫ t
0
f(yts)ds. (Here, E and Et are defined

around (1.17) and since XN
t is supported on Et we also have ZN

t (f) = XN
t (`tf), where

`tf(r, y
r) =

∫ t∧r
0

f(yrs)ds).) To relate occupation and inhabitation times, we express Y N
t in

terms of the historical process as well. For f ∈ B(Rd), we let j∗f(r, yr) $ f(yrr) ∈ B(E)
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and find XN
t (f) = XN

t (j∗f) so Y N
t (f) =

∫ t
0
XN
s (f)ds =

∫ t
0
XN
s (j∗f)ds. Notice, t is included

with ξα[0,t] in the definition of the historical process. This is to allow time-inhomogeneous
generator and to make support properties obvious as will be seen below. The developments of
this motivating subsection survive the process of taking high density limits while martingale
problem formulation actually gets easier. We will use the historical martingale problem below
to relate the occupation and inhabitation times now that we have expressed them both in
terms of the historical process. The first step is to define the historical process when there
are infinitely many particles.

2.4. Fleming-Viot Historical processes. Historical superprocesses were first introduced
by Dawson and Perkins [DP91]. To make our presentation manifest, we assume that (ξt, Px)
is an Rd-valued Borel strong Markov process with sample path in D := D(Rd), the Skorohod
space defined at the beginning of Section 2. The weak generator of ξ is still denoted by
(A,D(A)), µ ∈M1(E) and φ ∈ C+ with tφ =∞.

For each (r, y) ∈ E, we consider the process (Ξt)t≥0 in E defined by

Ξt = (r + t, (y nr ξ)
r+t) ,

where for every w,w′ ∈ D(Rd), w nr w
′ is the concatenation path

w nr w
′(s) =

{
w(s) for s ∈ [0, r)
w(r) + w′(s− r) for s ∈ [r,∞) .

The law of Ξ is denoted by Pr,y, namely

Pr,y(O) = P0(Ξ ∈ O) ∀O ∈ E(D(E)) .

((Ξt)t≥0, Pr,y) is called the historical process, associated to ξ, with initial position Ξ0 = (r, y).
((Ξt)t≥0, (Pr,y)(r,y)∈E) is a time-homogeneous Borel strong Markov process in E with semigroup

Tt : Cb(E)→ Cb(E)

Ttf(r, y) = Pr,yf(Ξt) . (2.30)

(See [Per02, Proposition II.2.5] for a more general result.) It is more convenient to express T
directly through ξ by

Ttf(r, y) = Pyrf(r + t, (y nr ξ)
r+t) . (2.31)

We denote by A the (weak) generator of T. A function f ∈ bE(E) belongs to the domain of
A, D(A), iff the limit

bp-lim
h↓0

1

h
(Thf(r, y)− f(r, y))

exists. In such case, we denote the limit as Af(r, y).
Let τ ≥ 0 and χ be a measure in M1(D) such that χ({y ∈ D(Rd) : yτ = y}) = 1.

Then, δτ × χ is a probability measure on E. By Theorem 2.3 there is a unique solution
(X,Pφτ,χ(≡ Pφδτ×χ)) on (Ω,G) (with E = E) to the A-martingale problem, meaning

Mt(f) = Xt(f)− δτ × χ(f)−
∫ t

0

Xs(Af)ds (2.32)

is a continuous (Gt)-martingale starting at 0 such that

〈M(f)〉t =

∫ t

0

(Xs(f
2)− Xs(f)2)

ds

φ(s)
(2.33)
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for all f ∈ D(A). The process (Xt,Pφτ,χ) is called the (time-homogeneous) historical Fleming-
Viot process. The relations (2.13) and (2.14) in the current context become respectively

Xt(f) = δτ × χ(Ttf) +

∫ t

0

∫
E
Tt−sf(r, y)dM(s, (r, y)) , (2.34)

Xu(f)− Xt(Tu−tf) =

∫ u

t

∫
E
Tu−sf(r, y)dM(s, (r, y)) , (2.35)

which hold for every 0 ≤ t ≤ u and f ∈ bE(E). In particular,

Pφτ,χXt(f) = δτ × χ(Ttf) ∀t ≥ 0,∀f ∈ bE(E) . (2.36)

It is possible to recover the Fleming-Viot process X from X. We just define the projection

 : E→ Rd

(r, y) = yr ,

and put Xt = Xt ◦ −1, MX
t = Mt ◦ −1, respectively the pushforward measures of Xt,Mt

via . Each function f in bE(Rd) induces the function ∗f in Cb(E) by ∗f(r, y) = f(yr). In
addition, for each f ∈ bE(Rd) we have

Xt(f) = Xt(
∗f) and MX

t (f) = Mt(
∗f) ∀t ≥ τ . (2.37)

If f belongs to the domain of A, then ∗f belongs to the domain of A and A∗f = Af . It
follows from (2.32) and (2.33) that (X,MX) is a Fleming-Viot process with law Pφµ, where

µ = (δτ × χ) ◦ −1.
We give a brief investigation on the support of Xt. Let Π : E→ D(Rd) be the projection

Π(r, y) = y and define an M1(D)-valued process (Ht, t ≥ τ) by

Hτ+t = Xt ◦ Π−1 ∀t ≥ 0 .

Define Dt = ΠEt = {y ∈ D : yt = y} for each t ≥ 0 and note E = ∪t≥0Et. The following
result is an analog of [Per02, Lemma II.8.1].

Proposition 2.10. Xt = δτ+t ×Hτ+t and suppHτ+t ⊂ Dτ+t for all t ≥ 0 Pφτ,χ-a.s.

Proof. We define

Λ(t) = {(r, y) ∈ E : r 6= τ + t} .
Then, by (2.34) and (2.31),

Pφτ,χXt(1Λ(t)) =

∫
D

Tt1Λ(t)(τ, y)dχ(y)

=

∫
D

E01Λ(t)(τ + t, (y nτ ξ)
τ+t)dχ(y) = 0 .

This shows Xt = δτ+t ×Hτ+t Pφτ,χ-a.s. for each t ≥ 0 and hence for all t ≥ 0 by the right-
continuity of both sides. The later assertion in the proposition statement follows from the
former. Indeed, for every O ∈ E(D),

Hτ+t(O) = Xt(Π
−1O) = δτ+t ×Hτ+t({(r, y) ∈ E : yr ∈ O}) = Hτ+t({y ∈ O : yτ+t = y}) ,

which implies suppHτ+t ⊂ Dτ+t. �
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Remark 2.11. The process (Ht)t≥τ is time inhomogeneous and is called historical super-
process in literature ([DP91,Dyn91]). In the current article, we use its time-homogeneous
counter part (Xt)t≥0. It is evident from the previous result that under Pφτ,χ, suppXt ⊂ Eτ+t.
Consequently, for every bounded measurable function f on Eτ+t

Xt(f) =

∫
E
f(r, y)dXt(r, y) =

∫
E
f(r, y)1(r=τ+t)dXt(r, y) (2.38)

and

|Pφτ,χXt(f)| ≤ ‖f‖L∞(Eτ+t) . (2.39)

In addition, it is seen from (2.33) that suppMt ⊂ suppXt ⊂ Eτ+t.

Our interest is the superprocess (Xt)t≥0 starting from a specified initial measure X0 = µ.
Hence, it is natural to simply take τ = 0 for the historical process (Xt)t≥0. In such case, the
measure χ can also be constructed (uniquely) from µ by

χ(O) = µ∗(O) = µ({y(0) : y ∈ O}) ∀O ∈ E(E) .

2.5. Occupation times and inhabitation times. The occupation time process (Yt)t≥0

associated with (Xt)t≥0 is the measure-valued process defined by

Yt(O) =

∫ t

0

Xs(O)ds ∀O ∈ E(Rd) . (2.40)

In the context of critical Dawson-Watanabe processes, the occupation time process was
introduced and studied by [Isc86] by means of Laplace functionals. Our other time of interest
inhabitation time is defined through the historical process and the counting function `f . It is
natural to ask whether `f , defined in (1.12), is measurable when restricted to E.

Proposition 2.12. For every f ∈ bE(Rd), `f : (E, E(E))→ (R, E(R)) is measurable.

Proof. First, suppose f is continuous. Then, it follows by Ethier and Kurtz [EK86, Problems
3.11.13 and 3.11.26] that D(E) 3 y →

∫ ·
0
f(ys)ds ∈ D(R) is continuous and so (r, y) →∫ r

0
f(ys)ds is also continuous. Now, let O be a closed set in Rd. Then, there exist continuous

fn such that fn → 1O pointwise by Billingsley [Bil68, Theorem 1.2] so for every (r, y) ∈ E,

lim
n→∞

`fn(r, y) =

∫ r

0

lim
n→∞

fn(ys)ds =

∫ r

0

1O(ys)ds = `1O(r, y)

by dominated convergence and `1O is measurable. Finally, the family H = {f ∈ bE(Rd) :
`f is measurable} contains 1O ∈ H for every closed set O ⊂ Rd and is closed under additions,
scalar multiplications and pointwise limits. Hence, H = bE(Rd) by the monotone class
theorem. �

Let (Xt)t≥0 be the historical Fleming-Viot process constructed in subsection 2.4. The
inhabitation time process (Zt)t≥0 associated with X is the measure-valued process defined by

Zt(O) = Xt(`1O) ∀t ≥ 0,O ∈ E(Rd) .

Xt(`f) makes sense at least for non-negative f since `f is measurable. As mentioned in
the introduction Xt(`f) satisfies martingale problem (1.13,1.14) once we know that each
`tf ∈ D(A).
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Lemma 2.13. Let f be a function in bE(Rd). Then, for every t, h > 0 and every (r, y) in E,

Th`tf (r, y) = `tf (r, y) + 1(r<t)

∫ (r+h)∧t−r

0

Tsf(yr)ds . (2.41)

In addition, `tf belongs to the domain of A and

A`tf (r, y) = f(yr)1(r<t) and A`f (r, y) = bp- lim
t→∞

A`tf (r, y) = f(yr). (2.42)

Proof. We observe that for every path ω ∈ D(Rd)

`tf (r + h, ωr+h) =

∫ r∧t

0

f(ωs)ds+ 1(r<t)

∫ (r+h)∧t

r

f(ωs)ds

= `tf (r, ω
r) + 1(r<t)

∫ (r+h)∧t−r

0

f(ωr+s)ds .

This implies that

Th`tf (r, y) = Pr,y`
t
f (r + h, (y nr ξ)

r+h)

= `tf (r, y) + 1(r<t)Pyr

∫ (r+h)∧t−r

0

f(ξs)ds ,

which yields (2.41). Equation (2.42) is obtained by differentiating (2.41) at h = 0 and then
letting t→∞. �

We observe that Z0 ≡ 0. In comparison with the occupation time process Y defined in
(2.40), it is easy to derive from (2.36) that for every f ∈ bE(E) and t ≥ 0, Yt(f) and Zt(f)
have the same mean, that is

PφµYt(f) = PφµZt(f) = µ

(∫ t

0

Tsfds

)
.

In fact, a deeper relation between Z and Y holds.

Proposition 2.14. For every f ∈ bE(Rd) and t ≥ 0

Zt(f) = Mt(`f ) + Yt(f) , (2.43)

where the process (Mt(`f))t≥0 is the continuous (Gt)-martingale defined in (1.18), with qua-
dratic variation

〈M(`f )〉t =

∫ t

0

(
Xs((`f )

2)− Xs(`f )
2
) ds

φ(s)
∀t ≥ 0 . (2.44)

Proof. Fix u > 0 and recall the bounded variant `uf of `f is in D(A) so Xt(`f) = Xt(`
u
f),

Xt(A`f) = Xt(A`uf) and 〈M(`f)〉t = 〈M(`uf)〉t for t ≤ u by (1.16) and (1.19). In addition, by
definition Zt(f) = Xt(`f ), hence we derive from (1.18) that

Mt(`f ) = Zt(f)− X0(`f )−
∫ t

0

Xs(A`f )ds .

We know X0(`f ) = 0 and have from (2.42), (2.37) that

Xs(A`f ) =

∫
E

f(yr)dXs(r, y) = Xs(
∗f) = Xs(f) ,
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for every s. This yields (2.43) and (Mt(`f ))t≥0 is a (Gt)-martingale with the required quadratic
variation by (2.33) by the arbitrariness of u. �

In relation (2.43), if the long term asymptotics of any two among the three quantities are
known, then, this implies the long term asymptotic of the other term. Since Mt(`f) is a
martingale, its analysis is subjected to martingale limit theorems. Depending on the situation
at hand, the asymptotic of one of Yt and Zt is easier than the other. This is the case for
α-stable Fleming-Viot process considered in Section 4 below.

3. Stable Fleming-Viot processes

Hereafter, we consider the specific case when A = −(−∆)
α
2 on Rd for some α ∈ (0, 2]. The

historical α-stable generator is still denoted by A. The motion of each particle has the law of
the α stable process in Rd. The associated superprocess (Xt)t≥0 constructed in Theorem 2.3
is called α-stable Fleming-Viot process. The associated historical superprocess (Xt)t≥0 with

law Pφ0,µ∗ constructed in Subsection 2.4 is called historical α-stable Fleming-Viot process. The
relation (2.37) describes the connection between X and X. In this section, we develop several
intermediate results following the guideline described in Remark 2.9. These considerations
eventually lead to the proofs of Theorems 1.1 and 1.2 stated in the Introduction.

3.1. The stable semigroup. Let Tt be the semigroup corresponding to a symmetric α-stable
process. In particular, for each test function f ,

Ttf(x) =

∫
Rd
pt(x− y)f(y)dy , (3.1)

where

pt(x) =
1

(2π)d

∫
Rd
eix·θe−t|θ|

α

dθ . (3.2)

Let f̂ be the Fourier transform of f , f̂(θ) =
∫
Rd e

−iθ·xf(x)dx. Using Fourier transform, Ttf
takes an alternative form

Ttf(x) =
1

(2π)d

∫
Rd
eix·θ−t|θ|

α

f̂(θ)dθ . (3.3)

We have seen in Subsection 2.2 that the long term asymptotic of Xt(f) depends upon
that of Ttf . It is therefore natural to study Ttf as t → ∞ for a given test function f . If
k = (k1, . . . , kd) ∈ Nd is a multi-index, we define ∂kf = ∂k11 ∂

k1
2 · · · ∂

kd
d f .

Proposition 3.1 (Semigroup expansion). Let f be a bounded measurable function on Rd

and N be a non-negative integer such that (1.8) holds. Then, we have

lim
t→∞

t
N+d
α sup

x∈Rd

∣∣∣∣∣∣Ttf(x)−
∑

k∈Nd:|k|≤N

(−1)|k|

k!

∫
Rd
f(y)ykdy∂kpt(x)

∣∣∣∣∣∣ = 0 . (3.4)

Proof. We begin with a rescaled version of (3.3)

td/αTtf(x) =
1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|α f̂(t−1/αθ)dθ . (3.5)
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The condition (1.8) ensures that the derivative ∂kf̂ exists and is continuous and bounded for
every multi-index k such that |k| ≤ N . Hence, we have the following Taylor’s expansion for

f̂(u) around u = 0,

f̂(u) =
∑
|k|≤N

∂kf̂(0)

k!
uk +RN(u) . (3.6)

The remainder term satisfies

lim
u→0
|u|−N |RN(u)| = 0 and sup

u∈Rd\{0}

|RN(u)|
|u|N

= O(1) . (3.7)

The second estimate in (3.7) comes from the first estimate, (3.6) and the fact that f̂ is
bounded. Hence, we can rewrite the right-hand side of (3.5) as follows:∑
|k|≤N

∂kf̂(0)

k!

1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|α(t−1/αθ)kdθ +

1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|αRN(t−1/αθ)dθ .

Taking into account the facts that

1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|α(t−1/αθ)kdθ = i−|k|td/α∂kpt(x)

and

∂kf̂(0) = (−i)|k|
∫
Rd
f(y)ykdy , (3.8)

we obtain

td/αTtf(x) =
1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|α f̂(t−1/αθ)dθ

= td/α
∑
|k|≤N

(−1)|k|

k!

∫
Rd
f(y)ykdy ∂kpt(x) + R̃N(x) ,

where

R̃N(x) =
1

(2π)d

∫
Rd
eit
−1/αx·θ−|θ|αRN(t−1/αθ)dθ .

Hence, it remains to show limt→∞ t
N
α ‖R̃N‖∞ = 0. In fact, we have

t
N
α sup
x∈Rd
|R̃N(x)| .

∫
Rd
e−|θ|

α

t
N
α |RN(t−

1
α θ)|dθ ,

which converges to 0 as t → ∞ by dominated convergence theorem and (3.7). (Here and
below, we use . in the standard way: A . B means there exists a constant C > 0 such that
A ≤ CB.) �

As an immediate consequence, the stable semigroup Tt satisfies (2.7) with c(t) = t(N+d)/α

and

Ltf =
∑
|k|≤N

(−1)|k|

k!

∫
Rd
f(y)ykdy∂kpt . (3.9)
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In view of Proposition 2.8 and (3.9), the long term asymptotic of Xt(f) is reduced to the
long term asymptotic along a sequence of

Xρ(t)(∂
kpt−ρ(t)) , k ∈ Nd , |k| ≤ N ,

which we will describe in Subsection 3.2.

3.2. Limit theorems for super stable processes. For each θ ∈ Rd, we denote eθ(x) =
eiθ·x, cosθ(x) = cos(θ · x) and sinθ(x) = sin(θ · x) and recall the definition of ϑkd,α in (1.6).

Proposition 3.2. Let ρ be a sublinear function such that limt→∞
ρ(t)
t1−ε0

= 0 for some ε0 > 0.
Suppose that φ satisfies ∫ ∞

0

ds

φ(s)
<∞ (3.10)

and µ satisfies (1.4). With Pφµ-probability one, we have for every k ∈ Nd that

lim
t→∞

t
d+|k|
α Xρ(t)(∂

kpt−ρ(t)) =

{
0 if |k| is odd

(−1)
|k|
2 ϑkd,α if |k| is even .

(3.11)

Proof. We note that for every function f ∈ L1(Rd), by Fubini’s theorem,

Xt(f) =
1

(2π)d

∫
Rd
Xt(eθ)f̂(θ)dθ . (3.12)

Hence,

Xρ(t)(∂
kpt−ρ(t)) =

1

(2π)d

∫
Rd
e−(t−ρ(t))|θ|αXρ(t)(eθ)(iθ)

kdθ .

In addition, from (2.5), we obtain

Xρ(t)(eθ) = µ(eθ)− |θ|α
∫ ρ(t)

0

Xs(eθ)ds+MX
ρ(t)(eθ) . (3.13)

It follows that

Xρ(t)(∂
kpt−ρ(t)) = I1 + I2 + I3 ,

where

I1 =
1

(2π)d

∫
Rd
e−(t−ρ(t))|θ|αµ(eθ)(iθ)

kdθ ,

I2 = − 1

(2π)d

∫
Rd
e−(t−ρ(t))|θ|α

∫ ρ(t)

0

Xs(eθ)ds|θ|α(iθ)kdθ ,

I3 =
1

(2π)d

∫
Rd
e−(t−ρ(t))|θ|αMX

ρ(t)(eθ)(iθ)
kdθ .

We will show that

lim
t→∞

t
d+|k|
α I1 =

1

(2π)d

∫
Rd
e−|θ|

α

(iθ)kdθ a.s. , (3.14)

lim
t→∞

t
d+|k|
α I2 = 0 a.s. and lim

t→∞
t
d+|k|
α I3 = 0 a.s. (3.15)
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By a change of variable, we see that

I1 = t−
d+|k|
α

1

(2π)d

∫
Rd
e−(1− ρ(t)

t
)|θ|αµ(et−1/αθ)(iθ)

kdθ .

This, together with dominated convergence theorem yields (3.14). For I2, we observe that

|I2| . ρ(t)

∫
Rd
e−(t−ρ(t))|θ|α|θ||k|+αdθ

.
ρ(t)

t
t−

d+|k|
α

∫
Rd
e−(1− ρ(t)

t
)|θ|α|θ||k|+αdθ ,

which due to sublinearity of ρ immediately implies the first assertion in (3.15). For I3, putting
an = en and utilizing the Borel-Cantelli lemma, we merely need to show∑

n≥1

Pφµ
(

sup
an≤t≤an+1

t
d+|k|
α |I3|

)2

<∞ . (3.16)

Set ρn = ρ(an) and note by a change of variables that∫
Rd
e−(an−ρn+1)|θ|α|θ||k|dθ . a

− d+|k|
α

n .

By Jensen’s inequality, we have

Pφµ
(

sup
an≤t≤an+1

t
d+|k|
α |I3|

)2

.

(
a2
n+1

an

) d+|k|
α
∫
Rd
e−(an−ρn+1)|θ|αPφµ sup

an≤t≤an+1

|MX
ρ(t)(eθ)|2|θ||k|dθ.

(3.17)

For each θ ∈ Rd, (Mt(eθ))t≥0 is a complex valued martingale with quadratic variations
satisfying

〈ReM(eθ)〉t =

∫ t

0

[
Xs

(
cos2

θ

)
−X2

s (cosθ)
] ds

φ(s)
≤
∫ t

0

Xs((1− cosθ)
2)

ds

φ(s)
,

〈ImM(eθ)〉t =

∫ t

0

[
Xs

(
sin2

θ

)
−X2

s (sinθ)
] ds

φ(s)
≤
∫ t

0

Xs(sin
2
θ)

ds

φ(s)
.

Hence, using the elementary identity 1− cosθ = 2 sin2
θ/2, we obtain

Pφµ|MX
t (eθ)|2 .

∫ t

0

PφµXs(sin
4
θ/2 + sin2

θ)
ds

φ(s)

.
∫ t

0

〈Ts(sin4
θ/2 + sin2

θ), µ〉
ds

φ(s)
.

Note that for every x ∈ Rd

2Ts sin2
θ(x) = 1− cos2θ(x)e−s|2θ|

α

= (1− cos2θ(x))e−s|2θ|
α

+ 1− e−s|2θ|α

. (1 ∧ |θ||x|)2 + s|θ|α .

Similarly, 4Ts sin4
θ
2

(x) = Ts(1 − 2 cosθ + cos2
θ) ≤ 2Ts(1 − cosθ) . (1 ∧ |θ||x|)2 + s|θ|α. Using

(3.10) and (1.4), it follows that

Pφµ|MX
t (eθ)|2 . |θ|2∧a + t|θ|α . (3.18)
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By martingale maximal inequality

Pφµ sup
an≤t≤an+1

|MX
ρ(t)(eθ)|2 . Pφµ|MX

ρn+1
(eθ)|2 . |θ|2∧a + ρn+1|θ|α . (3.19)

Applying the above estimate in (3.17) and a change of variables yields

Pφµ
(

sup
an≤t≤an+1

t
d+|k|
α |I3|

)2

.

(
a2
n+1

an

) d+|k|
α
∫
Rd
e−(an−ρn+1)|θ|α(|θ|2∧a + ρn+1|θ|α)|θ||k|dθ

. e
d+|k|
α

∫
Rd
e
−(e−1− ρn+1

an+1
)|θ|α

(a
−(2∧a)/α
n+1 |θ|2∧a +

ρn+1

an+1

|θ|α)|θ||k|dθ .

Observing that ρn
an
. a−ε0n and

∑
n a
−ε
n <∞ for any ε > 0, the above estimate implies (3.16).

Finally, combining (3.14) and (3.15) yields

lim
t→∞

t
d+|k|
α Xρ(t)(∂

kpt−ρ(t)) =
i|k|

(2π)d

∫
Rd
e−|θ|

α

θkdθ .

The equality (3.11) follows from here, after observing that Xρ(t)(∂
kpt−ρ(t)) is a real number. �

Proof of Theorem 1.2. We are going to verify the hypotheses in Proposition 2.8. As we have
seen previously, the identity (3.4) verifies condition (2.7) with c(t) = t(N+d)/α and Lt defined
in (3.9). We choose ρ(t) = tκ and tn = nδ with κ, δ ∈ (0, 1) such that

N + d

α
+ 1 + ε0 >

1

δ
>
N + d

α
+ 1 and

(
2N + d

α
+ 1 + ε0

)
κ >

N

α
+

1

δ
. (3.20)

It is easy to verify conditions (2.8), (2.19) and (2.22). To check the condition (2.18), we note
that ‖Ttf 2‖∞ . t−d/α‖f‖2

L2 . So we need to verify that

∞∑
n=1

nδ
N
α

∫ nδ

nκδ

ds

φ(s)
<∞ .

By Tonelli’s theorem, the left-hand side above is at most a constant multiple of∫ ∞
1

s
1
κ
N
α

+ 1
κδ

ds

φ(s)
.

The ranges of κ, δ chosen in (3.20) ensures that 2N+d
α

+ 1 + ε0 >
1
κ
N
α

+ 1
κδ

. Hence, the above
integral is finite due to (1.7) and we have verified condition (2.18). The condition (2.23) is
verified analogously. Finally, we verify (2.21). The assumption (1.9) ensures that f ∈ D(A)
and

|Af(x)| = 1

(2π)d

∣∣∣∣∫
Rd
f̂(ξ)eix·ξ|ξ|αdξ

∣∣∣∣ ≤ 1

(2π)d

∫
Rd
|f̂(ξ)||ξ|αdξ .

It follows that

cn sup
t∈[tn,tn+1]

‖Ttn+1−tf − f‖∞ . cn(tn+1 − tn) . nδ
N+d
α

+δ−1

and, hence, (2.21) is satisfied because of our assumption on the range of δ in (3.20). Therefore,

applying Proposition 2.8, we find that (2.24) is valid with c(t) = t
N+d
α and Lt defined by (3.9).
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In particular, we have

lim
n

sup
t∈[tn,tn+1]

t
N+d
α

∣∣∣∣∣∣Xt(f)−
∑
|k|≤N

(−1)|k|

k!

∫
Rd
f(y)ykdyXρ(tn)(∂

kptn−ρ(tn))

∣∣∣∣∣∣ = 0 .

The long-time limit of Xρ(tn)(∂
kptn−ρ(tn)) is given by Proposition 3.2. This implies (1.10). �

Proof of Theorem 1.1. The class of functions C2
c (Rd) strongly separates points in the sense

of Ethier and Kurtz [EK86]. From [BK10, Lemma 2], there exists a countable subset
M of C2

c (Rd) which strongly separates points and is closed under multiplication. Set

M̃ = {e−ε|·|2f : f ∈ M, ε > 0}. By Theorem 1.2, we see that with Pφµ-probability one,

(1.10) with N = 0 holds for every f ∈ M̃. An application of [KR14, Lemma 7] implies that
with Pφµ-probability one, (1.10) with N = 0 holds for every continuous functions g such that

eε|·|
2
g is bounded for some ε > 0. This yields almost-sure shallow convergence of t

d
αXt to

1
(2π)d

∫
Rd e

−|θ|αdθ λd as t→∞. �

4. Occupation times of stable Fleming-Viot processes

Let (Xt)t≥0 be the (α, φ) Fleming-Viot superprocess and (Xt)t≥0 be the corresponding
(α, φ) Fleming-Viot historical process with martingale measure M. Then, we established the
occupation time process Y and the inhabitation time process Z for X are connected through
Zt(f) − Yt(f) = M(`f), where `f is defined in (1.12). (See Theorem 1.4a and Proposition
2.14.) Using this Z − Y relation and the method described in Subsection 2.2, we are able to
obtain long term asymptotics of both time processes. As we saw earlier at the beginning of
Section 3, the (α, φ) Fleming-Viot superprocess can be recovered from the (α, φ) Fleming-Viot
historical process so we need only consider one probability measure, P0,µ∗ , which we relabel
Pµ to ease notation. Recall that Nd is defined in (1.20) and µ is a probability measure on Rd.
The following result, whose proof is presented in Subsection 4.2, is the key step in showing
Theorem 1.5.

Proposition 4.1. Assume that φ satisfies (1.22). Let f be a function in bE(Rd) such that
Nd(f) <∞. Then, the following assertions hold Pφµ-a.s.

(i) (Low and critical dimensions, d ≤ α)

lim
t→∞

Yt(f)

γd(t)
= lim

t→∞

Zt(f)

γd(t)
= κd(α)

∫
Rd
f(x)dx . (4.1)

(ii) (High dimension, d > α) The limits Y∞(f) := limt→∞ Yt(f), Z∞(f) := limt→∞ Zt(f)
and M∞(`f ) := limt→∞Mt(`f ) exist and are finite random variables. In addition, we
have the following relation

Z∞(f) = M∞(`f ) + Y∞(f) .

Remark 4.2. The condition Nd(f) <∞ ensures that
∫ t

0
Tsf(x)ds is finite for every t > 0

and x ∈ Rd. This can be seen from the following identity, which is a consequence of (3.3),∫ t

0

Tsf(x)ds =
1

(2π)d

∫
Rd
eiθ·x

1− e−t|θ|α

|θ|α
f̂(θ)dθ . (4.2)
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Indeed, when d < α, 1−e−t|θ|α

|θ|α is integrable over Rd, then the right-hand side above is bounded

above by a multiple constant of ‖f‖L1(Rd). When d ≥ α, 1−e−t|θ|α

|θ|α is not integrable as |θ| → ∞.

However, the right-hand side of (4.2) is finite if
∫
Rd |f̂(θ)||θ|−αdθ is finite. The finiteness of∫

Rd |f̂(θ)||θ|−αdθ is also necessary to control
∫ 1

0
Tsf(x)ds when d = α.

The following lemma will be useful later.

Lemma 4.3. Let f be a function in bE(Rd) with Nd(f) <∞.
(i) If d ≤ α, then for every x ∈ Rd,

lim
t→∞

1

γd(t)

∫ t

0

Tsf(x)ds = κd(α)λd(f) , (4.3)

where we recall that κd is defined in (1.21) and λd is the Lebesgue measure on Rd.
(ii) If d > α, then

lim
t→∞

sup
x∈Rd

∣∣∣∣∫ t

0

Tsf(x)ds− 1

(2π)d

∫
Rd
eix·θf̂(θ)|θ|−αdθ

∣∣∣∣ = 0 . (4.4)

Proof. Consider first the case d < α. From (4.2), we have∫ t

0

Tsf(x)ds = t1−
d
α

1

(2π)d

∫
Rd
eit
−1/αθ·x1− e−|θ|α

|θ|α
f̂(t−

1
α θ)dθ . (4.5)

Using the facts that
∫
Rd

1−e−|θ|α

|θ|α dθ is integrable and limt→∞ f̂(t−1/αθ) = f̂(0) = λd(f), we can

derive (4.3) from the dominated convergence theorem.
The case d = α is a bit more subtle. From (3.3), we have∫ t

1

Tsf(x)ds =
1

(2π)d

∫ t

1

∫
Rd
eix·θ−s|θ|

d

f̂(θ)dθds =
1

(2π)d

∫ t

1

∫
Rd
eis
−1/dx·θ−|θ|d f̂(s−

1
d θ)dθ

ds

s
,

which implies ∥∥∥∥∫ u

1

Tsfds

∥∥∥∥
∞
. ln(u)|f̂(0)| ∀u ≥ 1 . (4.6)

Now, let ε be a positive number and choose K > 0 such that∫
|θ|>K

e−|θ|
d

dθ ≤ ε

and then u > 1 such that

sup
s≥u

sup
|θ|≤K

|eis−1/dx·θf̂(s−
1
d θ)− f̂(0)| ≤ ε .

Such a choice is always possible because of the continuity of f̂ at 0. It follows that∥∥∥∥∫ t

u

Tsf(x)ds− f̂(0)

∫ t

u

∫
Rd
e−|θ|

d

dθ
ds

s

∥∥∥∥
∞

≤ 1

(2π)d

(∫ t

u

∫
|θ|≤K

+

∫ t

u

∫
|θ|>K

)
e−|θ|

d |eis−1/dx·θf̂(s−
1
d θ)− f̂(0)|dθds

s

. ε

∫
Rd
e−|θ|

d

dθ ln

(
t

u

)
+ ε|f̂(0)| ln

(
t

u

)
.
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Combining with (4.6), one has that

lim sup
t→∞

1

ln t

∥∥∥∥∫ t

1

Tsf(x)ds− f̂(0)

∫ t

1

∫
Rd
e−|θ|

d

dθ
ds

s

∥∥∥∥
∞
. ε .

Sending ε→ 0, we obtain

lim
t→∞

1

ln t

∫ t

1

Tsf(x)ds = κd(α)λd(f) .

Finally, since |
∫ 1

0
Tsf(x)ds| .

∫
Rd |f̂(θ)||θ|−αdθ, which is finite, the above implies (4.3).

In case d > α, from (4.2), we have∫ t

0

Tsf(x)ds− 1

(2π)d

∫
Rd
eix·θf̂(θ)|θ|−αdθ =

−1

(2π)d

∫
Rd
eix·θ−t|θ|

α

f̂(θ)|θ|−αdθ .

Hence,

sup
x∈Rd

∣∣∣∣∫ t

0

Tsf(x)ds− 1

(2π)d

∫
Rd
eix·θf̂(θ)|θ|−αdθ

∣∣∣∣ ≤ 1

(2π)d

∫
Rd
e−t|θ|

α |f̂(θ)||θ|−αdθ ,

which together with the dominated convergence theorem implies (4.4). �

From now on, we assume that f is a bounded measurable function on Rd such that Nd(f)
is finite. From the proof of Lemma 4.3, it follows that in every dimension,∥∥∥∥∫ t

0

Tsfds

∥∥∥∥
∞
. Nd(f)(γd(t) ∨ 1) ∀t ≥ 0 . (4.7)

By the homogeneous Markov property of ξ, we also have

sup
x∈Rd

∣∣∣∣∣Px
(∫ t

0

f(ξu)du

)2
∣∣∣∣∣ = 2 sup

x∈Rd

∣∣∣∣∫ t

0

∫ t−u

0

Tu[fTsf ](x)dsdu

∣∣∣∣ . N 2
d (f)(γd(t) ∨ 1)2 (4.8)

for every t ≥ 0.

4.1. Martingale corrector. We investigate the long time limit of the martingale difference
Mt(`f ). For each q > 1 and n ∈ N0, define

tn = tn(q) =

{
q

α
α−dn if d < α
eq
n

if d = α
so that γd(tn) = qn . (4.9)

Proposition 4.4. Let f be a bounded measurable function on Rd such that Nd(f) < ∞.

Then, (i) Mt(`f ) converges Pφµ-a.s. and in L2(Ω) as t→∞ if
∫∞

0

γ2d(s)

φ(s)
ds <∞.

(ii) lim
t→∞

Mt(`f )

γd(t)
= 0 Pφµ-a.s. if (1.22) holds.

Proof. (i) By martingale convergence theorem, it suffices to show

sup
t≥0

Pφµ[Mt(`
t
f )

2] <∞ . (4.10)

Indeed, from (2.44) and (2.36) we have that

Pφµ[Mt(`
t
f )

2] ≤ Pφµ
∫ t

0

Xs((`
s
f )

2)
ds

φ(s)
=

∫ t

0

〈Ts((`sf )2), δ0 ×m〉
ds

φ(s)
.
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We observe that for every path ω ∈ D(Rd)

`sf (r + s, ωr+s) = `sf (r, ω
r) + 1(r<s)

∫ s−r

0

f(ωr+u)du .

Thus,

(`sf (r + s, ωr+s))2 ≤ 2(`sf (r, ω
r))2 + 1(r<s)2

(∫ s−r

0

f(ωr+u)du

)2

.

Together with (4.8), this implies that

Ts(`sf )2(r, y) = Pyr
[
(`sf (r + s, (y nr ξ)

r+s))2
]

≤ 2(`sf (r, y))2 + 1(r<s)2Pyr

(∫ s−r

0

f(ξu)du

)2

. r2‖f‖2
∞ + 1(r<s)N 2

d (f)(γd(s− r) ∨ 1)2 . (4.11)

Therefore, we have∫ t

0

〈Ts(`sf )2, δ0 ×m〉
ds

φ(s)
. N 2

d (f)

∫ t

0

(γd(s) ∨ 1)2 ds

φ(s)
,

which is uniformly bounded in t by our assumptions on f and φ. The estimate (4.10) and
the convergence of Mt(`

t
f ) follow.

(ii) Let {tn} be the sequence defined in (4.9). It suffices to show that

∑
n

1

γ2
d(tn)

Pφµ

( sup
t∈[tn−1,tn]

Mt(`
t
f )

)2
 <∞ .

By martingale maximal inequality and the computations in the previous case, we see that

Pφµ

( sup
t∈[tn−1,tn]

Mt(`
t
f )

)2
 . Pφµ

[(
Mtn(`tnf )

)2
]
.
∫ tn

0

(γd(s) ∨ 1)2 ds

φ(s)
.

It remains to show that ∑
n

1

γ2
d(tn)

∫ tn

0

(γd(s) ∨ 1)2 ds

φ(s)
<∞ . (4.12)

Since γd(tn) = qn,
∑

n q
−2n <∞ and

∫ 1

0
(γd(s) ∨ 1)2 ds

φ(s)
<∞, we can replace 0 in the lower

limit of each integral above by 1. Consider the case d < α. Interchanging the order of
summation and integration, we see that∑

n

1

γ2
d(tn)

∫ tn

1

(γd(s) ∨ 1)2 ds

φ(s)
.
∫ ∞

1

∑
n: qn>s1−

d
α

1

q2n
(γd(s) ∨ 1)2 ds

φ(s)
.
∫ ∞

1

ds

φ(s)
.

In the second estimate above, we use
∑

n: qn>s1−
d
α

1
q2n
. 1

γ2(s)
. It is straightforward to verify

that in the case d = α, we have the same estimate. That is∑
n

1

γ2
d(tn)

∫ tn

1

(γd(s) ∨ 1)2 ds

φ(s)
.
∫ ∞

1

ds

φ(s)
.
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The integral on the right-hand side above is finite by our assumption. Hence, (4.12) follows
and so does the result. �

4.2. Limit theorems for occupation times. We present the proofs of Proposition 4.1
and Theorem 1.5.

Proof of Proposition 4.1(ii). Without loss of generality, we assume that f is non-negative.
The process Yt(f) is nonnegative and increasing. Hence, the limit limt→∞ Yt(f) exists. In
addition, using Tonelli’s theorem, (2.15) and (4.4), we have

lim
t→∞

PφµYt(f) = lim
t→∞

∫ t

0

µ(Tsf)ds =
1

(2π)d

∫
Rd
µ(eθ)f̂(θ)|θ|−αdθ .

Hence, by Fatou’s lemma and the fact that Nd(f) <∞,

Pφµ lim
t→∞

Yt(f) ≤ lim
t→∞

PφµYt(f) <∞ .

It follows that limt→∞ Yt(f) is a finite random variable. From Proposition 4.4, the limit
limt→∞Mt(`

t
f ) exists and is a finite random variable. Together with the relation (2.43), these

observations imply Proposition 4.1(ii). �

Proof of Proposition 4.1(i). Without loss of generality, we can assume f ≥ 0. Let q be at
least 1 and {tn} = {tn(q)} be the sequence defined in (4.9).
Step 1. Reduce to subsequence convergence: Suppose that

lim
n

Ytn(q)(f)

γd(tn(q))
= κd(α)

∫
Rd
f(x)dx a.s. (4.13)

for all q > 1. For every t ∈ [tn, tn+1), by monotonicity of Yt(f), we see that

1

q
lim
n

Ytn(f)

γd(tn)
≤ lim inf

t

Yt(f)

γd(t)
≤ lim sup

t

Yt(f)

γd(t)
≤ q lim

n

Ytn+1(f)

γd(tn+1)
.

By sending q ↓ 1, one has lim
t→∞

Yt(f)

γd(t)
= κd(α)

∫
Rd
f(x)dx. Now, Proposition 4.4 (ii) implies

(4.1).

Step 2. Reduce to µ
(∫ tn

0
Tsf ds

)
: From Lemma 2.6 and (4.7), we have

Pφµ

∣∣∣∣∫ tn

0

Xs(f)ds− µ
(∫ tn

0

Tsfds

)∣∣∣∣2 . N 2
d (f)

∫ tn

0

γ2
d(s)

ds

φ(s)
.

It follows that
∞∑
n=1

1

γ2
d(tn)

Pφµ

∣∣∣∣∫ tn

0

Xs(f)ds− µ(

∫ tn

0

Tsfds)

∣∣∣∣2 . ∞∑
n=1

1

q2n

∫ tn

0

γ2
d(s)

ds

φ(s)
.

The series on the right-hand side above appeared earlier in (4.12). The same reasoning as
in the proof of Proposition 4.4 shows that the above series is finite under condition (1.22).
Hence, the Borel-Cantelli lemma implies

lim
n

1

γd(tn)

∣∣∣∣∫ tn

0

Xs(f)ds− µ
(∫ tn

0

Tsfds

)∣∣∣∣ = 0 .
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Step 3. From Lemma 4.3, (4.6) and dominated convergence theorem, we deduce that

lim
n

1

γd(tn)
µ

(∫ tn

0

Tsfds

)
= κd(α)λd(f) .

Combining previous steps, one has the result. �

Proof of Theorem 1.5. We note that each function in C2
c (Rd) satisfies the hypotheses of

Proposition 4.1. Therefore, by an analogous argument as in the proof of Theorem 1.1 on
page 24, we can easily deduce Theorem 1.5 from Proposition 4.1. We omit the details. �
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Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR1102676

[Daw93] D. A. Dawson, Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour
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