
Bayesian Model Selection via Filtering
for a Class of Micro-movement Models of
Asset Price 1

Michael A. Kouritzin and Yong Zeng2

Department of Mathematical and Statistical Sciences, University of Alberta, Edmon-

ton, Alberta T6G 2G1, Canada. (e-mail: mkouritz@math.ualberta.ca).

Department of Mathematics and Statistics, University of Missouri at Kansas City,

Kansas City, MO 64110, USA. (e-mail: zeng@mendota.umkc.edu).

Abstract. This paper develops the Bayesian model selection based on Bayes
factor for a rich class of partially-observed micro-movement models of asset price.
We focus on one recursive algorithm to calculate the Bayes factors, first deriving
the system of SDEs for them and then applying the Markov chain approximation
method to yield a recursive algorithm. We prove the consistency (or robustness)
of the recursive algorithm. To illustrate the construction of such a recursive al-
gorithm, we consider a model selection problem for two micro-movement models
with and without stochastic volaltility, and provide simulation and real-data ex-
amples to demonstrate the effectiveness of the Bayes factor in the model selection
for this class of models.

Key words: Bayes factor, Counting process, Filtering, Markov chain approxi-
mation method, Model selection, Price clustering, Transaction data

JEL Classification: C11, C63

Mathematics Subject Classification (1991): 62F15, 62M02, 93E11
1We are grateful to Thomas G. Kurtz for his inspiration and insightful, productive conver-

sations. We also thank participants at the Workshop on Filtering Theory and Applications
(2002) held at University of Alberta, the IMS Annual Meeting/The fourth International Proba-
bility Symposium (2002) at Banff, Canada, the fourth Winemiller Statistics Symposium (2003)
at University of Missouri - Columbia, Canadian Mathematical Society Summer 2003 Meeting
at University of Alberta, and seminar participants at University of Alberta, University of
Kansas, University of Missouri at Kansas City, and University of Wisconsin at Madison for
helpful comments. The work is partially supported by Faculty Research Grant of the Uni-
versity of Missouri at Kansas City as well as an NSERC discovery grant and the MITACS
Canadian network of centers of excellence.

2Yong Zeng is the corresponding author.

1



1 Introduction

Asset price models can be classified into two broad categories: macro- and micro-
movement models. Macro-movement refers to daily, weekly, and monthly clos-
ing price behavior and micro-movement refers to transactional (trade-by-trade)
price behavior. There are strong connections as well as striking distinctions
between the macro- and micro-movements. Zeng (2003) proposed a class of
partially-observed micro-movement models that can tie the sample characteris-
tics of micro- and macro-movements together in a consistent manner. The most
prominent feature of the class of models is that the micromovement model is
characterized as a filtering problem with counting process observations. Under
this representation, Zeng (2003) also developed Bayes estimation via filtering for
the class of models.

Model selection, a significant and persistent area of research, evaluates which
of competing models best fits transaction price data. Moreover, to the degree
that economic theory can be modeled statistically, model selection provides a
powerful tool for testing the economic theories related to market microstructure.
The Bayesian approach provides a powerful methodology for hypothesis testing
and model selection based on Bayes factor. Kass and Raftery (1995) survey
Bayes factor in both methodology and applications. We adopt the Bayesian
approach for the model selection of the class of micro-movement models for two
reasons: Firstly, the continuous-time likelihood functions of the class of models
do not satisfy the common regularity conditions (Ghosal, Ghosh and Samanta
(1995)). Thus, model selection approaches based on maximum likelihood are not
justified, but Bayes factor methods are. Secondly, Bayes factors neither require
the alternative models to be nested in the model of the null hypothesis, nor the
probability measure of the alternative model to be absolutely continuous with
respect to that of the model in the null hypothesis. This is important for the
model selection of stochastic process, because the probability measure of the
stochastic process for the alternative model is not absolutely continuous with
respect to that of the model in null hypothesis in many cases of interest.

In this paper, we introduce one two-step approach to calculate the Bayes fac-
tor. The first step is to derive the system of two stochastic differential equations
(SDEs) that govern the evolution of the Bayes factors of Models 1 vs. 2 and of
Models 2 vs. 1. The second step is to apply the Markov chain approximation
method to the system of SDEs to develop a recursive algorithm for computing
the Bayes factors. We prove a convergence theorem guaranteeing the consistency
of the recursive algorithms. In one important case when the trading intensity is
deterministic, this direct approach has a strong computational advantage, over
the indirect approach of calculating Bayes factors as a ratio of approximated in-
tegrated likelihoods, because the trading intensity drops out of the Bayes factor.
Furthermore, we do not even need to estimate the trading intensity.

To illustrate the construction of such a recursive algorithm, we consider a
model selection problem for two micro-movement models of asset price. One
model is built upon geometric Brownian motion (GBM) and the other upon
GBM with jumping stochastic volatility (JSV-GBM). Simulation is conducted
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to demonstrate the effectiveness of the Bayes factor in the model selection. As
a real-world application, the model selection procedure is applied to an actual
Microsoft transaction data set and the Bayes factor calculated provides abundant
evidence that JSV-GBM fits the data better.

The rest of the paper goes as follows. Section 2 reviews the methodology
of Bayesian model selection, the class of micro-movement models and related
results in Zeng (2003). Section 3 derives the system of SDEs for the Bayes
factors and proves an important convergence theorem. Section 4 contains an
illustrative model selection problem and constructs the recursive algorithm for
the Bayes factors in detail. Simulation results and the actual data application
are also presented in Section 4. We conclude in Section 5.

2 Review
We begin with the definition of Bayes factor (Kass and Raftery (1995)).

2.1 Bayes Factor and its Interpretation

Suppose that data set D is generated by one of the two models: M1 (Model
1) or M2 (Model 2), where Model k, k=1,2, has the vector parameter, θk. We
let pr(D|θk,Mk) be the likelihood function for D given the parameter θk, and
π(θk|Mk) be the prior density of θk under Model k. Define the integrated (or
marginal) likelihood of Model k as

pr(D|Mk) =
∫
pr(D|θk,Mk)π(θk|Mk)dθk. (1)

A Bayesian statistician uses the integrated likelihood, pr(D|Mk), to measure
the chance that D is generated by Model k with the prior π(θk|Mk). The Bayes
factor of Model 1 over Model 2 is defined as the ratio of integrated likelihoods:

B12 =
pr(D|M1)
pr(D|M2)

. (2)

Jeffreys (1961) argued that the Bayes factor is a summary of the evidence pro-
vided by the data in favor of Model 1 over Model 2. Then, he developed a Bayes
factor methodology to quantify the evidence of scientific theories, represented
by statistical models. Suppose the prior opinion is that Model 1 is true with
probability pr(M1), and pr(M2) = 1−pr(M1). The data produce posterior prob-
abilities pr(M1|D) and pr(M2|D) = 1− pr(M1|D). Since any prior opinion (i.e.
pr(Mk)) is transformed to a posterior opinion (i.e. pr(Mk|D)) through the con-
sideration of the data, the transformation itself represents the evidence provided
by the data. The transformation can be obtained from Bayes’ Theorem:

pr(Mk|D) =
pr(D|Mk)pr(Mk)

pr(D|M1)pr(M1) + pr(D|M2)pr(M2)
, (k = 1, 2).

In fact, the above transformation is used to acquire the posterior probabilities
(i.e. pr(Mk|D)), regardless of the prior probabilities (i.e. pr(Mk)). Once we

3



transfer to the odds scale (odds = probability /(1 - probability)), the Bayes
factor B12 appears

pr(M1|D)
pr(M2|D)

= B12
pr(M1)
pr(M2)

, where B12 =
pr(D|M1)
pr(D|M2)

,

and this transformation takes the simple form:
posterior odds = Bayes factor × prior odds.

Therefore, the Bayes factor can be alternatively defined as the ratio of the pos-
terior odds of Model 1 to its prior odds, regardless of the value of the prior
odds. From the above definition and arguments, we see that Bayes factors do
not require the two models to be nested, nor their distributions to be absolutely
continuous with respect to each other.

Once the Bayes factor is defined, the key question is how to comprehend
it. Kass and Raftery (1995) furnish Table 1 as the guideline for interpretation.
Similarly, we can define B21, the Bayes factor of Model 2 over Model 1. Obvi-

Table 1: Interpretation of Bayes Factor

B12 Evidence against Model 2
1 to 3 Not worth more than a bare mention
3 to 12 Positive
12 to 150 Strong
> 150 Decisive

ously, B12 × B21 = 1. If B12 < 1, then we can calculate B21 and interpret it
according to the guidelines in Table 1.

2.2 The Class of Micro-movement Models

The model proposed by Zeng (2003) is predicated on the simple intuition that
the price is formed from an intrinsic value process by incorporating the noises
that arise from the trading activity. Suppose that the intrinsic value process X
of an asset can not be observed directly, but can be partially observed through
the price process, Y . X lives in a continuous state space while Y lives in a
discrete state space given by the multiples of the minimum price variation, a
tick, which is assumed to be 1

M for some positive integer M . The combination of
(X,Y ) provides a natural partially-observed framework for the micro-movement
process. Prices can only be observed at irregularly spaced trading times, which
are modeled by a conditional Poisson process with the trading intensity function
a(θ(t), X(t), t), where θ is a vector of parameters in the model.

We assume that (θ,X, Y ) is defined on a complete, filtered probability space
(Ω,F , {Ft}t≥0, P ) and impose a mild assumption on (θ,X):

Assumption 2.1 (θ,X) is the unique solution of a R
d+1-valued martingale

problem for a generator A and initial distribution µ0, such that P{(θ(0), X(0)) ∈
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dθ × dx} = µ0(dθ × dx) and

Mf (t) = f(θ(t), X(t))−
∫ t

0

Af(θ(s), X(s))ds

is a Fθ,Xt -martingale for each f ∈ D(A), where Fθ,Xt is the σ-algebra generated
by (θ(s), X(s))0≤s≤t and D(A) is the domain of A. Specially, we assume that
D(A) contains a class of bounded, continuous functionals that separates points,
is closed under multiplication and contains the constant function, and that the
martingale problem admits a cadlag solution.

There are two equivalent methods to build the price model from the value
process. The first constructs Y from X by incorporating noises. The second
formulates (X,Y ) as a filtering problem with counting process observations. The
former approach is intuitive, while the latter approach is useful for statistical
analysis.

2.2.1 Construction of Y from X

There are three general steps in constructing Y from X. First, we specify the
value process X(t). Next, one determines trading times t1, t2, . . . , ti, . . . , which
are driven by a conditional Poisson process with an intensity a(X(t), θ(t), t).
Finally, Y (ti), the price at time ti, is determined by

Y (ti) = F (X(ti)),

where y = F (x) is a random transformation with the transition probability
p(y|x). For example, F (x) can accommodate the three important types of noise:
discrete, clustering and non-clustering. Under this construction, information
affects X(t), the asset value, and has a permanent influence on the price while
the noise affects F (x), and only has a transitory impact on price.

2.2.2 Counting Process Observations

In the above construction, we view the prices in the order of trading occurrence
over time. Alternatively, we can view them in terms of price levels. Namely, we
view the prices as a collection of counting processes in the following form:

~Y (t) =


N1(

∫ t
0
λ1(θ(s), X(s), s)ds)

N2(
∫ t

0
λ2(θ(s), X(s), s)ds)

...
Nn(

∫ t
0
λn(θ(s), X(s), s)ds)

 , (3)

where Yj(t) = Nj(
∫ t

0
λj(θ(s), X(s), s)ds) is the counting process recording the

cumulative number of trades that have occurred at the jth price level (denoted
by yj) up to time t.
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Note that Yj(t) = Nj(
∫ t

0
λj(θ(s), X(s), s)ds) is a conditional Poisson process

with the stochastic intensity λj(θ(t), X(t), t), and Yj(t)−
∫ t

0
λj(θ(s), X(s), s)ds is

a martingale. We invoke four mild assumptions so that the model in Section 2.2.1
is equivalent in distribution to the counting process observations in Equation
(3). The equivalence ensures that the statistical analysis based on the latter
specification can be applied to the former.

Assumption 2.2 Nj’s are unit Poisson processes under measure P .

Assumption 2.3 (θ,X), N1, N2, . . . , Nn are independent under measure P.

Assumption 2.4 There exist a constant, C, such that 0 < a(θ, x, t) ≤ C for all
θ, x and t > 0.

Assumption 2.5 The intensity, λj(θ, x, t) = a(θ, x, t)p(yj |x), where a(θ, x, t)
is the total intensity at time t and p(yj |x) is the transition probability from x to
yj, the jth price level, as in F (x).

Under this representation, (θ(t), X(t)) becomes the unobserved signal pro-
cess, and ~Y (t) becomes the observation process corrupted by noise, which is
modeled by p(y|x). Hence, (θ,X, ~Y ) is formulated as a filtering problem with
counting process observations.

2.3 Related Theoretical Results

We review the continuous-time integrated likelihood for the micro-movement
model, and the related filtering equation from Zeng (2003).

Recall that (θ,X, Y ) is defined on a complete, filtered probability space
(Ω,F , {Ft}t≥0, P ). Assumptions 2.2, 2.4 imply that there exists a reference
measure Q such that P is absolutely continuous with respect to Q. Under Q,
the counting processes, (Y1, · · · , Yn), are n independent unit Poisson processes,
and they are independent of (θ,X). Furthermore, Q = Pθ,x ×Q~y, where Pθ,x is
the probability measure for (θ,X) and Q~y is the probability measure for the n
independent unit Poisson processes. Suppose Py|θ,x is the conditional probabil-
ity measure of Y given (θ,X) under P . Then, the Radon-Nikodym derivative of
the model is

L(t) = L
(
(θ(s), X(s), Y (s))0≤s≤t

)
=
dP

dQ
(t) =

dPθ,x
dPθ,x

(t)×
dPy|θ,x

dQ~y
(t) =

dPy|θ,x

dQ~y
(t)

=
n∏
j=1

exp
{∫ t

0

log λj(θ(s−), X(s−), s−)dYj(s)−
∫ t

0

[
λj(θ(s), X(s), s)− 1

]
ds

}
.

(4)

Note that L(t) is the joint likelihood of (θ,X, ~Y ). To obtain the integrated
likelihood of the model, or the marginal likelihood of ~Y , we may integrate L(t)
on (θ,X), or equivalently, write the integrated likelihood in terms of conditional
expectation.
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Definition 2.1 Let F ~Yt = σ{(~Y (s))|0 ≤ s ≤ t} and φ(f, t) =
EQ[f(θ(t), X(t))L(t)|F ~Yt ].

Then, F ~Yt is all the available information up to time t. For a prior on
(θ(0), X(0)), the integrated likelihood of ~Y is EQ[L(t) | F ~Y ] = φ(1, t), which
corresponds to P (D|Mk) in Section 2.1. Note that φ(1, t) is uniquely character-
ized by the unnormalized filtering equation, presented in Theorem 2.1.

Theorem 2.1 Suppose that (θ,X, ~Y ) satisfies Assumptions 2.1 - 2.4. Then,
φ(f, t) is the unique solution of the following SDE, called the unnormalized fil-
tering equation,

φ(f, t) = φ(f, 0) +
∫ t

0

φ(Af − (a− n)f, s)ds+
n∑
j=1

∫ t

0

φ((apj − 1)f, s−)dYj(s),

(5)

for every t > 0 and f ∈ D(A), where a = a(θ(t), X(t), t), is the trading intensity,
and pj = p(yj |x) is the transition probability from x to yj, the jth price level.

For a proof of Theorem 2.1 we refer the reader to Appendix A of Zeng (2003).

3 Model Selection for the Class of Models

In this section, we study the model selection problem for the class of models
reviewed in Section 2.2. The data is a sequence of pairs {(Y (ti), ti)}, where ti
is the ith trading time and Y (ti) is the price. Alternatively, the data is viewed
as ~Y (t). To decide which of the two models better fits the data using Bayesian
methodology, we calculate the Bayes factor and then interpret it accordingly.

The first approach to using Bayes factors is to calculate the integrated like-
lihood of each model and then take the ratio. As shown in Theorem 2.1, the
integrated likelihood is characterized by the unnormalized filtering equation.
Thus, we may apply the Markov chain approximation method, similar to the
case of Bayes estimation via filtering in Zeng (2003), to the unnormalized fil-
tering equation to construct a recursive algorithm to calculate the integrated
likelihood of each model. However, this approach is not always computational
efficient as shown in an important case to be studied in sequel.

In this paper, we concentrate on an alternative two-step approach. The first
step is to derive the system of two SDEs governing the evolution of the Bayes
factors and the second step is to develop a consistent recursive algorithm to
compute the Bayes factors directly.

3.1 The Evolution of Bayes Factors

Suppose Model k is denoted by (θ(k), X(k), ~Y (k)) for k = 1, 2. Us-
ing the notation in Section 2.3, we denote the joint likelihood of
(θ(k), X(k), ~Y (k)) by L(k)(t), which is given by Equation (4). Let φk(fk, t) =
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EQ
(k)

[fk(θ(k)(t), X(k)(t))L(k)(t)|F ~Y (k)

t ]. Then, the integrated likelihood of ~Y is
φk(1, t).

Definition 3.1 The filter ratio processes are defined as:

q1(f1, t) =
φ1(f1, t)
φ2(1, t)

, and q2(f2, t) =
φ2(f2, t)
φ1(1, t)

.

Remark 3.1 We observe that the Bayes factors, B12(t) = q1(1, t) and B21(t) =
q2(1, t).
Remark 3.2 Let π(k)

t be the conditional distribution of (θ(k)(t), X(k)(t)) given
F ~Y (k)

t . Then, Bayes Theorem implies that φk(fk,t)
φk(1,t) =

∫
fk(θ, x)π(k)

t (dθ, dx) =

EP [fk(θ(t), X(t))|F ~Y (k)

t ]. Now, when the measure φ1 is normalized by φ2(1, t),
the total measure of φ2 at time t, a random (conditional) finite measure is
obtained and denoted by q

(1)
t . Similarly, q(2)

t is defined. Then, for k = 1, 2,
qk(fk, t) can be written in the integral form as

qk(fk, t) =
∫
fk(θ(k), x(k))q(k)

t (dθ(k), dx(k)). (6)

The integral form of qk(fk, t) is important in deriving the recursive algorithm.
Now, we present the theorem characterizing the evolution of q(k)

t .

Theorem 3.1 Suppose Model k (k = 1, 2) has generator: A(k) for (θ(k), X(k)),
trading intensity ak = ak(θ(k)(t), X(k)(t), ~Y (k)(t)), and transition probability
p

(k)
j = p(k)(yj |x) from x to yj for the random transformation F (k). Suppose

that Model k (k = 1, 2) satisfies Assumptions 2.1 to 2.5. Then,
(
q

(1)
t , q

(2)
t

)
are

the unique measure-valued pair solution of the following system of SDEs,

q1(f1, t) = q1(f1, 0) +
∫ t

0

[
q1(A(1)f1, s)− q1(a1f1, s) +

q1(f1, s)q2(a2, s)
q2(1, s)

]
ds

+
n∑
j=1

∫ t

0

[q1(f1a1p
(1)
j , s−)

q2(a2p
(2)
j , s−)

q2(1, s−)− q1(f1, s−)
]
dYj(s),

(7)

for all t > 0 and f1 ∈ D(A(1)), and for all t > 0 and f2 ∈ D(A(2)),

q2(f2, t) = q2(f2, 0) +
∫ t

0

[
q2(A(2)f2, s)− q2(a2f2, s) +

q2(f2, s)q1(a1, s)
q1(1, s)

]
ds

+
n∑
j=1

∫ t

0

[q2(f2a2p
(2)
j , s−)

q1(a1p
(1)
j , s−)

q1(1, s−)− q2(f2, s−)
]
dYj(s).

(8)
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When ak(θ(k)(t), X(k)(t), t) = a(t), k = 1, 2, the above two equations becomes

q1(f1, t) =q1(f1, 0) +
∫ t

0

q1(A(1)f1, s)ds

+
n∑
j=1

∫ t

0

[q1(f1p
(1)
j , s−)

q2(p(2)
j , s−)

q2(1, s−)− q1(f1, s−)
]
dYj(s),

(9)

q2(f2, t) =q2(f2, 0) +
∫ t

0

q2(A(2)f2, s)ds

+
n∑
j=1

∫ t

0

[q2(f2p
(2)
j , s−)

q1(p(1)
j , s−)

q1(1, s−)− q2(f2, s−)
]
dYj(s).

(10)

Proof: Applying Itô’s formula for semimartingale, recalling φk(fk, t) satisfies
Equation (5) for k = 1, 2 and simplifying, we have

φ1(f1, t)
φ2(1, t)

=
φ1(f1, 0)
φ2(1, 0)

+
∫ t

0

[φ1(A(1)f1, s)
φ2(1, s)

− φ1(a1f1, s)
φ2(1, s)

+
φ1(f1, s)φ2(a2, s)

φ2
2(1, s)

]
ds

n∑
j=1

∫ t

0

[φ1(f1, s)
φ2(1, s)

− φ1(f1, s−)
φ2(1, s−)

]
dYj(s).

(11)

We make two observations: The first is that

φ1(f1, s)φ2(a2, s)
φ2

2(1, s)
=

φ1(f1,s)
φ2(1,s)

φ2(a2,s)
φ1(1,s)

φ2(1,s)
φ1(1,s)

=
q1(f1, s)q2(a2, s)

q2(1, s)
.

Next, we show that the integrand of the last integral in Equation (11) is pre-
dictable. Indeed, assuming that a trade at Yj occurs at time s, one has by
Equation (5) that

φ1(f1, s)
φ2(1, s)

=
φ1(f1, s−) + φ1((a1p

(1)
j − 1)f1, s−)

φ2(1, s−) + φ2(a2p
(2)
j − 1, s−)

=
φ1(f1a1p

(1)
j , s−)

φ2(a2p
(2)
j , s−)

=
q1(f1a1p

(1)
j , s−)

q2(a2p
(2)
j , s−)

q2(1, s−).

Then, Equation(11) implies Equation (7).
When both models have the common trading intensity a(t) = a1 = a2,

Equation (7) clearly is simplified to Equation (9).
Finally, the uniqueness of Equations (7) and (8) comes from the following

lemma. �

Lemma 3.1 Suppose that there are two pairs of cadlag measure-valued processes
(qm1 , q

m
2 ), m = 1, 2, satisfying the assumptions of Theorem 3.1 and Equations

(7) and (8). Then, q1
1 = q2

1 and q1
2 = q2

2.
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The proof of Lemma 3.1 is provided in Appendix A.
Remark 3.3: Note that a(t) disappears in Equations (9) and (10). This reduces
the calculations greatly in computing the Bayes factors. Hence, this convenient
case is studied in detail in this paper. The tradeoff of taking ai independent of
(θ(k), X(k)) is that the relationship between trading intensity and other param-
eters (such as stochastic volatility) is excluded.
Remark 3.4: Suppose the trading times are t1, t2, . . . . Then, Equations (9) and
(10) can be written in two parts. The first is called the “propagation equation”,
describing the evolution without trades and the second is called the “updat-
ing equation”, describing the update when a trade occurs. The propagation
equations have no random component and are written for k = 1, 2 as

qk(fk, ti+1−) = qk(fk, ti) +
∫ ti+1−

ti

qk(A(k)fk, s)ds.

This implies that when there are no trades, the Bayes factors evolve determin-
istically.

Assume the price at time ti+1 occurs at the jth price level, then the updating
equations are

q1(f1, ti+1) =
q1(f1p

(1)
j , ti+1−)

q2(p(2)
j , ti+1−)

q2(1, ti+1−), and q2(f2, ti+1) =
q2(f2p

(2)
j , ti+1−)

q1(p(1)
j , ti+1−)

q1(1, ti+1−).

They are random because the price level is random.

3.2 A Convergence Theorem

Theorem 3.1 provides the evolution of the Bayes factors. To compute the Bayes
factors, one constructs an algorithm to approximate qk(fk, t), where q1(1, t) =
B12(t). The algorithm, based on the evolution of SDEs, is naturally recursive,
handling a datum at a time. Thus, the algorithm makes real-time updates and
can handle large data sets.

One basic requirement for the recursive algorithm is consistency: The ap-
proximate qk, computed by the recursive algorithm, must converge to the true
one. The following theorem provides not only the theoretical foundation for
consistency, but also a recipe for constructing consistent recursive algorithms.

Let (θ(k)
ε , X

(k)
ε ) be an approximation of (θ(k), X(k)). Then, we define

~Y (k)
ε (t) =


N1(

∫ t
0
λ1(θ(k)

ε (s), X(k)
ε (s), s)ds)

N2(
∫ t

0
λ2(θ(k)

ε (s), X(k)
ε (s), s)ds)

...
Nn(

∫ t
0
λn(θ(k)

ε (s), X(k)
ε (s), s)ds)

 , (12)

set F
~Y (k)
ε

t = σ(~Y (k)
ε (s), 0 ≤ s ≤ t), take

L
(k)
ε (t) = L

((
θ

(k)
ε (s), X(k)

ε (s), Y (k)
ε (s)

)
0≤s≤t

)
, and use the notation, Xε ⇒ X,
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to mean Xε converges weakly to X in the Skorohod topology as ε → 0. Sup-
pose that (θ(k)

ε , X
(k)
ε , ~Y

(k)
ε ) lives on (Ω(k)

ε ,F (k)
ε , P

(k)
ε ), with Assumptions 2.1 - 2.5

holding. Then, there also exists a reference measure Q(k)
ε with similar proper-

ties. Before we present the convergence theorem, we define the approximations
of φk(fk, t) and qk(fk, t) for k = 1, 2.

Definition 3.2 For
k = 1, 2, let φε,k(fk, t) = EQ

(k)
ε

[
fk(θ(k)

ε (t), X(k)
εx (t))L(k)

ε (t)|F
~Y (k)
ε

t

]
, qε,1(f1, t) =

φε,1(f1, t)/φε,2(1, t) and qε,2(f2, t) = φε,2(f2, t)/φε,1(1, t).

Remark 3.5 Suppose φ(k)
ε,t (θ, x)

(
q

(k)
ε,t (θ, x)

)
is the measure corresponding to

φε,k(fk, t)
(
qε,k(fk, t)

)
. We observe that, for k=1,2,

qε,k(fk, t) =
φε,k(fk, t)
φε,3−k(1, t)

=

∑
θ,x fk(θ, x)φ(k)

ε,t (θ, x)
φε,3−k(1, t)

=
∑
θ,x

fk(θ, x)q(k)
ε,t (θ, x),

and use qε,k(fk, t) =
∑
θ,x fk(θ, x)q(k)

ε,t (θ, x) in the construction of recursive algo-
rithm.

Theorem 3.2 Suppose that Assumptions 2.1 to 2.5 hold for the models
(θ(k), X(k), ~Y (k))k=1,2 and that Assumptions 2.1 to 2.5 hold for the approximate
models (θ(k)

ε , X
(k)
ε , ~Y

(k)
ε )k=1,2. Suppose (θ(k)

ε , X
(k)
ε ) ⇒ (θ(k), X(k)) as ε → 0.

Then, as ε→ 0, for continuous and bounded f1 and f2,
(i) φε,k(fk, t)⇒ φk(fk, t), for k=1,2; (ii) qε,1(f1, t)⇒ q1(f1, t) and qε,2(f2, t)⇒
q2(f2, t) simultaneously.

Remark 3.6 Part (i) implies the consistency of the integrated likelihood and
Part (ii) implies the consistency of Bayes factors.

The proof relies on Kurtz and Protter’s Theorem on the Convergence of
Stochastic Integral (See Theorem 2.2 of Kurtz and Protter (1991)) as well as the
following Lemma.

Lemma 3.2 Suppose that S1 and S2 are complete, separable metric spaces and
that (XN , Y N ), N = 1, 2, ..., and (X,Y ) are S1 × S2-valued random variables
defined on the probability spaces (ΩN ,FN , PN ) and (Ω,F , P ), respectively. Sup-
pose that {(XN , Y N )} converges in distribution to (X,Y ), that PN � QN on
σ(XN , Y N ) with dPN/dQN = LN (XN , Y N ), and that QN (Q) is a probability
measure on FN (F) such that XN , Y N (X,Y ) are independent under QN (Q).

Suppose that the QN -distribution of (XN , Y N , LN (XN , Y N )) converges
weakly to the Q-distribution of (X,Y, L(X,Y )), where EQ[L(X,Y )] = 1. Then,
the following hold:

(i) P � Q on σ(X,Y ) and dP/dQ = L(X,Y );
(ii) For every bounded continuous function F : S1 → R,

EQ
N

[F (XN )LN (XN , Y N )|Y N ] converges weakly to EQ[F (X)L(X,Y )|Y ] as
N →∞.
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Lemma 3.2 is proved in Theorem 1 in Kouritzin and Zeng (2003).
Proof of Theorem 3.2: (i) Since this part only involves one model, we exclude

the superscript, (k), which identifies the model.
The assumptions for (θε, Xε, ~Yε) imply that there exists a reference measure

Qε such that under Qε, {Yε,j}nj=1 with Yε,j being the j-th component of ~Yε,
are independent unit Poisson processes, and they are independent of (θε, Xε).
Similarly, under Q, ~Y is a collection of independent unit Poisson processes, and
they are independent of (θ,X). The Radon-Nikodym derivative dPε/dQε is

Lε(t) =
n∏
j=1

exp
{∫ t

0

log λj(θε(s−), Xε(s−), s−)dYε,j(s)−
∫ t

0

[
λj(θε(s), Xε(s), s)−1

]
ds

}
.

Noting (θε, Xε, ~Yε)⇒ (θ,X, ~Y ) under the reference measures, one finds that the
Continuous Mapping theorem as well as Kurtz and Protter’s Theorem imply that∫ t

0

log λj(θε(s−), Xε(s−), s−)dYε,j(s)⇒
∫ t

0

log λj(θ(s−), X(s−), s−)dYk(s),∫ t

0

[
λj(θε(s), Xε(s), s)− 1

]
ds⇒

∫ t

0

[
λj(θ(s), X(s), s)− 1

]
ds.

and ((θε, Xε), ~Yε, Lε) ⇒ ((θ,X), ~Y , L) under the reference measures (Condition
C2.2(i) of Kurtz and Protter (1991) holds in our case, see Example 3.3 there.).
So, Lemma 3.2 implies part (i).

Part (ii) comes from part (i), the unique (c.f. Theorem 3.1) representation
qε,1 = φε,1(f1,t)

φε,2(1,t) , and the Continuous Mapping Theorem. �.
Remark 3.7 This theorem provides a three-step recipe for constructing a con-
sistent recursive algorithm to compute the Bayes factors. Step 1 is to construct
(θ(k)
ε , X

(k)
ε ), the Markov chain approximation to (θ(k), X(k)) with generator A(k)

ε ,
and obtain p

(k)
ε,j = p(k)(yj |θε, xε) as an approximation to p

(k)
j = p(k)(yj |θ, x),

where (θε, xε) is restricted to the state space of (θ(k)
ε , X

(k)
ε ), for k = 1, 2. Step

2 is to obtain the evolution equations for qε,k(fk, t), k = 1, 2, the filter ratio
processes, using Theorem 3.1. For simplicity, we only consider the case when
a1 = a2 = a(t). Similar to Remark 3.4, the evolution equations can be separated
into the propagation equations, for k = 1, 2,

qε,k(fk, ti+1−) = qε,k(fk, ti) +
∫ ti+1−

ti

qε,k(A(k)
ε fk, s)ds, (13)

and the updating equations (assuming that a trade at jth price level occurs at
time ti+1):

qε,1(f1, ti+1) =
qε,1(f1p

(1)
ε,j , ti+1−)

qε,2(p(2)
ε,j , ti+1−)

qε,2(1, ti+1−),

and, qε,2(f2, ti+1) =
qε,2(f2p

(2)
ε,j , ti+1−)

qε,1(p(1)
ε,j , ti+1−)

qε,1(2, ti+1−).

(14)
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Here, fk is a test function on the state space of (θ(k)
ε , X

(k)
ε ) and is in the domain

of A(k)
ε , for k = 1, 2. Step 3 converts Equations (13) and (14) to the recursive

algorithm in discrete time by two substeps: (a) Represent qε,k(·, t) as a finite
array with components being qε,k(fk, t) for lattice-point indicator fk and (b)
approximate the time integral in (13) with an Euler scheme.

4 An Example with Simulation and Application

To illustrate the Bayesian model selection procedure, we consider a model selec-
tion problem between two micromovement models: one’s value process is GBM
and the other’s is jumping stochastic volatility GBM (JSV-GBM). The first
model is chosen because GBM is the standard model for the first approxima-
tion of asset price. The second model is chosen not only because it is built on
GBM with the feature of stochastic volatility, but also because it has an advan-
tage of showing the effectiveness of Bayes factor for model selection, which is
demonstrated in Section 4.3.

4.1 Two Micromovement Models

Recall the construction of a micromovement model has three steps. Firstly, we
specify the value process. For Model 1, X(1)(t) is GBM, which in SDE form is

dX(1)(t)
X(1)(t)

= µ(1)dt+ σ(1)dW (t) , (15)

where W (t) is a standard Brownian motion. Its generator is

A(1)f1(x(1)) = µ(1)x(1) ∂f

∂x(1)
(x(1)) +

1
2

(σ(1))2(x(1))2 ∂2f

∂(x(1))2
(x(1)).

Model 2’s value process is JSV-GBM, given by

dX(2)(t)
X(2)(t)

= µ(2)dt+ σ(2)(t)dW (t), dσ(2)(t) =
(
JN(t−)+1 − σ(2)(t−)

)
dN(t),

(16)

where N(t) is a Poisson process with intensity λ and is independent of W (t),
and {Ji} is a sequence of i.i.d. random variables independent of W (t) and N(t).
We further assume that each Ji is uniformly distributed on a range, [α(2)

σ , β
(2)
σ ].

Suppose that the ith Poisson event happens at time ti and Ji is drawn. Then,
the volatility changes from σ(2)(ti−1) to Ji at time ti, and then remains the same
until the next Poisson event occurs. The generator of Model 2 is

A(2)f2(σ(2), x(2)) =µ(2)x(2) ∂f2

∂x(2)
(σ(2), x(2)) +

1
2

(σ(2))2(x(2))2 ∂2f2

∂(x(2))2
(σ(2), x(2))

+ λ

∫ β(2)
σ

α
(2)
σ

(
f2(z, x(2))− f2(σ(2), x(2))

) 1

β
(2)
σ − α(2)

σ

dz.

(17)
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Secondly, we assume both of the trading intensity functions are deterministic.
In the model selection setup, we take a1(t) = a2(t) = a(t) because both models
are for the same asset and same data set. As shown in Equations (9) and (10),
a(t) drops out in the evolution equations of Bayes factor. A time-dependent
deterministic intensity a(t) fits the data of trade duration better than the time-
invariant one since trading activity is higher in the opening and the closing
periods.

Lastly, we incorporate the trading noises on the intrinsic values at trading
times to obtain the price process. The three important types of noise: dis-
crete, clustering, and nonclustering, are to be incorporated (for reasons see
Zeng (2003)). For simplicity, we assume both models have the same noises.
To simplify notation, at a trading time ti, set x = X(ti), y = Y (ti), and
y′ = Y ′(ti) = R[X(ti) + Vi,

1
M ], where Vi is to be defined as the non-clustering

noise. Instead of directly specifying p(y|x), we define y = F (x) in three steps:
Step 1: Incorporate non-clustering noise by adding V ; x′ = x+V , where V

is the non-clustering noise of trade i at time ti. We assume {Vi}, are independent
of the value process, and they are i.i.d. with a doubly geometric distribution:

P{V = v} =
{

(1− ρ) if v = 0
1
2 (1− ρ)ρM |v| if v = ± 1

M ,± 2
M , · · · .

Step 2: Incorporate discrete noise by rounding off x′ to its closest tick,
y′ = R[x′, 1

M ] = R[x+ V, 1
M ].

Step 3: Incorporate clustering noise by biasing y′ through a random biasing
function b(·). {bi(·)} are assumed independent of {y′i} and serially independent.
To be consistent with the data analyzed in Section 4.4, we construct a simple
random biasing function only for the tick of 1/8 dollar. We can generalize it
to other ticks such as 1/100 dollar easily. The data to be analyzed has this
clustering phenomenon: integers and halves are most likely and have about the
same frequencies; odd quarters are the second most likely and have about the
same frequencies; and odd eighthes are least likely and have about the same fre-
quencies. To generate such clustering, a random biasing function is constructed
based on the following rule: if the fractional part of y′ is an even eighth, then
y stays on y′ with probability one; if the fractional part of y′ is an odd eighth,
then y stays on y′ with probability 1−α−β, y moves to the closest odd quarter
with probability α, and moves to the closest half or integer with probability β.

In summary, the construction of the price from the value at a trading time is

Y (ti) = bi(R[X(ti) + Vi,
1
M

]) = F (X(ti)).

In this way, F (x), which models the impact of financial noise, is specified. The
detail of b(·), and the explicit transition probability p(y|x) of F can be found in
Appendix A of Zeng (2002a).

The parameters of clustering noise, α and β, can be estimated through the
method of relative frequency. The other parameters are estimated by Bayes
estimation via filtering. The Bayes estimation for (µ1, σ1, ρ1) of Model 1 is
studied in Zeng (2003) and that for (µ2, σ, λ, ρ1) of Model 2 is in Zeng (2002a).
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4.2 The Recursive Algorithm for Bayes Factors

Similar to Bayes estimation via filtering, the recursive algorithm for Bayes fac-
tors is constructed through the Markov chain approximation method. Following
the three-step recipe provided by Theorem 3.2, we will construct a consistent
recursive algorithm to calculate the Bayes factors. Since Model 2 is more com-
plicated than Model 1, we only provide the detail construction related to Model
2. The corresponding part related to Model 1 can be derived similarly.

Step 1: Construct Markov chains, (θ(k)
ε (t), X(k)

ε (t)) as approximations to
(θ(k)(t), X(k)(t)), for k = 1, 2. Here, θ(1)(t) = (µ1, σ1, ρ1) and θ(2)(t) =
(µ2, σ(t), λ, ρ2).

First, applying an important idea in Bayesian analysis for latent variables,
we treat the unknown parameters of interest as part of the unobserved signal.
Then, we discretize the parameter spaces of µ(2), λ, ρ(2) and the state space of
σ(2) and X(2) in Model 2. Suppose there are n(2)

µ +1, n(2)
σ +1, n(2)

λ +1, n(2)
ρ +1 and

n
(2)
x +1 lattices in the discretized spaces of µ(2), σ(2), λ, ρ(2) andX(2) respectively.

For example, the discretization for µ(2) in [α(2)
µ , β

(2)
µ ] is {α(2)

µ , α
(2)
µ + ε

(2)
µ , α

(2)
µ +

2ε(2)
µ , . . . , α

(2)
µ + jε

(2)
µ , . . . , α

(2)
µ + n

(2)
µ ε

(2)
µ } where α(2)

µ + n
(2)
µ ε

(2)
µ = β

(2)
µ . Define

µ
(2)
j = α

(2)
µ + jε

(2)
µ , the jth lattice in the discretized parameter space of µ(2).

Similarly, define σ(2)
k = σ

(2)
k (t) = α

(2)
σ + kε

(2)
σ , λl = αλ + lελ, ρ(2)

m = α
(2)
ρ +mε

(2)
ρ ,

x
(2)
w = X

(2)
w (t) = α

(2)
x + wε

(2)
x , and let ε(2) = max(ε(2)

µ , ε
(2)
σ , ελ, ε

(2)
ρ , ε

(2)
x ).

Second, we observe that the construction of a Markov chain approximation
can be achieved by constructing a Markov chain with generator, A(2)

ε , such that
A(2)
ε → A(2) as ε(2) → 0. Accommodating other parameters, the generator of

Model 2 becomes

A(2)f2(µ(2), σ(2), λ, ρ(2), x(2))

=µ(2)x(2) ∂f2

∂x(2)
(µ(2), σ(2), λ, ρ(2), x(2)) +

1
2

(σ(2))2(x(2))2 ∂2f2

∂(x(2))2
(µ(2), σ(2), λ, ρ(2), x(2))

+ λ

∫ β(2)
σ

α
(2)
σ

(
f2(µ(2), z, λ, ρ(2), x(2))− f(µ(2), σ(2), λ, ρ(2), x(2))

) 1

β
(2)
σ − α(2)

σ

dz.

(18)

The diffusion part involves first- and second-order differentiation and the jump
part involves integration. The finite difference approximation is applied for dif-
ferentiation and the rectangle approximation for integration. One constructs
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A(2)
ε as follows:

A(2)
ε f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w )

=µ(2)
j x(2)

w

(f2(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x

(2)
w + ε

(2)
x )− f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x

(2)
w − ε(2)

x )

2ε(2)
x

)
+

1
2

(σ(2)
k )2(x(2)

w )2
(f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x

(2)
w + ε

(2)
x ) + f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x

(2)
w − ε(2)

x )

(ε(2)
x )2

)
− 1

2
(σ(2)
k )2(x(2)

w )2
(2f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x

(2)
w )

(ε(2)
x )2

)

+ λl

n(2)
σ∑
i=0

(
f2(µ(2)

j , σ
(2)
i , λl, ρ

(2)
m , x(2)

w )− f2(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w )
) 1

n
(2)
σ + 1

=b2(µ(2)
j , σ

(2)
k , x(2)

w )(f2(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w + ε(2)
x )− f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ))

+ d2(µ(2)
j , σ

(2)
k , x(2)

w )(f2(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w − ε(2)
x )− f2(µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ))

+ λl
(
f̄2(µ(2)

j , λl, ρ
(2)
m , x(2)

w )− f2(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w )
)
,

(19)

where

b2(µ(2)
j , σ

(2)
k , x(2)

w ) =
1
2

(
(σ(2)
k )2(x(2)

w )2

(ε(2)
x )2

+
µ

(2)
j x

(2)
w

ε
(2)
x

)
,

d2(µ(2)
j , σ

(2)
k , x(2)

w ) =
1
2

(
(σ(2)
k )2(x(2)

w )2

(ε(2)
x )2

−
µ

(2)
j x

(2)
w

ε
(2)
x

)
,

and

f̄2(µ(2)
j , λl, ρ

(2)
m , x(2)

w ) =
1

n
(2)
σ + 1

n(2)
σ∑
i=0

f2(µ(2)
j , σ

(2)
i , λl, ρ

(2)
m , x(2)

w ).

Remark 4.1 b2(µ(2)
j , σ

(2)
k , x

(2)
w ) and d2(µ(2)

j , σ
(2)
k , x

(2)
w ) can be thought of as birth

and death rates, and f̄2(µ(2)
j , λl, ρ

(2)
m , x

(2)
w ) is the mean of f2 on σ(2) with fixed

(µ(2)
j , λl, ρ

(2)
m , x

(2)
w ).

As for boundary conditions, we can choose the range of each component
large enough so that the transition probability to anything outside the range is
negligible. Then, the generator, A(2)

ε , characterizes a continuous-time Markov
chains satisfying Assumption 2.1. After having the discretized state space, p(k)

ε,j =
p(k)(yj |θε, xε) is obtained subsequently.

Step 2: Obtain the evolution of Bayes factors for the approximate models.
For k = 1, 2, when (θ(k), X(k)) is replaced by (θ(k)

ε , X
(k)
ε ), A(k) by A(k)

ε , ~Y (k)

by ~Y
(k)
ε , p(k)

j by p(k)
ε,j and there also exists a probability measure P (k)

ε to replace

P (k), then Assumptions 2.1 - 2.4 also hold for (θ(k)
ε , X

(k)
ε , ~Y

(k)
ε ). Hence, the

evolution equations are obtained in Equations (13) and (14) using Theorem 3.1.
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The procedure hitherto brings forth q
(k)
ε (fk, t), which is the discrete-spaced

approximation of qk(fk, t) for k = 1, 2. Let (µ(2)
ε , σ

(2)
ε , λε, ρ

(2)
ε , X

(2)
ε ) denote the

discretized signal for Model 2.

Definition 4.1 Let q
(2)
ε,t

be the conditional finite measure of (µ(2)
ε , σ

(2)
ε , λε, ρ

(2)
ε , X

(2)
ε (t)) on the discrete

state space given F
~Y (2)
ε

t . q(k)
ε,t , k = 1, 2, are the approximates of q(k)

t in Remark
3.2.

Definition 4.2 Let the approximate filter ratio process be

q(2)
ε (f, t) =

∑
µ(2),σ(2),λ,ρ(2),x(2)

f2(µ(2), σ(2), λ, ρ(2), x(2))q(2)
ε,t (µ(2), σ(2), λ, ρ(2), x(2)),

where the sum goes over all corresponding lattices in the discretized state spaces.

Step 3: Convert Equations (13) and (14) to the recursive algorithm. We
begin with defining the discrete conditional measure in Model 2 that the recursive
algorithm computes.

Definition 4.3

q(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ; t)

=q(2)
ε,t

{
µ(2)
ε = µ

(2)
j , σ(2)

ε (t) = σ
(2)
k , λε = λl, ρ

(2)
ε = ρ(2)

m , X(2)
ε (t) = x(2)

w

}
.

Step 3(a), the core of the conversion, is to take f2 as the lattice-point indicator
as below:

I(2)

{µ(2)
ε =µ

(2)
j ,σ

(2)
ε (t)=σ

(2)
k ,λε=λl,ρ

(2)
ε =ρ

(2)
m ,X

(2)
ε =x

(2)
w }

(µ(2)
ε , σ(2)

ε , λε, ρ
(2)
ε , X(2)

ε )

def= I(2)(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w ).
(20)

Then,

q(2)
ε

(
I(2)(µ(2)

j , σ
(2)
k , λ

(2)
l , ρ(2)

m , x(2)
w ), t

)
= q(2)

ε (µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w ; t).

So, we have a discrete-state-space finite array of q(k)
ε,t to approximate the measure

q
(k)
t of (θ(t), X(t)), and the finite array evolves continuously in time according

to Equations (13,14).
For more detail of Step 3(a) and Step 3(b), which is to approximate the

continuous-time evolution of the finite array by an (discrete-time) Euler scheme,
interested readers are referred to the corresponding parts of Bayes estimation via
filtering in Zeng (2002a). The final propagation part of the recursive algorithm
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is obtained as the following. Case 1, if ti+1 − ti ≤ LL, the length controller for
Euler scheme, then

q(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ; ti+1−)

≈q(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ; ti) +
[
b2(µ(2)

j , σ
(2)
k , x

(2)
w−1)q(2)

ε (µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x

(2)
w−1; ti)

−
(
b2(µ(2)

j , σ
(2)
k , x(2)

w ) + d2(µ(2)
j , σ

(2)
k , x(2)

w )
)
q(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ; ti)

+ d2(µ(2)
j , σ

(2)
k , x

(2)
w+1)q(2)

ε (µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x

(2)
w+1; ti)

+ λl
(
q̄(2)
ε (µ(2)

j , λ
(2)
l , ρ(2)

m , x(2)
w ; t)− q(2)

ε (µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w ; t)
)]

(ti+1 − ti).
(21)

where

q̄(2)
ε (µ(2)

j , λl, ρ
(2)
m , x(2)

w ; t) =
1

n
(2)
σ + 1

n(2)
σ∑
i=0

q(2)
ε (µ(2)

j , σ
(2)
i , λl, ρ

(2)
m , x(2)

w ; t).

We choose [α(2)
x , β

(2)
x ], the range for X(2), large enough so that the finite measure,

q
(2)
ε,t , is negligible outside [α(2)

x , β
(2)
x ]. Then, when w < 0 or w > n

(2)
x + 1, the

corresponding q(2)
ε,t s are set to be zero.

Case 2, if ti+1 − ti > LL, then we can choose a finer partition {ti,0 =
ti, ti,1, . . . , ti,n = ti+1} of [ti, ti+1] such that maxj |ti,j+1 − ti,j | < LL and then
apply repeatedly the recursive algorithms given by the above equations from ti,0
to ti,1, then ti,2,. . . , until ti,n = ti+1.

Suppose a trade at j0th price level occurs at time ti+1. Then, the updating
Equation of Model 2 in (14) becomes,

q(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x(2)

w ; ti+1)

=
q

(2)
ε (µ(2)

j , σ
(2)
k , λl, ρ

(2)
m , x

(2)
w ; ti+1−)p(2)(yj0 |x

(2)
w , ρ

(2)
m )∑

j′,k′,l′,m′,w′ q
(2)
ε (µ(2)

j′ , σ
(2)
k′ , λl′ , ρ

(2)
m′ , x

(2)
w′ ; ti+1−)p(yj0 |x

(2)
w′ , ρ

(2)
m′ )

×
( ∑
j′,k′,l′,m′,w′

q(2)
ε (µ(2)

j′ , σ
(2)
k′ , λl′ , ρ

(2)
m′ , x

(2)
w′ ; ti+1−)

)
,

(22)

where the sums go over all the lattices in the discretized state spaces.
Equations (21), (22) and the two corresponding equations for Model 1 com-

pose the recursive algorithm we employ to calculate the approximate conditional
measures at time ti+1 from those at time ti to time ti+1−, and then to time ti+1.
At time ti+1, the Bayes factor

B21(ti+1) ≈ q(2)
ε (1, ti+1) =

∑
j′,k′,l′m′,w′

q(2)
ε (µ(2)

j′ , σ
(2)
k′ , λl′ , ρ

(2)
m′ , x

(2)
w′ ; ti+1),

where the sum goes over all the lattices in the discretized state space.
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4.2.1 Choosing Priors

Finally, we choose a reasonable prior for each model. We assume the indepen-
dence between X(0) and the parameters of a model. Set P{X(0) = Y (t1)} = 1
where Y (t1) is the first trade price of a data set because they are very close. If
there is no special information of the parameters available, we may simply assign
uniform distributions to the discretized spaces of the parameters to obtain the
prior at t = 0. For example, the prior for Model 2 in this case would be

p(µ(2)
j , σ

(2)
k , λl, ρ

(2)
m , x(2)

w ; 0) =

{
1

(1+n
(2)
µ )(1+n

(2)
σ )(1+n

(2)
λ )(1+n

(2)
ρ )

if x(2)
w = Y (t1)

0 otherwise
.

The statistical and computational concerns for a prior on a parameter have
two aspects: suitable range and mesh size. Usually, the marginal posterior of a
parameter obtained from a large data set is concentrated on a small area around
the true value. Then, the uniform prior set on the small area is sufficient, because
the posterior outside is of very small probability. After having a suitable range,
we may choose a suitable mesh size, which ideally produces a posterior with a
unique modal and bell-shaped distribution as shown in Table 5.1 of Zeng (2003).
Therefore, we need to rely on the posterior obtained from the Bayes estimation
via filtering to choose the suitable range and mesh size for the prior of each
parameter.

4.2.2 Consistency of the Recursive Algorithm

There are two approximations in the construction of the recursive algorithm.
The second is to approximate the time integral in the propagation equation
(13) by Euler scheme, whose convergence is well-known. The first, more im-
portant one, is the approximation of the evolution Equations (9) and (10)
by the evolution Equations (13) and (14) of the approximate model. Since
(θ(k)
ε , X

(k)
ε ) ⇒ (θ(k), X(k)) by construction, Theorem 3.2 guarantees the weak

convergence of the evolution equations of the approximate models to those of
the assumed models.

4.3 Simulation and Real Data Examples

The recursive algorithm for computing the Bayes factors is fast enough to gen-
erate real-time Bayes factors. The algorithm is extensively tested and validated
on simulated data. One simulation example is provided to demonstrate the ef-
fectiveness of Bayes factors for model selection. Then, the recursive algorithm
is applied to two months of transaction prices of Microsoft and the Bayes factor
is extremely in favor of Model 2, which has the stochastic volatility feature.

4.3.1 Simulation Study

In the following simulation example, the parameter values for Model 2 are
selected as: µ = 4.5 × 10−8, corresponding to the annualized expected re-
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turn 27.38% with annualized factor 260 days and each day with 6.5 busi-
ness hours; and λ = 3.75 × 10−4, which means one change of volatility ev-
ery 1/3.75 × 10−4 = 2666.67 seconds on average. The range of volatility is
[0.00004, 0.0004], corresponding to the annualized range of [9.866%, 98.66%].
Since a(t) has no impact in estimation and noise, the trading intensity is as-
sumed to be constant: a(t) = 0.9 for all t > 0 (i.e., one trade every 1/0.9 = 1.11
seconds on average). For the parameters of noise, we let ρ = 0.2, α = 0.4, and
β = .2. Using these parameters, 90,000 observations of Model 2 are simulated.

Based on the above data set, we would like to conduct the model selection
problem between Models 1 and 2 and demonstrate that the recursive algorithm
and the Bayesian model selection approach works. We follow the two-step pro-
cedure. Step 1 is to choose proper priors (including ranges and mesh sizes) for
each model. We apply, respectively, Bayes estimation via filtering of Model 1 in
Zeng (2003) and that of Model 2 in Zeng (2002a) to the simulated data. Based
on the marginal posterior of each parameter, we choose suitable ranges and mesh
sizes so that each marginal posterior has a unique modal and bell-shaped distri-
bution. Step 2 is to apply the recursive algorithm constructed in Section 4.2 to
compute the approximate Bayes factors. Finally, we interpret the Bayes factors
accordingly.

An important observation is that the first volatility change is a turning point.
Before σ changes, the simulated data of Model 2 coincides with Model 1. How-
ever, after σ changes, the simulated data diverge from Model 1. So, we expect
that the Bayes factor of Models 2 over 1, B21(t), will be close to 1 before the
first change of σ, and B21(t) will increase substantially after that. More pre-
cisely, B21(t) is expected to be larger than 12 (the benchmark for strong evidence
against Model 1) and then larger than 150 (the benchmark for decisive evidence
against Model 1) shortly after the first changing of σ. This is exactly what
happened as shown in Figures 1 and 2. Figure 1 presents how B21(t) evolves
with time for the first 2550 data. The vertical dot line is where the volatility
changes (after the 2166th datum). The lower horizontal dot line is 1 and the
higher horizontal dot line is 12. Prior to the vertical dot line, the Bayes factor
evolves close to 1. Indeed,the Bayes factor right before the changing of volatility
(at the 2166th datum) is actually 0.9358. Soon after the vertical dot line, the
Bayes factor increases dramatically while fluctuating widely, and then exceeds
the benchmark, 12, at the 2529th datum. Figure 2, which is only about one
fifth of the time length of Figure 1, further shows the dramatically increasing
trend of B21 during the second σ. The first passage above 150 is at the 2609th
datum. Although it retraces to 150, it later increases sharply so that B21 reaches
1103.70 at the end of the second σ (the 2676th datum). At the end of the third
σ, B21 = 1.134 × 1010. More information is shown in Table 2. Finally, at the
end of the 90,000 data, B21 reaches 1.089 × 10194 . All these demonstrate that
the Bayes factor computed is sensitive to distinguish Model 2 from Model 1.

4.3.2 An Real Data Example

The tested recursive algorithm is applied to a two-month (January and February,
1994, 40 business days) transaction data set of Microsoft. The data are extracted
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Table 2: Bayes Factors for a Simulated Data

Position
before σ 2166 2676 7790 8113 8870 90000
changes

Bayes 0.9358 1103.70 1.134e+10 1.255e+10 8.197e+21 1.089e+194
Factor: B21

from the Trade and Quote (TAQ) database distributed by NYSE. We apply
standard procedures to filter the data except we keep all those trades with zero
time duration, because they can be handled by the recursive algorithm. The
final sample has 49,937 observations.

Based on the relative frequencies of the fractional parts of the price for Mi-
crosoft, we may use the method of relative frequencies to estimate α = .2414,
and β = .3502. We follow the two-step procedure as for the simulated data to
obtain the Bayes factor, B12(t). Table 3 consists of the precise statistics for each
quarter day’s trade-by-trade Bayes factors, B12, in the first day, January 3, 1994
of Microsoft. The decisive benchmark, 150, which is exceeded easily. At the end
of the first day, the Bayes factor (at the 826th datum) is 52669.72, which is much
larger than 150. This clearly demonstrates that there are changes of σ within
one trading day and is consistent with the empirical finding of higher volatility
in opening and closing periods of the market sessions. At the end of the second
day, the Bayes factor (of the 1677th datum) is 8.261× 1010. At the 44478th da-
tum (about the 36.5th day), BF21 = 8.442× 10305. Soon after, the Bayes factor
exceeds the computer’s limit. This provides overwhelmingly decisive evidence
for the even more frequent volatility changes in the micromovement of price.

Table 3: Summary Statistics for BF21 of the First Day in MSFT Data

Position NO. of Data Min. Median Mean Max.
1st Quarter Day 375 0.9133 48.19 104.20 931.30
2nd Quarter Day 164 28.64 69.40 660.00 11280.00
3rd Quarter Day 130 2178 7472 67060 584400
4th Quarter Day 287 24250 41360 75680 297800
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5 Conclusion

In this paper, we investigate the model selection problems for a general class
of micromovement models of asset price and develop Bayesian model selection
via filtering in two steps. We first derive the evolution system of SDEs for
the Bayes factors and then develop a general approach to construct consistent
recursive algorithm for computing the Bayes factors. We provide an example
to demonstrate the construction of recursive algorithm and the effectiveness of
Bayes factor in the model selection.

The application of Bayesian model selection via filtering is not just mere to
show more volatility changes in intraday data, but rather to provide a general,
powerful tool to test related market microstructure theories, represented by the
micromovement models. For examples, we may test whether NASDAQ has less
trading noise after a market reform as argued in Barclay, Christie, Harris, Kandel
and Schultz (1999), test whether information affects trading intensity as argued
by Easley and O’Hara (1992) and tested by Engle (2000), test whether there is
relationship between transaction times and limit order arrival times as in Russell
(1999), and test whether there is a structure break in transacting periods as in
Zhang, Russell and Tsay (2001).

The Bayesian model selection via filtering is computationally intensive. To
improve efficiency, especially when the number of parameters of model is large,
we will extend the recent developments in particle filtering to the filtering prob-
lem with counting process observations in future work.

A Appendix A

Proof of Lemma 3.1: Let T (1), T (2) be the semigroups with weak generators
A(1), A(2); {τk}∞k=1 be the jump times of Y ; τ0 = 0; and (q1, q2) be finite
measure processes solving for i = 1, 2, j = 3− i

qi(fi, t) = qi(fi, tk) +
∫ t

τk

qi(A(i)fi, s)− qi(aifi, s) +
qi(fi, s)qj(aj , s)

qj(1, s)
ds (23)

for all fi ∈ D(A(i)), t ∈ [τk, τk+1). Then, by Assumption 2.5 and (23) we have
that

e−C(t−τk)qj(1, τk) ≤ qj(1, t) ≤ eC(t−τk)qj(1, τk) (24)

for all j = 1, 2; t ∈ [τk, τk+1). Now, we define for i = 1, 2, j = 3− i

χi(t, u, fi) = qi(T
(i)
t−ufi, u) +

∫ t

u

qi(T
(i)
t−sfi, s)qj(aj , s)
qj(1, s)

− qi(aiT (i)
t−sfi, s)ds

for all fi ∈ D(A(i)), u ≤ t ∈ [τk, τk+1). Then, using the fact that T isfi ∈ D(A(i))
for all s ≥ 0, i = 1, 2 as well as Leibniz’s rule, one has that

d

du
χi(t, u, fi) =

d

du

{
qi(T it−ufi, u)

}
+ qi(aiT

(i)
t−ufi, u)−

qi(T
(i)
t−ufi, u)qj(aj , u)
qj(1, u)

= 0,
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where j = 3− i, so substituting u = t, τk into χi, one finds that

qi(fi, t) = qi(T it−τkfi, τk) +
∫ t

τk

qi(T
(i)
t−sfi, s)qj(aj , s)
qj(1, s)

− qi(aiT (i)
t−sfi, s)ds. (25)

Now, suppose that
{

(qj1, q
j
2)
}2

j=1
are two processes solving (23) such that

(q1
1(·, τk), q1

2(·, τk)) = (q2
1(·, τk), q2

2(·, τk)). Then, using (25) for each pair, one
finds that

|q2
1(f1, t)− q1

1(f1, t)|+ |q2
2(f2, t)− q1

2(f2, t)| (26)

≤
∫ t

τk

∣∣∣∣∣q2
1(T (1)

t−sf1, s)q2
2(a2, s)

q2
2(1, s)

−
q1
1(T (1)

t−sf1, s)q1
2(a2, s)

q1
2(1, s)

∣∣∣∣∣ ds∫ t

τk

∣∣∣∣∣q2
2(T (2)

t−sf2, s)q2
1(a1, s)

q2
1(1, s)

−
q1
2(T (2)

t−sf2, s)q1
1(a1, s)

q1
1(1, s)

∣∣∣∣∣ ds
+
∫ t

τk

|q1
1(a1T

(1)
t−sf1, s)− q2

1(a1T
(1)
t−sf1, s)|+ |q1

2(a2T
(2)
t−sf2, s)− q2

2(a2T
(2)
t−sf2, s)|ds

for all t ∈ [τk, τk+1), fi ∈ D(A(i)), i = 1, 2. However, Assumption 2.5 and (24)
give ∣∣∣∣ q2

1(T
(1)
t−sf1,s)q

2
2(a2,s)

q2
2(1,s)

− q1
1(T

(1)
t−sf1,s)q

1
2(a2,s)

q1
2(1,s)

∣∣∣∣+ |q1
1(a1T

(1)
t−sf1, s)− q2

1(a1T
(1)
t−sf1, s)| (27)

≤ 2C sup{f∈C(E),‖f‖∞≤1}
∣∣q2

1(f, s)− q1
1(f, s)

∣∣+ 2C sup{f∈C(E),‖f‖∞≤1} |q2
2(f, s)− q1

2(f, s)|

for s ∈ [τk, τk+1), f1 ∈ D(A(1)) with ‖f1‖∞ ≤ 1. Using (24) and the com-
pact containment condition, one has increasing compact sets Km satisfying
q2
1(Km, t) ∧ q1

1(Km, t) ≥ 1− 1
m for all t ∈ [τk, τk+1) so Assumption 2.5, (26,27),

and Stone-Weierstrass yield

sup
{f1∈C(E),‖f1‖∞≤1}

|
∫
Km

f1[dq2
1(t)− dq1

1(t)]|+ sup
{f2∈C(E),‖f2‖∞≤1}

|
∫
Km

f2[dq2
2(t)− dq1

2(t)]||

≤ 2
m

+ sup
{f1∈D(A(1)),‖f1‖∞≤1}

|q2
1(f1, t)− q1

1(f1, t)|+ sup
{f2∈D(A(2)),‖f2‖∞≤1}

|q2
2(f2, t)− q1

2(f2, t)|

≤ 2
m

+
8C
m

(t− τk) + 4C
∫ t

τk

sup
{f1∈C(E),‖f‖∞≤1}

|
∫
Km

f1[dq2
1(s)− dq1

1(s)]|

+ sup
{f2∈C(E),‖f2‖∞≤1}

|
∫
Km

f2[dq2
2(s)− dq1

2(s)]|ds.

Hence, using Gronwall’s inequality, and letting m→∞, we find that

sup
{f1∈C(E),‖f1‖∞≤1}

|
∫
E

f1[dq2
1(t)− dq1

1(t)]||+ sup
{f2∈C(E),‖f2‖∞≤1}

|
∫
E

f2[dq2
2(t)− dq1

2(t)]|| = 0.

Uniqueness on [0,∞) derives from induction and the updating equations.
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