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Since the novel work of Berkes and Philipp ~3~ much effort has been focused on 
establishing almost sure invarianee principles of the form 

i.td 
x i - X ,  ~ t  I/2-~' (1) 

i f f i  

where {xi, i =  1, 2, 3,..} is a sequence of random vectors and {Xt, t>_.0} is a 
Brownian motion. In this note, we show that if {Ak, k =  1, 2, 3,...} and {bk, 
k--- 1, 2, 3,...} are processes satisfying almost-sure bounds analogous to Eq. (1), 
(where { X ,  t />0} could be a more general Gauss -Markov  process) then {hk, 
k = I, 2, 3,...}, the solution of the stochastic approximation or adaptive filtering 
algorithm 

1 
hk+l=hk+-:-(bk--Akhk) for k = 1 , 2 , 3  /c (2) 

also satisfies an almost sure invariance principle of the same type. 
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1. I N T R O D U C T I O N  

In 1951, Robbins and Monro (~9~ introduced their celebrated stochastic 
approximation procedure and suggested "the subject of stochastic approxi- 
mation is likely to be useful and is worthy of  future study." Evidently, they 
were right. Stochastic approximation procedures have enjoyed tremendous 
popularity in applications and analysis alike. Still, a completely satisfactory 
set of convergence results for the heavily-used, Robbins-Monro-based  
"linear adaptive-filtering algorithm": 

hk +l = h k +  k (bk -Akhk) for k = 1 , 2 , 3  .... (1.1) 

(where {Ak, k = l , 2 ,  3,...} is a symmetric, positive semi-definite ~R a• 
valued process and {bk, k = 1, 2, 3,...} is a ~Rd-valued process) remains aloof. 
Many authors (8"1~ ~2.2J~ (also see their references) have proven results 
that imply central limit theorems, functional central limit theorems or laws 
of the iterated logarithm for Eq. (1.1) assuming Ak (is constant or) con- 
verges almost surely and {bk, k =  I, 2, 3,...} is a martingale difference 
sequence. Unfortunately, neither the converging Ak nor the martingale- 
difference assumptions hold in our applications. More recently, Ruppert, t2~ 
Mark, c~s~ and Berger, r obtained almost sure invariance principles for Eq. 
(1.1) under more application-suitable assumptions on {bk, k =  1, 2, 3,...}. 
However, Ak(co) was still assumed (constant or) convergent and this pre- 
viously appeared difficult to circumvent. In fact, in demonstrating that one 
can continue from Berger's work to attain an almost sure invariance 
principle for Eq. (I.1) when {Ak, k =  1, 2, 3,...} and {bk, k =  1, 2, 3,...} are 
only mixing processes, Heunis t ~  was forced to assume stringent-moment, 
strict-stationarity and certain strong or ~k-mixing conditions on {Ak, k = I, 
2, 3,...} and {bk, k = 1, 2, 3,...}. Weaker stationarity and mixing conditions 
are shown in Example 1 of our note to be somewhat unsuitable for many 
applications. 

Having now intimated that an almost sure invariance principle for 
Eq. (1.1) under very general stationarity and dependence conditions would 
be of practical interest, we pose and partially solve a still more general 
problem. In this note, we assume that both {Ak, k =  1, 2, 3,...} and {bk, 
k =  1, 2, 3,...} satisfy almost sure invariance principles to Gaussian pro- 
cesses {X, A , t>~ 0} and {X, ~, t~> 0} and ask what conditions on {(XAx Xb),, 
t~> 0} are sufficient to guarantee an almost sure invariance principle and 
a functional law of the iterated logarithm for {h~, k = 1, 2, 3,...}. Wishing 
to keep our development manifest, we give our answer in terms of the 
solutions of simple integral equations. Because {Ak, k =  1,2, 3,...} and 
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{bk, k= 1,2, 3,...} are, in practice, often derived from the output of a 
possibly time-varying, nonexponentially-stable filter or from current 
parameter estimates, it is conceivable that the enlargement allowing {Ak, 
k =  1, 2, 3,...} and {bk, k =  1, 2, 3,...} to satisfy invariance principles to 
certain Gauss-Markov processes other than Brownian motion, might 
assume more than just mathematical interest. 

Past researchers, dating back to Walk, t2~ have established their func- 
tional central limit theorems and invariance principles for Eq. (1.1) using 

1 
Y, = W, + ( I -  A) I0 exp((A - 21 d) log(z)) W(zt) dt for all t>~0 (1.2) 

where A - �89 a is a positive-definite matrix and { W,, t >i 0} is a Brownian 
motion, as their approximating Gaussian process. We find it convenient to 
utilize an approximating Gaussian process with a slightly different form 
(evidenced by comparing Eq. (1.2) with the process in Remark 4 below). 
This new form facilitates easy association with the unique continuous solu- 
tion of a simple stochastic integral equation as well as various simplifica- 
tions throughout our proofs. 

This note is organized as follows: Section 2 contains our notation, our 
conditions, and an expository application of the Algorithm in Eq. (1.1); 
our main result is stated at the beginning of Section 3; the proof of this 
result is housed in Sections 3-5; and some further examples are presented 
in Section 6. 

2. NOTATION,  CONDITIONS,  AND EXAMPLE 

Suppose {A~, k =  1, 2, 3,...} is a symmetric, positive semi-definite, 
9ld• stochastic process and {b t, k=1,2,3, . . .}  is a ~ltd-valued 
stochastic process. Then, we consider the problem of establishing an almost 
sure invariance principle for {h A, k = 1, 2, 3,...} generated by 

1 
Akhk) hi+ ,  ' '  for all k =  1,2, 3 .... (2.1) 

where h~ is some nonrandom constant. Accordingly, assuming certain 
conditions on {A~., k =  1, 2, 3,...} and {b~, k =  1, 2, 3,...}, we define a real 
constant ~ > 0, a constant vector h . ,  and a Gaussian process { Y,, t >/0} 
on a second probability space (g2, ~-, P) and prove that there exists a 
process {hk, k = 1, 2, 3,...} on (t2, ~ ,  P) such that (i) {hk, k--  1, 2,...} 
{h A, k =  1, 2,...} and (ii) ]L t l (hL ,+ , j -h , ) -Y , I  ~'  tu2-ei for all t > 0  a.s. 
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Striving for generality, we assume only that {A~, k = 1, 2, 3,...} and {b~, 
k = 1, 2, 3,...} themselves satisfy almost sure invariance principles. 

To be more specific, we will conform to the following notation list: 

Ixl is the Euclidean distance of a 9~k-vector x (any k) and IIIAIII = 
supj.,.i =~ IAxl for a 91k• A. 

{Zk, k =  1,2,3,...} ~ {~k, k =  1,2,3,...} means equal in distribution 
whereas {Y,, t~>0} = { Z , ,  t~>0} means {Y, ,  t>~0} and {Z,, t~>0} are 
indistinguishable. 

Ltl  zx max{i~[~: i<~t}, Ft] zx min{iE ~: i>>.t}, and a v p  (a ^ p ) =  
maximum (minimum) of a, p. 

ai. k '~" k b,-k implies there is a c > 0 not depending on i or k such that 
lat, k[ <~c Ibe.k[ for all i, k. 

s A= exp(A, log(s)) when A is a square matrix and s > O. 

I a, Oa=dx  d identity, zero matrices and I-[~J=p B/(matr ix  p roduc t )=  
aqBq_  1 . . .  Bp o r  I d i fp  >q.  

var(Y) = E{ ( Y -  EY)( Y--  EY)  r} for any 9~'/-valued random vector. 

A~")=nth column of A or nth element o f A  i fA is a vector, A ( ...... )=  
(n, m)th component of A, and a~,,.,,)(Y) = (var( Y))( ..... ). 

~,,.~ is Kronecker delta and l (a ,b ,c)  equals 1 if a<~b<<.c and 
otherwise it is equal to 0. 

Then, we hypothesize existence of a certain 9V•215 
Gaussian process {(XAxXb), ,  t~>0} and processes {Ak, k=1,2 ,3 , . . . } ,  
{bk, k = 1, 2, 3,...} on (t2, ~ ,  P)  such that: (a) {Ak, k = I, 2, 3,...} ~ {A]., 
k = 1, 2, 3,...}, (b) {bk, k =  1, 2, 3,...} ~ {b]., k = I, 2, 3,...}, and (c) for some 
0 < ~, ~< �89 and (unknown) A . ,  b .  we have that 

Z ( A k - - A . ) - - X  A, r 4 , t  t/z-y 
k<~LtJ 

and 

k<~L,j (bk--b . ) - -xb ~ '  t t/2-y for all t > 0 a.s. 

Next, letting h .  zx A ,  l b . ,  Zk ZX bk -- A k h .  = b~. - b .  - (A k -- A .  ) h . ,  and 

1 
Vk+l=Vk+~(Zk--AkVk)  for k = 1 , 2 , 3  .... (2.2) 
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subject to vl zx h l l - h , ,  we see immediately from Eq. (2.1) and Eq. (2.2) 
that our initial problem has been reduced to defining { Y,, t>~0} on 
((2, ~ ,  P) and showing that for some ~ > 0 

ILt]VL,+~j--Y, l a ' t  ~/2-~ for all t > 0  a.s. [P ]  (2.3) 

Our approach does not require (XAx Xb),, t i>0} to be a Brownian 
motion but rather only presumes that it satisfies three properties (which 
will be motivated in Section 6). Aiming to keep our development brief and 
readily discernible, we describe these properties in terms of a class of func- 
tions F: [0, ~ )  ~ ~ ( d 2 + d ) •  such that F(0) =0  and each component of 
F is continuous and has finite variation on compact intervals. Then, the 
total variation of each component of F must also be a uniformly con- 
tinuous function on compact intervals so by dividing an arbitrary interval 
[0, z], r > 0 into small enough sub-intervals it follows from a fixed point 
theorem that 

Gt__[d-+d+f dF,. G, (2.4) 
- -  ~  " 

has a unique continuous solution, 8R(F) (the right exponential of F), on 
[0, z] and hence on [0, ~) .  Next, being bounded on compact intervals 
and satisfying Eq. (2.4), CR(F) must have finite variation on compact inter- 
vals. Finally, it then follows by analogous results (for Riemann-Stieltjes 
integration) to Protter ~8~ [Thm. 48, p. 264, and Thm. 19, p. 55] that 
,gR(F), is nonsingular for each t>~0 and its inverse is also continuous. 
Letting 

gF(t,s) ZX gR(F),(gR(F)s)-I for all O<~s<<.t (2.5) 

we define de' to be the class of such continuous, finite-variation F such that: 

(i) sup IIl~F~(t, S)III < c~ 
O ~ < s ~ < t ~ $ + l  

(ii) 
q 

sup IIl,~(VuT+p, u)-gr([-uq+p-1,  u)lll ~q 1 +log(q) 
p = l  u ~ O  

(iii) f~ sup IIl~-(I-u7 + v, u) - gFr(ru7 + LvJ, u)lll dv ,~', 1 + log(q) 
u>~0 

for all integers q/> 1 and impose our two basic hypotheses: 
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(Cl) .  Suppose {X,, t>~0} is the pathwise unique continuous solu- 
tion of 

X , = B W , +  dFs.X.~ 

where F i s  a (~.R~d"+d~• class ~ function, { W,, t>~0} is a 9t': 
valued Brownian motion on ((2, o~, P) with W o - 0 ,  and B is a 9t Id2+dJ• 
matrix. Then, (i) letting { X~, t 1> 0} denote the vector process consisting of 
the first d elements of { X,, t f> 0}, we assume that 

Zr-- . ,~ t ' ~ ' t  I /2-r  foral l  t > 0  a.s. [ P ]  
," t J  

and (ii) letting {X, A, t >~ O} denote the 9~ d• d-valued process whose columns 
consist of the remaining elements of {X,, t >>. O} taken in order and d at a 
time, we assume that 

y" A , . - X J  ~ ' t  t/2-r for all t > 0  a . s . [ P ]  
r<<.ktJ 

where -dr z~ A , -  A .  for r = 1, 2, 3 .... 

(C2). The smallest eigenvalue of A . ,  2,~i,, in Condition (CI)  satisfies 
&,i. >_+ 

Remark 1. All the stochastic integral equations in this note are of 
the form: 

k 

~(~i)_]~i)+__, ~ I'XUIdF.i.i.jl i = 1 , 2  ..... k 
" - 1  J 0  a' 

for all t t> 0 

or X, = J, + dF,. X.,. 

where the components of F are continuous functions with finite variation 
on compact intervals and {J,, t t> 0} is a given continuous-path semimar- 
tingale. The argument previously used to define the right exponential of F 
can be adapted to establish that for each co e t2 this integral equation has 
a unique continuous solution )((co)on [0, oo). Furthermore, the "variation 
of constants" method (see e.g., Protter ItS~, [p. 267]), and Thms. 13 and 19 
of Protter Itsl [p. 53, 55] can be used to establish 
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Hence, {X,, t/>0} is a continuous semimartingale indistinguishable from 
{I~o ~F(t, S)dJ., t>~0} and specifying that F is class ~ '  is our method of 
limiting the behavior of { X,, t >/0}. Indeed, we have stipulated that a class 
. g  function should satisfy (i) and (ii) above largely to obtain a convenient 
bound on the variance of X~-X~_~ (for r =  1, 2,...) when {J,, t~>0} is a 
Brownian motion. 

Remark 2. It is easy to see that (C1) is equivalent to almost sure 
invariance principles for {br-b. ,  r =  1, 2, 3,...} and {.4~, r =  1, 2, 3,...}. 
Moreover, since h .  is never known when one uses Eq. (2.1) and (C1) (i) 
can be restated as 

( (b r -b . ) -Arh . ) -X~  < i t  1/2-7' for all t > 0  a.s. [ P ]  
I<<.LIJ 

there is, at least from a pragmatic point of view, no loss of generality in 
imposing (C1) (ii) once (C1) (i) has been assumed. Furthermore, as illu- 
strated in Example 1, {br, r = 1, 2, 3,...} and {At, r = 1, 2, 3,...} invariably 
contain the same type of data so this dual invariance principle assumption 
is a natural one. 

Example 1. Consider second-order {Yk, k =  1, 2, 3,...} and {Uk, k =  
1, 2, 3,...} satisfying 

yk+l(O))=hlllyk(og)+h~21Uk(CO) for k =  1,2, 3 .... (2.6) 

where h e9 t  2 is a vector of unknown parameters with 0 <  [hll~[ < 1. Now, 
suppose that we only have access to corrupted data defined by ~bk(Og)= 
yk(og) +pk(o)) and ek(cO ) = Uk(CO) +(k(Og), where {Pk, k =  1, 2, 3,...} and 
{(k, k =  1,2, 3,...} are zero-mean, second-order, i.i.d, random variables 
on ( I 2 1 , ~  ~, P~) independent of each other, Yt and {Uk, k = l ,  2, 3,...}. 
Then, to estimate h recursively one often uses Algorithm in Eq. (2.1) 
with 

~ + , e ~ j '  ~kek e,~ ] for k=1 ,2 ,3  .... (2.7) 

Al(og) is symmetric and positive semi-definite for all k and 09 but not 
normally convergent as k ~ m. Next, to show that weak-stationarity con- 
ditions for ~ ~ ~ {bk-Eb k, k= 1, 2, 3,...} and {Ak-EA k, k =  1, 2, 3,..} often 
fail (without introducing horrendous calculations), we assume that y~ = 0 
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and {Uk, k = 1, 2, 3,...} is a zero-mean, i.i.d, sequence with Eu~ = I and find 
by Eq. (2.6) that for all k = 1, 2, 3 .... 

E{ (~bke k - E{ ~kek} )2} 

[ (h(2')2 ] 
= E { ~ 2 } E { e ~ } =  l _ ( h ( , ) ) 2 ( 1 - ( h ( t ' ) 2 k - 2 ) + E p 2  [ I + E ( ~ ]  (2.8) 

which depends on k. On a different note, a glance at Eq. (2.7) leads one to 
believe that {A t,  k = 1, 2, 3,...} would normally satisfy conditions akin to 
those for {b~, k = 1, 2, 3,...} which is, in fact, our motivation for Condition 
(CI)  (ii). However, even standard mixing conditions may be less-than-ideal 
assumptions when these processes contain discrete data. To illustrate this 
suppose {Uk, k =  1, 2, 3,...} is a (not-necessarily-independent) identically- 
distributed sequence such that P'  (Uk -= 2) = P ~ (Uk = 4) = �89 y ~ is such that 
p l ( y l  = �89 = e l ( y  t 2 i hi1) h(2)_~; = ~) = _~ and = - - P ' ( l ( k l  > / 2 )  = 0 for all k; 
and P l ( p k = •  k --~6)=+ for all k. Then, it follows easily from 36 ~ _ 

Eq. (2.6) that 

1 1 l 1 1 
~ / k = - ~ U k _ t + f ~ U k _ 2 + f ~ - ~ U k _ 3 +  ""  +-~ '=TUt+g-U='~y ,+pk  (2.9) 

for each k, co and letting ~ denote the a-algebra of sets of the form 
(A c ~ )  u N f o r  any A e a ( r  P'-uni t  set O, and P~-null set N; we find by 
Eq. (2.9) that 

~r -~a (y l ,  ul ,  u2 ..... Uk-3, Uk-2 + Pk, Uk--1) ~ a ( Y l )  

for all k = 4 ,  5, 6 .... (2.10) 

Finally, noting that 

= I sgu(q  ) = ( q O  Ip- sgu(q  e ) for all k = l ,  2, 3 .... a.s. 

(2.11) 

we can use Eqs. (2.10) and (2.11), and arguments similar to Bradley (a) 
[p. 180] to conclude {(~,~)~/z sgn(~,kek) ' k =  1, 2, 3,...}, whence {A l, k =  
1, 2, 3,...}, fails to be strong mixing (with any mixing rate). Our conclusions 
from this example appear to remain important when considering more 
involved problems in adaptive equalization, adaptive array processing, 
linear classification and ARMA modeling (see Widrow and Stearns (23) 
[Chap. 6], Benveniste et al. (I) [Chap. 1], and the introduction and 
references of Farden tg) for further examples and discussion). Therefore, we 
have formed our hypotheses with these conclusions in mind and we will 
begin to illustrate the generality of these conditions in Section 6. 
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We would like to thank a referee for pointing out that Walk, t22) in an 
apparently little known result published outside of the standard probability 
journals, independently discovered our idea of transferring an almost sure 
invariance principle from the data processes to the filter output {hk, 
k=  1, 2,...}. However, there are some significant differences between our 
work and Walk's. Most notably, Walk does not consider invariance to pro- 
cesses other than Brownian motion, he only attempts a loglog invariance 
principle vis-?t-ois our tighter form of Gaussian approximation, and his 
method is entirely different. Still, it is the author's opinion that Walk's 
work is a very significant advancement. 

In the next section we state and prove our desired almost sure invariance 
principle for {Ok, k =  1, 2, 3,...} defined in Eq. (2.2), assuming we already 
have one for {Uk, k = 1, 2, 3,...} defined by 

1 
ul = h l - h .  and Uk+l =Uk+-~(Zk--A.Uk) 

for all k = 1, 2, 3 .... (2.12) 

This second almost sure invariance principle is the subject of Section 4. 

3. AN ALMOST SURE INVARIANCE PRINCIPLE FOR 
{v , ,  k =  1, 2, 3,...} 

Theorem 1. Under Conditions (C1) and (C2) of Section 2 one has 
that: 

ILt_JvL,+lj-Y,l~'t ~/2-~ forall  t>~0 a.s. [P] ,  

for some ~>0 ,  where Y, z~ ~ ( ( s+  1)/(t + 1))A*-ZdX~ for all t>~0. 

Remark 3. In our proof, we will demonstrate that ~ is arbitrary, 
provided ~ ~< y/8 and ~ < ~-min- �89 )'rain and y being the constants of Condi- 
tions (C1) and (C2). 

Remark 4. Applying ItB's formula to { ( t + l ) a * - z Z , ,  t~>0}, where 
{Z,, t>~0} solves 

Zt=Io I-A*Zs+I sds+X~, forall t>~0 

one finds that { Z ,  t~>0} = {Y,, t>~0} so {Y,, t>~0} is the almost-surely 
unique continuous solution to this linear stochastic integral equation. This 
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fact will be used in Example 3. Now, if we apply integration by parts to 
{~  ( ( s+  l ) / ( t +  1))A*-'dX~, t>~O}, we find 

{Y,, t>~O}={X~--~oA' - - I ( s+ly  4"-2' X2ds, t>10} 

which will be utilized in Section 5. 

Remark 5. To utilize the stability of Eq. (2.2) imposed by Condi- 
tions (C1) (ii) and (C2); we let (a) ni & L(iy/2)2/rl and (b) /~ & {n;+ 1, 
n;+2,..., n~+,} for each i = 0 ,  1, 2,...; and (c) sk be the unique index such 
that k - 1  El.,., for k = 2 ,  3, 4 .... It then follows easily that (d) ~'~j~11j-t~ 
(n~+l)-mY'.j~lijr/2-J<~(ni+l)-r/2+(ni+l) -t and (e) (n, .+l+l)~< 
(22/r + 1)(n;+ 1) for i = 0 ,  1, 2 .... 

Remark 6. It follows (see Ref. 13) from this theorem that vN(7~) Z~ 
LrN3 VL~N+ tj for all r E [0, 1 ] and N =  3, 4, 5 .... satisfies a functional law of 
the iterated logarithm if q~N(r) & X~N does. 

3.1. Proof of Theorem 1 

We assume (e = d 2 + d and) B = I a'+d throughout the sequel. 

Proof By Proposition 1 (i) and Lemma 4 (b) below, it only remains 
to show that there exists a h-> 0 such that for a.a. o9 

IWL,+Ij[ ,~' t - 1/2-" for all t~>l (3.1) 

where wk zx Vk--Uk for k = 1 , 2 , 3  .... However, by Condition (C1), and 
Remark 1 it follows that 

X, = #(t, s) dW,. for all t t> 0 a.s. (3.2) 

where @(t, s) & #F(t, S) is defined in Eq. (2.5). Hence, clearly {X,, t~>0} is 
a zero-mean Gaussian process, and for each r =  1, 2, 3 .... and n = 1, 2 ..... 
d'- + d one has that 

I]" 
fi'-- I 

aS,.,,,(X~-X,._,)= I#T(r,s)""12ds+ 

- ,# r ( r -  l,s)l"II2 ds 

I~T(r, s) *'~ 

(3.3) 
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by independence and the usual Hilbert space isometry. Therefore, by 
Lemma 2 (with p = q = r  and Gp=(Id"+a) c'')) and Cauchy-Schwarz we 
have a c, > 0 such that 

I I I var (x~-x , . , ) l l l<~c , ( l+ log(r ) )  2 foral l  r=1 ,2 ,3 , . . .  (3.4) 

and so for a.a. co [P ]  we have (by Borel-Cantelli) that 

A A IIIX,. - x ~ _ ,  III + I X ~ -  x ~ _ ,  I ~ 1 + log2(r) for all r = 1 , 2 , 3  .... (3.5) 

Furthermore, fixing an integer k/> 2 and defining 

71, ~ z~-X; +xL,, e~ ~ z~- X; + X;_, for all j =  1, 2, 3,... 

(3.6) 

we have by Eq. (3.5) and Condition (C1) (ii) that the largest eigenvalue of 
Ak satisfies 

• )l.max(hk ) ~ 1 { IIIXzY - x2!_, III + 1112k III + Ilia, III} 4 '  k- ' /2-~ a.s. (3.7) 

Hence, (recalling w l = 0  and wj+l=v j+ t - -u j+ t=( I - - (1 / j )  Af lwj - -  
(1/j)Ajuj for j =  1, 2, 3,...) we have by Eqs. (2.2), (2.12), (3.6), Proposi- 
tion 1 (ii), Eqs. (3.7) and (3.5) that 

k - - I  k - - I  

Iw, I 4 '  Y', 1-[ I -  Aj -1-3/2(1 +log(l))-' {IIIX;-XL,III  + 1112,111} 
I = 1  j = / + l  

~k I-I ,,., Aft 1 . ~, l-1-"/2 ~ ~" 1 a.s. (3.8) 
j :  2max{ ,4il  >12j I = I 

The result will follow by induction if given any - �89 < r/~< 0 we can show 
that 

Iwkl ~ k ~ k = 1, 2, 3 .... a.s. (3.9) 

can be refined to Iwkl ~ k  ~' for all k---2, 3, 4,..., where p < 0  is arbitrary 
provided p > /max{ t / -  �89 + ),/2, - �89 - ),/8} and p > - ;tmi . . First, we fix an 
integer k >~ 2, and define 

Fj.k zx I-I I -  . for j = l , 2  ..... k - 1  (3.10) 
r ~ j + l  
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Then, symmetry, positive semi-definiteness, and Eq. (3.6) imply 

n ' - ~  ILIA,, Ill ~"* ~t,n"-'A,, 
n e L n 

i. = Z n " -  '(/IIA. Ill + IIIX,~' - X; ,~ ,  Ill) 

+ E (3.1 

z ,,,~,,,~,k z '"~*'"+1 ~,A;r 
j e I, j e I, j 

~,., Z (IIIA,III+IIIX~7-X;'-,III)+ j~7~ (3.12) 
j e L 

for i = 0, 1 ..... s k and a.a. 
(3.9), and Proposition 1 

co. Hence, it follows from Eq. (2.2), (2.12), (3.10), 
(ii) that 

j e [i " J'. n e li " 
j < k  n < j < k  

j ,  n E I i 
n < j < k  

{ ~ ,  E i = O  j tacit  j ~ l i  
j < k  n < k  n < j < k  

ej ,~, ] 

1 ] x - ( I x L -  xL _ ,  I + IliA,, Ill n") 
H 

j < k  n < j  

(3.13) 

so one has by Eqs. (3.5), (3.11), (3.12), Lemma 1 (a-e) and Remark 5 (a-e) 
that 
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[w~ ,~ .' I m a x  q ] [ ( n i +  
i p < ~ q < k  J 

+ ~ l + l ~  ~ n"- '~], ,  ] 

n e l i  Fl e Ii 
~ < k  

+max,,~,,[H[F,,.kH[.[ ~ 1 ,, ] . [ j Z ( l + i o g _ , ( j ) ) +  J~ , ' 4 ;  ] }  
tn < k n e li  ~ 

i i  <~ 111 

,~k ~ {(1 + logZ(n.,.~. + 1))(n,., + 1)-~""" (ni + 1) ~''' -i. .2- ~.,'4 
i = 0  

x [ (n~+ 1)'~ + (1 + log-'(n~+ 1))(n~+ 1) -~'/2] 

+ (n,. k + 1 ) - ~''~" (n~ + I );'"'~" - 3/2 -~. [ ( 1 + log-'(n~ + 1 )) 

x (n~+ ~ -n~)  + (n~ + 1 )~-'-~'] } 

~k 

4 '  (n,., + 1) -~'"" (1 +log2(n,~k + 1)) ~ {(ni+ 1) ~''~"- c'2-~''4 
i = 0 

• [ (n~ + 1 ),s + (n~ + 1 ) - 7~./,6] + (n; + 1 )~"""- ,.2- 3~./4} 

~ k k - ; " ' " l o g - ' ( k ) .  1 + {i2/Y~'m'-1'2-r/4+"~-t-i 2/~'c~''i"-1/2-'b'16~'} 
i = 1  

~k k - x,,~. log2(k).  [ 1 + (n,. k + 1 )~.m,, - i,,~- + ~..4 +,l~ + (n,.k + 1 )a"""- i,-~ - 3~./16 ] 

~ ~- k - a.,,~,, log-'(k ) + k - 1,2 § ~./,_ + ,l + k - i /2  - ~,/~ 

for all k = 2 ,  3 ,4  .... and a.a. o~ (3.14) 

provided 2/)'(2m~. -- 1/2 -- ?'/4 + q) 4= -- 1 and 2 /7(2mi . -  1/2 --)' 1 1/16) ~ -- 1. 
These cases are handled with trivial modifications to this procedure  and 
our  p roof  is therefore complete. [] 

3.2. Technical Bounds Required for Theorem 1 

Lemma 1. Suppose ,~j and ~ are as defined in Eq. (3.6), F, , , .~ .  is as 
in Eq. (3.10) and Condi t ions  (C1) and (C2) of  Section 2 hold. Then, it 
follows for a.a. [ P ]  co, all integers k~>2 and all i~  {0, 1 ..... sk} that 
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(a) max ~, ~j <,,k (n,+ 1) '/2-'' 
p ,q~I~  j = p  
p <~ q 

(b) =•r 1 
max ~ <"k(ni+l)-1/2-"  

p , q ~ I j  j 
p<~ q 

(c) 

(d) max IIIF,,,. k III < " *  (n, + 1 ? " ' " - '  (n,, + I ) --).min 
m e li 
l i t  < k 

A '~'  k (n.,~ + 1 )-a'i" (e) max Ei.a- / 
/ ; ,  q e 1~ j = P 

p < ~ q < k  

x ( 1 + log2(n,, + 1 ))(hi + 1 )x,,,,,,- a/2 - r/4 

Proof Insomuch as arguments for (c) and (e) can be modified for 
(a), (b) and (d), the latter three proofs are omitted. Suppose i, k are such 
that k/> 2, 0 ~ i ~< sa. and I; is not empty. 

(c) We have by the substitution j " -~  = (n~+  I) ~-~ +Z, .~1 , . ,< j ( ( r+  
1 ) " - l - r " - ~ ) ,  an interchange of summation, the mean value theorem, 
Condition (C2) (i), and Remark 5 (d, e) that 

~, ~, r ' - 2 ]  ( m a x  s A/ J} 
j c l ,  r e l i  _l l P ' q e l ~  " p<~q m . l = P  

<i.k (hi+ 1) 'l- u2-r a.s. [ P ]  (3.15) 

(e) Using (a) and partial summation of F/.k, we have for any p, qe l i  
such that p ~< q < k that 

" I ~=pF z < i ' * ' " " ( n i + l ) ' / 2 - r  max UIF,,.,II[ (,,,e/, 
. i  m < k 

+ ~ IIIf,.+,.,-f,..klll} a.s. [P] (3.16) 
r e  l i  

r < k -  1 
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Moreover,  letting 2 denote  an arbitrari ly chosen eigenvalue of  A , ,  not ing 
that 

) f I-I 1--  7 ~< - - I  .exp 
I = r + 2  / = 2  k / = 2  

{ x exp - 2  - -  for all 
r + l  

r = O, 1, 2 .... (3.17) 

and recalling from Remark  5 that  k -  1 >/risk + 1 and n,.+~ ,4' n~ + 1, we find 
that 

[I+ 1 -  1 -  
/ 2 r +  1 / = r + t  

,~,-. c k (n,.~ + 1 ) -;.m,. (ni + 1 );-m,.-I 1 (3.18) 
r 

for r = n i +  1 ..... ni+ ~ - 1 so by Eqs. (3.6), (3.16), (d), (3.10), the fact that  
the eigenvectors of A ,  span 9l '1, the principle of  uniform boundedness,  
Eq. (3.18) and Remark  5 (d) it follows for a.a. a~ that  

m a x  
p, qe I i  

p<~q<k 

j~pFj, kYj "~" k (n.,.k + 1) -am~" ( n ; +  1) ~'m'"- m-~, 

+ max . k .~- t 
p,q,E t~ 

p<~q<k J 

(3.19) 

Now, choosing arbi t rary n, m e {1, 2 ..... d} and defining G)'.';" to be the 
(d 2 + d)-vector  

@7 a [0,0_~.. .  0,,,,, (F)f])TO,,,,,+ ,... 0,,:] T (3.20) 

for l = 2, 3, 4 .... and j = 1, 2 ..... l -  1 and noting Fj. ~ is symmetric,  we see by 
Eqs. (3.2) and (3.20) that  

Fj t ( X  A X A (G ...... ) r [  f i  
�9 - - '- ' )  = - " '  L Jo g(j' s) dW,, 

~,," = p  j = p  
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for all integers l>/2 and 1 <<.p<<.q<~l-l, and for a.a. 09. Hence, by Eq. 
(3.21), the usual Hilbert space isometry, Eq. (3.20), and Lemma 2, we have 
that 

q {va  ({>, ,,}' ..... ')l 
[ ,~r(q, s) ...... 2 = G,, , ,  I ds + ,~T(j, s) G;.',;" 

- -  I j = p  v F .q  

q 2 

- E #r( j - l , s )  G . . . . . .  I ds 
. / '=p  v r -s+  17 j , I  I 

r ,1112 + "J,i'- ' ...... Igr(Fs7, s) Gn,q. ,I 2 ds 
--1 

- - I  ~ 2 +;,i' E ,,sl l G,u,,I ,,s 
. '=  ., / p v F~+I-I  

q q 

r  ~ lllF~.,lll-'+(] +log(q)) 2 ~ III~.,III-" 
j = p  . i = p  

q 

,~""(1 +log(q))" ~ IIIf.,-,,lll" 
j = p 

for integers 1 ) 2  and I ~p~q<~l--1, Moreover, 
Gaussian moment generating function, the fact 
exp(z- )  for z e 9t and Eq. (3.22) that there is a constant ca > 0 such that 

Eexp(O j~,,{Fj.,(X;~--Xf_,) } ' ...... ' )  

<~2exp(ctO"[l+log(n,.+,+ 1)] 2 ~ [[,Fj.,,[[ 2) (3.23) 
j = p 

for all integers p, q, r, I such that l >~ 2, r e { 0, 1 ..... sl}, p, q e/,. and p ~< q </ ,  
and for all 0 > 0 .  Next, by Eq. (3.23) and Theorem 2 we have a c_,>0 
( = 12c~) such that 

Eexp(Omax\ P~, /~t, {FJ"(X~'-XS-')}( ...... ) )  
p < l  �9 

J<P 

j e  L 
j < l  

(3.22) 

it follows from the 
exp(Iz[) = exp(z + ) v 
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for all l = 2 , 3 , 4  ..... r = 0 , 1  ..... s~, 
Z,~ 1~ IIIF;.,Ill 2 > 0, letting 

. i <  / 

0, . /& (c2[ 1 + log(n,. 

and 0 > 0 .  Consequently, assuming 

+, + 1)] 2 Z IIIFj.,III2) - '/2 
j ~  1~ 
. i < /  

for all l = 2 , 3 , 4  ..... r = 0 ,  l,...,s/ (3.25) 

and fixing an a >  1 +),/2; we have by Eqs. (3.24) and (3.25), monotone 
convergence, and Remark 5 (a--c) that 

. . . . .  , exp(0,..,max,,~,r 1~2;~1~ { F j . , ( X f l - X  ~. ,)}' ...... '1) 
E ~  ~' "<' )'<P J- 

/=2 r=o (n.,.,+ 1)" 

eL 
<~ ~ sl+ l l-.+W2 < 

t=2 ( n , +  1)'--' ~/=2 oo 
(3.26) 

Moreover, using Eq. (3.10), an argument similar to Eqs. (3.18) and (3.19) 
as well as Remark 5 (d), we find that 

~. Illfj.,lll2 ~". '  cn._,_+ _1~ -2am'", (n,.+ 1) zx''"- ' -'/-~ 
j E 1, 
j <  / 

for all 1 = 2, 3 ..... r = 0, 1 ..... s/ (3.27) 

Hence, we have by Eqs. (3.26), (3.25), (3.27), Remark 5 (e), and the 
arbitrary choice of m, n that 

max ~ / F j I ( X S - X S X - ' )  
p'~ li J r p < l  .]<~p 

,~,../(n,., + 1)-  a.,,, (1 +log(n,.,+ 1))(n,.+ 1) a'm- w-,- y/4 

x [1 +log(nr + 1)] (3.28) 

for l = 2 ,  3,4 ..... r = 0 ,  1 ..... s/, and a.a. co; and (e) follows by Eqs. (3.19) and 
(3.28), and simplification. [] 

The following lemma is used in Theorem 1, Lemma 1 (e), Lemma 3, 
and Lemma 4 (a). 

86119,1-2 
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Lemma 2. Suppose F is a 91~d2+al• class ~ /  function. 
Then, there is a c > 0 such that: (i) for integers p, q satisfying 1 ~<p ~< q and 
sequences of 9td2 + a.vectors { G j} q= p one has that 

~o I T .  [Sr(  :, S)--grr(j - 1, s)] Gjl ds 
j = p  s+l-]  

q 

.<c[1 +log(q)] 2, ~ Iajl 2 (3.29) 
j=p 

and (ii) for any integer q :> l  and Lebesgue-measurable function 
G: (0, q] ~ 91 a2+a one has that 

:o '[:: I r r [gr(S,  u ) - - g r (  LsJ, u)] G,I ds du 
u7 

~< c[ 1 + log(q)] 2. f,i IGs 12 ds (3.30) 

Proof. Inasmuch as the proofs of (i) and (ii) are very similar, we will 
only prove (i). Letting 

fl(j,s) zx I l lg~( j , s ) - r  forall  s > O , j = F s +  l-q, Fs+27 .... 
(3.31) 

~(v) _& sup fl([-sT+v,s) forall  v = 1 , 2 , 3  .... (3.32) 
0 < s ~ q - - I  

and utilizing a change of variables and Cauchy-Schwarz, we find that the 
left-hand side of Eq. (3.29) is majorized by 

' 

l(p,j,q) fl(j,s) Iajl '  Z 
j =  17 /=Fs+  l l  

q q ~s 
<~ ~. ~. l ( p -Fsq ,  v ,q-Fsq)f l(Fs7+v,s) lGr,a+ol 

• l ( p -  FsT, u, q-Fs7) f l (FsT+u,  s) IGr.,.7 +,, [ ds 

~< ),(v) l ( p - -  VsT, v, q- l -s - I )  IGrsq+ol2ds 

y(v) IG:I z 
v = l  j 

The result follows by the definition of a class ~ '  process. 

l(p, l, q) flU, s) IG, I ]ds  

(3.33) 

[] 
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The next result, used to establish Lemma 1 (e), is M6ricz {16~ [Thm. 1] 
with the definition 

(g(p+a, k +p+a-  1) 
| 

} if p+k<~b-a 
g(Fp.k) ~ ~g(p+a, b) 

if p+k>b-a,p<~b-a p = 0 ,  1,.. .;k= 1, 2 

\ 0  otherwise 

Theorem 2. Let a<b be fixed positive integers, {~;, a~i<~b} be a 
sequence of ~R-valued random variables and c > 0 be a constant such that 

(i) E { e x p ( O  i~= ,i )}<~cexp(O2~(ot, fl)) 

forall a<~<~fl<~b, 0 > 0  

where g(~, fl) is a nonnegative function satisfying 

(ii) ~(oqfl)+g(fl+l, 7)<<.~(oc, 7) foral l  a<<.oc<<.fl<7<~b 

Then, 

E exp 0 max ~i <~8cexp(1202g(a,b)) foral l  0 > 0  
a<~fl<~h i 

4. AN ALMOST SURE INVARIANCE PRINCIPLE FOR 
{uk=l, 2, 3,...} 

The following proposition and Lemma 4 (b) bring forth an almost 
sure invariance principle for {uk, k = I, 2, 3,...}. 

Proposition 1. Under Conditions (C1) and (C2) of Section 2 one 
has: 

(i) ILtAUL,+Ij--YL,jI<'t 1/2-~ forall  t > j 0 a . s . [ P ]  

(ii) lUL,+lj[~tt-t/Z(.l+log(t))2 forall  t ~ > l a . s . [ P ]  

where {uk, k = 1, 2, 3,..} is defined in Eq. (2.12), q is any real constant such 
that 0 < r/~< 7/2 and q < 2m~, - 1/2, and { Y,, t >I 0} is as in Theorem 1. 
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Remark 7. Although the constituents of Hypothesis (C1) pertaining 
to {A~, l =  1, 2, 3,...} are no longer germane, we prefer to maintain our 
initial allotment of assumptions throughout this note and rely on the 
reader to distinguish what is actually being utilized in each proof. 

Proof of Proposition 1. (ii) is an immediate consequence of (i) and 
Lemma 4 (a) so it remains to proof  (i). Exerting Hypothesis (C1) (i), we 
can (and do) fix an co such that 

IZ,_X,l<,t~/'--~ ', z,a= ~_, zj f o r a l l  t>_-I  ( 4 . 1 )  
.J<~Ltl 

Now, we let D[ 1, oo) denote the space of right-continuous, left-hand-limit 
functions from [1, co) to 9~ d, fix an integer q~>l and define "~q(~b): 
D[1, oo) ~ ~Rd by 

~,~q(~) Z~ q[ L Fj, q+t(~b(J)-(~(J-1))+ FL,,+,q~(1)] 
t - j=2 

(4.2) 

where F./.k is defined in Eq. (3.10). Next, recalling Definition Eq. (2.12), we 
can easily determine that qUq + i = :~q(Z) + q 1-I7= ~ (1-  (1/l) A .)(h [ - h. ) 
so, reasoning similar to Eqs. (3.17)-(3.19), we have by Eq. (3.6) that 

Iqu , l+ t -~ (X- - ) l  ~qq L FJ.,l+t2J +qt-~m,, (4.3) 

Moreover, employing an argument similar to Eq. (3.14) and noting that 

j~1, Fj, <,~j <i, k (n,,, + 1 ) - ~"" (ni + 1 )~m,. - 1/2 -r ,  

j < k  

for all k = 2, 3, 4 ..... i = 0, 1 ..... sk (4.4) 

(by analog to Eqs. (3.16)-(3.19)), we find for a.a. co and each k = 2 ,  3 ,4  .... 
that 

( k - l )  ~ ~<(k -  11 Fj. 
j I i = 0  j e l i  

j < k  

[e  1 (~k  k | --,;-rain I -+" i2/),(2min - I/2--},) 

i = I  

, ~k  k ( I  - a.,,,I v (1/2 - ~./2) ( 4 . 5 )  
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provided 2/7(2,,,,, - �89 - 7) # - 1. In this case, we still have a bound in terms 
of q as in the statement of Proposition 1. Now, noting ((s + 1 )/(q + 1 ))Ao- t= 
exp(log((s + 1)/(q + 1)) A.)( (q+ 1)/(s + 1)) for 0 <s<~q and defining 

p =pqz~ [-[ I-- A .  
j = r . ,q + ,  Fs7 

( ( s + l ' ~ ) q + l  
Q., .=Q. ' /~exp l o g \ q + l j A  , s + l  for O<s<~q 

(4.6) 

we attain from Eqs. (4.2) and (4.6) that 

f 0 P  - ~r - Yq = ,t Q,.I dX:.  ( 4 . 7 )  

Moreover, letting { ~.,., s/> 0} be a ~R ~'~'- +d~ • ,t'-+dLvalued process such that 
each component process {S!,. ''''j', s>_-0} (m, j e  {1, 2 ..... d 2 + d } )  has con- 
tinuous paths for every o3 and is indistinguishable from {l~d~{'"-J~(s, u) 
dWt,/~, s>_-0}, one has, by Condition (C1), and Eq. (3.2), that 

{ X ; , t > ~ 0 } =  G dF.,.. ~, -.,. j + G W t ,  t>~O 
I j =  1 

for n = l , 2  ..... d~-+d (4.8) 

where G Lx [!dod...O d] is a dx(d2 +d)-matrix. Defining R~ zx P.,.G and 
R~ u Q.~G for O<<,s<<.q, using Protter ~181 [Thm. 19, p. 55], and applying 
Eqs. (4.7) and (4.8); we find that R I is left continuous with right-hand 
limits, R 2 is continuous and 

d 2 + d 

J~(X:)--Yq=II 'R.I .--R:dlC,.+ ~" II'(R.I.-R:)(dF,..Z!,/') a.s. (4.9) 
j =  ! 

Next, we recall that each component of ~R(F) is continuous and of finite 
variation on compact intervals and utilize Theorem 3 (and its preamble) to 
obtain for a.a. co and i = 1, 2 that 

f iO t (tl) d 2+d  d2+d  ,P-~= d ,, R.,.(dF,: . -.~='n) = Z Z 
k j  I /=1  j = l  

t ~,1Ri,,.t~( dF, . g(s, u) ) It'j~ dW~,; n j. s 

(4.10) 

Hence, by Eqs. (2.4) and (2.5), Stieltjes-type integration by parts, and 
Eq. (4.6) we obtain 
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d2 +d 

= E 

d2+d 

= E 
I,.L m ~ 1 

- - f u  R 11 q r (F)s.,,,, dRi!,,, i,} dWI/, 

a2 + d ,1"- + d for G TM 1~r u) -- R,I" t)Ot, j =E E 
I~l  j = l  

dR~U,, t~ ~ d u~ -f,,'~ ~'J~(s,u) .,. j W,, 

{f~, l '" '  r r , ,  i dW,,) u', = G.~(q,u)  dW,~ - t J  ~ R,, 

~fq R;t,,. ')((gR(F),,)-')t'".J)dgR(F)~/" ,,,~ dW~'l 
)1r "~ 

fi' ((r ~,.t) R It.,,,~_ R, r (F),, {G r (F)~ ,i,,./~ R ..,,,~ 

(4.11) 

S q dR.~. d'(s, u) includes any jump in R~ at u but not at q. Hence, by Eqs. 
(4.9) and (4.11), we have 

;"it~ Yq = _ f~t [ q d I 9 .  
- -  f,  (R~.--R;) g(s,u)] dW.  a.s. (4.12) 

and by Eq. (4.12), Lemma 3 (for some fl> g) and Borel-Cantelli, we have 
that 

I '~q(X'z) - Yql ~.qq'/2-,I a.s. (4.13) 

and the proposition follows by Eqs. (4.3), (4.5), and (4.13). [] 

Lemma 3. For any integer q ~> 1, class ~ '  function F and 9~ '~• {d2+ d~_ 
matrix G; it follows that 
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for some fl > q; where Pq and Qq are defined in Eq. (4.6), g(s, u) = gF(S, U) 
is defined in Eq. (2.5), { W,,, u>~0} is a ~ta2+a-valued Brownian motion, 
and r/is as in the statement of Proposition 1. 

Proof  One first fixes an integer q >/1 and a fl such that r/<fl  < 
(2m~n- ~) ^ 1, and notes that by Cauchy-Schwarz one only has to show 
that 

(I:(Sl- I ) = a C ..... ) ~[- Q~(). G~(s, u) dW,, ~.q qt-2# 

for n = 1, 2,..., d (4.14) 

Then, fixing such an n and noting P[( and Qq are symmetric, we obtain 
from Eq. (4.6) that 

- ,  12 2 ~ q  1 1 

q - - I  

+ Ii'-' l f:.7 (,~T(s, u)-gr(Lsl, u) Gr (~-~)'"' ds ~du 

(4.15) 

Moreover, for the first term in Eq. (4.15) we have (when q > 2 )  by Eq. (4.6) 
and Lemma 2 that 

--I q--I I 
~1 I__~Fuq I ~T([_U.~, U) _}_j=I_~u+ Iq (~T(j, u) __~T(j__ I, u)) ] 

x Gr(p~"+ ) , -- Pi"' - t3,,,) 12 ~ t+l  +O~")) du 

~< Ill~.T([-u7, u)Ul 2 IIIGrlll 2 cw,~ _ p c . ~  i z du ~Fu-1  ~ F u 7  

q-I q-1 
c q f  ~r,nnc"~ _ p~,,)_c,n 12 d u + [ l  +l~  2 E ~jotn)--P~")[ 2 

u0 j = l  

q - - I  

~q [1 +log(q)]  2 E IIIQj-PjlII  2 (4.16) 
j = l  
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Now, applying the principle of uniform boundedness, exhibiting 2 as the 
eigenvalue of A, which maximizes each right-hand side, and utilizing 
Taylor's theorem, we obtain by Eq. (3.17) that 

1117_.7.-1"].111 < * " q Jl~ (' ~' , ,,,+'~,,s) ,:.,.+,-T)-exp t,-J.,+, 7 ] 
+(q q+l~(J+ 1 ~ a 

-}7-i l t-~--f /  

@/' q q { ,:I~+, (1 -- ~) -- ,=~I.~+, exp ( - ~ )  [ 

.,., <, r,+,~,,,)[ , pex,,( ,=?,, D ex",-,,, 
1 #+ ly - ;  

+j-7-7 ',.q--~/J 
+,qf s ex,(- Z I'-~} J vk=j+l t=k+, 7)L,=j+, 

xll-~-ox,(-91 
\q---~ J [ 2- ds- , ~  t ~) - 11 +j +---~-7 } 

4s.u(j+l '~ x ' ~ " -  1 q for j = l , 2  ..... q--1 (4.17) 
\-q+-l ) j + l j 

Hence, substituting Eq. (4.17) into Eq. (4.16), that 

.o [`'- ' ,~,',q #T(I. u) GT(p$'2 __ O'"' __ CI'"'~,+, + Q~")) 2du 

q - -  I t '  22min -- 4 <~" [1 +log(q)]" ~ qS~<~"qi-Ws (4.18) 
j t 

Next, we note by Lemma 2 and Eq. (4.6) that the second term of Eq. (4.15) 
can be majorized by 

[ l+log(q,]2.[7 e x p ( l o g ( S + l ~ A , ) ( t l , - - I ) ~  2ds \-q---r / t~ + ~- 

<~q [1 + log(q)] 2 (q+ 1)2--Z~'m'"fq(s+ 1)2Xmi"-4ds,~qq 1-21~ (4.19) 
I 
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Finally, we consider the last term in Eq. (4.15) and use the definition of a 
class J/r function to obtain that 

<, ( s +  1"~ "~''i" q + l  -I 2 

4 '1 (q + 1 )2 -~_*.,,, If' (l-u-] + 1 )2am,, -4 + (u + 1 )2a,~, -4 du 

4,t q1-2a (4.20) 

and the lemma follows by Eq. (4.15) and (4.18)-(4.20). [] 

The following stochastic Fubini's theorem was used in Eq. (4.10) 
of the proof  of Proposition 1 with D(s, u) = 1(0, u, s) R.~"%~"'"Jl(s, u), 

- d F  u''''~ and B ( s ~ - R  il'''ll='~ for all possible values of i, j, l, m, lt( ds ) - __,, 
and n. The joint measurability measurability of such a fl follows from its 
left continuity. The result follows by a Jordan decomposition on ~, 
ordinary Fubini theorem, and arguments similar to but simpler than those 
for Thms. 44 and 45 of Prooter,  ~'81 [pp. 158-159]. 

Theorem 3. Suppose q > 0  is a given real number, D: [0, q] x 
[0, q] ~ 9t is a bounded and 3~[0, q] |  q]-measurable function,/~ is 
a finite signed measure on ~ [ 0 ,  q] and {W,, .~,, t>~0} is a 91-valued 
Brownian motion (with Wo = 0) on (I2, ~ ,  P). Then, there is a version of 
(s, co)~  ~ D(s, u)dW,(co) that is ~ [ 0 ,  q] @ o~-measurable, and any such 
jointly-measurable version (s, co)~  fl(s, 09) is /~-integrable for a.a. co and 
satisfies 

where both sides of this equation are ~-measurable .  

a.s. 

5. B O U N D S  FOR { Y,, t >I 0} 

Lemma 4. Under  Conditions (CI)  and (C2) of Section 2, it follows 
for a.a. co [ P ]  that: 

(a) [Yql4qq~/2( l+log(q) )  2 q = 1 , 2 , 3  .... 

(b) I Y , - Y L , j I 4 ' t  1/2-" t>~O 
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where 1/is any real constant such that 0 < q .<< ? and r/< 2 m i  n - -  �89 and { Y,, 
t~>0} is as in Theorem 1. 

Proof Fixing a q, one determines analogously to Eqs. (4.9)-(4.11) 
that for a.a. co 

Yq=foG.g(q,u)dW,-f~[ f, l dQ'(.Gg(s,u)] dW. (5.1) 

where Qq is defined in Eq. (4.6). Now, (a) follows by Cauchy-Schwarz, 
Gaussian tail bounds and Borel-Cantelli if we bound a~,,.,,~(Yq) appro- 
priately. However, we have by Eq. (5.1), isometry, Lemma 2, the fact 
2mi n > �89 and Eq. (4.6) that 

~n. n)(Yq) ~q lr"r(Fu-1, u) v~rnql"~12=r,,1 du 

q l 12 +;o [r GrQ q'"' du 
j = F u l  + I 

q-Ill// /clOq\(")ds2 +;0 , l  [gr(LsJ,  u)-gr(s, u)] G r / - = ' ~ |  \---~--s J du 

+ , eT(. , . )  ~ T ( , T ~ )  a, a .  

<q IIIQr.qlll-du+ [1 +log(q)]  z IIIQTIII z 
L j = 2  

;;I Ill I  s'l 2 dQq 2du + max du 
+ ~ ,,-<.,.-< r , 1  

<q [1 +log (q)]2 (q+ i)2-2.~,.,. ( L (J+ I) 2"~''"-2 
U j ~ l  

+ fqo (u + l )2;tmin-4 du + L (j + I )2An'in--4] 
j=l 

<q[l+log(q)]2q for n = l ,  2 ..... d (5.2) 

To prove (b), one fixes an co such that Condition (C1) (i) and (3.5) hold, 
verifies from (C1) (i) that 

IX-',-X~_,jI<'t ~/2-r for all t > 0  (5.3) 
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and deduces from Eq. (5.3) as well as Eq. (3:5) not only that 

] , e ~ _ l - - X Z ( ( L t j + l ) / ( t + l ) ) _ l l  

~~ ] (5.4) 

for all v, t such that ( t+  1)/(LtJ+ 1)<o~< t +  1 and t>_. 1 but also that 

t + l  
IX~_~l~V"l forall  l~V~<Lt_ j+ l ,  t>_.l (5.5) 

Then, by these estimates and Remark 4 one finds for a.a. co that 

f,*, V. -2' 
I Y , -  YL,jI ~< IXT-x[, j l  + I~(t+l)/Lt-I+ 1) t- t-  1 \ t +  1) 

X [ X~((Lt j  + 1 )/(t + 1 )) - I - -  X ~  _ I ] dv 

fl I + t + l  \ t+ l )  X~_~dv 

, ~ '  ltP---:~ q_ ( t  .4_ 1 )1 -ami,  I f ' +  ' [VI/2-Y.4_l 
k. ' ( t  + 1 )/(Ltd+ I ) 

+ log2(t)] v am~"-2 dr+ 1} 

~t t*/u-, for all t>_- 1 (5.6) 

Moreover, for a.a. co, one obtains from Remark 4 and Eq. (5.3) that 

IY,! ~ l X T l +  --~-+-f-\t+ld 

f2 4.~t~/2-~+ [X~[dv4.tt~/2-r+t3/2-~4.'t ~/2-~' forall O < t < l  

(5.7) 

and (b) follows by Eqs. (5.6) and (5.7). [] 
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6. FURTHER EXAMPLES 

We give two simple examples of class J /  functions and Condition 
(C1). 

Example 2. Although our results hold under greater generality, the 
case of a (continuous) Brownian motion is of paramount importance, due 
to numerous theorems (see Berkes and Philipp, I-~ [Thm. 3], Kuelbs and 
Philipp,~ ~41 [Thm. 4], Dehling, 151 [Thm. 3], Eberlein, ~6" 7~ [Thms. 3 and 2, 
respectively] and Philipp, ~t7~ [Thm. 1 ]) which can be used with the local 
law of the iterated logarithm to substantiate Conditions (C1) (i) and (ii). 
When the components of {A,, k--- 1, 2, 3,...} and {zk, k = I, 2, 3,...} jointly 
satisfy the conditions of one of these theorems, Condition (CI) would 
follow provided 

,.<~wjEzr @'t '/2-,' and , .~, j  ( E A r - A . )  @'t ''2-~' 

for all t >~ 1 (6.1) 

Example 3. We consider 

~' I a'+a A 
x , = w , +  o 7 7 7 1  X,.ds for all t>~0 (6.2) 

with A - I  a'-+a symmetric and positive definite and { W,, t/> 0} a Brownian 
motion, which, by Remark 4 and the previous example, is an essential 
Gaussian process in the theories of stochastic approximation and adaptive 
filtering. In this case, one notes that 

F, = ( 1'1"- + a_ A ) log(s + I ) 

#Fr(/, S) =exp ((I"2+a--a) log ks+ lJJ  forall O<~s~t (6.3) 

Now, (i) in the definition of a class ~ function is trivial and (ii) and (iii) 
follow if 

q 

s u p  s u p  IIle~(l-u7 + v, u) - ,~f~(Vu7 + p  - 1, u)lll 
p =  I p - -  I <~t'<~p t t ~ O  

,~q I + log(q) 

(6.4) 
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for all q = l , 2 ,  3 .... However, considering Eq. (6.3) and letting 2 (2,,,) 
denote an arbitrary (the smallest) eigenvalue of A, we find by the mean 
value theorem that 

(r ,n + .  + {r.7 +_.7 
/ - \ . + l  / 

1 [ ' fu]+p '~-X<(u+ 1 ) ; ' ' - '  
~<u+ 1 \ u +  1 ,} " ~ - - 1 + - - ~ ' ; '  (6.5) 

for all u >~ 0, p - 1 ~< v ~<p and p = 1, 2, 3 .... Hence, by the fact that 2,,, > 1, 
we find from Eq. (6.5) that 

(u + 1)~,,, - t  
s u p  IIIg (fu7 + v, u) - e ; ( f u 7  +p  - -  1, u)lll s u p  , ,p-i 
, ,~o  , ,~o (u+P) ~'' 

( 6 . 6 )  

for all p - 1  ~< v<~p, p =  1, 2, 3 ..... where we have considered the cases 
p >/1-2,,,/(2,,,- 1 )7 and p < [-2,,,/(2,,,- 1 )7 separately. Equation (6.4) follows 
easily. 
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