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and consequently 

By definition of Vn and the relation (6) 

On the Convergence of Linear 
Stochastic Approximation Procedures 

Michael A. Kouritzin 

Abstract-Many stochastic approximation procedures result in a sto- 
chastic algorithm of the form 

1 
hk+l = h k  + - (bk  - A k h k ) ,  

k 
for all IC = 1 , 2 , 3 . .  . . . 

Here, { b k ,  IC = 1,2 ,3 ,  . . .} is a Rd-valued process, { Ak , IC = 1 , 2 . 3 .  . . . }  is 
a symmetric, positive semidefinite Redxd-valued process, and { h k  k = 
1,2 ,3 ,  . .} is a sequence of stochastic estimates which hopefully con- 
verges to 

l i m s u p P { z :  112 - Qn(r)l1 2 S} 2 ~ / 3  - ~ / q  = ~ / 1 2  
n-cc 

and therefore l i m ~ i i p , ~ - ~  DT(Qn) > 0 for every T > 0 0 1 
N - m  N 

-1 

h b [$?- E l V  E4h] { lim - E b k }  (2) 
k = l  k = l  

(assuming everything here is well defined). In this correspondence, we 
give an elementary proof which relates the almost sure convergence of 
{ I i k ,  k = 1 , 2 , 3 , .  . .} to strong laws of large numbers for { b k ,  k: = 
1 , 2 , 3  ,...} and { A k , k  = 1 ; 2 , 3 , . . . }  . 
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I. INTRODUCTION 

Since the inception of stochastic approximation procedures many 
statisticians, probabilists, and engineers have strived to establish limit 
theorems and invariance principles for these procedures. Much of 
the earlier effort (see, e.g., Sacks [21], Fabian [7], McLeish 1171, 
Gaposhkm and Krasulina [lo], Heyde 1131, and Ruppert [20]) was 
concerned with procedures which can be written in the algorithmic 
form 

1 
k h k + l  = hk + - ( b k  - Akhk) for all k = 1 ,2 ,3 , .  . . (1.1) 

where h l  is some possibly random vector { A k ,  k = 1 , 2 , 3 , . . . }  
and { b k ,  k = 1; 2; 3 , .  . .} are, respectively, Rdx”-valued and Rd- 
valued processes on some probability space (n, F, P ) ,  and A p  is 
constant or at least converges almost surely to some positive-definite 
matrix A. More recently, applications of the procedures (1.1 j where 
Ak is symmetric and positive semidefinite but does not convierge 
(see, e.g., Widrow and Stearns [24, ch. 61, Benveniste, MCtivier, and 
Priouret [ l ,  ch. 11, and the introduction of Farden [SI) have promlpted 
many authors (see, e.g., Fritz [9], Gyorfi [ll], Farden [SI, Eweda 
and Macchi [ 5 ] ,  161, Ljung [16], and MCtivier and Priouret [IS]) to 
study strong consistency for (1.1) under less-stringent conditions on 
{ A k ;  k = 1 ,2 ,3 , .  . .}. In the present note, we bring forth seemingly 
natural almost sure convergence results for (1.1) analogous to the 
strong laws of large numbers for partial sums of random variables. 
Although our results are in some respects more general than previous 
results, our main contribution might be considered our elementary 
proof which was motivated in part by Fabian [7, Lemma 2.11 and 
Eweda and Macchi [5] .  (There are also some similarities between 
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the matrix computations in Bitmead [2] and those in the sequel.) 
Finally, we mention that there is substantial literature (see, e.g., the 
books of Kushner and Clark [14] and Benveniste, MCtivier, and 
Priouret [ I ] )  motivating and treating nonlinear (in h k )  stochastic 
approximation procedures as well as procedures with state-dependent 
noise. However, to apply such results to our algorithm ( l . l ) ,  one 
would necessarily have to impose more stnngent conditions than 
those proposed in this correspondence. 

11. NOTATION AND RESULTS 
In this section, we will define our notation and provide our results. 

A. Notation List 
111 is the Euclidean distance of some Rd-vector z. 

l \ A ~ l l  = 

Lt] 
It1 = miri{i E No: i 2 t } ,  for any t 2 0. 
a << 11 means that a ,  b are nonnegative real numbers such that b < x 

implies a < 00 and b = 0 implies n = 0. 
aL,k << b L , k .  means that there is a e > 0 not depending on i or k such 

that I a , , k /  5 clb,,kl for all i. k .  
I" = d x d identity matrix. 
U:=, L?i (with each L?( being a R"xd-matrix) = B,B,-l . . . Bp 

a A p ,  a V p  are, respectively, the minimum and maximum of a and 11. 

I A T I  for any R~~~ matrix A. 
max{i E No: i 5 t }  and 

z , k  

if q 2 p or if p > q .  

B. The Main Result and Discussion 
We will state and prove our result in a completely deterministic 

manner and then apply this result on a sample path by sample path 
bask. Therefore, we assume that d is a positive integer, {xii}T='=I is a 
symmetric, positive semidefinite R d X  "valued sequence, and {&n} 
is a Rd-valued sequence. The main result is now stated: 

Propostion 1: Suppose 

for some (symmetric) positive-definite A and { z k } r = l  is a R"-valued 
sequence satisfying 

1 -  
h k + l  = hk + - ( b k  - A k h k ) .  k 

for all k = 1 . 2 . 3 . .  . . . (2.1) 

Then, a necessary and sufficient condition for hk + h (with h E R") 
as k + oc is that 

To see the generality of our result, we suppose that { b k .  k = 
1 , 2 , 3 , . . . }  is a R"-valued stochastic process on (f1,F. P) and 
{ A k ,  k = 1 ,2 ,3 . .  . .} is a symmetric, positive semidefinite R d X " -  
valued process on (a, S, P) such that 

and 

are well-defined and A is positive-definite. Then, Propostion 1 (with 
i l k  = A ~ ( w )  and b k  = h k ( w )  for all k )  implies h k ( u ) ,  the solution 
- 

A of ( l . l ) ,  converges to h = Ab provided 

. N  
1 

lini 
\-c€ 11' x ( A k  - E { A k } )  = 0 

k = l  

and 

(2.3) 
1 -PJ 

lim - ' j J b k  - ~ { b k } )  = 0. 
k=l 

V - m  N 

Hence, the generality of our approach follows from the following 
remark: 

Remark: In many applications 

.4k  = - 2 XY: 
i=mau{ k--1/1+1,1} 

.U 

and 

b k  = - 1 2 
-U l = m a x { k - M i + l , l }  

c\.[+Iyi, for all /c = 1 , 2 , 3 , . . .  

some fixed positive integer M ,  R'-valued process {K, 1 = 
1.2.3.. . .} and R-valued process { a [ ,  I = 1 ,2 ,3 , .  . .}. In fact, past 
values of o/+l usually make up some of the components of Yi. The 
result of all this is that { A k ,  k = 1,2 ,3 ,  . . .} often satisfies the same 
type of moment and dependency conditions as { b k ,  k = I, 2 , 3 , .  . .} 
does. Hence, to verify (2.3), the same version of the strong law 
of large numbers can often be applied to all of the components 
of {.Ah-. k = 1.2,3:..} and { b k , k  = 1,2,3;..}. For various 
conditions under which the strong law of large numbers holds, we 
refer the reader to Stout [23, pp. 165, 181, 1991, Chow and Teicher 
[3, p. 3971, Hall and Heyde [12, pp. 40-411, Phillips and Solo [19], 
Shao [22, Corollary 11, and Lai and Stout [15, Theorem 71. Indeed, 
it is a simple exercise to show that our result combined with Lai 
and Stout's result generalize the results of Eweda and Macchi [5]. 
Moreover, as compared to Eweda and Macchi [6], one easily sees 
that we study a more general algorithm, do not require their moment 
bounds (see [6, eq. (35)] ) ,  and make use of weaker eigenvalue and 
law of large numbers conditions. 

Remark: A reviewer has pointed out that there are interesting 
applications in adaptive control where -A has eigenvalues in the 
open left half plane but may not be symmetric. However, it is 
the author's opinion that the symmetry assumption of A k  cannot 
be relaxed without imposing alternate conditions and significantly 
modifying our arguments (especially Lemma B, (3.15), and (3.22), 
(3.23)). The nonsymmetric case will not be treated here. 

111. THE PROOF OF PROPOSITION 1 
For notational convenience, we define 

A -  
~ ' k  = h k  - h, Y k  !! x k  - A 

and 

(3.1) 
A -  - 

z k  = b k  - Akh, for all k = I, 2 , 3 , .  . . . 

Hence, observing that z k  = b k - b - Y k h  and noting by hypothesis that 

we only need to show v k  + 0 if and only if 
< n  c Zk + 0. 

k = l  
n 
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hypothesis it follows that 

Therefore, the "only if' part follows by (3.2), (3.3), and the Toeplitz 
lemma [23, Lemma 3.2.3 (ii), p. 1201. Next, we assume 

I "  - C i k i o  
k = l  

A and show u n  + 0 and wn = U,, - U, + 0, where 

//,+I = ( / d - r ~ - i A ) v , + r ~ - i 2 , ,  f o r n =  1 . 2 , 3 , . . .  (3.4) 

subject to u1 = 711. Indeed, with the definition 

I \ 777 

m! 
m=2 

(3.13) 

it follows by (3.4), (3 .3 ,  and Lemma A i) and ii) (to follow) that 5 lim max { (rok1)-1, log (R)} = 0 (3.14) 

and, letting c > 0 be arbitrary, recalling some basic theory for 

symmetric matrices (see, e.g., [25, pp. 57-81), and using the fact 

k - m  

lim 1u,1 5 lim n(r" - Z-lA) llr::ll I 

n I C W  n-w 

In-l 

(3.6) 

Moreover; letting Arr,irl be the smallest eigenvalue of A and a > 1 
be a number small enough that 

where 

and 

that (A,,,;, + IlAll) log ( a )  < 2, we find by (3.8) that there is some 

IC, such that 

5 1 - A,,, log ( a )  + E ,  for all k >_ IC<. (3.15) 

Hence, we can use (3.13), (3.15), Lemma A iii), (3.1), Lemima B, 

Taylor's theorem, (3.14), and the fact dllAII log ( a )  < 1 to obtain a 

IC: 2 Ice such that 

IlUkIl 51 - A,,, log ( C L )  + 2 f  

I 1 - A,,, log ( a )  + 2 t  

m! 

Therefore, using the fact 
(3.1 1) 

Amin 

Now, we use (3.11) and Lemma A v) to obtain that 
lol:(a) < ( c i .  \\A\\ . exp (1))~ 

and making t > 0 sufficiently small, we discover from (3.16) that 

there exists a 0 < y <: 1 and an integer k~ > 0 such that .1 

for k = 0, 1, 2 . .  . . and j E I k  (3.12) \ \ G k I I  5 y, for all k >_ h. (3.17) 
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. exp {E 1=1 ;)] exp {- 1=1 

1 . 2 , 3 , .  . . (3.22) frw n l l  "- - 
. 7 luJ1. for all k 2 k l .  (3.18) 

However$ by Lemma A iv), (3.14), (3.6), and the Toeplitz lemma and i t  follows easily from (3.22), the fact that the eigenvectors of A 
span Rd and the principle of uniform boundedness that 

- 

(3.19) 
3 t I l  3 1-ocl 

- 0. (3.23) 
n-zx 

Furthermore, since 

k - i - 1  ~ ;/ - y k - t - l - k ,  k 
k -  1 

<< 1, ii) Recalling definition (3.5) and following the arguments in (3.22) 
- 

1 - ;/ 
and (3.23), one finds that 

C y  
l = k l  

for all k = k l ,  k1 + 1.. . (3.20) 

it follows by (3.19), (3.20), the Toeplitz lemma, and (3.18) that llFF-l 
limk,, l ~ l ~ ~ l  = 0. Finally, using (3.9) and (3.1), one has for 
n t I k  that 

(3.21) 

so by (3.21), Lemma A v), and (3.19) one finds that 

for all T = 2,3;. . , n  - 1, n = 3 , 4 , .  . . . 
(3.24) 

Hence, it follows easily by (3.24) that 

3, - 1 e(.- 1 ) l l F - l n - F 7  nllzl, f o r a l l n = 3 , 4 , . . .  (3.25) 
I =2 

and by (3.5), (3.25), the fact that lini max ltcnl = 0. 
k + m  n t I k  

LemmaA Suppose {&}y=V=I and A are as in the statement of 
Propostion 1; I k .  F, k .  { = k } &  and {Yk}r=l are as defined in (3 8). 
(3 5) ,  and (3 1) of the proof of Propostion 1,  and 

Then, the following are true: 

In-1 I 

Proof: i) Let A, Arnin > 0 denote an arbitrary and the mini- 
mum eigenvalue of A. Then 

as n + x, and the Toeplitz lemma that 

(3.26) 

iii) It follows by an interchange of summation that 
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and by (3.8) and the hypothesis that 

iii) follows by (3.27), the hypothesis, (3.28), (3.14) of Proposition 2, 
and the Toeplitz lemma. 

iv) Using Lemma B, we find iv) follows from iii) as well as (3.1) 
and (3.14) of Propostion 2. 

v) This follows from iv) and the fact that 

for all k = 0 , l . .  . . . 0 
Lemma B: Suppose rrc is a positive integer and { M k ,  k = 

1,2,3,  . . .} is a sequence of symmetric, positive semidefinite 
R’” X m -matrices. Then it follows that 

Pro@ It follows by [4, Proposition D.1.21 of Davis and Vinter 
that there exists a sequence of RffLXm-matrices {Ph}pZl such that 
M k  = PkPT for k = 1,2 ,3 ,  . . . and this implies that 

k = l  

for all . j  = 1 , 2 , 3 , .  . . (3.29) 

where Mln’’) and P,(”’”) denote the (n ,  o)th components of Mb and 

REFERENCES 

A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and 
Stochastic Approximations. Berlin-Heidelberg-New York: Springer- 
Verlag, 1990. 
R. R. Bitmead, “Convergence properties of LMS adaptive estimators 
with unbounded dependent inputs,” IEEE Trans. Automat. Contr., vol. 
AC-29, pp. 477479, 1984. 
Y. S. Chow and H. Teicher, Probability Theory, 2nd ed. NewYork 
Springer-Verlag, 1988. 
M. H. A. Davis and R. B. Vinter, Stochastic Modeling and Control. 
London-New York: Chapman and Hall, 1985. 
E. Eweda and 0. Macchi, “Convergence of an adaptive linear estima- 
tion algorithm,” ZEEE Trans. Automat. Contr., vol. AC-29, no. 2, pp. 
119-127, 1984. 
-, “Convergence of the rls and Ims adaptive filters,” ZEEE Trans. 
Circuits Syst., vol. CAS-34, no. 7, pp. 799-803, 1987. 
V. Fabian, “On asymptotic normality in stochastic approximation,” Ann. 
Math. Statist., vol. 39, pp. 1327-1332, 1968. 
D. C. Farden, “Stochastic approximation with correlated data,” ZEEE 
Trans. Inform. Theory, vol. IT-27, no. 1, pp. 105-113, 1981. 
J. Fritz, ‘‘Learning from an ergodic training sequence,” in Limit Theo- 
rems of Probability Theory, P. RCvCsz, Ed. Amsterdam, The Nether- 
lands: North-Holland, 1974. 
V. F. Gaposhkin and T. P. Krasulina, “On the law of the iterated 
logarithm in stochastic approximation processes,” Theory Probab. Appl., 
vol. 19, pp. 844-850, 1974. 
L. Gyorfi, “Stochastic approximation from ergodic sample for linear 
regression,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete, vol. 54, pp. 
47-55, 1980. 
P. Hall and C. C. Heyde, Martigule Limit Theory and Its Application. 
New York: Academic Press, 1980. 

1309 

C. C. Heyde, “On martingale limit theory and strong convergence results 
for stochastic approximation procedures,” Stochastic Processes Appl., 
vol. 2, pp. 359-370, 1974. 
H. J. Kushner and I). S. Clark, Stochastic Approximation for Constrained 
and Unconstrainea’ Systems (Applied Math. Sci. Ser. no. 26). New 
York: Springer, 1978. 
T. L. Lai and W. Stout, “Limit theorems for sums of dependent random 
variables,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete, vol. 5 1, pp. 
1-14, 1980. 
L. Ljung, “Analysis of stochastic gradient algorithms for linear regres- 
sion problems,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 151-160, 
1984. 
D. L. McLeish, “A maximal inequality and dependent strong laws,” 
Ann. Probab., vol. 3, no. 5 ,  pp. 829-839, 1975. 
M. MCtivier and P. Priouret, “Applications of a Kushner and Clark 
lemma to general classes of stochastic algorithms,” IEEE Trans. Inform. 
Theory, vol. IT-30, pp. 140-151, 1984. 
P. C. B. Phillips and V. Solo, “Asymptotics for linear processes,” Ann. 
Statist., vol. 20, pp. 971-1001, 1992. 
D. Ruppert, “Almost sure approximations to the Robbins-Monro and 
Kiefer-Wolfowitz processes with dependent noise,” Ann. Probab., vol. 
10, pp. 178-187, 1982. 
J. Sacks, “Asympt’otic distribution of stochastic approximation proce- 
dures,” Ann. Math. Statist., vol. 29, pp. 373405, 1958. 
Q.-M. Shao, “Complete convergence for a-mixing sequences,” Statist. 
and Prob. Lett., va’l. 16, pp. 279-287, 1993. 
W. F. Stout, Almo,st Sure Convergence. New York: Academic Press, 
1974. 
B. Widrow and S. 13. Steams, Adaptive Signal Processing. Englewood 
Cliffs, NJ: Prentica-Hall, 1985. 
J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, UK: 
Clarendon, 1965. 

Authorized licensed use limited to: University of Tehran. Downloaded on May 04,2010 at 07:42:16 UTC from IEEE Xplore.  Restrictions apply. 


