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Abstract 
 

 Nonlinear filtering has proven to be a valuable tool in 
many applications ranging from search and rescue to 
performing arts.  Herein we discuss an application of 
filtering to medical imaging.  A sample problem in 
detecting, tracking, and characterizing the movement of 
promyelocytic leukemia nuclear bodies within a cell 
nucleus is used to demonstrate the utility of nonlinear 
filtering in this area. Simulation results are presented and 
discussed. 
 
1. Introduction 
 
 Promyelocytic leukemia (PML) nuclear bodies are 
subnuclear domains in the eukaryotic cell nucleus [4].  
Over 15 major components have been identified within 
PML nuclear bodies, most notably the promyelocytic 
leukemia protein itself [5].  PML bodies have been 
implicated in both oncogenesis [6] and viral infection [7], 
and they have been found to be lacking in acute 
promyelocitic leukemia (cancerous) cells.  While there are 
multiple theories about the primary function(s) of PML 
bodies, there is currently no definitive model for either 
their purpose or their movement within the nucleus of a 
cell [4].  Herein, we utilize nonlinear filtering (1) to 
determine the validity of stochastic process motion 
models for PML body movement and (2) to identify the 
number and behaviour of PML bodies within a specified 
region of the nucleus of a cell.  It is believed that this 
behaviour may eventually be useful in detecting the onset 
of disease. 
 
2. Nonlinear filtering 
 
 Filtering theory is an active research field with a wide 
range of applications in areas as diverse as signal 
processing, communication and information networks, 
and search and rescue.  The objects forming the signal or 
target we wish to track are described and modeled by 
stochastic dynamical systems which cannot be observed 
directly or completely. We can only obtain some partial, 
distorted, and corrupted observations of their current 

states.  The purpose of filtering is to find probabilistic 
knowledge of the past path, current state, or future 
changes of the signals in real time based on the back 
observations.  Formally, we wish to estimate the 
probability of the state of our signal X  at some time t 
given a series of discrete observations Y:   
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 For nonlinear filtering problems, it is usually 
impossible to find exact finite-dimensional recursive 
solutions like the Kalman filter. Instead, to obtain a 
computationally feasible solution, some kind of 
approximation is required.  Particle filters are particularly 
useful since they are applicable to general Markov 
models, are easy to implement, and are scalable based on 
the availability of computer resources.  Particle filters use 
independent copies of the signal called particles to 
construct an approximation that converges asymptotically 
to the exact filtering solution as the number of particles 
used increases.  Specifically, such particle filters 
approximate equation (1) using a weighted average of 
particle positions, according to 
 
 

 









 N

i

i
t

N

i
AX

i
t

jt

W

W
kjYAXP

i
t

1

1
1

),...,1,|(   (2) 

 
where i

tX  is the ith particle at time t and i
tW is its 

assigned weight based upon the observations. 
 The classical particle filter method (Monte-Carlo 
method) is composed of a two stage process.  First, 
particles are evolved between observations according to 
the signal state equation.  Second, weights for each 
particle are recalculated once a new observation arrives, 
based on the new information as well as the previous 
weight.  Unfortunately, the resulting particle scheme is 
not effective; because there is no attempt to adapt the 
particle locations to the signal and most of the particles 



    

tend to become unrepresentative of the real signal.  In the 
past decade, a resampling step has been added to the 
classical scheme by adapting the particles to observations.  
However, resampling can add unnecessary randomness to 
the filtering system, thereby degrading performance.  A 
highly versatile and effective solution is the Selectively 
Resampling Particle (SERP) filter.  The SERP filter 
controls the extent of resampling by ensuring the range of 
weights for all particles remains within a specified 
range 1   [2].  This parameter is selected based on the 
particular characteristics of the problem, and may be time 
variant.  There are several computational benefits 
associated with the SERP filter, since the algorithm 
maintains the number of particles in the system at a 
constant number and utilizes efficient data structures to 
maintain the information concerning particle weights and 
locations.  The SERP filter has been shown [1,3] to be 
extremely powerful in tracking multi-target signals, such 
as a collection of PML bodies. 
 
The basic SERP algorithm is as follows: 
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As demonstrated in [3] the SERP filter can be used to 
select between different signal models and arrive at a 
probability indicating the relative likelihood of each 
model being correct.  This is extremely useful when 
identifying valid motion models for processes when little 
empirical or theoretical background is available.    
 
3. Problem description 
 
 Using the SERP filter, we wish to determine the 
number and current locations of PML bodies located 
within a region of a cell nucleus.  The domain of this 

problem is the nucleus of a cell, which is roughly an 
ellipsoid with an approximate diameter of 1.7 µm.  For 
simplification purposes, the nucleus is modeled here as a 
3-dimensional spherical region 3D .  Included in the 
domain are dense regions of chromatin, which possibly 
influence the motion of the PML bodies.  The chromatin 
are modeled as cylindrical structures aligned along the z-
axis of the domain with a radius of 0.1 domain units and a 
height that extends from the bottom to the top of the 
sphere.  Between 3 and 5 chromatin are placed within the 
domain at pre-specified points.  Another possible region 
within the cell that may affect the movement of the PML 
bodies are ‘splicing factors’.  These factors are modeled 
as polygons of arbitrary size.  All other materials found 
within the cell nucleus are deemed to be inconsequential 
to the evolution of the signal.   
 
3.1. Signal model 
 
 Within the domain there will be zero or more PML 
targets.  In our initial work, each target is assumed to 
move independently in order to simplify the modeling of 
the signal.  A single PML target DX t    is modeled as a 
spherical object 0.05 domain units in diameter.  Each 
target has a three dimensional state ),,( ttt zyx  
representing its position within the domain.   
 It has been noted that PML bodies seem to avoid 
passing through chromatin as well as the nuclear wall, but 
otherwise move in a random fashion.  In addition, these 
movements possibly become less energetic when close to 
the wall of the cell nucleus.  Therefore, it is reasonable to 
model each target as a random process governed by the 
following  Ito stochastic differential equations (SDEs): 
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where z

t
y

t
x

t WWW ,,  are independent standard Brownian 

motions, j
y

j
x CC , are the spatial coordinates of the point 

of the jth Chromatin positioned within the domain, and 
  and ,,, are constant parameters.  A signal is 

defined as a collection of n targets  n
ttt XXX ,...,1 .   

 It is also possible that PML targets alter their 
movement when interacting with ‘splicing factors’ within 
the cell.  These materials alter the amount of randomness 
and interacting with both the chromatin and the edge wall.  
In these circumstances, PML targets will have two sets of 
parameters: ) ,,( 111   are used when a target is 

outside of a splicing factor, while ) ,,( 222  are used 
within the splicing factor.   
 
3.2. Observation model 
 
 Observations on the random system are taken via a 
digital camera suspended above the nucleus of a cell.  The 
camera takes photos of the system at periodic intervals.  
In order to distinguish between the various elements 
within the nucleus, the cell has been injected with dies 
which facilitate identification.  Chromatin appear as blue 
objects, the PML bodies are red and all other objects, 
including the splicing factors, appear as various shades of 
green.  The mathematical observation utilized in the 
filtering process is the intensity of red from each pixel of 
the digital image; an integer value ranging from 0 to 255.  
In real life, the digital images taken are 'noisy', in that 
they are potentially corrupted by external light sources 
(which can appear red on the image) as well as the fact 
that the cell is not stationary in the contact solution.  The 
resultant equation is:     
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where )(),(

t
ji Xh  = 128 if a target is over pixel (i,j) and 

0 otherwise, and  kV  is a zero-mean Gaussian random 

variable with a standard deviation of V .  Furthermore, 
an additional three dimensional Brownian motion term is 
added to the signal's current state at time t prior to the 
sensor function h in order to simulate the movement of 
the cell nucleus.     
 
4. Filtering simulations 
 
 The goal of the simulations is to utilize the SERP filter 
to determine which SDE model most likely matches the 
true motion of the PML bodies given in a series of 

observations.  Each model specifies two different 
characteristics: how many targets are present within the 
domain and the effect of splicing factors on the movement 
of the targets.  The latter binary option is dependent on 
the values of the second set of parameters, 

) ,,( 222  . In the case that the splicing factors do not 
affect PML movement, they are identical to 

) ,,( 111  .  Otherwise, they will differ. 
The following parameters were set experimentally 

based on initial observations regarding the nature of PML 
bodies.  Outside of the splicing factors each model utilizes 
the same set of parameters ) ,,( 111   = (0.3, 0.001, 
0.3).  Inside of the splicing factors the second model 
utilizes the parameters ) ,,( 222   = (0.0003, 0.00001, 

0.0003) while the first model utilizes ) ,,( 222   = 

(0.3, 0.001, 0.3).  A value of V  = 120 is used for the 
observation noise.  Observations are received at periodic 
intervals with a time step of dt = 0.01.  The number of 
targets is fixed at 2, limiting the number of models under 
consideration by the filter to two, one for the case where 
splicing factors affect PML movement, and one for the 
case where it does not.  The total number of particles used 
by the model selection SERP filter is 350,000, divided 
amongst the different model options.  Simulations are run 
for 50 iterations, or a total simulation time of 0.5.  Two 
large triangular splicing factors in between the chromatin 
are placed within the nucleus.   
 In order to measure the accuracy of the SERP filter, 
the probability of a given model being correct is 
considered for a particular model.  The time to 
determination of the correct model and target count, as 
well as the number of times the correct determination 
occur over several runs are considered.  Depending on the 
desired threshold of certainty (i.e. the likelihood of a 
model being correct), the fidelity and time to localization 
varies. 



    

 

Figure 1. Simulation graphics 
 
5. Results 
 
 Two sets of simulations were run; in one simulation 
the first model is used as the true signal while in the other 
the second model is employed.  Figure 2 depicts the 
average probability of the signal model being correctly 
identified by the filter over the simulated time frame.  
These results demonstrate that the SERP filter is able to 
determine which model most accurately fits the filter with 
a high probability within the specified simulation time 
frame.  Table 1 demonstrates the proportion of trial runs 
that the SERP filter selected the correct model upon 
completion of the simulation, given a certain probability 
threshold. 

 
 

SERP Model Selection Results (20 runs)
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Table 1. Number of correct selections 
 

 
 

 
 
 
 
 
 
 

6. Conclusion 
 

 Through nonlinear filtering, we are able to determine 
the number of PML bodies, their current location within 

Percentage of correct selections Probability Threshold 
Model 1 Model 2 

65% 95% 80% 
75% 95% 75% 
85% 90% 70% 
95% 70% 70% 



    

a cell nucleus, and discriminate between various motion 
models on simulated data.  These methods will 
undoubtedly help in the characterisation of PML bodies 
in the future.  Further research is required in order to 
expand upon this proof of concept, with suggested 
advances in the modeling of PML bodies as well as 
testing these models against real data.   An interesting 
extension would involve modeling the PML bodies are 
multiple interacting targets; a much more challenging 
problem but one that can be handled using the SERP 
algorithm.  In addition, these methods can be further 
refined in order to utilize data from actual samples in 
order to properly characterize the motion of PML 
bodies.   
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