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Hölder continuity for spatial and path processes
via spectral analysis

Received: 25 June 1999 / Revised version: 28 August 2000 /
Published online: 9 March 2001 – c© Springer-Verlag 2001

Abstract. For ν(dθ), a σ -finite Borel measure on Rd, we consider L2(ν(dθ))-valued sto-
chastic processes Y (t) with the property that Y (t) = y(t, ·) where y(t, θ) = ∫ t

0 e−λ(θ)(t−s)

dm(s, θ) and m(t, θ) is a continuous martingale with quadratic variation [m](t) = ∫ t

0 g(s, θ)
ds. We prove timewise Hölder continuity and maximal inequalities for Y and use these re-
sults to obtain Hilbert space regularity for a class of superprocesses as well as a class of
stochastic evolutions of the form dX = AXdt + GdW with W a cylindrical Brownian mo-
tion. Maximal inequalities and Hölder continuity results are also proven for the path process
Yt (τ )

◦= Y (τ t ∧ t).

0. Introduction

Stochastic evolution equations in infinite dimensions are used to model space-time
phenomena in many scientific disciplines. Examples and background material can
be found in references such as Da Prato and Zabczyk (1992), Kallianpur and Xiong
(1995), and Walsh (1984). An important generic example consists of the formal
equation

dX(t) = AX(t)dt + dM(t), (0.1)

where A is a linear operator. For appropriate test functions ϕ, (0.1) is shorthand for
the rigorous one dimensional equation

X(t, ϕ) = X(0, ϕ) +
∫ t

0
X(s,A∗ϕ)ds + M(t, ϕ), (0.2)

where M(t, ϕ) is a continuous martingale, and X(t, f ) represents X acting on the
function f.
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A natural question is whether X can be interpreted as a stochastic process taking
values in a function space such as a Hilbert space. Typically the “nicest” possible
spaces are desired, and, in addition, regularity properties such as Hölder continuity
of the sample paths are sought.

When ϕ is an eigenfunction of A∗ with eigenvalue a(ϕ), (0.2) becomes

X(t, ϕ) = X(0, ϕ) + a(ϕ)

∫ t

0
X(s, ϕ)ds + M(t, ϕ). (0.3)

Applying variation of constants gives

X(t, ϕ) = ea(ϕ)X(0, ϕ) +
∫ t

0
ea(ϕ)(t−s)dM(s, ϕ). (0.4)

If the class of eigenfunctions is rich enough, then X can be investigated using the
Ornstein-Uhlenbeck like properties of these scalar equations. Although requiring
eigenfunctions obviously restricts the class of solutions of (0.1) that can be inves-
tigated, we obtain regularity results for two important examples. One case is when
dM(s) = G(s)dW(s) with G(s) being a random operator and W a cylindrical Hil-
bert space valued Brownian motion. Our other example is a class of measure-valued
diffusions known as (α, d, 1) superprocesses, for which there are dimension-de-
pendent difficulties in establishing such white noise representations. However, an
advantage of our method is that Hilbert space regularity for both these examples
follows from the same general result. In addition we obtain maximal inequalities for

E
[

sup
s≤u,v≤t

‖Y (u) − Y (v)‖2r
]

with ‖ · ‖ being the Hilbert space norm and Y (t, ϕ)
◦= ∫ t

0 ea(ϕ)(t−s)dM(s, ϕ) being
the stochastic convolution part of (0.4). We also obtain Hölder continuity results
for the path process

Yt =



Y (τ t) 0 ≤ τ ≤ 1

Y (t) τ ≥ t.

For this we rely on a maximal inequality from Kouritzin and Heunis (1994). Anoth-
er important inequality we use to obtain Hölder continuity results is an extension of
Kolmogorov’s inequality to Banach space valued random variables found in Revuz
and Yor (1994).

In our final remarks we discuss the relationship of our results to those of other
authors. Also, see Remark 1.2.

1. Space-time regularity results for a class of stochastic convolutions

During the course of a proof we use the same symbol c for constants, although the
exact value of the constant may change. We show the dependence of c on relevant
parameters unless suppression causes no confusion. All processes are defined on a
probability space, (",F, P ), but our notation surpresses dependence on w ∈ ".
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Lemma 1.1. Assume m(t) is a continuous martingale with quadratic variation
process

[m](t) =
∫ t

0
g(s)ds,

with sup0≤u≤t E[g(u)r ] < ∞ for some r ≥ 1. Then,

y(t) =
∫ t

0
e−λ(t−s)dm(s)

satisfies, for 0 ≤ s ≤ t ,

E[|y(t) − y(s)|2r ] ≤ C sup
0≤u≤t

E[g(u)r ]

∣∣∣∣1 − e−2λ|t−s|

2λ

∣∣∣∣r ;
whereC = c(r) if λ ≥ 0,C = c(r)e2|λ|rt if λ < 0, and we set (1−e−2λ|t−s|)/(2λ) =
|t − s| if λ = 0.

Proof. For 0 ≤ s ≤ t and λ �= 0,

y(t) − y(s) = (e−λ(t−s) − 1)y(s) +
∫ t

s

e−λ(t−u)dm(u).

Successively applying Burkholder’s and then Jensen’s inequality (with probability

measure e2λu2λ
e2λs−1

du for the first term), we obtain

E[|y(t) − y(s)|2r ] ≤ c(r)




|1 − e−λ(t−s)|2rE
[( ∫ s

0
e−2λ(s−u)g(u)du

)r]
+E

[( ∫ t

s

e−2λ(t−u)g(u)du

)r]



≤ c(r)




|1 − e−λ(t−s)|2r
(

1 − e−2λs

2λ

)r

sup
0≤u≤s

E[g(u)r ]

+
(

1 − e−2λ(t−s)

2λ

)r

sup
s≤u≤t

E[g(u)r ]


 .

Now we apply a2 ≤ (a + b)2 − b2 with a = 1 − e−λ(t−s), b = e−λ(t−s) if λ > 0
and a = e−λ(t−s) − 1, b = 1 if λ < 0 to find

|1 − e−λ(t−s)|2 ≤ |1 − e−2λ(t−s)|.
If λ = 0, the proof follows directly from Burkholder’s and Jensen’s inequality. �

Let ν be a σ -finite Borel measure, and let λ(θ) ≥ * be a Borel measurable
function of θ ∈ Rd . Let m(t, θ), for fixed θ ∈ Rd , be a continuous martingale with
quadratic variation process

[m(·, θ)](t) =
∫ t

0
g(s, θ)ds, where g(w, s, θ)
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is measurable in (w, s, θ). Also, we assume that

sup
0≤u≤t

E[g(u, θ)r ]1/r ≤ G(r, t, θ)

and G is measurable in θ for each t ≤ T and r ≥ 1.

Lemma 1.2. Let r ≥ 1 and

y(t, θ) =
∫ t

0
e−λ(θ)(t−s)dm(s, θ).

Assume for some a ≥ 0 and δ ∈ (0, 1] that∫
λ(θ)≤a

G(r, T , θ)ν(dθ) < ∞

and ∫
λ(θ)>a

G(r, T , θ)λδ−1(θ)ν(dθ) < ∞.

Then, for 0 ≤ s ≤ t ≤ T ,

E

[( ∫
Rd

|y(t, θ) − y(s, θ)|2ν(dθ)
)r]

≤ C(T , δ, r, a,*)|t − s|rδ.

Proof. Successively applying Lemma A.1 (to follow) and Lemma 1.1 to |y(t, θ,
w) − y(s, θ, w)|2 we obtain

E

[( ∫
Rd

|y(t, θ) − y(s, θ)|2ν(dθ)
)r]

≤
( ∫

Rd

E[|y(t, θ) − y(s, θ)|2r ]1/rν(dθ)

)r

≤
( ∫

Rd

C
1
r G(r, T , θ)

(
1 − e−2λ(θ)|t−s|

2λ(θ)

)
ν(dθ)

)r

≤ c(r)




( ∫
λ(θ)≤a

e4|*|T G(r, T , θ)|t − s|ν(dθ)
)r

+
( ∫

λ(θ)>a

G(r, T , θ)|t − s|δλδ−1(θ)ν(dθ)

)r


 ;

where we’ve used the fact that, for β ≥ 0, (1 − e−β|t−s|)/β ≤ minimum (|t − s|,
βδ−1|t − s|δ) for δ ∈ (0, 1]; and for β < 0, (1 − e−β|t−s|)/β ≤ e|β||t−s||t − s|.
We’ve also used the value of C given by Lemma 1.1. Noting |t − s|r + |t − s|rδ =
|t − s|rδ(|t − s|r(1−δ) + 1) completes the proof. �

Recalling our previous notation, we let

L2(ν(dθ)) = {f (θ) : ‖f ‖2 =
∫
Rd

|f (θ)|2ν(dθ) < ∞}.
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Under the assumptions of Lemma 1.2, we can define

Y (t) = y(t, ·) with E[‖Y (t)‖2] < ∞
for each t . By applying Lemma 1.2, together with Theorem I.2.1 of Revuz and Yor
(1994) which is an extension of Kolmogorov’s criterion, we immediately obtain:

Theorem 1.1. If the assumptions of Lemma 1.2 hold with rδ > 1, then Y has a
modification Ỹ satisfying

E[ sup
0≤s<t≤T

(‖Ỹ (t) − Ỹ (s)‖/|t − s|β)2r ] < ∞

for any β ∈ [0, (δ/2) − (1/2r)); and Ỹ has Hölder continuous paths of any order
β ∈ (0, (δ/2) − (1/2r)).

Remark 1.1. In the sequel, we will let Y denote the Hölder continuous modifica-
tion Ỹ .

Example 1.1. For our first application of Theorem 1.1 we prove Hölder continuity
for the paths of the (α, d, 1) superprocess; see Dawson (1993). This is a continuous
Markov process taking values in the space of finite Borel measures on Rd topolo-
gized using the Prohorov metric; see Ethier and Kurtz (1986). The process X(t)

solves a martingale problem:
If f : Rd → R is bounded and continuous with two bounded and continuous

derivatives, then (denoting
∫

f (x)X(t, dx) by X(t, f )) X satisfies

X(t, f ) = X(0, f ) +
∫ t

0
X(s,Aαf )ds + M(t, f ),

where Aα is the generator of a symmetric stable process on Rd of index α ∈ (0, 2];
and if E[X(0, 1)] < ∞, M(·, f ) is a continuous square integrable martingale with
quadratic variation process

[M(·, f )](t) =
∫ t

0
X(s, f 2)ds.

Let e−θ (x) = e−iθ ·x for θ, x ∈ Rd . Letting X̂(t, θ) = X(t, e−θ ) and M̂(t, θ) =
M(t, e−θ ), we obtain

X̂(t, θ) = X̂(0, θ) − |θ |α
∫ t

0
X̂(s, θ)ds + M̂(t, θ); (1.1)

here M̂(t, θ) is a complex martingale with

[Re M̂(·, θ)](t) =
∫ t

0
X(s, cos2[θ · (·)])ds

and

[Im M̂(·, θ)](t) =
∫ t

0
X(s, sin2[θ · (·)])ds.
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Using variation of constants, we rewrite (1.1) as

X̂(t, θ) = e−|θ |αt X̂(0, θ) +
∫ t

0
e−|θ |α(t−s)dM̂(s, θ). (1.2)

Letting Sα(t) denote the Feller semigroup generated by Aα, we write (1.2) as

X(t) = Sα(t)X(0) +
∫ t

0
Sα(t − s)dM(s); (1.3)

where we interpret each term in (1.3) as a measure (or signed measure) with Fourier
transform as given in (1.2).

We set

Y (t) =
∫ t

0
Sα(t − s)dM(s). (1.4)

Let dθ be Lebesgue measure on Rd . For γ ∈ R and f denoting any tempered
distribution having a distributional Fourier transform which can be represented as
a function f̂ (θ), define the standard Sobolev spaces

Hγ = {f : ‖f ‖2
γ =

∫
Rd

|f̂ (θ)|2(1 + |θ |2)γ dθ < ∞}.

Note H0 = L2(dθ) and Ha ⊂ Hb for b < a. In Blount and Bose (2000a,b) it was
shown that Y ∈ C([0,∞) : Hγ ) a.s. and X ∈ C((0,∞) : Hγ ) if γ < (α − d)/2.
Now we apply Theorem 1.1 to show that this can be strengthened to obtain Hölder
continuity. It also provides a new proof of continuity.

Theorem 1.2. AssumeX, Y are as in (1.3 – 1.4),γ < (α−d)/2 andE[X(0, 1)r ] <

∞, where r > 1 satisfies r > α/(α−2γ −d). Then, Y has a modification satisfying

E[ sup
0≤s<t≤T

(‖Y (t) − Y (s)‖γ /|t − s|β)2r ] < ∞

for any β ∈ [
0,

(
α−2γ−d

2α

)
∧ 1

2 − 1
2r

)
.

Corollary 1.1. Assume γ < (α − d)/2 and P(X(0, 1) < ∞) = 1. Then, for any

β ∈ [
0,

(
α−2γ−d

2α

)
∧ 1

2

)
and S, T > 0,

P( sup
0≤s<t≤T

(‖Y (t) − Y (s)‖γ /|t − s|β) < ∞) = 1

and

P( sup
S≤s<t≤T

(‖X(t) − X(s)‖γ /|t − s|β) < ∞) = 1.

If γ < −(d/2), we may take any β ∈ [0, (1/2)); and if γ ≤ −(α + d)/2, we can
set S = 0.
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Proof of Theorem 1.2. Note X(t, 1) is a Feller diffusion process with X(t, 1) =
X(0, 1) + M(t, 1), where M(t, 1) is a martingale with

[M(·, 1)](t) =
∫ t

0
X(s, 1)ds.

Burkholder’s inequality and basic estimates show that, for r ≥ 1,

E[ sup
0≤t≤T

X(t, 1)r ] ≤ C(r, T ) if E[X(0, 1)r ] < ∞. (1.5)

Let y(t, θ) = ReŶ (t, θ) and m(t, θ) = ReM̂(t, θ ). Then

y(t, θ) =
∫ t

0
e−|θ |α(t−s)dm(s, θ)

and

[m(·, θ)](t) =
∫ t

0
X(s, cos2[θ · (·)])ds.

Letting g(t, θ) = X(t, cos2[θ · (·)]), we find that E[g(t, θ)r ] ≤ C(r, T ) for t ≤ T

from (1.5).
Let ν(dθ) = (1+|θ |2)γ dθ and λ(θ) = |θ |α . To apply Theorem 1.1, we require∫

λ(θ)>1
λδ−1(θ)ν(dθ) < ∞

which shows we need ∫
|θ |>1

|θ |α(δ−1)+2γ dθ < ∞;

and this holds if δ < (α − 2γ − d)/α. The estimates also apply to Im Ŷ (t, θ)

and Theorem 1.2 follows from Theorem 1.1 applied to Re Ŷ (t, θ) and Im Ŷ (t, θ)

separately. �

Proof of Corollary 1.1. By conditioning on X(0), we may assume X(0, 1) has
moments of all orders. Then the statement for Y follows from Theorem 1.2. Thus for
X we need to consider, after taking the Fourier transform of (Sα(t) − Sα(s))X(0),∫

Rd

|(e−|θ |αt − e−|θ |αs)X̂(0, θ)|2(1 + |θ |2)γ dθ.

But

|X̂(0, θ)| ≤ X(0, 1) and |e−|θ |αt − e−|θ |αs | ≤ e−|θ |αs(1 ∧ |θ |α|t − s|).
If 0 < S ≤ s ≤ t , this implies ‖(Sα(t)−Sα(s))X(0)‖2

γ ≤ C(S, γ, α)|t − s|2 using

the integrability of e−2|θ |αS |θ |2α+2γ .
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To prove the last statement of Corollary 1.1, it follows from our previous
discussion that we need only consider∫

|θ |≥1
(1 − e−|θ |α(t−s))2(1 + |θ |2)γ dθ;

and it suffices to dominate this byC|t−s|2β . Letting ε ∈ [0, 1
2 ) andγ = −(α+d)/2,

we can dominate the integrand by

C(t − s)2ε|θ |2αε+2γ = C(t − s)2ε|θ |−d+α(2ε−1).

We can then set ε = β and the integral is finite. The result still holds for any
γ ≤ −(α + d)/2. �

Remark 1.2 If γ < −d/2, then
∫
Rd (1 + |θ |2)γ dθ < ∞.

Hence, if ν1 and ν2 are finite Borel measures on Rd and we define

dγ (ν1, ν2) = ‖ν1 − ν2‖γ + |ν1(1) − ν2(1)|,
then, for γ < −d/2, by subsequent Lemma A.2 dγ (·, ·) defines the topology of
weak convergence on the space of finite Borel measures; that is,

νn(f ) −→ ν(f )

for every continuous bounded f if and only if dγ (νn, ν) → 0.
Our calculations show X(t, 1) is Hölder continuous of order β for any β ∈

(0, (1/2)); and if we choose γ ≤ −(α + d)/2, Corollary 1.1 shows that X, the
(α, d, 1) superprocess, has a.s. β-Hölder continuous paths as a measure-valued pro-
cess using the metricdγ (·, ·). In Theorem 7.3.1(a) of Dawson (1993) this was proved
for a more general collection of superprocesses using a different, but equivalent,
metric on the space of finite measures. Thus, as applied to the (α, d, 1) superprocess,
Corollary 1.1 extends Dawson’s result. Theorem 1.2 and Corollary 1.1 also provide
an interesting tradeoff between space and time regularities. Suppose we consider
Y in a more restrictive Hilbert space, Hγ with −d/2 < γ < α−d

2 , reflecting
more spatial regularity than would be provided by mere finite Borel measure
membership. Then, we still obtain Hölder continuity in time but with an exponent
restricted to be β < 1

2 − 2γ−d
2α regardless of the values of r that can be used. �

Example 1.2. We now consider our second example. Let H be a separable Hilbert
space with orthonormal basis {ek}∞k=1, and let S(t) be a semigroup on H satisfying
S(t)ek = e−λkt ek where there is some * ∈ R with inf λk ≥ *. G(s), s ≥ 0, is a
linear operator valued process with G∗(s)ek defined and predictable for each k. Let
‖ · ‖ and 〈·, ·〉 denote the norm and inner product on H , and let W(t) be a standard
cylindrical Brownian motion on H .

Set

Y (t) =
∫ t

0
S(t − s)G(s)dW(s).



Hölder continuity for spatial and path processes via spectral analysis 597

Note E[‖Y (t)‖2] = E
∑∞

k=1

∫ t

0 e−2λk(t−s)‖G∗(s)ek‖2ds assuming the expecta-
tion is finite, and by imposing stronger conditions we can obtain Hölder continuity
for Y . Set

yk(t) = 〈Y (t), ek〉
and note

yk(t) =
∫ t

0
e−λk(t−s)dmk(s)

where [mk](t) = ∫ t

0 gk(s)ds with gk(s) = ‖G∗(s)ek‖2.

Theorem 1.3. Assume ‖G∗(s)ek‖2 ≤ b2
kfk(s) where {bk}∞1 are deterministic con-

stants, supk sup0≤s≤t E[f r
k (s)] ≤ C(t, r) for 0 ≤ t ≤ T ; and for some δ ∈ (0, 1],

rδ > 1 and

∑
{k:λk≤a}

b2
k +

∑
{k:λk>a}

b2
k

λ1−δ
k

< ∞

for some a ≥ 0. Then Y has a modification satisfying

E[ sup
0≤s<t≤T

(‖Y (t) − Y (s)‖/|t − s|β)2r ] < ∞

for any β ∈ [0, (δ/2) − (1/2r)).

Proof. This follows immediately from Theorem 1.1 by taking ν(dk) to be counting
measure on the positive integers. �

As a particular case, let λk = kα for α ∈ (1, 2], and set b2
k = k2γ for 0 ≤ γ <

(α − 1)/2. Then, for δ <
α−2γ−1

α
, Theorem 1.3 applies.

2. Additional maximal inequalities and Hölder continuity
for the path process

In this section we assume the conditions of Theorem 1.1 are satisfied and we have
chosen a continuous modification of Y . We define the path process as follows:
For each t ∈ [0, T ],

Yt (τ ) =
{
Y (τ t) 0 ≤ τ ≤ 1
Y (t) τ > 1.

(2.1)

Then, Yt ∈ C([0, T ] : H) which is a Banach space with norm

‖h‖T = sup
0≤s≤T

‖h(s)‖. (2.2)

We now consider Hölder continuity for Y using the norm ‖ · ‖T . A key tool is the
following maximal inequality from Kouritzin and Heunis (1994).
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Theorem 2.1. Let 0 ≤ T0 < T1 < ∞ and suppose that {Qt, T0 ≤ t ≤ T1} is a
process assuming values in some normed vector space X with norm ‖ · ‖ such that
the following hold: (i) t → Qt(ω) is continuous on [T0, T1] for almost all ω and
(ii) there exist constants γ > 1 and ν > 0 such that E‖Qu − Qt‖ν ≤ [h(t, u)]γ ,
for all T0 ≤ t ≤ u ≤ T1, where h(t, u) is a nonnegative function satisfying
h(t, u) + h(u, v) ≤ h(t, v) for all T0 ≤ t < u < v ≤ T1. Then there exists a
constant Ãν,γ depending only on ν and γ such that

E

[
max

T0≤t≤u≤T1
‖Qu − Qt‖ν

]
≤ Ãν,γ [h(T0, T1)]

γ .

Before turning to the study of the path process, we can use Theorem 2.1 to
strengthen Lemma 1.2 if rδ > 1. We take h(u, v) = c|v − u|.

Lemma 2.1. Assume the conditions of Lemma 1.2 hold with rδ > 1. Then, for
0 ≤ s ≤ t ≤ T ,

E[ sup
s≤u,v≤t

‖Y (v) − Y (u)‖2r ] ≤ C(T , δ, r, a,*)|t − s|rδ.

Lemma 2.2. Assume the conditions of Lemma 1.2 hold with rδ > 1. Then, for
0 ≤ s ≤ t ≤ T ,

E[‖Yt − Ys‖2r
T ] ≤ C(T , δ, r, a)|t − s|rδ−1.

Proof. Assume s < t , choosen so that 1 ≤ n ≤ t
t−s

< n+1, and let Ik = [ k
n
, k+1

n
)

for 0 ≤ k ≤ n − 1. Then

‖Yt − Ys‖T = sup
0≤τ≤1

‖Y (τ t) − Y (τs)‖

≤
n−1∑
k=0

sup
τ∈Ik

‖Y (τ t) − Y (τs)‖.

Consider

E[sup
τ∈Ik

‖Y (τ t) − Y (τs)‖2r ]

≤ E[ sup
ks
n

≤u,v≤ (k+1)t
n

‖Y (u) − Y (v)‖2r ]

≤ C(|t − s|(1 + k + 1

n
))rδ (by Lemma 2.1 and our choice of n)

≤ C|t − s|rδ.
Thus, again using our choice of n,

E[‖Yt − Ys‖2r
T ] ≤ C(T , δ, r, a,*)

∣∣∣∣ t

t − s

∣∣∣∣ |t − s|rδ

≤ C(T , δ, r, a,*)|t − s|rδ−1

after absorbing a factor of T into the constant. �
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We now state the main result of this section.

Theorem 2.2. Assume the conditions of Lemma 1.2 hold with rδ > 2. Then:
(a) For 0 ≤ s ≤ t ≤ T ,

E[ sup
s≤u≤v≤t

‖Yv − Yu‖2r
T ] ≤ C(T , δ, r, a,*)|t − s|rδ−1.

(b)E[sup0≤s<t≤T (‖Yt−Ys‖T /|t−s|β)2r ] < ∞ for anyβ ∈ [0, (δ/2)−(1/r)).

Proof. (a) follows from Lemma 2.2 and Theorem 2.1 (let h(u, v) be of the form
c(v − u)). (b) follows from Lemma 2.2 and Theorem I.2.1 of Revuz and Yor
(1994). �

Example 2.1. We now consider the (α, d, 1) superprocess and apply our results to
the path process Yt determined by Y , the convolution term of (1.3). From Lem-
ma 1.2, Theorem 2.2, and the proofs of Theorem 1.2 and Corollary 1.1, we obtain:

Theorem 2.3. Assume γ < (α − d)/2 and E[X(0, 1)r ] < ∞ where r > 1 and
δ ∈ (0, 1] satisfy δ ∈ ( 1

r
,

α−2γ−d
α

). (a) Then, for 0 ≤ s ≤ t ≤ T ,

E[ sup
s≤u,v≤t

‖Y (v) − Y (u)‖2r
γ ] ≤ C(T , δ, r)|t − s|rδ.

(b) In addition to the assumptions of (a), assume r > 2 and δ ∈ ( 2
r
,

α−2γ−d
α

).
Then

E[ sup
s≤u,v≤t

‖Yv − Yu‖2r
γ,T ] ≤ C(T , δ, r)|t − s|rδ−1

for 0 ≤ s ≤ t ≤ T , and

E[ sup
0≤s<t≤T

(‖Yt − Ys‖γ,T /|t − s|β)2r ] < ∞

for any β ∈ [0, ( α−2γ−d
2α ) ∧ 1

2 − 1
r
).

(c) If we replace the moment assumption on X(0, 1) in (b) by P(X(0, 1) <

∞) = 1, then

P( sup
0≤s<t≤T

(‖Yt − Ys‖γ,T /|t − s|β) < ∞) = 1

for any β ∈ [0, ( α−2γ−d
2α ) ∧ 1

2 ).

We now give additional maximal inequalities for Y that hold when sup0≤u<∞
E[g(u, θ)r ]1/r can be suitably bounded.

Theorem 2.4. Assume r ≥ 1, δ > 0, rδ > 1 and sup0≤u<∞ E[g(u, θ)r ]1/r ≤
G(r, θ), where G satisfies the conditions of Lemma 1.2.
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(a) Then

E[ sup
0≤t≤T

‖Y (t)‖2r ] ≤ C(a, r, δ)(T r + T rδ).

(b) If
∫
Rd G(r, θ)λδ−1(θ)ν(dθ) < ∞ for δ ∈ (0, 1], then

E[ sup
0≤t≤T

‖Y (t)‖2r ] ≤ C(r, δ)T rδ.

Proof. This follows from Lemma 2.1 and a straightforward modification of
Lemma 1.1 using the assumptions on G(r, θ). �

Example 2.2. We note that under the assumptions of Theorem 1.3, the results of
Lemma 2.1 and Lemma 2.2 hold for the convolution in Example 1.2. If, in addition,
we assume rδ > 2, then we can apply Theorem 2.2.

2.1. Concluding remarks

Dawson (1972) seems to be the first paper to exploit eigenfunction expansions to
obtain Hilbert space regularity for stochastic convolutions. A maximal inequality
for one-dimensional Ornstein-Uhlenbeck processes was used to obtain sample path
continuity, and the drift operator, A, had discrete spectrum. Dawson (1993) is a
fundamental reference for results on superprocesses.

Kotelenez (1987) is closest in spirit to our approach in that regularity results
are obtained by imposing conditions on the quadratic variation of the driving mar-
tingale which need not involve a white noise. However Example 1.2 is also closely
related to a result for a stochastic convolution obtained in Theorem 5.2.4 of Kal-
lianpur and Xiong (1995). Furthermore, many results for stochastic convolutions
can be found in Da Prato and Zabczyk (1992).

Fourier analysis was used to establish sample path continuity for the (α, d, 1)
superprocess in Blount and Bose (2000a,b). However, Hölder continuity was not
investigated, and the methods used are very different from this paper.

In Krylov (1997) novel methods are developed for representing superdiffusions
as solutions of stochastic partial differential equations. Hilbert space techniques are
used, and, as a consequence of his theory (Corollaries 1.9 and 1.10), the following
results are obtained for the super-Brownian motion process (the case of α = 2
using our notation in Example 1.1):

a) If X(0) ∈ Hγ for some γ < 1 − d
2 , where X(0, 1) < ∞, then X(t, ω) ∈ Hγ

for almost all (t, ω) with respect to dt × P(dω).

b) Ifd = 1 andX(0) ∈ L2(R) = H0, then, for almost every (t, ω),X(t, ω) ∈ H0.

In particular, for such (t, ω), X(t, ω) has a square integrable density.

These results follow from our pathwise continuity results, but they can be ob-
tained directly from the following result under the weaker assumptionE[X(0, 1)] <

∞. Before stating our result, we note Krylov also raised the question of including
superprocesses within the framework of classical stochastic analysis. Our paper
makes a contribution to this goal.
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Proposition 2.1. If E[X(0, 1)] < ∞, then

E
[ ∫ T

0
‖X(t)‖γ dt

]
< ∞ if γ < (α − d)/2.

Proof. Using (1.3), (1.4), Cauchy-Schwarz, and Fubini’s theorem,

E
[ ∫ T

0
‖X(t)‖γ dt

]

≤ E
[(

T

∫ T

0
‖Sα(t)X(0)‖2

γ dt
) 1

2
]

+ E
[(

T

∫ T

0
‖Y (t)‖2

γ dt
) 1

2
]

≤ T
1
2 E

[( ∫ T

0

∫
Rd

e−2|θ |αt |X̂(0, θ)|2(1 + |θ |2)γ dθdt
) 1

2
]

+T
1
2

[( ∫ T

0

∫
Rd

E[|Ŷ (t, θ)|2](1 + |θ |2)γ dθdt
) 1

2
]

≤ T
1
2 E[X(0, 1)]

[ ∫
Rd

(1 − e−2|θ |αT

2|θ |α
)
(1 + |θ |2)γ dθ

] 1
2

+T
1
2 E

1
2 [(X(0, 1)]

[ ∫ T

0

∫
Rd

(1 − e−2|θ |αt

2|θ |α
)
(1 + |θ |2)γ dθdt

] 1
2
.

Note we’ve used E[ |Ŷ (t, θ)|2] = E
[ ∫ t

0 e−2|θ |α(t−s)X(s, 1)ds
]
. If γ < (α − d)/2,

the integrals are finite. �

Although Kolmogorov’s criterion is used in Kallianpur and Xiong (1995),
Da Prato and Zabczyk (1992), and Kotelenez (1987), they do not use the powerful
version of it found in Revuz and Yor (1994). In addition, the application of Theo-
rem 2.1 to stochastic evolution equations to obtain Lemma 2.1 with Theorems 2.2
and 2.4 is new.

A. Appendix: Supporting results

We now state and prove the two analytic results utilized in the previous sections. In
Lemma A.1 we move a norm inside an integral. In Da Prato and Zabczyk (1992)
this is proved for a separable Banach space; but our space, Lr

(
P(dw)

)
, may not

be separable, and we require a different argument.

Lemma A.1. Iff (θ,w) is measurable in (θ, w), and ν is aσ -finite Borel measure
then, for r ≥ 1,

E

[( ∫
Rd

|f (θ, ·)|ν(dθ)
)r] 1

r

≤
∫
Rd

E[|f (θ, ·)|r ]
1
r ν(dθ).

Proof. By standard approximation arguments we may assume ν is a finite mea-
sure and f is bounded. By Theorem 11.4 of Billingsley (1986) and the fact that
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the measurable rectangles form a semiring generating B(Rd) ⊗ F, it suffices to
consider functions f (θ,w) of the form f (θ,w) = ∑n

k=1 gk(w)hk(θ) where, for

each θ , hk(θ) �= 0 implies hj (θ) = 0 for j �= k. Letting ‖g‖ = E[|g|r ]
1
r , we have

‖f (θ, ·)‖ = ∑n
k=1 ‖gk‖|hk(θ)|. Thus∫

Rd

‖f (θ, ·)‖ν(dθ) =
n∑

k=1

‖gk‖
∫
Rd

|hk(θ)|ν(dθ)

≥
∥∥∥∥

n∑
k=1

|gk|
∫
Rd

|hk(θ)|ν(dθ)
∥∥∥∥

=
∥∥∥∥

∫
Rd

( n∑
k=1

|gkhk(θ)|
)
ν(dθ)

∥∥∥∥
=

∥∥∥∥
∫
Rd

|f (θ, ·)|ν(dθ)
∥∥∥∥. �

Lemma A.2. Let γ < −d/2 and define dγ (ν1, ν2) = ‖ν1 −ν2‖γ +|ν1(1)−ν2(1)|
where ν1, ν2 are finite Borel measures. Then dγ defines the topology of weak con-
vergence on the space of finite Borel measures on Rd .

Proof. If νn
w→ ν, then ν̂n(θ) → ν̂(θ) for all θ and supn |ν̂n(θ)| ≤ supn |νn(1)| <

∞. Thus dγ (νn, ν) → 0 by the dominated convergence theorem since (1+|θ |2)γ dθ
is a finite measure on Rd for γ < −d/2.

Now assume dγ (νn, ν) → 0, and let f be a Schwartz function (rapidly decreas-
ing and C∞). Recall f (x) = (2π)−d/2

∫
Rd eθ (x)f̂ (θ)dθ by the Fourier inversion

theorem; and f̂ (θ) is a Schwartz function. Using Fubini’s theorem and letting ā

denoting complex conjugation, we find that∣∣∣∣
∫
Rd

f (x)νn(dx) −
∫
Rd

f (x)ν(dx)

∣∣∣∣ =
∣∣∣∣(2π)−d/2

∫
Rd

( ¯̂νn(θ) − ¯̂ν(θ))f̂ (θ)dθ

∣∣∣∣
≤ C

∫
Rd

(1 + |θ |2)γ /2|ν̂n(θ)

−ν̂(θ)|(1 + |θ |2)−γ /2|f̂ (θ)|dθ
≤ C‖νn − ν‖γ ‖f ‖−γ → 0.

This implies vague convergence, and with the extra condition, νn(1) → ν(1), we
obtain weak convergence using standard arguments. �
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