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Abstract. Contemporary real-time problems like CAPTCHA generation and
optical character recognition can be solved effectively using correlated random
fields. These random fields should be produced on a graph in order that prob-
lems of any dimension and shape can be handled. However, traditional solutions
are often too slow, inaccurate or both. Herein, the Quick Simulation Random
Field algorithm to produce correlated random fields on general undirected graphs
is introduced. It differs from prior algorithms by completing the graph and set-
ting the unspecified covariances to zero, which facilitates analytic study. The
Quick Simulation Random Field graph distribution is derived within and the fol-
lowing questions are studied: 1) For which marginal pmfs and covariances will
this algorithm work? 2) When does the marginal property hold, where the sub-
graph distribution of an algorithm-simulated field matches the distribution of the
algorithm-simulated field on the subgraph? 3) When does the permutation prop-
erty hold, where the vertex simulation order does not affect the joint distribution?

1. Introduction

Correlated random fields are used in science and technology to model spatially
distributed random objects. The applications of random fields across the sciences
are broad and include computer vision, cryptography, astrophysics, rainfall, hydrol-
ogy, analysis of gene expression time series, sequential Monte Carlo, medical image
processing, and inverse optics and image synthesis; see, for example, Schlather et.
al. (2015), Chellappa and Jain (1993), Diaconis (2009), Vio et. al. (2003), Leblois
and Creutin (2013), Li et. al. (2008), Li et. al. (1995), Kouritzin (2017), Li
(1995), and Winkler (2003). Furthermore, mathematicians often want to couple a
collection of random variables with given distributions together on a single prob-
ability space while matching some constraint like covariances. In either situation,
the complete joint distribution of the field may be unknown or even irrelevant as
enough meaningful information is captured by marginal marginal distributions and
pairwise covariances between random variables. In the Gaussian case, many sim-
ple efficient methods, like covariance matrix decomposition, moving averages, fast
Fourier transform (FFT), turning bands and local average subdivision, exist (see
Shinozuka and Deodatis (1996), Kleiber (2016) or Blanchard et. al. (2016) for
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example). However, these methods are easiest to use over a regular grid and many
random fields are fundamentally non-Gaussian. In the general case, probability
density functions are usually approximated by probability mass functions (pmfs) if
necessary and some type of Markov chain Monte Carlo method is used when exact
field distributions are desired. However, these methods require a very large number
of iterations to converge, for example it took 2000 iterations in the simple Hamlet
example in Diaconis (2009), and therefore are generally not suitable to real time
computations. On the other hand, there are many approximation methods, often
based upon the FFT or spectral decomposition and Karhunen-Loeve expansion to
approximate covariance structure of field (see e.g. Vio et. al. (2003)).

To meet the diversity of problems in a variety of dimensions, Kouritzin et. al.
(2014) considered random fields on a general undirected graph structure and pro-
posed an algorithm for producing a new class of discrete correlated random fields on
such graphs by either one-pass simulation or Gibbs-like resampling. The approach
has been applied to optical character recognition (OCR) Kouritzin et. al. (2014)
and the generation of both black-and-white Kouritzin et. al. (2013) and gray-level
Newton and Kouritzin (2011) CAPTCHAs (Figure 1 shows a new example of such
a gray level CAPTCHA.) The class of random fields created by their algorithm in-
corporate given probability mass functions (pmfs) at the vertices in a graph and
specified pairwise covariances corresponding to edges existing in that graph. (This
is translated into a pmf for the gray levels of each pixel and covariances between
nearby pixels in this CAPTCHA example.) The joint distribution between pairs of
vertices connected by a specified covariance edge is known in terms of two sets of
auxiliary parameter pmf collections that can be selected for generality. However, the
joint subgraph distribution on an incomplete subgraph is unknown for the algorithm
in Kouritzin et. al. (2013).

Figure 1. A gray-level CAPTCHA

The starting point for the simulation consists of a fixed portion as well as a
design portion. The fixed portion is an undirected graph together with the desired
marginal vertex pmfs (the π’s) and the collection of non-zero covariances (the β’s)
for the graph edges. (This setting is general enough to handle simulation in any
dimension for example.) The design portion consists of two sets of auxiliary (vertex)
pmfs (the π̂’s and the π̃’s) that can be used in place of the π’s in portions of the
algorithm to do things like improve efficiency or destroy independence. (Actually,
there is a wide assortment of reasonable choices for the π̂’s and the π̃’s discussed in
Kouritzin et. al. (2014).) Simulating the graph then amounts to directing the graph
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in an acyclic manner, fixing a topological sort of the vertices and using Proposition
1 of Kouritzin et. al. (2014), requoted as Proposition 1 below, recursively. (See
Kouritzin et. al. (2014) for details.) Our modified algorithm, introduced herein,
completes the graph by adding edges of zero covariance wherever necessary before
simulation. This completion does not complicate nor slow the simulation yet allows
us to derive the complete field distribution in closed form for all possible auxiliary
pmf parameters. We call this completed-graph simulation algorithm and resulting
random field the quick simulation algorithm and quick simulation field herein.

This paper focuses on the constraints and properties of the random fields gener-
ated by this quick simulation algorithm. Naturally, the algorithm can not work for
all possible parameters and might not work for others. We start by giving the joint
(field) distribution of the random field generated by this algorithm (when it works).
From there, we study regularity, meaning when the algorithms does provide a legit-
imate distribution over the whole space of vertices. This is equivalent to ensuring
that the recursive formula (2.5) of Proposition 1 produces a conditional pmf in ev-
ery iteration. It was observed in our CAPTCHA Kouritzin et. al. (2013) and OCR
Kouritzin et. al. (2014) applications that the occasional illegitimate conditional pmf
value outside [0, 1] can be replaced with a value inside without noticeable effect on
the simulation. However, it is still important to know when the only possible source
of irregularity is numeric and not algorithmic. Next, we establish the marginality
property that ensures the distribution of a random field on a subgraph projected
from the random field constructed on the whole graph is the same as that for a
random field constructed directly on this subgraph. Finally, we investigate the per-
mutation property that makes sure the random fields simulated from all topological
sorts corresponding to the same complete undirected graph are the same in the sense
of probability distribution. We establish necessary and sufficient conditions for this
permutation property.

Example 1. Suppose we have the following complete undirected graph G with ver-
tices v1, v2, v3,

v1

v2

v3

probability mass functions πvi(−1) = πvi(1) = 0.5, i = 1, 2, 3, and covariances
βvi,vj = 0.1, i = 1, 2, 3, j = 1, 2, 3, i 6= j. Let us illustrate the marginality and
permutation properties of our algorithm.

Looking forward to (3.3), using the topological sort v1, v2, v3 and setting π̂vi =
π̃vi = πvi so g̃(vi, xvi) =

xvi
2

in (2.2) we assign the joint probabilities as follows.
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xv1 xv2 xv3 Π(Xv1 , Xv2 , Xv3)
1 1 1 0.1625
1 1 -1 0.1125
1 -1 1 0.1125
1 -1 -1 0.1125

-1 1 1 0.1125
-1 1 -1 0.1125
-1 -1 1 0.1125
-1 -1 -1 0.1625

If we change the topologicial sort while maintaining all parameters, then we get
the same joint pmf so the permutation property holds. It is straightforward to verify
that the pmfs πvi and covariances βvi,vj are as expected. Moreover, if we simulated
two vertices vi, vj, then we get

xvi xvj Π(Xvi , Xvj)
1 1 0.275
1 -1 0.225

-1 1 0.225
-1 -1 0.275

so marginality is also maintained.

In this note, we show how to compute these probabilities so that the pmfs and co-
variances are preserved in general as well as establish the conditions for the marginal-
ity and permutation properties above to hold.

The remainder of this note is laid out as follows: Section 2 contains our notation
and background. Next, we give the closed form of correlated random field, discuss
regularity and establish the marginality property in Section 3. The permutation
property is studied in Section 4.

2. Notation and Background

Probabilistic Setup: Let V be a finite set of vertices,
−→
V denote this set of

vertices with an ordering, and Xv be a finite state space for each v ∈ V . For

any nonempty subsequence
−→
B ⊂

−→
V , the space of configurations x−→

B
= (xv)v∈−→B on

−→
B is the Cartesian product X−→

B
=
∏

v∈
−→
B

Xv and
−→
B C denotes the subsequence so

that
−→
V =

−→
B ∪

−→
B C . We abbreviate X−→

V
by X and xvi by xi to ease notation. A

random field Π is a strictly positive probability measure on X . The random vector
X = (Xv)v∈−→V on the probability space (X , 2X ,Π) is also called a random field. For
−→
B ⊂

−→
V , the random subfield on

−→
B is the projection map X−→

B
: x → x−→

B
from X

onto X−→
B

.
A neighborhood system ∂ = {∂(v) : v ∈ V } is a collection of subsets of V :

(1) v /∈ ∂(v) for every v ∈ V and
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(2) v ∈ ∂(u) if and only if u ∈ ∂(v).

A random field Π is Markov with respect to ∂ if for all x ∈ X

Π(Xv = xv|Xu = xu, u 6= v) = Π(Xv = xv|X∂(v) = x∂(v)). (2.1)

Problem Statement: Let E be a set of edges where each (u, v) ∈ E with
u, v ∈ V has no orientation but indicates u, v are neighbors of each other. Then,
G = (V,E) is an undirected graph. If for every pair of vertices u, v ∈ V , there is a
path of edges in E connecting u and v, then G is connected. If every vertex in G
has a neighbor with at least two neighbors, then G is sufficiently connected. If for
every pair of non-neighbor vertices z, u there is a neighbor of z and a neighbor of
u that are distinct, then G is disjoint pair rich. The open neighborhood of v ∈ V
is ∂G(v) = {u, u 6= v, (u, v) ∈ E}, and its closed neighborhood ∂G[v] = ∂G(v) ∪ {v}.
{∂G(v), v ∈ V } is the neighborhood system implied by G. For any nonempty set
B ⊂ V , the open neighborhood of B is ∂G(B) = ∪v∈B∂G(v) \ B and the closed
neighborhood ∂G[B] = ∂G(B) ∪B. We set ∂G(∅) = V for convenience.

We illustrate the new concepts of sufficiently connected and disjoint pair rich.

Example 2. Consider the graphs in Figure 2.

u w v

(a) Three vertex example

u w v

z

(b) Four vertex example

Figure 2. Not sufficiently connected

Both graphs in Figure 2 are connected. However, neither is sufficiently connected
since in both cases none of the neighbors of w have two neighbors.

Example 3. The graphs in Figure 3 illustrate the definition of “disjoint pair rich”.

(a) Disjoint pair rich

z u

(b) Not disjoint pair rich

(c) Sufficiently connected and disjoint pair rich

Figure 3. Disjoint pair rich
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In (B) non-neighbors z and u do not have distinct neighbors. Clearly in (C),
every vertex has a neighbor with two neighbors and every pair of non-neighbors has
distinct neighbors. Yet, two vertices only have one neighbor.

Example 4. If every vertex in a graph G has two neighbors, then it is disjoint pair
rich. It is also sufficiently connected.

We are interested in creating a random field over V , where random variable Xv

at a vertex v ∈ V has a predescribed pmf πv and random vectors (Xu, Xv) have a
predescribed non-zero covariance βuv (= βvu) for each (u, v) ∈ E. Naturally, this
problem could be ill-posed in the sense that there are mathematically incompatible
collections of pmfs and covariances. Also, there often are multiple solutions with
some being more efficient to simulate and others having nice properties like the
marginal and permutation properties defined above.

Directed Graph: The random variables in the field are simulated in sequence.
The first step towards sequencing is directing the graph. Let A be a set of ordered
vertex pairs, called arcs, (indicating the first vertex in the pair is simulated prior to
the later). Then, D = (V,A) is a directed graph. If (u, v) ∈ A for u, v ∈ V , then,
there is an arc from u to v; u is a parent of v and v is a child of u. The set of parents
of v is denoted pa(v). u is an ancestor of v if there is a sequence of arcs from u to
v. D is acyclic if there is no v ∈ V that is an ancestor of itself.

Graph Completion: If G = (V,E) is an undirected graph, then G = (V,E)
denotes its completion, where there is an edge between every pair of vertices. Sim-
ilarly, if D = (V,A) is a directed graph, then D = (V,A) denotes its completion,
where there is an arc between every pair of vertices and the direction of an arc that
is also in A matches that of A. Kouritzin et. al. (2014) gives one possible algo-
rithm to construct an acyclic complete directed graph D = (V,A) from a complete
undirected graph G = (V,E) and a topological sort on V , i.e. a simulation order
−→
V = {vi}Ni=1 where N = |V | is the number of vertices. Our new Quick Simulation
Algorithm works on a completed acyclic directed graph. Zero covariances are placed
along any added arc i.e. βv,u = cov(Xu, Xv) = 0 when (v, u) or (u, v) is in A \ A.

Conditional Probability Update: The Quick Simulation Random Fields match
a collection of pmfs {πv, v ∈ V } and a collection of covariances {βuv, (u, v) ∈ E}.
However, there are also two auxiliary pmf parameter sets {π̂v, v ∈ V } and {π̃v, v ∈
V } that provide flexibility in the choice of field distribution as well as simulation.
(See Kouritzin et. al. (2014) for examples of choices for these auxiliary pmfs.) They
also appear in the conditional probability update through functions:

g̃(v, xv) =
π̃v(xv)(xv − µ̃v)

σ̃2
v

, (2.2)

ĥ(u, v) =
∏

w∈pa(v)\{u}

π̂w(xw), (2.3)
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for u ∈ pa(v), v ∈ V and xv ∈ Xv, where µ̃v =
∑
xv∈Xv

π̃v(xv)xv and σ̃2
v =

∑
xv∈Xv

π̃v(xv)(xv−

µ̃v)
2. g̃ and ĥ may look mysterious here. However, looking ahead to (3.3), we see

they affect the field distribution in our new algorithm. g̃ normalizes the sample
xv by subtractng the mean and dividing by the variance but it allows this nor-
malization to be done with respect to any convenient non-trivial pmf π̃ that could

be different than π. ĥ allows us to consider all the parents except the one we are
currently setting the covariance for as if they came from a different distribution
π̂. Intuitively, this makes sense. When we are focused on the covariance for one
parent the other parents could have just as easily come from π or π̂. The following
proposition establishes that this flexibility is allowed.

Let {vi}Ni=1 be a topological sort of directed graph D = (V,A). For any B ⊂ V ,
we let j = max{i : 1 ≤ i ≤ N, vi ∈ B} and find:

Π(XB = xB) =
∑

xvk :1≤k≤j,vk /∈B

j∏
i=1

Π(Xvi = xvi |Xpa(vi) = xpa(vi)), (2.4)

where Π(Xv1 = xv1|Xpa(v1) = xpa(v1)) = Π(Xv1 = xv1). The main proposition in
Kouritzin et. al. (2014) is:

Proposition 1. Assume that D = (V,A) is a directed acyclic graph with N vertices,
{vi}Ni=1 is a topological sort of the vertices V and {π̃v(xv) : xv ∈ Xv, v ∈ V },
{π̂v(xv) : xv ∈ Xv, v ∈ V } are sets of auxiliary non-trivial pmfs. Suppose further
that {πv(xv) : xv ∈ Xv, v ∈ V } are pmfs and {βv,u : (u, v) ∈ A or (v, u) ∈ A} are
numbers such that the right hand side of

Π(Xvi = xi|Xpa(vi) = xpa(vi)) (2.5)

=πvi(xi) +
g̃(vi, xi)

Π(Xpa(vi) = xpa(vi))

∑
u∈pa(vi)

βu,vi g̃(u, xu)ĥ(u, vi)

is non-negative for each xi ∈ Xvi and xpa(vi) ∈ Xpa(vi) (1 ≤ i ≤ N), where
Π(Xpa(vi) = xpa(vi)) is computed according to (2.4). Form the conditional proba-
bilities recursively using (2.5), starting with Π(Xv1 = x1) = πv1(x1). Then, the
random field X, defined by (the multiplication rule and (2.5))

Π(X = x) =
N∏
i=1

Π(Xvi = xi|Xpa(vi) = xpa(vi)), (2.6)

has marginal probabilities {πv} and covariances cov(Xu, Xv) = βv,u for all u ∈ pa(v).

Remark 1. The term non-trivial pmfs can be interpreted as: Each π̃v should have
non-zero variance and each π̂v should be strictly positive. These auxiliary pmfs
affect the field distribution but not its marginal vertex pmfs nor its vertex-vertex
covariances.
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Remark 2. In Kouritzin et. al. (2014), there was the stronger constraint that the

right hand side of (2.5) is in [0, 1]. However,
∑

xv∈Xv

g̃(v,xv)
Π(Xpa(v)=xpa(v))

∑
u∈pa(v)

βu,vg̃(u, xu)ĥ(u, v) =

0 since ∑
xv∈Xv

g̃(v, xv) =
∑
xv∈Xv

π̃v(xv)(xv − µ̃v)
σ̃2
v

= 0.

Hence, if the right hand side of (2.5) is non-negative, then it is in [0, 1] and (2.5)
defines a legitimate conditional pmf.

Remark 3. Notice that (2.5) gives the same value, whether we consider the given
graph D or its completion D where the added arcs have zero covariance.

3. Distribution and Marginality of Quick Simulation Fields

Proposition 1 can be extended to give the full field distribution when the graph
is complete.

Proposition 2. Assume that D = (V,A) is a complete directed acyclic graph with

N vertices,
−→
V = {vi}Ni=1 is a topological sort of the vertices V and {π̃v(xv) : xv ∈

Xv, v ∈ V }, {π̂v(xv) : xv ∈ Xv, v ∈ V } are auxiliary non-trivial pmf sets. Suppose
further that {πv(xv) : xv ∈ Xv, v ∈ V } are pmfs and {βv,u : (u, v) ∈ A or (v, u) ∈ A}
are numbers such that the right hand side of

Π(Xvi = xi|Xv1 = x1, ..., Xvi−1
= xi−1) = (3.1)

πvi(xi) +
g̃(vi, xi)

∑i−1
j=1 βvj ,vi g̃(vj, xj)ĥ(vj, vi)

Π(Xv1 = x1, ..., Xvi−1
= xi−1)

is non-negative for each xi ∈ Xvi, i = 1, ..., N . Form the conditional probabilities
recursively using (3.1), starting with Π(Xv1 = x1) = πv1(x1). Then, the random
field X, defined by

Π(X = x) =
N∏
i=1

Π(Xvi = xi|Xv1 = x1, ..., Xvi−1
= xi−1), (3.2)

a) has marginal probabilities {πv} and covariances cov(Xu, Xv) = βv,u for all
u, v ∈ V ,

b) has closed form

Πv1,...,vn(x1, ..., xn) =
n∏
i=1

πvi(xi) (3.3)

+
∑

1≤j<i≤n

( i−1∏
k=1,k 6=j

π̂vk(xk)×
n∏

k=i+1

πvk(xk)

)
g̃(vi, xi)βvi,vj g̃(vj, xj)

for each xi ∈ Xvi and n = 1, ..., N .
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Remark 4. The one-pass algorithm (as opposed to the Gibbs-type algorithm used in
Kouritzin et. al. (2013)) follows from (3.1). We just use the conditional probability
to simulate the new vertex given the prior ones in the topological sort. However,
the big efficiency comes from the fact that the terms in (3.1) are only non-zero (and
hence need to be computed) in the case where vj is a parent of vi in the original
(non-completed) graph.

Remark 5. Since the terms with βvi,vj = 0 disappear, the computations are the
same as for the algorithm in Kouritzin et. al. (2014) on the incomplete graph.

Remark 6. Regularity means that the right hand side of (3.1) is a conditional pmf.
As noted in Remark 2, the right hand side of (3.1) need only be non-negative, which
is equivalent to

−σ̃2
vi
πvi(xi)Π(Xv1 = x1, ...., Xvi−1

= xi−1) ≤ (3.4)

(xi − µ̃vi)
i−1∑
j=1

βvj ,vi g̃(vj, xj)ĥ(vj, vi),

and can be checked during the iteration. Notice:

(1) There is no constraint on βvi,vj when xi = µ̃vi or xj = µ̃vj .
(2) βvi,vj = 0 automatically satisfies the constraint.

By (2), we need only check

−σ̃2
vi
πvi(xi)Π(Xv1 = x1, ...., Xvi−1

= xi−1) ≤ (3.5)

(xi − µ̃vi)
∑

u∈pa(vi)

βu,vi g̃(u, xu)ĥ(u, vi),

where pa(vi) denotes parents in the original (not-completed) graph. If pa(vi) =
{vi−1} is a singleton, then (3.5) further simplifies by (2.2) to

−σ̃2
vi
σ̃2
vi−1

πvi(xi)πvi−1
(xi−1)

π̃vi(xi)π̃vi−1
(xi−1)

≤ (xi − µ̃vi)βvi−1,vi(xi−1 − µ̃vi−1
) (3.6)

for xi ∈ Xvi , xi−1 ∈ Xvi−1
. One can check (3.5) or (3.6) iteratively to ensure the

Quick Simulation algorithm is producing a field with the desired pmfs and covari-
ances. Now, we show how equality in (3.6) is hit:

− σ̃2
vi
σ̃2
vi−1

πvi(xi)πvi−1
(xi−1)

π̃vi(xi)π̃vi−1
(xi−1)

= (xi − µ̃vi)βvi−1,vi(xi−1 − µ̃vi−1
) (3.7)

⇔πvi(xi) = πvi(xi)(1− πvi−1
(xi−1))− g̃(vi−1, xi−1)βvi,vi−1

g̃(vi, xi)

⇔πvi(xi) =
∑

y 6=xi−1

(
πvi(xi)πvi−1

(y) + g̃(vi−1, y)βvi,vi−1
g̃(vi, xi)

)
⇔πvi(xi) = Π(Xvi−1

6= xi−1, Xvi = xi),

since
∑

y 6=xi−1 g̃(vi−1, y) = 0 and it is shown in Proposition 1 of Kouritzin et. al.

(2014) that Π(Xvi−1
= xi−1, Xvi = xi) = πvi(xi)πvi−1

(xi−1)+g̃(vi−1, xi−1)βvi,vi−1
g̃(vi, xi).
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Hence, we hit this bound when we have a singleton parent and one value of Xi−1

precludes another value of Xi.

Proof of Proposition 2. a) This follows immediately from Proposition 1 and the
fact that the parents of vi are all v1, ..., vi−1 when the graph is complete.

b) Note (3.3) holds for n = 1. Now, we assume it is true for n − 1 with some
n ∈ {2, ...., N} and show it for n. (3.1) is equivalent to:

Πv1,...,vn(x1, ..., xn) = πvn(xn)Πv1,...,vn−1(x1, ..., xn−1) (3.8)

+
n−1∑
j=1

(
g̃(vn, xn)βvj ,vn g̃(vj, xj)

n−1∏
k=1,k 6=j

π̂vk(xk)

)

so by (3.8) and (3.3) with n− 1

Πv1,...,vn(x1, ..., xn)

=πvn(xn)
n−1∏
i=1

πvi(xi) +
n−1∑
j=1

(
g̃(vn, xn)βvn,vj g̃(vj, xj)

n−1∏
k=1,k 6=j

π̂vk(xk)

)

+πvn(xn)
∑

1≤j<i≤n−1

[( i−1∏
k=1,k 6=j

π̂vk(xk)×
n−1∏
k=i+1

πvk(xk)

)
g̃(vi, xi)βvi,vj g̃(vj, xj)

]

=
n∏
i=1

πvi(xi)

+
∑

1≤j<i≤n−1

[( i−1∏
k=1,k 6=j

π̂vk(xk)×
n∏

k=i+1

πvk(xk)

)
g̃(vi, xi)βvi,vj g̃(vj, xj)

]

+
n−1∑
j=1

( n−1∏
k=1,k 6=j

π̂vk(xk)

)
g̃(vn, xn)βvn,vj g̃(vj, xj)

so the result follows by induction. �
It follows immediately from Proposition 2 that the field produced on {v1, ..., vN−1, vN}

extends the field produced on {v1, ..., vN−1}. However, it is natural to wonder if the
distribution of a subfield is the same as the distribution of the quick simulation field
on the corresponding subgraph. Considering the marginal distribution with vertex
vl removed, using (3.3) and recalling

∑
xl
g̃(vl, xl) = 0, we break sum below into:
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i, j 6= l, i = l, j = l to find∑
xl∈Xvl

Πv1,...,vl−1,vl,vl+1,...,vN (x1, ..., xl−1, xl, xl+1, ..., xN) (3.9)

=
N∏
i=1
i 6=l

πvi(xi) +
∑

1≤j<i≤N
i,j 6=l

[(∑
xl

i−1∏
k=1,k 6=j

π̂vk(xk)×
N∏

k=i+1

πvk(xk)

)

× g̃(vi, xi)βvi,vj g̃(vj, xj)

]
+
∑

1≤j<l

( i−1∏
k=1,k 6=j

π̂vk(xk)×
N∏

k=i+1

πvk(xk)

)∑
xl

g̃(vl, xl)βvl,vj g̃(vj, xj)

+
∑
l<i≤N

( i−1∏
k=1,k 6=j

π̂vk(xk)×
N∏

k=i+1

πvk(xk)

)
g̃(vi, xi)βvi,vl

∑
xl

g̃(vl, xl)

=
N∏
i=1
i 6=l

πvi(xi) +
∑

1≤j<i≤N
i,j 6=l

(
i−1∏
k=1
k 6=j,l

π̂vk(xk)×
N∏

k=i+1
k 6=l

πvk(xk)

)
g̃(vi, xi)βvi,vj g̃(vj, xj).

This is just the distribution we would have arrived at if we had just simulated
{v1, ..., vl−1, vl+1, ..., vN} in order. Using (3.9) repeatedly, we have proved the follow-
ing marginality lemma.

Lemma 1. Suppose the conditions of Proposition 2 hold and
−→
B ⊂

−→
V . Then,

Π−→
B

(x−→
B

) =
∑

x−→
BC∈X−→BC

Π−→
V

(x). (3.10)

Example 5. The closed form on
−→
V = {1, 2} is

Π(1,2)(x1, x2) = π1(x1)π2(x2) + g̃(2, x2)β2,1g̃(1, x1) (3.11)

and the closed form on
−→
V = {1, 2, 3} is

Π(1,2,3)(x1, x2, x3) = π1(x1)π2(x2)π3(x3)

+ π3(x3)g̃(2, x2)β2,1g̃(1, x1)

+ π̂2(x2)g̃(3, x3)β3,1g̃(1, x1)

+ π̂1(x1)g̃(3, x3)β3,2g̃(2, x2).

Now, suppose β3,1 = β3,2 = 0 so X1 and X2 are both uncorrelated from X3 by
Proposition 2 a) and

Π(1,2,3)(x1, x2, x3)

=
(
π1(x1)π2(x2) + g̃(2, x2)β2,1g̃(1, x1)

)
π3(x3)

=Π(1,2)(x1, x2)π3(x3)
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by the previous two equations so X3 is actually independent of X1, X2. The situation
is less simple when not considering the last vertex simulated. If β3,1 = β2,1 = 0 so
X3 and X2 are both uncorrelated from X1 by Proposition 2 a), then it follows by
Lemma 1 that Π(2,3)(x2, x3) = π2(x2)π3(x3) + g̃(3, x3)β3,2g̃(2, x2) and

Π(1,2,3)(x1, x2, x3) =π1(x1)Π(2,3)(x2, x3)

+ (π̂1(x1)− π1(x1)) g̃(3, x3)β3,2g̃(2, x2).

Hence, since each π̃v is non-trivial we must either have π̂1 = π1 or β3,2 = 0 for X1

to be independent of X2, X3. The case of X2 being independent of X1, X3 similarly
requires π̂2 = π2 or β3,1 = 0 in addition to β3,2 = β2,1 = 0.

This example illustrates several things about Quick Simulation Fields: order mat-
ters in general, there are dependent uncorrelated fields, and independence generally
does not happen when π̂v 6= πv. Indeed, we explain below there is usually depen-
dence even when π̂v = πv.

Example 6. In the important special case where π̂v = πv for all v the closed form
becomes:

Πv1,...,vn(x1, ..., xn) = (3.12)
n∏
l=1

πvl(xl)

(
1 +

∑
1≤j<i≤n

g̃(vi, xi)

πvi(xi)
βvi,vj

g̃(vj, xj)

πvj(xj)

)
for each xi ∈ Xvi and n = 1, ..., N .

Now, suppose that l ∈ {1, ..., N − 1} and βvi,vj = 0 when j ≤ l < i. Then,

Πv1,...,vN (x1, ..., xN)

Πv1,...,vl(x1, ..., xl)Πvl+1,...,vN (xl+1, ..., xN)

=1−

( ∑
1≤j<i≤l

g̃(vi,xi)
πvi (xi)

βvi,vj
g̃(vj ,xj)

πvj (xj)

)
(

1 +
∑

1≤j<i≤l

g̃(vi,xi)
πvi (xi)

βvi,vj
g̃(vj ,xj)

πvj (xj)

)
( ∑
l+1≤j<i≤N

g̃(vi,xi)
πvi (xi)

βvi,vj
g̃(vj ,xj)

πvj (xj)

)
(

1 +
∑

l+1≤j<i≤N

g̃(vi,xi)
πvi (xi)

βvi,vj
g̃(vj ,xj)

πvj (xj)

)
so one requires∑

1≤j<i≤l

g̃(vi, xi)

πvi(xi)
βvi,vj

g̃(vj, xj)

πvj(xj)
= 0 or

∑
l+1≤j<i≤N

g̃(vi, xi)

πvi(xi)
βvi,vj

g̃(vj, xj)

πvj(xj)
= 0

for independence.

4. Permutation Property

Let V = {vi}Ni=1, Mk = {1, 2, · · · , k} for k ≤ N and Gk be the symmetric group
of permutations on Mk with composition, denoted ◦, as group operation, identity
permutation e(i) = i, ∀i ∈Mk and generators (i i+1) in cyclic form for 1 ≤ i ≤ k−1.
{{va(i)}Ni=1 : a ∈ GN} gives the possible simulation orders. We are interested in when
the distribution is unchanged.



QUICK SIMULATION FIELDS 13

Definition 1. Random field Π on V = {vi}Ni=1 satisfies the Permutation Prop-
erty if:

Πva(1),...,va(N)
(xa(1), ..., xa(N)) = Πv1,...,vN (x1, ..., xN)

for every a ∈ GN .

Marginality then gives

Πvia(1) ,...,via(k)
(xia(1) , ..., xia(k)) = Πvi1 ,...,vik

(xi1 , ..., xik)

for every 1 ≤ i1 < i2 < · · · < ik ≤ N and a ∈ Gk when the permutation property
holds.

Theorem 1. Suppose N ≥ 3, G = (V,E) is the completion of connected undirected
graph G = (V,E) and {πv}v∈V , {π̃v}v∈V and {π̂v}v∈V are non-degenerate pmfs.
Then, in the following 1) and 2) are equivalent, and 3) implies 1) and 2).

(1) The permutation property of the (πv, π̂v, π̃v, β)-Quick Simulation field Π on
G holds.

(2) For each distinct u, v, w ∈ V :

σ̃2
wπ̃v(xv)(xv−µ̃v)βv,u(π̂w(xw)−πw(xw)) (4.1)

=σ̃2
v π̃w(xw)(xw−µ̃w)βw,u(π̂v(xv)−πv(xv))

for all xv ∈ Xv, xw ∈ Xw.
(3) For each w ∈ V :

πw(xw) = π̂w(xw) + cw(xw − µ̃w)π̃w(xw), (4.2)

where for each distinct u, v, w ∈ V the constants satisfy:

σ̃2
uβwvcu = σ̃2

vβwucv = σ̃2
wβvucw. (4.3)

Remark 7. The following proof reveals the equivalence of 1) and 2) holds even if
the original graph G is not connected.

Proof. To ease notation, we let Xi = Xvi , πi = πvi , π̂i = π̂vi , π̃i = π̃vi , βi,j = βvi,vj
and

yi(xi) = π̂i(xi)− πi(xi) ∀xi ∈ Xi, 1 ≤ i ≤ N. (4.4)

For a ∈ GN , one has by commutativity and (3.3) that Xa(1), ..., Xa(N) has joint pmf

Πa(1),...,a(N)(xa(1), ..., xa(N)) =
N∏
i=1

πi(xi)+ (4.5)

∑
1≤j<i≤N

( i−1∏
k=1,k 6=j

π̂a(k)(xa(k))
N∏

k=i+1

πa(k)(xa(k))

)
g̃(a(i), xa(i))βa(i),a(j)g̃(a(j), xa(j))
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for each xi ∈ Xi (1 ≤ i ≤ N). By (4.5) the permutation property is equivalent to

∑
1≤j<i≤N

( i−1∏
k=1,k 6=j

π̂b(k)(xb(k))×
N∏

k=i+1

πb(k)(xb(k))

)
×

g̃(b(i), xb(i))βb(i),b(j)g̃(b(j), xb(j)) =∑
1≤j<i≤N

( i−1∏
k=1,k 6=j

π̂a(k)(xa(k))×
N∏

k=i+1

πa(k)(xa(k))

)
×

g̃(a(i), xa(i))βa(i),a(j)g̃(a(j), xa(j)) (4.6)

for any two permutations a, b.
1) implies 2): Taking b = (2 3) ◦ a, one finds that the left and right side terms
in (4.6) are the same when j = 1, i > 3; j = 2, i = 3 or j > 3 so, upon cancelling
these terms and substituting in for b, the remaining (j = 1, i = 2; j = 1, i = 3;
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j = 2, i > 3 and j = 3, i > 3) terms in (4.6) become

πa(2)(xa(2))
N∏
k=4

πa(k)(xa(k))g̃(a(3), xa(3))βa(3),a(1)g̃(a(1), xa(1)) (4.7)

+π̂a(3)(xa(3))
N∏
k=4

πa(k)(xa(k))g̃(a(2), xa(2))βa(2),a(1)g̃(a(1), xa(1))

+π̂a(1)(xa(1))π̂a(2)(xa(2))
N∑
i=4

i−1∏
k=4

π̂a(k)(xa(k))×

N∏
k=i+1

πa(k)(xa(k))g̃(a(i), xa(i))βa(i),a(3)g̃(a(3), xa(3))

+π̂a(1)(xa(1))π̂a(3)(xa(3))
N∑
i=4

i−1∏
k=4

π̂a(k)(xa(k))×

N∏
k=i+1

πa(k)(xa(k))g̃(a(i), xa(i))βa(i),a(2)g̃(a(2), xa(2))

=πa(3)(xa(3))
N∏
k=4

πa(k)(xa(k))g̃(a(2), xa(2))βa(2),a(1)g̃(a(1), xa(1)) (4.8)

+π̂a(2)(xa(2))
N∏
k=4

πa(k)(xa(k))g̃(a(3), xa(3))βa(3),a(1)g̃(a(1), xa(1))

+π̂a(1)(xa(1))π̂a(3)(xa(3))
N∑
i=4

i−1∏
k=4

π̂a(k)(xa(k))×

N∏
k=i+1

πa(k)(xa(k))g̃(a(i), xa(i))βa(i),a(2)g̃(a(2), xa(2))

+π̂a(1)(xa(1))π̂a(2)(xa(2))
N∑
i=4

i−1∏
k=4

π̂a(k)(xa(k))×

N∏
k=i+1

πa(k)(xa(k))g̃(a(i), xa(i))βa(i),a(3)g̃(a(3), xa(3)),

which simplifies using (4.4) to

g̃(a(2), xa(2))βa(2),a(1)ya(3)(xa(3)) = g̃(a(3), xa(3))βa(3),a(1)ya(2)(xa(2)).
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Letting a be such that a(1) = u, a(2) = v and a(3) = w, we find (4.1) is necessary.
2) implies 1): Multiplying (4.1) by g̃(u, xu) yields

g̃(v, xv)βv,ug̃(u, xu)(π̂w(xw)− πw(xw)) = g̃(w, xw)βw,ug̃(u, xu)(π̂v(xv)− πv(xv))
(4.9)

for all xu ∈ Xu, xv ∈ Xv, xw ∈ Xw and distinct u, v, w ∈MN . Take a ∈ GN and let
b = (l l + 1) ◦ a for 1 ≤ l ≤ N − 1. Noting that the transpose operations (l l + 1)
are generators, we just need to show (4.6) for (arbitrary) a and this b. However, the
left hand terms in (4.6) with i < l; j > l+ 1; j ≤ l− 1, l+ 2 ≤ i; and j = l, i = l+ 1
directly cancel with the corresponding right hand terms for this b. Considering the
(remaining) terms on the left side of (4.6) with j ≤ l − 1 and i = l, l + 1 for this b
and using (4.9) with u = a(j), v = a(l), w = a(l + 1), we get upon manipulation:

l−1∑
j=1

l−1∏
k=1
k 6=j

π̂a(k)(xa(k))
N∏

k=l+2

πa(k)(xa(k))g̃(a(l + 1), xa(l+1))× (4.10)

βa(l+1),a(j)g̃(a(j), xa(j))πa(l)(xa(l))

+
l−1∑
j=1

l−1∏
k=1
k 6=j

π̂a(k)(xa(k))
N∏

k=l+2

πa(k)(xa(k))g̃(a(l), xa(l))×

βa(l),a(j)g̃(a(j), xa(j))π̂a(l+1)(xa(l+1))

=
l−1∑
j=1

l−1∏
k=1
k 6=j

π̂a(k)(xa(k))
N∏

k=l+2

πa(k)(xa(k))g̃(a(l + 1), xa(l+1))×

βa(l+1),a(j)g̃(a(j), xa(j))π̂a(l)(xa(l))

+
l−1∑
j=1

l−1∏
k=1
k 6=j

π̂a(k)(xa(k))
N∏

k=l+2

πa(k)(xa(k))g̃(a(l), xa(l))×

βa(l),a(j)g̃(a(j), xa(j))πa(l+1)(xa(l+1))

so they are equal to the corresponding terms on the right of (4.6). (Notice the switch
of π and π̂ in the final factors in (4.10).) Finally, the terms on the left of (4.6) with
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j = l, i ≥ l + 2 and j = l + 1, i ≥ l + 2 for b = (l l + 1)a:

N∑
i=l+2

( i−1∏
k=1
k 6=l+1

π̂a(k)(xa(k))
N∏

k=i+1

πa(k)(xa(k))

)
g̃(a(i), xa(i))βa(i),a(l+1)g̃(a(l + 1), xa(l+1))

+
N∑

i=l+2

( i−1∏
k=1
k 6=l

π̂a(k)(xa(k))
N∏

k=i+1

πa(k)(xa(k))

)
g̃(a(i), xa(i))βa(i),a(l)g̃(a(l), xa(l))

are just the terms on the right of (4.6) with j = l + 1, i ≥ l + 2 and j = l, i ≥ l + 2
i.e. in reverse order. Hence, by breaking the summation up, we have shown (4.6)
holds for arbitrary a and b = (l l+ 1) ◦ a, which implies (4.6) holds for arbitrary a, b
and sufficiency follows.
3) implies 2): Letting u, v, w ∈ V be distinct and using (4.2,4.3), we have that:

σ̃2
wπ̃v(xv)(xv−µ̃v)βv,u(π̂w(xw)− πw(xw))

=− σ̃2
wπ̃v(xv)(xv−µ̃v)βv,ucwπ̃w(xw)(xw−µ̃w)

=− σ̃2
v π̃v(xv)(xv−µ̃v)βw,ucvπ̃w(xw)(xw−µ̃w)

=σ̃2
v(π̂v(xv)− πv(xv))βw,uπ̃w(xw)(xw−µ̃w)

for all xv ∈ Xv, xw ∈ Xw. �
In Theorem 1, 1) and 2) almost imply 3), which would establish equivalence.

However, the graph must be sufficiently connected as the following example shows.

Example 7. Suppose G is a connected graph with N ≥ 3. Suppose further that G
is not sufficiently connected. Choose distinct vertices u, v, w so that u and v are
neighbors of w, and that u and v are not neighbors. The completion of the graph will
set βvu = 0 in (4.1), which in turn implies that either π̂v(xv)−πv(xv) = 0 ∀xv ∈ Xv

or βu,w = 0 on the RHS of (4.1). In the former, π̂v = πv. In the latter, u is not a
neighbor of w so only the former is possible. If 3) were true, then cv = 0 by (4.2)
and then cu = cw = 0 by (4.3) and connectedness.

Theorem 2. Suppose N ≥ 3, G = (V,E) is the completion of sufficiently connected
undirected graph G = (V,E); {πv}v∈V , {π̃v}v∈V and {π̂v}v∈V are non-degenerate
pmfs with {πv 6= π̂v}v∈V ; and 1), 2), and 3) are as in Theorem 1. Then, 1) or 2)
imply 3).

Proof. 1) and 2) are equivalent by Theorem 1.
2) implies 3): Let u, v, w be connected neighbors in G. Let w be the neighbor

that has two neighbors. This means there are non-zero covariances from w to the
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other two. (4.1) is (by permuting u, v, w) equivalent to: g̃(v, xv)βwv −g̃(u, xu)βwu
g̃(w, xw)βwu −g̃(v, xv)βvu

−g̃(w, xw)βwv g̃(u, xu)βvu

 yu(xu)
yv(xv)
yw(xw)

 = 0,

which implies all solutions have the form

yu(xu) =
g̃(u, xu)βvu
g̃(w, xw)βwv

yw(xw),

yv(xv) =
g̃(v, xv)βvu
g̃(w, xw)βwu

yw(xw)

for all xu ∈ Xu, xv ∈ Xv, xw ∈ Xw. This implies that yw(xw)
g̃(w,xw)

is constant, which in

turn implies

πu(xu) =π̂u(xu) + cu(xu − µ̃u)π̃u(xu), (4.11)

πv(xv) =π̂v(xv) + cv(xv − µ̃v)π̃v(xv), (4.12)

where cu, cv are constants. SinceG is sufficiently connected (by non-zero covariances)
every vertex can be included in some connected triple as above and we must have
that

πw(xw) =π̂w(xw) + cw(xw − µ̃w)π̃w(xw) (4.13)

for all w ∈ V . Now, choosing distinct (not-necessarily connected) u, v, w ∈ V
and using (4.1), we find that these constants must satisfy: σ̃2

uβwvcu = σ̃2
vβwucv =

σ̃2
wβvucw. �

Example 8. When N = 3, one c, cu say, can be chosen arbitrarily and the other
two can then be solved for by (4.3).

Example 9. There is always the trivial solution π̂u = πu (and π̃u arbitrary) for all
u. This corresponds to taking all the cu to be 0.

The above theorem gives us the necessary relation

πw(xw) = π̂w(xw) + cw(xw − µ̃w)π̃w(xw) ∀w ∈ V, (4.14)

for the permutation property to hold under sufficient connectivity. Below we will
consider completely non-trivial Quick Simulation Fields meaning πw 6= π̂w, i.e. cw 6=
0, for all w ∈ V .

We work through an example in a simple four-vertex, black-and-white, complete-
graph example, which shows the completely non-trivial solutions. For simplicity (of
calculation and simulation) we let all marginal pmfs to be equal, all auxiliary pmfs
π̃i(1) = π̃i(−1) = 1

2
and all covariances to be equal. The fact that the ci’s below can

be non-zero means that the solutions can be completely non-trivial. The possible
graph distributions are given.
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Example 10. Let V = {1, 2, 3, 4}; A = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)};
Xi = {1,−1} for 1 ≤ i ≤ 4; π̃i(xi) = 1

2
∀xi ∈ Xi; and πi(1) = p and πi(−1) = 1− p

where 0 < p < 1. It follows that µ̃i = 0 and σ̃2
i = 1. Let β12 = β13 = β23 = β14 =

β24 = β34 = β so (4.15) holds trivially. It follows by (4.16) that c1 = c2 = c3 = c4.
Then, π̂i must satisfy (4.14) and be a non-trivial pmf for each i = 1, 2, 3, 4 i.e.

π̂i(1) = πi(1)︸ ︷︷ ︸
p

−ci · 1 · π̃i(1)︸ ︷︷ ︸
1
2

> 0

and

π̂i(−1) = 1− p+
ci
2
> 0.

This translates into the condition 2p > ci > 2p − 2. The permutable joint pmf of
X1, ..., X4 follows directly from (3.3) as

Π1,2,3,4(x1, x2, x3, x4) =
4∏
i=1

πi(xi) +
1

4
β
[
x1x2π3(x3)π4(x4) + x1x3π̂2(x2)π4(x4)

+ x2x3π̂1(x1)π4(x4) + x1x4π̂2(x2)π̂3(x3) + x2x4π̂1(x1)π̂3(x3) + x3x4π̂1(x1)π̂2(x2)
]

for each xi ∈ X (1 ≤ i ≤ 4).

Now, we give our final main result, which establishes necessary and sufficient
conditions for completely non-trivial solutions.

Theorem 3. Suppose N ≥ 4, G = (V,E) is the completion of connected undirected
graph G = (V,E) and {πv}v∈V , {π̃v}v∈V and {π̂v}v∈V are non-degenerate pmfs.
Then, the following are equivalent:

a) G is sufficiently connected and disjoint pair rich and there is a completely
non-trivial (πv, π̂v, π̃v, β)-Quick Simulation field Π on G satisfying the per-
mutation property.

b) The original graph G is complete, (4.14) holds with at least one cw 6= 0, and
for each distinct u, v, w, z ∈ V :

βu,vβw,z = βu,wβv,z. (4.15)

When a) and b) hold, the constants in (4.14) can be taken as:

cv1 =
σ̃2
v2

σ̃2
v1

βv3,v1
βv3,v2

cv2 , (4.16)

cvi+1
=
σ̃2
vi

σ̃2
vi+1

βvi+1,vi−1

βvi,vi−1

cvi ∀i = 2, ..., N − 1,

where cv2 6= 0 can be taken arbitrarily and G = {vi}Ni=1.

Proof. (a) implies (b): (4.14) holds by Theorem 2. For distinct u, v, w, z ∈ V , we
find by (4.3) that

σ̃2
uβzuβwvcu = σ̃2

vβzuβwucv = σ̃2
vβwuβzucv = σ̃2

uβzvβwucu
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so after cancellation (π̃u is non-trivial, cu 6= 0)

βzuβwv − βzvβwu = 0. (4.17)

Now, suppose z, u ∈ V that are not neighbors in G, we choose distinct v and w to
be neighbors of z and u respectively (by disjoint pair rich property). Then, (4.17)
implies

βzuβwv = βzvβwu 6= 0 ⇒ βzu 6= 0 (4.18)

and there is a contradiction. Hence, every z, u ∈ V are neighbors and G is complete.
(b) implies (a): It follows from completeness and (4.16) that each ci 6= 0,

σ̃2
1β3,2c1 = σ̃2

2β3,1c2 = σ̃2
3β2,1c3

and

σ̃2
i+1ci+1βi,i−1 = σ̃2

i ciβi+1,i−1 = σ̃2
i−1ci−1

βi,i−2βi+1,i−1

βi−1,i−2

for all i = 3, ..., N − 1. However, it follows by (4.15) that

βi,i−2βi+1,i−1 − βi−1,i−2βi+1,i = 0 (4.19)

so by the previous two equations

σ̃2
i+1ci+1βi,i−1 = σ̃2

i ciβi+1,i−1 = σ̃2
i−1ci−1βi+1,i (4.20)

∀i ∈ {2, ..., N − 1}.
We have shown (4.3) in the case u = vi−1, v = vi, and w = vi+1. Now, let

u, v, w ∈ V be arbitrary. Then, they correspond to vi3 , vi2 , vi1 respectively and,
without loss of generality, we can assume that 1 ≤ i1 < i2 < i3 ≤ N . Using the left
hand equality in (4.20) repeatedly, we find

σ̃2
i3
ci3βi2,i2−1 =σ̃2

i3
ci3

i3−1∏
j=i2

βj,j−1
1∏i3−1

j=i2+1 βj,j−1

(4.21)

=σ̃2
i2
ci2

i3−1∏
j=i2

βj+1,j−1
1∏i3−1

j=i2+1 βj,j−1

.

However, it follows by repeated use of (4.15) that

i3−1∏
j=i2

βj+1,j−1 = βi3,i2−1

i3−1∏
j=i2+1

βj,j−1. (4.22)

Combining (4.21) and (4.22), one finds

σ̃2
i3
ci3βi2,i2−1 = σ̃2

i2
ci2βi3,i2−1. (4.23)

Moreover, using (4.15) again (when i2 − 1 6= i1), one has that

βi2,i2−1

βi3,i2−1

=
βi2,i1
βi3,i1

(4.24)

so, substituting (4.24) into (4.23) and relabelling, we have that

σ̃2
ucuβv,w = σ̃2

vcvβu,w. (4.25)
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Hence, the first equality in (4.3) holds. The second equality follows in exactly the
same manner using the second equality in (4.20) in lieu of the first. �

5. Findings and Conclusions

We introduced the quick simulation fields, which are correlated Markov fields that
can be almost as fast and easy to simulate as independent fields. The given algorithm
works on graphs so one can simulate in any dimension and it is an improvement of
the prior algorithms of the authors because it facilitates closed form description of
the possible field distributions with no added computational costs. The purpose
of this work is: 1) To introduce this algorithmic improvement and 2) To discuss
important simulation properties that one may wish to hold or wish to avoid. We
introduced the following concepts:

(1) Marginality is the property that the induced distribution of a simulated
random field on any subfield is the same as the distribution produced by the
simulation algorithm directly on the subfield when the simulation order is
maintained.

(2) The Permutation Property states that the distribution of a simulated field
is the same regardless of the order that the graph vertices are simulated in.

(3) A quick simulation field is said to be completely non-trivial if πw 6= π̂w for
every vertex w.

(4) A sufficiently connected graph is one where every vertex has a neighbor with
two neighbors.

(5) A disjoint pair rich graph is one where every pair of non-neighbor vertices
have distinct neighbors.

Some of our main findings about our quick simulation fields are:

(1) There is a closed form for the possible quick simulation fields that is given
by (3.3).

(2) Marginality always holds by Lemma 1.
(3) There are uncorrelated quick simulation fields that are still not independent

by Example 5.
(4) In the general case, the Permutation Property holds if and only if (4.1) holds.
(5) In the sufficiently connected case, the Permutation Property holds if and

only if (4.2) and (4.3) both hold.
(6) If there are at least four vertices, then the following are equivalent:

(a) The graph is sufficiently connected, disjoint pair rich and there is a
completely non-trivial Quick Simulation Field on its completion for any
collections π, π̂, π̃, β (with πw 6= π̂w for all w) satisfying the permutation
property.

(b) The original graph is already complete, the commutator type condition
(4.15) holds and (4.14) holds with at least one cw 6= 0.
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