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Exact Infinite Dimensional Filters and Explicit Solutions
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This work is dedicated to Donald Dawson not only in recognition of his outstanding
mathematical career but also for his generosity with his time and advice.

ABSTRACT. Previously, we defined infinite dimensional ezact filters as non-
linear filters which can be conveniently reduced without approximation to a
single convolution (plus a simple transformation and substitution). We showed
that such problems do exist and the observation process can be far more gen-
eral than those for exact finite dimensional filters like the Kalman and Benes
filters. Moreover, our infinite dimensional exact filters compare favorably in
terms of time efficiency and accuracy to other methods except for the finite di-
mensional exact filters that have limited utility. Herein, we broaden the realm
of applicability for our infinite dimensional exact filters including problems
with new nonlinear drifts and nonlinear dispersion coefficients. In particular,
we investigate the problem of determining which scalar continuous-discrete fil-
tering problems can be solved with essentially a single convolution with respect
to a standard normal distribution. This leads to a particularly simple filtering
algorithm because the Fourier transform of the standard normal distribution
is known in closed form and very well behaved.

1. Introduction

The classical scalar nonlinear filtering problem is concerned with estimating
functions of the current state of a scalar signal diffusion process

t t
(1.1) X =Xo+/ a(Xs)ds+/ o(Xs)dWs
0 0
based upon noise-corrupted, distorted observations

t
(1.2) Yt=Y0+/ h(X,)ds + B,
0
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where {(W;, By), t > 0} is a standard R?-valued Brownian motion and X, and Yj
are random variables such that {Xg, Yo, {(W}, B:), ¢ > 0}} are mutually indepen-
dent. More precisely, one wishes to determine the conditional expectation

(1.3) E [p(X3)IB({Ys, 0< s <t})]

for a large class of Borel measurable functions ¢ or, equivalently, the conditional
probability

(1.4) P[X, € T|B({Ys, 0< s < t})]

for all Borel sets I'. This problem is solved mathematically under appropriate regu-
larity conditions by the Kushner-Fujisaki-Kallianpur-Kunita (KFKK), the Duncan-
Mortensen-Zakai (DMZ), and the Kallianpur-Striebel (KS) equations. Indeed,
many authors have generalized these equations to allow for infinite dimensional
signal models in lieu of (1.1) and more general It6 equation models for the ob-
servations (1.2). However, regardless of model generality, these (KFKK), (DMZ),
and (KS) equations are not readily implementable on computers and further de-
velopments have been sought. There are two basic approaches: i) Allow general
models within the above Markov framework and introduce approximations to allow
computer implementation, or ii) Impose certain restrictions on the model so that
the filtering problem degenerates into a computer-convenient algorithm. We are
concerned herein with the later approach called exact filtering.

Exact filtering refers to the determination of filtering problems that yield a
(nearly) readily implementable solution without approximations as well as their
implementation schemes. The Kalman filter is the most celebrated exact filter and
was thought to be the only exact filter for many years. Here, one considers linear
equations of the form

i s
(1.5) &:%+/A&@+/UM@
0 0

i
(1.6) n:m+/0&@+&
0

(or a time-inhomogeneous variation) and the idea is to track the conditional mean
and error covariance by solving a linear stochastic differential equation and a qua-
dratic ordinary differential equation. However, nowadays, there are other known
finite-dimensional exact filters where the filtering problem also degenerates to the
solution of finite-dimensional stochastic and ordinary differential equations. For
examples of such filters the reader is referred to the works of e.g. Benes (1981),
Daum (1988) and Leung and Yau (1992).

The finite-dimensionality necessarily imposes stringent conditions on both signal
and observation processes since there has to be a fixed finite number of sufficient sta-
tistics that can be evolved according to a small number of (stochastic and ordinary)
differential equations. To avoid some of these restrictions, Kouritzin (1998) intro-
duced the concept of infinite-dimensional exact filters, where the filtering problem
degenerates into a convolution plus Bayesian update instead of finite dimensional
equations. The main benefit of infinite over finite dimensional exact filters initially
appeared to be the fact that extremely general observations are allowed at least in
the discrete-time observation setting. However, another inherent advantage of this
method is it uses highly developed, fast Fourier transform computer algorithms to
implement the convolutions. Indeed, in Kouritzin’s work all convolution is done
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with respect to a standard Gaussian distribution so one has control over errors and
can save both time and space by using the closed form for the Fourier transform of
a standard Gaussian distribution.

Whereas the observations are taken to be a continuous time Ité equation in
most mathematical studies, the case of discrete observations may be of more prac-
tical importance at least for tracking problems in, for example, the air traffic man-
agement and defense industries. Therefore, we return to the general nonlinear
diffusion (1.1) but now replace (1.2) with discrete-time measurement Y; taken at
time t; with 0 < t; < t» < ... Then, continuous-discrete non-linear filtering is
concerned with obtaining the distribution of X, conditioned on the observations
{Y;; t; <t} ie.finding P(X,|B{Y;, t; < t}). We let Pyj‘th (A, z) denote a func-
tion on B(R) x R such that (i) for fixed z, A — Py, £ (A,z) is a probability
measure, (ii) for each A € B(R), z — Py, g, (A, x) is measurable, and (iii) for each
A € B(R), Py, (A, X4, (w)) is a P-version of P{Y; € A|B(X;,)} (w). (Such a
function exists by standard methods see e.g. Theorem 33.3 of Billingsley (1986).)
Then, for simplicity, we assume:

(F1): The conditional probability measure A — Py, X, (A, z) has a density

Py;|x., (-|z) with respect to Lebesgue measure for almost all [PXt;l} z such
that = — py,|x, (y|r) is continuous and bounded for almost all y € R.
3

Then, for any A € B(R)
(1.7) [ v, @X)dy = P {Y; € AIBX,)} s
A

We use the boundedness of z — Py;|x., (y|z) to ensure that PXe,, | Vits is bounded
in (1.14) below.

Next, we notice that we are not specifying any specific model for our observa-
tions. Still, it would be contrary to the theory and practice of filtering to allow these
observations to help predict the future. Therefore, it is reasonable to assume that
given X;, = B(X,,s <t;) conditioning on Y; = B({Y;; ¢ < j}) does not provide
any extra information in the sense that:

(F2): For all A € B(R) and ¢t > ¢;, we have that £ [1XtEA|th Y, yj] =

E [1XteA|Xt]~] almost surely for each j = 1,2, ...

Moreover, in order to incorporate new observations in a tractable (Bayesian)
manner, we assume that given the current state the new observation is independent
of the past observations in the sense that:

(F3): For each 1 =0,1,2,... and y € R, we have that

(1.8) Dy a]Xe (y|th+1):ij+1!(th+1,yj)(y|th+1) Aoy

j+1
where py, (X, 1Y) (y| X¢,,,) denotes the conditional density of ¥} given
e
B (X Ti410 Y j)
This type of assumption is quite mild and suitable for filtering theory. We still

maintain that our assumptions on the observations are quite general. Indeed, we
can have observations of the form

(1.9) Yi = h(Xs,, Vi),
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where h is a nonlinear function and {Vj, k = 1,2,3, ...} is any sequence of indepen-
dent random variables.
Next, for a matter of convenience, we assume that D is an open interval,
e.g. (—o0,00), (0,00), or (0,1), in R and P(X; € D) =1for all £ > 0.
(F4): The initial law £ (Xg) of the signal has a density px, that is bounded,
continuous, and zero off of D.
and
(F5): The coefficients & : R — R and ¢ : R — [0,00) are continuous and
one-time respectively two-times continuously differentiable on D. Moreover,
there is a fundamental solution I' to the Cauchy initial data problem for

Bwu(t, z) = a(x)02u(t, =) + b(x)8.u(t, z) + c(z)u(t, z),

(1.10)
u(t)|sp =0, u(0,z) = ¢(x)
where
0.2
a(z) = éx), b(z) = 20(x)0’(z) — a(z),
(1.11)

e(x) = (0'(2)? + o(@)o" (z) — o/ (2),

such that E [1x,ealXs;] = [, T(t —t;;9, X (t;))dy for all A € B(D), t > t;
and (t,y) = [, T(t —tj;y,2) p(x)dz is the unique continuous, bounded
solution to (1.10) subject to u(t;,z) = @(x) for any continuous, bounded
p:D— R

" Then, it follows from the tower property of conditional expectation as well
as other standard results on conditional probability (see e.g. Billingsley (1986)
Theorem 33.3 and 34.5) that the continuous/discrete filtering problem is solved by
using the following three steps:

STEP 1 Set ty =0, Yy = {0,Q}, and
(112) Pxi, 120 (‘7") =PX, ($))

the density of initial state Xo;
For all 7 =0,1,2, ...,
STEP 2 Solve for PXe, |V () = q(t;j41,x) from the Cauchy problem
6t¢1j (t7 :E) = a(x)aiqj (t7 .’IZ) + b(x)aicqj (t7 :1:) + C(:L')qj (t’ $)>
(1.13)
4 ()lsp =0, 4;(tj,z) = px,,|y, (%)
STEP 3 Using Bayes’ formula with (1.7) at observation time ¢;,1, we have
that
_ 41 (Y;'+1]$)pxtj+1[yj (m)
fD Py, Xt 04 (Yj+1 |§)pxtj+1 |V; (§)d§ ’

Yl Vee D

(114) pth+1!yj+1 (37)

where py,|x, (-]") and p Xe, 0 Vi (-) denote the conditional densities of Y given X,
J
and X, ., given YV; = B({Y;; i < j}) respectively.
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In particular, (1.14) follows under our conditions from a slight modification of
Problem 33.17 in Billingsley (1986) with

flz) = Pxy, 1Y (e 9:(y) = ij+1!th+1 (y|x)
and
Py, (.’1)) = pth+1 [Vit1 (.’L’) = pth-H 1B(YVj,Yj41) (x)

The above three-step algorithm is also discussed in Chapter 6 of Jazwinski (1970).

The Kolmogorov equation in Step 2 of the above continuous-discrete filtering
algorithm is solved subject to random initial data so it can not be solved off line
but rather must be solved in real time (between observations) on a computer. Nat-
urally, this can often be done using time stepping with sophisticated multi-grid or
splitting up method on-line elliptic equation solvers. However, such methods require
very complicated computer codes and are usually less efficient than the method pre-
sented here, when our method applies. Moreover, many filtering problems result
in parabolic equations in Step 2 whose elliptic operators are neither self-adjoint
nor diffusive or drift dominant and these features make evaluation through such
traditional elliptic equation solvers more difficult. Finally, many signals evolve over
infinite domains so (1.13) should be solved over a domain like R, which is impossible
for these equation solvers and some artificial boundary conditions must be added.

To motivate our strategy, we let I'(t — 7;y,x) be a fundamental solution to
Kolmogorov’s forward equation for X = {X;; 0 <t < oo} (i.e. the density for X's
transition probability function) of (1.1). Then,

(1.15) P[X] € dyl =T(t;y,z)dy,
where X7 is defined by

t t
(1.16) XY =x+/ a(Xf)ds—f—/ o (XZ)dWs,
0 0
and Step 2 above can be rewritten as

(1.17) PXeyy 15 &) = /D T(tj+1 — tj;ﬁyx)pxtj[yj (z)dz.

Then, an alternative strategy for solving Step 2 would be to perform the indicated
integration in (1.17). However, this would require a separate integration (for each
€) and storage of ' for all 2 € D (or subdomain where Xt(x) lives) and £ “close to
z” unless convolution can somehow be used.

Herein, we investigate exact infinite dimensional continuous-discrete filters in
the single dimensional case further and find explicit representations of (1.16) for
which the filtering problem degenerates into a single convolution with respect to
a Gaussian kernel. Specifically, we show how to determine scalar (non-linear) Itd
equations which have solutions such that (1.17) can be represented by (multipli-
cation, substitution, and) a single convolution with respect to a Gaussian kernel.
Our focus is more on exposition than complete generality.

Lockheed Martin is investigating using these methods on their search, surveil-
lance, narcotic smuggling prevention, and military problems. In particular, our
convolutional methods are being evaluated for use on long range electro-optical
and infrared search and tracking problems by Lockheed Martin Tactical Defense
Systems-Eagan. All of these real world problems exhibit discrete-time observations
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and a continuous-time signal. Also, there are simulations of our infinite-dimensional
filters on a problem with a two-dimensional signal in Kouritzin (1998).

The author is grateful to anonymous referee for providing several thoughtful
comments.

2. Motivation through Gaussian signals

To motivate the method, we take the very simple case where the signal is
characterized by affine drift and constant dispersion o

¢
(2.1) X:=Xo+ / (oo + a1 Xs] ds + oW vt > 0.
0

Although this signal model does not preclude solution from a Kalman filter our
general observation model does since it allows for non-additive, non-Gaussian noise
(see e.g. (1.9)). Hence, we use the above continuous-discrete filtering algorithm
with D = R and find that the Kolmogorov equation in Step 2 becomes

(2.2)
2
o
ag;(t,x) = 7593%'(75,90) — [0 + 012]8:q;(t, 3) — ang;(t,2)  4;(t5, %) = px, v, (%),
and we can apply Feynman-Kac'’s formula (whether a; > 0 or not) in order to find

(23) pth+11yj (x) =q; (t]-+1,x) =F [pthD;j (thj) exp{—a1 X 5%}] ¥

where 6‘tj = tj+1 — tj and
t
(2.4) 7y =z — / [ + 1 Z5)ds + oW
0
However, Z% has an explicit solution

¢ #
exp [—a1t] {:c - a()/ exp {15} ds + 0/ exp {a1s} dWS}
0 0

t
= (t,x - / fdes> Vit > 0,
0
where

(2.6) @ (t,u) = exp[—ait] {u —ag /Ot exp {18} ds} , fo=—cexp{ais}.

(2.5) Z°

This means that we can represent px, |y, (x) in terms of 8t; = t;41 — t; and the
standard normal density ®(y) = \/—% exp {—y?/2} as

ot;

DX 1y; (80(5%‘»96 - o deWS))]

(27) pth_{_l!yj (:17) = eXp{—al(Stj}E

. emp i) /R Yo, (vg — E)B(E)dE

by a change of variables, where

5t ot
@8)  ve=afyf [ f2ds and Xau,(4) = px, (0008 [ feae .
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This means that p X.,,,|Y; can be evaluated by convolution, substitution, and post
multiplication as follows

(29) pth+1|yj (.’17) = exp{—alét]-} [(T(St]— * (I)) (’um)] .

(Since @ € S(R), the space of rapidly decreasing functions, it is enough that Ts;, is a
continuous, bounded function whence a tempered distribution for convolution to be
defined.) From a computer solvability point of view this convolution representation
is a dramatic improvement over the partial differential equation since now we can
replace specialized on-line equations solvers and time stepping with two fast Fourier
transforms, i.e., we can evaluate

(2.10)
2
Py, 193 (2) = 0 {18t} £ [F Loy, - 78] (02), FO(E) =exp { ~ )

where F represents Fourier transform and - denotes pointwise multiplication. The
point of this note is that p X, |V; a0 be calculated in this manner for a class of
signal models with nonlinear drift and dispersion coefficients. We need only change
the functions exp {—a16t;}, Ts,, and ;.

The case where X has constant dispersion and certain class of non-linear drift
has been handled in Kouritzin (1998), even in the vector-valued case. Herein, we
consider both nonlinear drift and nonlinear dispersion.

3. Explicit Solutions

In our motivation, we used Feynman-Kacs and then an ezplicit solution for a
simple Itd equation with affine drift and constant dispersion coefficients. We now
return to more general nonlinear models as in (1.1) and recall the definitions in
(1.11). We investigate ezplicit solutions of the form

t
(3.1) F=¢ <:v,t,/ fdes> Vt>0
0

for some functions ¢ € D x [0,00) x R — R (the extended real line) and f €
C(R; (0,00)), where ¢* satisfies

t t
(3.2) ¢ =a+ [ s+ [ olaw,  wezo

Our main contributions of the present section are: (i) to show that any explicit
solution to (3.1) with o satisfying (3.16) below is actually a diffeomorphism (¥ =
A=1(Z"(t,A(z))) of a linear stochastic differential equation dZ = (~kZf +z)dt +
dWy, 2§ = A(z) (the reverse implication that A~!(Z"(¢,A(x))) satisfies (3.1) is ob-
vious), (ii) to characterize the equations (3.2) that yield such explicit solutions, and
(iil) state the results that will be required in the next section on infinite dimensional
exact filters.

We will not concern ourselves with which explicit solutions can be used im-
mediately within our filtering development or exactly how they would be used in
filtering until the next section. Instead, we just fix some open interval D, most
typically (—o0,00), (0,00), or (0,1), and construct explicit solutions on D up to

T = inf {t >0: go(cc,t,fg fsdWs) € DC}. We assume that $o(z,t,u), -2o(z,t,u),

2 . .
and Z>¢(z,t,u) exist and are continuous on D x (0,7) x R. Moreover, we define
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Too = inf {t >0: go(a:,t,fg fodW,) = :l:oo} and assume that cp(a:,t,f; deWs) i8
almost surely continuous on D x (0, 7o,). Our first result will establish a condition
on § and o which will provide a solution to (3.2) in the form (3.1) for each = € D.
Throughout this section we assume that 3 : R — R and o : R — [0, 00) are continu-
ous functions which are one-time respectively two-times continuously differentiable
on D. We do not require that 3 or o satisfy a linear growth condition.

LEMMA 3.1. A necessary and sufficient condition for (3.2) to have an explicit
(strong) solution of the form (3.1) up until T with f continuous and positive is that

WPy , "ol _ o
(3.3) o) +—5=FW+s
for all y € D such that o(y) # 0, any constant K € R and
(3.4) o' (y)Bly) =0

for all y € D such that o(y) = 0.

ProOF. We note that t — ¢(z,t, fg fsdW,) is a continuous stochastic process
on {t < 7w}, find D° to be closed and use the stopping times (Wlth respect to
right continuous filtration {F}Y,t > 0}) 7w = inf {t > 0 : (¢, fo fsdWy) €
D¢\ J(—o00,—N] J[N,00)}. Then, we find {r >t} = Uy_;{7v >t} and 7 is a
stopping time. Next, we use It6’s formula on (3.1) to find that

t t
(3.5) d¢F = [got (a:t/o fdes>+%f2(t)<puu <xt/0 fdes>]dt

1
+f(t)<pu <$,t,/0 fdes> awy,

on {t < 7}, which matches (3.2) if ¢ (z,0, 0) =g for all z € D and

0
(3:6) 0) O = o(p) and i) 52 = (o) = 350 L4
Now, suppose (., = MT B(¢E) ds+ftM E(C’”)dWs for some continuous 3,5. Then,
tAT tAT
. = d = —o(CP)|dW,
(3.7) 0 / 18(¢E) - Bee))ds + / [0(¢) - 3(¢2)]

and the first term is a continuous local martingale with zero quadratic variation.

Therefore, both terms are zero for all ¢ > 0. This with continuity is enough to con-

clude = Band o =5 on {y eD:P( U {|¢C—-yl<i})>0Vn=1,23,..
s€Q st

where Q* denotes the non-negative rationals. Moreover, we can use (3.6) (i) to find

that

= a g
(35) o2 - 102525 - 2y,)

which can be used to reduce (3.6) (ii) and we find that (3.2) has an explicit solution
of the form (3.1) if and only if ¢ (z,0, 0) =z and

(39 )52 = 228 and () G = B1) -

o' (@)ole)
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However, this is equivalent to saying that the 1-form

. alp) o'(p)o(y)

is exact whence closed over R x (0, 00). Therefore, the (3.2) has an explicit solution
of the form (3.1) if and only if ¢(z,0,0) = = and

iy STEBE) L [y - ZenbORlmL)]
Yet, the left hand side of (3.11) is easily calculated (with aid of (3.9)) to be
do(p) _ U/(sp)ﬁ(w) _([@@)aly)  ale)f' @)

dat f(t)  f(®) 21(t) F2()
and the right hand side of (3.11) to be

(3.13) B(p)ale)  o"(@)(a(e)?® _ (d'(¥))?a(p)
' f@) 2f(8) 2@

Comparing these last two equations and making cancellations, we find that

o' () F'@) _ oy ' (p)ole)

— 28e) — Ty = B0 - T

(3.12)

(3.14) 0= 0
whenever o(¢) # 0. Since this equation must hold for all ¢ and ¢ with o(¢) # 0
we find that

4
L8 — ko 1(6) = £ exp (st
for some constant k € R. The case where o(y) = 0 follows easily by setting the
right hand side of (3.12) to be zero and noting that (3.13) is also zero. O

(3.15)

This lemma allows us to check whether a given SDE has an explicit solution
of the form given above. However, from the our filtering point of view, we need to
actually construct the explicit solutions and determine if convolution can be used.
This problem was already partially solved in Kouritzin and Li (1998) and, some
interesting examples are given there. Other work on explicit solutions has been
done by Doss (1977) and Sussmann (1978).

Now, we will assume that o(z) > 0 almost everywhere on D. We know by
continuity that our explicit solutions can not explode i.e.hit +oo in finite time
unless 7., < oo. However, our construction does not preclude a possible escape
from D when D is a strict subset of R. In this case, our explicit representation may
end at the escape time 7.

PROPOSITION 3.2. Suppose that o(-) € C(R; [0, ))NC (D, (0,00)) is a given
dispersion coefficient and A € D (the closure of D) are such that

(3.16) Mly) = /)\y —&% < 0o vy € D.

(Ax(y) is negative when y < A and monotonically increasing.) Then, (3.2) has an
explicit solution of form (3.1) up to T = inf {t >0: ga(x,t,fg fsdW,) € Dc} if and
only if

(3.17) B(z) = (X — rAx(z) + %0/(55)) o(z) Vx € D,
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for some constants x,x € R. In this case, we let (a,b) = Ax(D) be the range of Ay
for some —oo < a < b < o0, set f; = exp{ks}, and take

A;l(u+Xf0 f;tdstA,\(a:)) b u+xf0 f;iis-!—AA(m) <b
(3.18)  (z,t,u) =< inf Ay ra<y< b} udx Jy fodstAn(x) <a

ft
sup {A;(y) :a <y < b} M?EM >b
Proor. Inasmuch as the value of A does not effect the proof we will consider
the case A = 0 and let A = A to ease the notation. Clearly, 3(z)o’(z) = 0 whenever
z € D and o(z) = 0. Moreover, when o(z) # 0 we find that

(319)  F@)+r = (x-rh@)+ 30 @)’ (@) + 30" (2)o(e)

Therefore, it follows from the previous lemma that there is an explicit solution.
Now, suppose we have such a solution. Then, by the previous result again it must
satisty the overall equality in (3.19), which we can simplify in the case o(z) > 0 to

d <6(x)> _dz) &

dz \ o(z) 2 ola)

(3.20)

or taking anti-derivatives to

o'(z)

(3.21) @) = | 72 - ma) + x] o),

for any constant x € R. Now, since [ 42 < oo for all y € D the set {z : o(z) = 0}

0 o(x)
must have measure zero and (3.21) holds for all z € D by continuity. Then, using
the fact 922 — (7> We find that ‘“\;—;(?’)L:Aw) = o(y) and this can be used to
show that ¢, as defined in (3.18), is a solution to

_olp) o'(p)a(y)
(3.22) do = mdu =+ [5(%?) = f} dt

and wherefore by the proof of the previous result is a valid function to represent
our explicit solution as (¥ = ¢ (x,t, f(f fdes)‘ Since ¢ (,0,0) = z, (¥ starts in
D and will leave D if 7 < oc. O

ExaMpLE 3.3. We first take D = R and consider the case o(z) = ¢ is a
constant. Then, we find that (3.2) has an explicit solution of the form (3.1) if and
only if

(3.23) Bl)=xoc—kz VzeR
and some constants x, s € R.

Naturally, this just corresponds to the class of Gaussian solution that we dis-
cussed in the previous section. However, we can also consider examples with dif-
ferent dispersion coefficients.
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ExXAMPLE 3.4. We consider the dispersion coefficient of a Feller branching dif-
fusion

(3.24) o) = { \6‘? r=0

with D = (0,00). In this case, Ag(z) = 21/ for all z > 0 and so (3.2) has an
explicit solution of the form (3.1) if and only if

(3.25) B(z) = (X\/_ — 2KT + i—) Yz >0

and some constants x,x € R. This positive drift of 411 when x = 0 will not allow
0 to be an absorbing state for (3.2). However, the noise is not “turned off” fast
enough to prevent our explicit solutions

1/ ?
(3.26) &=3 < / e "= [dW, + xds] + 2\/3_36_"”)
0

from hitting zero.

We can also consider the case of the dispersion coefficient corresponding to
geometric Brownian motion. In this case, we can not use A = 0.

ExAaMPLE 3.5. Suppose that D = (0, 00) and

0 z<0

Then, we find that Aq(z) = In(z) for all z > 0. Therefore, (3.2) has an explicit
solution of the form (3.1) if and only if

(3.28) Blx) = (Xx — kzIn(z) + g) Vo >0

(3.27) o) = { z 220

and some constants x, s € R. Our solution (¥ = exp [fot e~ =) [dW, + xds]+
e "' In(z)] remains positive and does not escape D.

Finally, we can consider an example with a finite interval.

EXAMPLE 3.6. Suppose D = (0,1) and o is the dispersion coefficient corre-
sponding to the Wright-Fisher models in population genetics:

_ z(l—2z) O<z<l1

(3.29) o(z) = { 0 r<0z>1
Then,

1/2 -z

— ~ . —

(3.30) Ao(z) = cos < 172 ) and i1/ml Ao(z) = .
Hence,

1/2 —
(3.31) Bz) = (X — Kcos ! ( /1/2 x)) z(l—2)+ i(l — 2z).
Since B(0) = + and B(1) = —1 there are no absorbing states. However, our explicit

solutions ¢F = [1 — cos (fg e ~(t=3) [dW, + xds] + cos ! (1/12/53”))]/2 will hit 0 and
1.
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4. Filtering algorithms

We will now tie our explicit solution ideas into our filtering interests through
the general framework set forth in the Motivation through Gaussian signals section.
We will show that there are at least two forms of potential generality for filtering
problems that can be solved by exact infinite-dimensional filters, one through pa-
rameters in the Riccati equation solutions below and the other through choice of
explicit solution. Alternatively, these generalities can be thought of as ways of
choosing and decomposing fundamental solutions to Step 2.

REMARK 4.1. Clearly, the most obvious method of obtaining an interesting
class of filtering problems from our explicit solutions is through state space dif-
feomorphism, i.e. to form signals from A~1(Z*(¢, A(z))) for some linear stochastic
differential equation Z* and observations Y; = h(A(X4;, V;) = h(Zy;, V;). However,
this method would not include analogs to the important Benes filter nor seem to re-
quire much discussion. Therefore, we embark along a somewhat different path more
aligned with substitution of variables and decomposition of fundamental solutions.
Indeed, it is possible by solution of the Riccati equations below to come up with
exact infinite dimensional filters with constant dispersion coefficient and nonlinear
drift signals. Example 3.3 shows that these can not be handled by diffeomorphism
to linear stochastic differential equation alone.

Following the ideas of Section 2, we would be tempted to apply Feynman-Kac’s
formula immediately on (1.13) to find that

i

8t
1) px,,, (@) = ¢t,2) =E lpxtﬂyj(zftj)exp {/0 C(Zi,”)ds} Vs
where 0t; = t;41 —t; and Z” solves
t t
(4.2) Zy = a:+/ b(Z3)ds —i—/ o(Z3)ydWs Vz e D.
0 0

REMARK 4.2. A sufficient condition to apply Feynman-Kac’s formula in the
present setting with v = {t > 0: |Zf| > N} is that

TN
(4.3) lim E sup [exp{/ c(Zf)ds} ]‘TN<§tj:| < 00,
0

M—oo N>M
which is certainly true when ¢ : R — (—o0, C] for any C > 0.

However, returning to (4.1), we see that there now is dependence upon the
whole process distribution for Z* in (4.1) meaning that convolution will not be
immediately possible in Step 2 of the Introduction. Hence, our first task will be
to remove the dependence on ZZ for s # ¢. This is most readily done by changing
the potential term in Equation (1.13) of Step 2 into a constant term through a
substitution of variables and Bernoulli order reduction:

LEMMA 4.3. Suppose thatT > 0,n € R, m(z) = Zbcfa)) and v solves the equation

(4.4) dr(t,z) = a(@)dir(t,z) + Bx)der(t,z) +nr(t ),
r(0,2) = ¢(z)
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on D or some open interval containing D, where B(z) = 2u(z)a(z) and pu solves
the ordinary differential equation
dp(z) _ dm(z)

_ 2 2

n = c(z)

a{zx)
almost everywhere on D. Moreover, assume that fj |u(2) — m(z)|dz < 0o for some
Y ER and all x € D and

(4.6) lim v(t, z) exp { / " ) — miE) dz} =0

(4.5)

for each y € D, t € [0,T). Then, u(t,z) = v(t,z)exp {fi ui(z) — m(z)dz} solves
the equation

(4.7) oiq(t,z) = a(x)02q(t,z) + b(x)dxq(t, z) + e(z)q(t, ),
105) = dla)ex { [ #e) = mieddz}  attlpp =0

on [0,T] x D.

Naturally, this result is proved by substitution and cancellation. Preceding
formally for the moment, we know from (F5) that Equation (1.13) in Step 2 of the
introduction with the added Dirichlet boundary condition has a unique solution,
which must be given by:

(4.8) Px,,,1v;(2) = v5(tj11,2) exp {A w(z) - m(z)dz} ;
where m(z) = %, i is a continuous solution to (4.5), B(z) = 2u(z)a(zx), and
(4.9) Owjlt,z) = a(2)02v;(t,z) + B(x)0v;(t, x) + v, (t, z),

5(60) = by @) exp | /jm(Z)—u(Z)dZ}-

Now, we can apply Feynman-Kac’s formula to v; to find that

(410) b, (@) = B |0(CE,) exp {n x 6t;}] exp { /w FCE m(z)dz} :

for each z € D, where

3
(4.11) e(o:pxﬁ.yj(axexp{ /¢ m(Z)—u(Z)dZ} v¢ € D,

t %
(4.12) F=x+ /0 B(¢T)ds + /O o(CEYAW, Wt > 0.
However, suppose
o Bly) , " Woly) _ .
(4.13) g I R By +s

for all y € D such that o(y) # 0 and some constant s € R,
(4.14) o' (y)By) =0
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for all y such that o(y) = 0, and [ % < oo for all z € D and some A € R. Then,
¢* has an explicit solution for each z € D of form

sds + Ax( s )W
(4.15) ¢ = A}! (Xfof oF Af Jo(=12) ) Vo<t<T,
¢
t
7T = inf {t >0: go(x,t,/ fsdW) € DC} ,
where f, = exp {ks} and A\(y) = [} U(I for all y € D. Thus, if P(r > 6t;) =
we find that px, v, (x) can be evaluated by
(4.16)
xJo" fsds + Mn(@) = fo" (= fs)dW.
Px.,, ;@) = E|0(A )| % Hy(dt;,2),
7 Jot;
where
(4.17) Hy(t,xz) = exp {n xt+ / pw(z) — m(z)dz} vVt >0,z € D.
P

However, letting

(XIS feds /[ 2ds xy M)
(4.18) Yst;(y) = O(A, ),
ftstj / f2d
we find that
5t :
7 fsds + A ) AW
(4.19) E |0(A}! (Xfo fods + (@) = Jo (=) ) ]
fot,
= [ Yoy 0s ~ OB dE = (T, » D)),
R
where ®(y) = \/1— €Xp { k } is again evaluated via convolution.
Now, we suppose again that our signal is
¢ ¢
(4.20) X =Xo —I-/ a(X,)ds +/ o(Xs)dWs, X, C D
0 0

and determine a class of a corresponding to a particular o for which filtering through
convolution with a standard normal distribution is possible. In particular, we as-
sume that Conditions (F1-F5) are true, so we can use the Three-Step Algorithm
with

(4.21)
(@) = T, b(a) = 20(2)0'(2) = a(a), e(z) = (¢'(2)? + o(z)o" (@) — /(2.
Then, it follows from (4.21) and m(z) = b(z)/o*(x) that
dm/(z) 2¢(z) d [ afz) o?(z)
(4.22) s +m?(x) — o) ~ @ (Ug(x)> + 1(2) Vz € D.

Moreover, we know from our section on explicit solution that

@) Bl) = (x—rAE) + 50 @)ol@),  wle) = B0 @)
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on D so
(4.24)

o’(z)o(x o' (z))?
__d;;ix) + pi(z) = 021@) { (x; (@) _ K — (o'(=))” (4)) + (x — kAx(2))?| Vz € D.

This can be substituted into (4.5) together with (4.22) and the definitions in (4.21)

to find that
d ofz) ( o(z) >2 B
+ - Q(‘r)a

de o?(z) ' \o?(z)

(4.25)

o"(R)ot@) _ () _ 9y — &+ (wha(z) —x)?
Q(z) = ;
o2(2)

which is a Riccati equation in :2—((% to be solved on D. Furthermore, (4.23) and

@ =Ppx,,|y; can be substituted into (4.9) to find that

(4.26)
o?(z) o'(x)

2

O (t, @) = Oow;(t,z) + (x — A () + Yo (x)0,v;(t, ) + nv; (¢, T),

v;(t5,2) = p(x) exp {/7: m(z) — /L(z)dz} vV € D.

To implement Step 2 as a convolution, we require a solution for (4.25,4.26)
for some constants k,7, X, \,¥ € R. However, to be a valid signal process we also
require that (4.20) have a unique-in-law weak solution. Finally, we also need to be
able to apply Feynman-Kac’s formula in (4.10), satisfy (4.6) with v; in place of v
and have P(r > 6t;) = 1. These criteria motivate the following definition.

DEFINITION 4.4. Suppose D is some open interval, o € C(R, [0,00)),and o|p €
C2(D,[0,00)). Then, @ : R — R corresponds to an infinite-dimensional exact

Gaussian filter if: (i) =2 is a C'(D,R)-solution to (4.25) for some collection of
o?(x) .

x—eha)—go() :2((22)) 1 dz < oo for all x € D, the

a(z)

x

constants s, 1, x, A € R, (ii) fu')

same &, X, A, and some v € R (iii) there exists a solution v; to (4.26) such that
_ zx —kA(2) — 30'(2)  alz)
1 i(t, dz b =
ey v; (t, ) exp {/w o(z) T o?(z) “ 0

Yy € 0D,t € [tj,tj+1]

for these constants &, 7, X, A\,¢0 and every continuous, bounded, non-negative ¢ on
D with ¢|yp = 0, (iv) there is a (unique-in-law) weak solution X to (1.1) such
that X; C D and Condition (F5) is true, and (v) our explicit solution from (4.15)
satisfies

¢TrN)
(4.27) im E |isup exp lQ/ m(z) — u(z)dzjl 17—N<6tj:1 < 00

|
M—oo N>M b

for each z € D with 7% = inf {s > ¢:|(¥| > N} in order that the Feynman-Kac
formula applies in (4.10) and P(7 > t;) = 1 with 7 as defined in (4.15).
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REMARK 4.5. (ii) is precisely the condition in Lemma 4.3. Suppose ¥ € D.
Then, fj ;az,%)) dz < oo for each € D by (i). To utilize (v) in Feynman-Kac’s
formula at (4.10), we use the fact that v; (¢, z) x exp Uj u(z) — m(z)dz} is bounded.
We are investigating new methods that may combine and reduce conditions (ii),
(iv), and (v).

This definition allows us to convert the previous formal development into a
theorem and a procedure:

THEOREM 4.6. Suppose Conditions (F1-F4) are true, o € C (R, [0,0)), o|, €
C? (D, [0,00)), and « corresponds to an infinite-dimensional exact Gaussian filter.
Then, Pth 1y;(*) has a density that can be calculated via the following algorithm:

1. Store the functions

AN (@)
(4.28) F(x) = exp {/w m(z) — u(z)dz} VzeR

Hy(0t;,x) = exp {77 X 0t; +/ wu(z) — m(z)dz} VreR
¥

vy = Ax(x)/ / f2ds VzeR
0

2. Store the constants
5t;
X fo ? feds

[ 16t
fo °f 52 ds
4.29 a=-"+———andb=""——
( ) f(;tj f5tj
3. P,y 130 (%) = Pxo (* Step 1 of Introduction *)
4. Do for 7 =0,1,2,...
(a) Form Z(z) = Px.,|y; (A;l(az)) x F(x)
(b) Take a (Fast) Fourier transform = of Z
(¢) Pointwise multiply in frequency domain

s p S 2
B(¢) = [Lexp (126) E(¢/a)| ex [-5 ]
(d) Take inverse (Fast) Fourier transform ¥ of T
(e) Substitute in and post multiply PX.,,, % () = ¥(vy)Hy (085, x)
(f) Wait for the next observation Y;i1(w).
(g) Evaluate the Bayes’ rule update (* Step 3 of Introduction *)

_ ij+1|th+l (Y;+1Ix)pxtj+1|yj (IL‘)
f]R ij+1Ith+1 (}/j+1 IZ)pth+1 |V; (z)dz

In particular, to save time, one can work with unnormalized conditional densi-
ties and avoid the calculation of and division by [ py, .| - (Yi+1l2)p Ko V5 (2)dz
until one wishes to integrate with the density P, Vi to e.g. form the condi-
tional mean. Indeed, it could be avoided entirely if one only wishes to obtain a
maximum a posteriori estimator of X;__,.

Finally, we turn to question of finding o’s corresponding to infinite dimensional

Gaussian filters. We know that (4.25) is a Riccati equation with a continuous right
hand side @. Such Riccati equations have been heavily studied. Most solutions on

(4—30) pth+1|yj+1 (l‘)
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D are not solvable by quadrature. There are some well known methods to employ
in trying to establish solutions. First, if the solution to the linear equation

(4.31) [Z']:H (?:][fu] [fv((a;:oo))}=[gf(x0)}

satisfies w(z) > 0 for all x € D. Then, y = z/w is a solution to (4.25). Once,
one solution y; (say) has been found others can be found by solving (the linear
equation)

(4.32) v =20+ 1

and setting y = y; + % provided v # 0 on D.

Most often one solves (4.25) or (4.31) on a computer. Naturally, in our appli-
cation this can be done off-line long before the filtering procedure starts. We give
a couple of simple examples of solutions:

EXAMPLE 4.7. Suppose that D = R and Q(z) = (¢;)? for all z € R and some
constant ¢;. Then, y(z) = c¢; tanh(c;x) solves (4.25). Comparing Q(z) = (c1)?
to (4.25), one finds that this is possible when o(z) = ¢y (some constant) as in
Example 3.3. This present example is related to the work in Kouritzin (1998) and
the original filter of Benes (1981).

EXAMPLE 4.8. Suppose that D = (0,00), 0 < zp < oo, and Q(z) is non-
negative and continuous on D. Then, there exists a unique continuous solution
to

(4.3 2 @)+ @) = Q) yleo) =0

on D. This solution satisfies y(z) > 0 for all z > z¢ and y(z) < 0 for all z < xp.
The condition 2n+x < —4 will ensure that @ remains non-negative for o(z) = z as
in Example 3.5. There are better results on Riccati equations in many textbooks.
We have just given a simple result whose proof is immediate.

In the above example (as well as on different domains), it is well known that
there still can be solutions without the constraint that @ is non-negative provided
that it does not become “too negative”. Still, even when there is a solution y
to (4.25) one must check that o = y - o2 corresponds to an infinite-dimensional
exact Gaussian filter. This has been done for simple multidimensional examples in
Kouritzin (1998) together with simulations and more examples are being worked
on.
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