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Abstract: A large class of proven discrete-time branching particle filters with Bayesian model selec-
tion capabilities and effective resampling is analyzed mathematically. The particles interact weakly
in the branching procedure through the total mass process in such a way that the expected number
of particles can remain constant. The weighted particle filter, which has no resampling, and the fully-
resampled branching particle filter are included in the class as extreme points. Otherwise, selective
residual branching is used allowing any number of offspring. Each particle filter in the class is cou-
pled to a McKean-Vlasov particle system, corresponding to a reduced, unimplementable branching
particle filter, for which Marcinkiewicz strong laws of large numbers (Mllns) and the central limit
theorem (clt) can be written down. Coupling arguments are used to show the reduced system can
be used to predict performance of and to transfer the Mllns to the real weakly-interacting residual
branching particle filter. This clt is also shown transferable when (a few) extra particles are used.
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1. Introduction

Sequential Monte Carlo (SMC) algorithms are used in diverse problems like tracking, prediction, paramter
estimation, model calibration, classification, Bayesian model selection and imaging (see e.g. [18], [17], [13]
and [9] for sample applications). Branching SMC algorithms have the advantage that offspring generation
only depends upon the parent not the whole population and the disadvantage of having randomly-varying
populations (i.e. particle numbers). Recently, Kouritzin [10] introduced four new classes of branching se-
quential Monte Carlo algorithms that were designed to limit wide particle variations. The tracking and
model selection performance of all four algorithms was shown experimentally to be superior to a collection
of popular resampled particle algorithms and these four branching algorithms have even greater advantages
when it comes to distributed implementations (see Kouritzin and Wang [12]). However, there is little theory
to back up these experimental findings. Theoretical rate-of-convergence results are desired to understand
why these algorithms perform so well and what their weaknesses might be. Unfortunately, the branching al-
gorithms lack the independence and fixed particle numbers of many resampled algorithms so their analysis
is necessarily difficult and the desired convergence results hard to come by. Herein, we start the theoretical
study by establishing Marcinkiewicz strong laws of large numbers (Mllns) and a central limit theorem (clt)
for the residual branching algorithm, which is the simplest of the four branching algorithms introduced in
[10]. We get around the lack of independence by using exchangeability techniques and by introducing an
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unrealizable approximate McKean-Vlasov particle system (originally motivated by the work of McKean
[16]) which has independence.

The weighted particle filter, largely credited to Handschin [6] as well as Handschin and Mayne [7],
approximates the unnormalized filter, denoted σn below. This weighted particle filter is the most basic
particle filter and is embarassingly computer parallelizable. However, it is well know to suffer particle
spread issues that have to be corrected by branching or resampling. Branching particle filters, like those
introduced by Crisan and Lyons [3], can have effective resampling yet still be be highly parallelizable.
Nonetheless, these early branching particle filters generally have very unstable particle numbers, which
affects performance adversely. Recently, Kouritzin [10] introduced four successively more refined branching
particle filters with the aim of reducing particle number fluctuations and thereby improving performance
and reliability. Even the simplest of these four, the Residual Branching Particle Filter, was shown in [10],
[12] to avoid wild particle swings and to outperform many popular sequential Monte Carlo methods by a
large amount. Herein, we analyze this Residual Branching Particle Filter by way of Marcinkiewicz strong
laws of large numbers (Mllns) and the central limit theorem (clt). As a consequence, we also layout a
framework for further analysis of the Residual Branching filter as well as the three more-complicated
improvements of this filter given in [10].

The bootstrap particle filter algorithm was introduced in 1993 by Gordon, Salmond and Smith [5]. It has
been improved by using residuals and stratified random variables. This collection resampled particle filters
is one of the big breakthroughs in big data sequential estimation and their convergence properties have
been thoroughly studied by many authors (see e.g. Douc et. al. [4]). In particular, Chopin [2] obtained a clt
for the residual improvement of the bootstrap algorithm. However, these particle filters approximate the
actual filter πn not the unnormalized σn, do not have the (same degree of) ancestrial dependence as the
Residual Branching filter and base their resampling decisions upon the (locations of the) whole population.
Hence, their analysis is quite different from what is required for the Residual Branching particle filter.

In terms of convergence results for branching filters to the unnormalized filter, Kouritzin and Sun [11]
obtain L2-rates of convergence for a partially-resampled branching algorithm. However, no other results
were attained and their results are in a specific setting. From a mathematical perspective our work might
be closest to Kurtz and Xiong [14], [15]. Their work applies to a more general setting than nonlinear
filtering but in the non-linear filtering setting it only considers the weighted particle filter. Consequently,
substantially new methods are required herein. We make use of classical exchangeability works like Weber
[19] and McKean-Vlasov equations as in [16]. However, several new (at least to particle filtering) ideas
including branching particle filter coupling, use of infinite branching particle systems, use of tracking
systems and Hoeffding-inequality-based particle system bounding are also utilized.

For motivational purposes, we consider tracking a non-observable, random, dynamic signal X given
the history of a distorted, corrupted partial observation process Y living on the same probability space
(Ω,F , P ) as X. For many practical problems the signal is a time-homogeneous discrete-time Markov process
{Xn, n = 0, 1, 2, ...}, living on some complete, separable metric space (E, ρ), with initial distribution π0 and
transition probability kernel K. The observation process takes the form (Y0 = 0 and) Yn = h (Xn−1) + Vn
for n ∈ N, where {Vn}∞n=1 are independent random vectors with common strictly positive, bounded density
g that are independent of X, and the sensor function h is a measurable mapping from E to Rd. (Such
g still allows popular observation noise like Gaussian or Cauchy distributed ones.) Then, the objective of
filtering is to compute the conditional expectations πn (f) = EP

(
f (Xn)

∣∣FYn ) for all bounded, measurable
functions f : E → R, where FYn $ σ{Yl, l = 1, ..., n} is the information obtained from the back observations.

Suppose without loss of generality that Ω = (E × Rd)∞ and F = B((E × Rd)∞) until later extended.

Moreover, suppose hereafter Fξ−1 $ {∅,Ω}, Fξn $ σ{ξkl , k ∈ K, l ≤ n} when n ∈ N0 and Fξ∞ $ σ{ξkl , k ∈
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K, l < ∞} for random variables {ξkn, k ∈ K, n ∈ {0, 1, ...}} on (Ω,F). (This is consistent with FYn defined
above if K has one element.) Unnormalized filters transfer the information contained in the observations
to a likelihood process by measure change. In this method, a reference probability measure Q is introduced
under which the signal, observation process {(Xn, Yn+1), n = 0, 1, ...} has the same distribution as the
signal, noise process {(Xn, Vn+1), n = 0, 1, ...} does under P . Hence, the observations are i.i.d. random
vectors with strictly positive bounded density g and are independent of X under measure Q. All the
observation information is absorbed into the likelihood process {Ln, n = 1, 2, ...} transforming Q back to
P , which in our case has the form

dP

dQ

∣∣∣
FX∞∨FYn

= Ln =

n∏
j=1

αj(Xj−1), with αj(x) =
g (Yj − h (x))

g (Yj)
, (1.1)

so Ln = αn(Xn−1)Ln−1 and L0 = 1. The following (well-known) discrete Girsanov’s theorem constructs
the real probability P from the fictitious one Q.

Theorem 1.1. Suppose under probability Q that {Xn, n = 0, 1, ...} and {Yn, n = 1, 2, ...} are independent
processes on (Ω,F), the {Yn} are i.i.d. with strictly-positive, bounded density g on Rd and Vn $ Yn −
h(Xn−1) for all n = 1, 2, ... Then, there exists a probability measure P such that (1.1) holds, {Vn, n =
1, 2, ...} are i.i.d. on (Ω,F , P ) with density g and {Xn} is independent of {Vn} with the same law as on
(Ω,F , Q).

Using this reference probability Q and Bayes’ rule, one finds the filter satisfies πn (f) = σn(f)
σn(1)

, where σn
is the unnormalized filters

σn (f) = EQ
(
Lnf (Xn)

∣∣FYn ) (1.2)

so σ0 = π0, as L0 = 1 and FY0 = {∅,Ω}. Hence, the normalized filter πn can be estimated by constructing
approximations (denoted SNn and SNn below) to the unnormalized filter model. (It well known that Bayes
factor can also be obtained from the unnormalized filter [13].)

Our algorithm is given in the next section and our mathematical notation in Section 3. To state our
results, we let SNn (f) be our branching particle approximation to the unnormalized filter σn(f). Our main
result, Theorem 5.1 in Section 5, states that, for almost all observation paths, SNn (f) satisfies the Mllns
(with all possible rates) and the normalized difference

√
N(SNn (f)− σn(f)) satisfies the clt (with variance

characterized by the resampling employed). Taken together these results say the same polynomial rates of
almost-sure convergence in number of particles N hold for the Residual Branching particle filters as for
other particle filters (like the weighted) even when no extra particles are used. Moreover, under the extra
particle condition N

mN
→ 0, the random weak particle interactions in our algorithm average out enough

to characterize the optimal convergence with a clt. To obtain these results, we couple our algorithm to a
reduced particle system, introduced in Section 4, which is unimplementable but mathematically simpler.
Conceptually, our Residual Branching particle filter is a weakly-interacting particle system and the reduced
system is a more-tractable McKean-Vlasov-type limit (with average weight An replaced by σn(1)), which
can be used to predict performance of the Residual Branching particle filter. We also introduce tracking
systems in Section 6, which run as weighted filters but indicate where the Residual and reduced filters would
resample (at least initially). These tracking systems are introduced for purely analytical reasons to help us
divide the Residual and weighted particle filters into comparable pieces. They also have to be coupled to
the Residual and reduced particle filters. The actual coupling and its ramifications are contained in Section
7. The first appendix contains the derivation of the clt variance for the McKean-Vlasov and Residual
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Branching filter. The second appendix contains a technical total-mass ergodic theorem for the Residual
Branching filter using the coupling.

2. Residual Branching Algorithm

To analyze our branching particle filter, we introduce it using two initial particle types: N ∈ N filter
particles and mN −N ∈ N extra particles. (A more implementable version without the extra particles and
the {Vk,in } is given in [10].) The purpose of the extra particles is to allow enough asymptotic independence
for the central limit theorem (clt) to hold. (Extra particles are not necessary for the Mllns to hold.) We
define the following branching Markov process {SNn , n = 0, 1, ....} approximation to {σn, n = 0, 1, ...} in
terms of the observations and signal transition kernel K introduced in the introduction as follows:

Initialize:
{
Xk,10

}mN
k=1

are independent (initial particle) samples from π0,
{
Vk,in

}∞,∞,mN
n,i,k=1

are zero-mean

i.i.d. random variables, and Nk0 = 1, Lk,10 = 1 for k = 1, ...,mN .
To handle possible degeneracy, we also preset Nk,in = 0 for all i, k, n ∈ N.

Repeat: for n = 0, 1, 2, ... do

1. Weight by Observation: L̂k,in = αn+1

(
Xk,in

)
Lk,in for i = 1, 2, ...,Nkn, k = 1, 2, ...,mN

2. Average Weight: An+1 = 1
mN

mN∑
k=1

Nkn∑
i=1

L̂k,in

Repeat (3-5): for k = 1, 2, ...,mN do

Repeat (3-5): for i = 1, 2, ...,Nkn do

3. Resampled Case: If L̂k,in + Vk,in+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Number: Nk,in+1 =
⌊

L̂k,in
An+1

⌋
+ ρk,in , with ρk,in a

(
L̂k,in
An+1

−
⌊

L̂k,in
An+1

⌋)
-Bernoulli independent of

everything

(b) Resampled Weight: Lk,in = An+1

4. Non-resample Case: If L̂k,in + Vk,in+1 ∈ (anAn+1, bnAn+1) then

Lk,in = L̂k,in , Nk,in+1 = 1

5. Combine: X̂k,jn $ Xk,in , Lk,jn+1 $ Lk,in for

j∈
{
Nk,1n+1 + · · ·+ Nk,i−1n+1 + 1, ...,Nk,1n+1 + · · ·+ Nk,in+1

}
6. Evolve Independently:

P (Xk,jn+1 ∈ Γk,j ∀ k, j|FX
n ∨ FYn ∨ FU,V

∞ ) =

mN∏
k=1

Nkn+1∏
j=1

K(X̂k,jn ,Γk,j)

for all Γk,j ∈ B(E), where Nkn+1 = Nk,1n+1 + · · ·+ Nk,N
k
n

n+1
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7. Estimate σn+1 by: SNn+1 =
1

N

N∑
k=1

Nkn+1∑
j=1

Lk,jn+1δXk,jn+1
.

Remark 2.1. (1) weights particles by their odds of producing the last observation. (3-5) resample the
particles without bias, killing unlikely particles and duplicating likely ones while keeping the expected number
of particles and total mass of all the particles constant. Parameter an, bn in (3,4) control the amount of
resampling. an = −∞, bn = ∞ turns off resampling and results in the weighted particle system. an = bn
ensure complete resampling.

Remark 2.2. The {Vk,in } are required for analytical reasons. They provide enough smoothness that we can
compare this resampled branching particle filter to a reduced McKean-Vlasov particle system. Without these
V’s the resampling events would be abrupt in the weight values.

Remark 2.3. The algorithm can fail (as all finite particle filters can) even though it is designed to have
a constant expected number of particles. During resampling, there is a possibility of immediately killing all

particles if max
j≤Nkn−1,k≤mN

mN L̂k,jn∑mN
k=1

∑Nkn
i=1 L̂

k,j
n

< 1. Ironically, this can only happen if there are more particles

than at start. However, it may still be possible to degenerate immediately to one particle when

mN∑
k=1

Nkn ≤ mN .

Conversely, it is not possible to increase by more than mN − 1 particles in one step. The weight variation
is a big concern: Lk,jn can become very uneven as mN increases. Some regularity results are required to
ensure that there are enough effective particles and moment bounds to justify the anticipation of the clt as
mN →∞.

To rationalize the use of mN −N extra particles, we quote the clt (see Weber [19]) for triangular sequences
of exchangeable random variables:

Theorem 2.1. Suppose {XN,j : j = 1, ...,mN} are exchangeable random variables for all N = 2, 3, .... and:

(i) N
mN
→ 0, (ii) NE[X2

N,1]→ 1, (iii)

N∑
j=1

X2
N,j →P 1, (iv) N2E[XN,1XN,2]→ 0, and (v) maxj≤N |XN,j | →P

0. Then,

N∑
j=1

XN,j
D→N (0, 1).

Notice mN − N extra random variables are required for the desired central limit theorem. Moreover,
when using our resampled branching particle filter in practice, you can take mN to be something like
mN = N(1 + log log logN) (for large enough N) so you may not add many extra particles until N is very
large. Finally, the Mlln rates of convergence hold even for mN = N so the extra particles are really only
for characterizing performance.

3. Notation, Unnormalized Filter, Weighted Approximation

3.1. Basic Notation and Convention

Recall E is a Polish space and let B(E), B(E)+, C(E)++, C(E) and C(E)+ be the bounded measur-
able, non-negative bounded, strictly-positive continuous, continuous bounded, and non-negative continu-
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ous bounded R-valued functions respectively and define |f |∞ = supx∈E |f(x)|. Next, let B(E) be the Borel
σ-algebra on E.

For a finite set A, we use #A to denote its number of elements.
We use the extended Vinogradov symbol (introduced in [8]): Suppose a(n,m), b(n,m) are expressions

depending upon two sets of variables n,m. Then, a(n,m)
n
� b(n,m) means there exists a cm > 0, depending

only on m, such that a(n,m) ≤ cmb(n,m) for all n,m.
The main mathematical difficulty of this paper is due to the weak interaction of the particles in the

residual branching system introduced in the previous section. In particular, the ith particle Xk,in depends
upon An, which in turn depends on the other particles. Our approach to dealing with this weak interation
is to couple this system to another (McKean-Vlasov) reduced particle system, where there is no interaction,
using the fact that ANn → σn so the weak interactions die out as the initial number of particles increases.
To do this coupling, we need to introduce tracking particle systems for the residual and reduced McKean-
Vlasov particle systems that do not branch but tell us when each would. We also need an infinite particle
system into which each finite particle system will be imbedded, forming our coupling between residual and
reduced McKean-Vlasov particle systems. We reserve the following nomenclature for these systems:

• Blackboard bold will be used for all residual particle system objects (Xk,in , Lk,in , An).
• Caligrahpic will be used for all reduced (McKean-Vlasov) particle system objects (X k,in , Lk,in ,). (σn

replaces An in the McKean-Vlasov system.)
• The tracking system objects will be distinguished from the branching object by using an underline so

(Xkn,L
k
n) and (Lkn,L

k
n) will respectively be the kth (particle, weight) at time n in the tracking system

for the residual and reduced systems.
• Normal font will be used for the infinite particle system but it will be indexed with a multi-index

with the length of the multi-index being the time at which the particle is alive so Xκ is a particle in
the infinite system that is alive at time |κ|. The infinite particle system does not need to have its own
weights but rather the weights of the residual and reduced particle systems will be redefined on it.
• Mathfrak Xkn will be used once immediately below to introduce the weighted particle filter but will

not re-appear again.

The rest of the infinite particle system notation will be introduced just prior to its use in Section 7.

3.2. Kernels, Measures and Unnormalized Filter

Since Q
(
Xn+1 ∈ A

∣∣FXn ) = K (Xn, A), one has EQ
[
f(Xn)

∣∣FXn−1 ] = EP
[
f(Xn)

∣∣FXn−1 ] = Kf(Xn−1).
Clearly, Kf ∈ B(E)+ if f ∈ B(E)+. For any finite measure µ and integrable function f , we define

µf =

∫
E

f (x)µ (dx) , Kn(y, dx) =

∫
E

Kn−1(z, dx)K(y, dz)

µKn (dx) =

∫
E

Kn (z, dx)µ (dz) and Knf (x) =

∫
E

f (z)Kn (x, dz)

for all n = 2, 3, ... with K1 = K.
Lastly, we define the (observation-dependent) operators An and Ai,n as

Anf (x) =

{
αn(x)Kf (x) , n ∈ N
f(x), n = 0

and (3.1)

Ai,nf (x) =

{
Ai (Ai+1 · · · (Anf)) (x) , i ≤ n
f(x), i = n+ 1

. (3.2)
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Then, σ0 = π0 and, using (1.1,1.2), we have the following recursion for σn:

σn (f) = σn−1 (Anf) ∀n = 1, 2, ..., (3.3)

Applying this recursion repeatedly, we have that

σn (f) = π0 (A1,nf) . (3.4)

Bayes’ rule implies that πn(f) = σn−1(Anf)
σn−1(An1)

=
π0(A1,nf)
π0(A1,n1)

.

3.3. Weighted Particle Filter

Weighted particle filters approximate the unnormalized filter σn without resampling. The conditional expec-
tation σn(f) = EQ[Lnf(Xn)

∣∣FYn ] with respect to reference probability Q is replaced with an independent
sample average to obtain

σNn (f) =
1

N

N∑
k=1

Lknf
(
Xkn
)
, (3.5)

our weighted-particle estimator of σn (f), where the particles
{
Xk
}∞
k=1

are independent (π0,K)-Markov

processes that are independent of Y and the weights satisfy Lkn =
n∏
j=1

αj(X
k
j−1).

In the sequel, we will fix an observation path, set QY (·) = Q(·|FY∞) and let EY [Z] denote expectation
with respect to QY .

4. Reduced McKean-Vlasov Particle System

The problem with the weighted particle system is, due to randomness, most particles do not behave
like the signal so their weights become small compared to the weights of very few good particles. This
results in a particle filter that effectively consists of an average over only a very small portion of the
particles. This problem manifests itself theoretically in the large expected variance of the central limit
theorem and practically in the need to use a huge number of particles in most applications. Indeed, the
weighted particle filter might not work regardless of the number of particles. To combate these problems,
one introduces resampling. Initially, we pretend herein that we have access to the actual unnormalized filter
total mass {σn(1), n = 0, 1, 2, ...} and consider an unimplementable reduced system of McKean-Vlasov
type. In particular, we use the algorithm given in Section 2 with An replaced with σn(1). To facilitate
analysis, we make explicit reference to the random variables that drive the particle system. Suppose we
have enlarged (Ω,F , Q) to support the following random variables:

1.
{
χk
}∞
k=1

are independent samples from π0,

2. {Zk,i,xn : n, k, i ∈ N, x ∈ E} are independent with Zk,i,xn having distribution K (x, ·),
3. {Uk,in : n, k, i ∈ N} are independent and Uniform[0, 1],

4. {Vk,in : n, k, i ∈ N} are zero mean, i.i.d. with common pdf fV ,
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which are mutually independent and independent of X,Y . The actual pdf fV does not matter for this
section but has to be bounded in the next section. k is used to denote the first ancestor of each particle.
Then, our reduced particle filter will be the average of N i.i.d. weighted branching Markov processes
{Bkn, n = 0, 1, ...} each starting from an independent sample δχk . All particles evolve independently of each
other only interacting with {σn(1)}, which is deterministic with respect to QY . At any time, many of the
Bk may have died out while others have branched into multiple particles. For clarity, the particles at time

n (if any) that are offspring of the initial particle χk will be denoted {X k,in }
Nkn
i=1 and the weight of such a

particle after resampling will be denoted Lk,in . Then, the branching Markov process corresponding to the
kth original particle and the complete filter estimate will be

Bkn =

Nkn∑
i=1

Lk,in δXk,in
and SNn =

1

N

N∑
k=1

Bkn (4.1)

respectively. We define the branching Markov processes {Bk} as follows:

Initialize: X k,10 = χk, N k
0 = Lk,10 = 1 ∀k = 1, ...,mN ; N k,i

n = 0 ∀i, k, n ∈ N.

Repeat: for n = 0, 1, 2, ... do

Repeat (1-6): for k = 1, 2, ...,mN do

Repeat (1-5): for i = 1, 2, ...,N k
n do

1. Weight:

L̂k,in = αn+1(X k,in )Lk,in (4.2)

2. Resample Case: If L̂k,in + Vk,in+1 /∈ (anσn+1(1), bnσn+1(1)) then

N k,i
n+1 =

⌊
L̂k,in

σn+1(1)

⌋
+ 1
Uk,in+1+

⌊
L̂k,in

σn+1(1)

⌋
≤ L̂k,in
σn+1(1)

,Lk,in = σn+1(1) (4.3)

3. Non-resample Case: If L̂k,in + Vk,in+1 ∈ (anσn+1(1), bnσn+1(1)) then

Lk,in = L̂k,in , N k,i
n+1 = 1

4. Combine: X̂ k,jn $ X k,in , Lk,jn+1 $ L
k,i

n for j∈
{
N k,i−1
n+1 + 1, ...,N k,i

n+1

}
, where

N k,i−1
n+1 =

i−1∑
j=1

N k,j
n+1 (4.4)

5. Evolve Independently: X k,jn+1 = Zk,j,X̂
k,j
n

n+1 for j∈
{
N k,i−1
n+1 + 1, ...,N k,i

n+1

}
6. Estimate: Bkn+1 =

Nkn+1∑
j=1

Lk,jn+1δXk,jn+1
, where N k

n+1 = N k,1
n+1 + · · ·+N k,Nkn

n+1 .

Remark 4.1. Notice that a particle in this reduced particle system behaves exactly as the same particle in
residual system introduced earlier if neither branches. Conversely, if they both first branch at exactly the
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same time and produce the same number of offspring, then their offspring locations can be the same but
the weights will generally differ as An will not be exactly σn. We will later capture these two cases in our
coupling proofs. Also, situations where one system branches and the other does not or a different number
of offspring are produced by the two systems will be shown to have limited occurrences.

Remark 4.2. This reduced filter can plunge into a zero particle trap if max
j≤Nkn−1,k≤mN

L̂k,jn
σn+1(1)

< 1. The

weights can also become very uneven. We defined an extra mN −N particles that were independent of the
other particles and not used in the estimate. This was entirely for comparison with the resampled system
(given in Section 2), where the extra particles are required to establish the central limit theorem.

Remark 4.3. To handle the index change in Step 5, we use the parent operators

pn+1(j) = i such that j ∈ {N k,i−1
n+1 + 1, ...,N k,i

n+1}. (4.5)

This i is unique. pn+1 is defined explicitly in a slightly different context in (7.45) to follow.

After Step (4), we have N k,i
n+1 particles at location X k,in each with weight Lk,in . Hence, the expected

weight at location X k,in after possible resampling satisfies:

EY
[
Lk,in N

k,i
n+1

∣∣FUXn ∨ FVn+1

]
= L̂k,in ∀i = 1, 2, ...,N k

n , (4.6)

which is the weight in (1) prior to resampling, so the system is unbiased. However, we need to go further
and establish a martingale property. First, averaging over the Uk,in , one has

EY

 Nk,in∑
j=Nk,i−1

n +1

f(X k,jn )
∣∣∣FUk,in−1 ∨ FVXn

 (4.7)

= EY

 N̂k,in∑
j=Nk,i−1

n +1

f(X k,jn ) +

∣∣∣∣∣ L̂
k,i
n−1

Lk,in−1
−

⌊
L̂k,in−1
Lk,in−1

⌋∣∣∣∣∣f(X k,N̂
k,i
n +1

n )
∣∣∣FUk,in−1 ∨ FVXn

,
where N̂ k,i

n = N k,i−1
n +

⌊
L̂k,in−1

Lk,in−1

⌋
and FUk,in−1 = σ{U l,jm : m ≤ n, (l, j,m) 6= (k, i, n)}. (Notice (4.7) holds

whether we resample or not.) Using (4.7) plus the facts N k
n−1 ∈ FUVXn−1 and (Lk,jn , EY [f(X k,jn )|FXn−1 ∨
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FUVn ∨]) = (Lk,in−1,Kf(X k,in−1)) for j∈
{
N k,i−1
n + 1, ...,N k,i

n

}
, one finds by (4.1,4.4,3.1) that

EY [Bkn(f)
∣∣FUVXn−1 ] = EY

Nkn∑
j=1

Lk,jn f(X k,jn )
∣∣∣FUVXn−1

 (4.8)

=

Nkn−1∑
i=1

EY

 Nk,in∑
j=Nk,i−1

n +1

Lk,jn f(X k,jn )
∣∣∣FUVXn−1


=

Nkn−1∑
i=1

EY

[
L̂k,in−1
Lk,in−1

Lk,in−1Kf(X k,in−1)
∣∣∣FUVXn−1

]

=

Nkn−1∑
i=1

αn(X k,in−1)Lk,in−1Kf(X k,in−1)

= Bkn−1(Anf) subject to Bk0 (f) = f(χk).

(One can check this equation in the two cases: N k
n−1 = 0 and N k

n−1 6= 0.) Using (4.8) recursively, one finds
by (3.2,3.4) that

EY [Bkn(f)] = EY
[
A1,nf(χk)

]
= σn(f) (4.9)

so by (4.8,4.9)

Bkn (f) −σn(f) = MB
k

n (f), where (4.10)

MB
k

n (f) =

n∑
l=0

[
Bkl (Al+1,nf)− EY

[
Bkl (Al+1,nf)

∣∣FUVXl−1
]]
. (4.11)

{MBkn (f) , n = 0, 1, ...} is a zero-mean {FUVXn }∞n=0-martingale with respect to QY . Averaging over the
initial ancestrial branches k, one finds by (4.1,4.8,4.9,4.10,4.11) that

EY [SNn (f)
∣∣FUVXn−1 ] = SNn−1(Anf) subject to SN0 (f) =

1

N

N∑
k=1

f(χk) (4.12)

EY [SNn (f)] = σn(f) (4.13)

SNn (f) = σn (f) +MN
n (f) (4.14)

with

MN
n (f) =

1

N

N∑
k=1

MB
k

n (f) (4.15)

=

n∑
l=0

[
SNl (Al+1,nf)− EY

[
SNl (Al+1,nf)

∣∣FUVXl−1
]]
.



M. A. Kouritzin/Branching Particle Filters 11

Now, we define the FY∞-measurable random variance

γPn (f) = EY [|MB
1

n (f)|2]. (4.16)

Recall σn(f), αn from (1.2),(1.1) respectively. To find an expression for the variance γPn (f) of this reduced
system and the resampled system to follow, we define the resampling function:

r(x) = x− bxc − (x− bxc)2, (4.17)

which is an artifact of resampling and is clearly bounded by 1
4 . Now, let

νn(l) =

∫
1(an−1σn(1),bn−1σn(1))(s)fV (l − s)ds, νn(l) = 1− νn(l). (4.18)

For notational simplicity, we recall σ0(1) = π0(1) = 1 and define

αi,m(xi, ..., xm−1) = αm(xm−1) · · ·αi+2(xi+1)αi+1(xi)σi(1) (4.19)

νi,m(xi, ..., xm−1) = νm(αi,m(xi, ..., xm−1)) · · · νi+1(αi,i+1(xi)) (4.20)

νi,m(xi, ..., xm−1) = νm(αi,m(xi, ..., xm−1)) (4.21)

so αi,i(x) = σi(1) and νi,i(x) = 1. The following proposition gives the clt variance for the reduced McKean-
Vlasov particle system in terms of the resampling used. The proof is necessarily technical, and hence delayed
until Appendix 1.

Proposition 4.1. Let h be bounded and
∑

i1<···<ij
j<l

denote the sum over 1 ≤ i1 < · · · < ij < l and 0 ≤ j <

l ≤ n. Then,

γPn (f) = π0((A1,nf)2)− (π0(A1,nf))2 (4.22)

+
∑

i1<···<ij
j<l

σl(1)π0[A1,l−1
{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νij ,lνij ,l−1νi1,i2,...,ij ]

+
∑

i1<···<ij
j<l

π0[A1,l−1αij ,l
{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νij ,lνi1,i2,...,ij ]

+
∑

i1<···<ij
j<l

σ2
l (1)π0[A1,l−1

νij ,l

αij ,l−1
r

(
αij ,l

σl(1)

)
(KAl+1,nf)2νij ,l−1νi1,i2,...,ij ]

for all f ∈ B(E)+, where

νi1,i2,...,ij $ νij−1,ij · · · νi1,i2−1ν0,i1ν0,i1−1 (4.23)

A1,m is defined in (3.2) and operator Ai applies to the last argument of Ai+1,mφm(x0, x1, ..., xi−1, xi).

Remark 4.4. We will later show a central limit theorem for the residual branching particle filter with this
same variance. This might initially seem surprising since it uses ANn instead of the unnormalized filter σn.
However, under our conditions ANn → σn fast enough as N → ∞ that a central limit theorem with the
same variance results. Of course, we needed the extra mN −N particles for this to happen.
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Remark 4.5. The first term on the right of (4.22) represents the error variance of introducing an inde-
pendent particle system. The remaining terms incorporate the resampling scheme used. To understand this
formula, we can think of j ∈ {0, 1, ..., l − 1} as a number of resampling events up to l − 1 and i1, i2, ..., ij
as possible resample times up to l − 1 so the system would run without resampling between these times.
νij ,l−1νij−1,ij · · · νi1,i2−1ν0,i1ν0,i1−1 is then the joint probability that these are the resample times. In par-
ticular, ν0,i1−1 is the probability of not resampling before i1 and ν0,i1 is the conditional probability of

resampling at i1 given no prior resampling. Under our conditions, each σl is a finite measure and
νij ,l

αij ,l−1
,

αl, Al,nf are bounded for each fixed Y1, ..., Yn, f ∈ B(E)+ so γPn (f) is an R-valued random variable.

To facilitate the discussion to follow, we break the final two terms of (4.22) into the cases of resampling
at time l − 1 and not, which yields:

γPn (f) = π0((A1,nf)2)− (π0(A1,nf))2 (4.24)

+

n∑
l=1

σl(1)
l−1∑
j=0

∑
1≤i1<···<ij<l

π0[A1,l−1{fl,n}νij ,lνij ,l−1νi1,i2,...,ij ]

+

n∑
l=2

l−2∑
j=0

∑
1≤i1<···<ij<l−1

π0[A1,l−1αij ,l{fl,n}νij ,lνi1,i2,...,ij ]

+

n∑
l=1

σl−1(1)

l−1∑
j=1

∑
1≤i1<···<ij=l−1

π0[A1,l−1αl{fl,n}νij ,lνi1,i2,...,ij ]

+

n∑
l=2

σ2
l (1)

l−2∑
j=0

∑
1≤i1<···<ij<l−1

π0[A1,l−1
νij ,l

αij ,l−1
r

(
αij ,l

σl(1)

)
f l,nνij ,l−1νi1,i2,...,ij ]

+

n∑
l=1

σ2
l (1)

l−1∑
j=1

∑
1≤i1<···<ij=l−1

π0[A1,l−1
νij ,l

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
f l,nνi1,i2,...,ij ]

for all f ∈ B(E)+, where fl,n = Al(Al+1,nf)2− αl(KAl+1,nf)2 and f l,n = (KAl+1,nf)2.

Remark 4.6. Notice, there are no j = 0 cases in the fourth and sixth terms of (4.24). For the second,
third and fifth terms, the multiple sum over the i’s degenerates to just one item,

σl(1)π0[A1,l−1
{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
ν0,lν0,l−1], (4.25)

π0[A1,l−1α0,l

{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
ν0,l] and (4.26)

σ2
l (1)π0[A1,l−1

1

α0,l−1
r

(
α0,l

σl(1)

)
(KAl+1,nf)2ν0,lν0,l−1] (4.27)

respectively, when j = 0. Furthermore, in the non-resampled case where ai = −∞ and bi = ∞ so νi = 1,
we have this j = 0 case only but also we do not resample at time l either so terms (4.25) and (4.27) also
disappear. Then, we can incorporate the αj into the operators by letting

A
(2)
j f(x) =

{
α2
j (x)Kf(x) j = 1, 2, ...
f(x) j = 0

and (4.28)

A
(2)
i,nf =

{
A

(2)
i

(
A

(2)
i+1 · · ·

(
A

(2)
n f

))
∀i ≤ n

f i = n+ 1
, (4.29)
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and note that ν0,l = 1 in this non-resampled case. Hence, the non-resampled case variance is

γWn (f) = π0((A1,nf)2)− (π0(A1,nf))2 (4.30)

+

n∑
l=1

π0A
(2)
1,l−1

[
A

(2)
l (Al+1,nf)2 − (Al,nf)2

]
∀f ∈ B(E)+,

which is the variance for the weighted particle filter.

Remark 4.7. Full resampling occurs if all ai = bi so νi = 1 so only the j = l − 1 terms remain. The
multiple sums over the i’s in the second, fourth and sixth terms of (4.24) reduce to

σl(1)π0[A1,l−1
{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νl−1,l], (4.31)

σl−1(1)π0[A1,l−1αl
{
Al(Al+1,nf)2− αl(KAl+1,nf)2

}
νl−1,l], (4.32)

σ2
l (1)π0

[ A1,l−1

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
(KAl+1,nf)2νl−1,l] (4.33)

respectively since νl−2,l−1 · · · ν0,1 = 1 in this case. However, (4.32) also vanishes since νl−1,l = 0. Therefore,
the variance of the fully-resampled McKean-Vlasov system is by (1.1), (1.2) and (3.4)

γRn (f) = π0((A1,nf)2)− (π0(A1,nf))2 (4.34)

+

n∑
l=1

σl−1(αl)σl−1
(
Al(Al+1,nf)2 − αl(KAl+1,nf)2

)
+

n∑
l=1

σl−1(αl)σl−1

(
σl(1)

σl−1(1)
r

(
αlσl−1(1)

σl(1)

)
(KAl+1,nf)2

)
for all f ∈ B(E)+. Comparing γW and the non-remainder part of γR (i.e. ignoring the last term of γR),
we see that the main difference is that the former uses A(2) while the later uses A, so the function αl is
not squared in γR. Roughly speaking, this means that the errors are not compounded to the same degrees.
The remaining last term in (4.34) does not have a corresponding term in (4.30) and should be thought of
as the resampling noise variance. It is also compunded back in the same mild manner as the second term
in (4.34). However, the existence of this term shows that one should not over resample so an = bn is rarely
a good choice.

Remark 4.8. By the above expressions and the proof (in the first appendix), we see that there is no need
for h to be bounded in either the non-resampled (i.e. weighted) or fully-resampled case.

This leads us to our main results of this section, which are laws of large numbers, rates of Lp-convergence
and a quenched central limit theorem.

Theorem 4.1. Let h be bounded and g be positive and continuous. Then, for Q-a.a. Y , the reduced particle
system satisfies:

slln: SNn ⇒ σn (i.e. weak convergence) a.s. [QY ];

Mlln:
∣∣SNn (f)− σn (f)

∣∣ N� N−β a.s. [QY ] for all f ∈ C(E)+, 0 ≤ β < 1
2 ;

L2-rates: EY
∣∣SNn (f)− σn (f)

∣∣2 =
γPn (f)
N for all f ∈ C(E)+;

Lp-rates: EY
∣∣SNn (f)− σn (f)

∣∣p N
� N−

p
2 for all f ∈ C(E)+, p ≥ 1;
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clt:
√
N
(
SNn (f)− σn (f)

)
⇒ N

(
0,
√
γPn (f)

)
for all f ∈ C(E)+.

Proof. SNn (f)−σn (f) = 1
N

N∑
k=1

MB
k

n (f) is an average of i.i.d. random variables (see (4.15)) so the theorem

follows by (4.22), the classical laws of large numbers, Lp bounds and central limit theorem. Note: 1)

MB
k

n (f) is bounded for fixed Y1, ..., Yn by the following Lemma. 2) SNn (fi) → σn (fi) a.s. [QY ] for all i
implies SNn ⇒ σn a.s. [QY ], where

{fi}∞i=1 =


l∏

j=1

(1− ρ(·, xj)) ∨ 0 : l ∈ {0, 1, 2, ...}, xj ∈ {yk}∞k=1

 , (4.35)

for some dense collection {yk} ⊂ E. (See Blount and Kouritzin [1] and note the product over zero functions
is taken to be the constant function 1.) �

The boundedness of MB
k

n (f), required above follows from (4.11,4.8,4.1) and the following lemma.

Lemma 4.1. Suppose h is bounded while g is positive and continuous. Then, there is a function Cn :
Rdn → (0,∞) such that the reduced system particle numbers and weights satisfy:

N k
l , max

i∈{1,...,Nkl }
Lk,il ≤ Cn(Y1, ..., Yn) ∀k ∈ {1, ...,mN}, l ∈ {0, ..., n} on Ω.

Proof. Let Wk,i
l = αl(X k,il−1) with αl defined in (1.1). Since

0 < inf
x∈E

g(Yl − h(x))

g(Yl)
< sup
x∈E

g(Yl − h(x))

g(Yl)
<∞

and σl is a positive finite measure for each l ∈ N, there is a C = C(Y1, ..., Yn) > 1 such that

1

C
≤ σl(1),Wk,i

l ≤ C (4.36)

∀i = 1, ...,N k
l−1; l = 1, ..., n; k = 1, ...,mN ;N = 1, 2, ....

Now, recall from the reduced system algorithm (given above) that

Lk,jl+1 ≤ σl+1(1) ∨Wk,pl+1(j)
l+1 Lk,pl+1(j)

l (4.37)

N k
l+1 =

Nkl∑
il=1

N k,il
l+1 ≤

Nk1∑
i1=1

Nk,i12∑
i2=N

k,i1−1
2 +1

· · ·
N
k,il−1
l∑

il=N
k,il−1−1

l +1

[
Lk,ill W

k,il
l+1

σl+1(1)
+ 1

]
(4.38)

for j = 1, ..., Nk
l+1; k = 1, 2, ...,mN , where the parent operator p is defined in (4.5). Now, the stated bounds

follow from (4.36,4.37,4.38), the fact N k
0 = Lk,10 = 1 and induction. �

γPn (f) is γWn (f) or γRn (f) when there is no resampling or full resampling respectively, where γWn (f),
γRn (f) are defined in Remarks 4.6, 4.7. h need not be bounded in these two cases.

Bounded regularity for the residual branching system will not be so easy to come by but is handled in
the next section.
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5. Residual Branching Particle System

The reduced system uses σn(1), which is usually unrepresentable on a finite computer, so we use the particle
filter algorithm in the introduction, expressed now in terms of random variables {χk}, {Uk,in }, {Vk,in } and
{Zk,i,xn } analogous to those of the previous section. Particles can now interact weakly through an average
weight process {AmNn , n = 0, 1, ...}. However, we still break up the system by the first ancestor of each
particle so our resampled particle filter will be the average of N exchangeable branching Markov processes
{Bkn, n = 0, 1, ...}, each starting from an independent sample δχk . For clarity, the particles at time n that

are offspring from the original particle χk will be denoted {Xk,in }
Nkn
i=1 and the weight of such a particle after

resampling will be denoted Lk,in . Then, the branching Markov process corresponding to this original particle
and the complete Residual Branching particle filter are:

Bkn =

Nkn∑
i=1

Lk,in δXk,in and SNn =
1

N

N∑
k=1

Bkn. (5.1)

The branching Markov processes {Bkn} are defined by:

Initialize: Xk,10 = χk, Nk0 = 1 = Lk,10 ∀k = 1, 2, ...,mN . Nk,in = 0 ∀i, k, n ∈ N.
Repeat: for n = 0, 1, 2, ... do

1. Weight: L̂k,in = αn+1

(
Xk,in

)
Lk,in for i = 1, 2, ...,Nkn, k = 1, 2, ...,mN

2. Average Weight:

An+1 =
1

mN

mN∑
k=1

Nkn∑
i=1

L̂k,in (5.2)

Repeat (3-7): for k = 1, 2, ...,mN do

Repeat (3-6): for i = 1, 2, ...,Nkn do

3. Resampled Case: If L̂k,in + Vk,in+1 /∈ (anAn+1, bnAn+1) then

(a) Offspring Numbers: Nk,in+1 =
⌊

L̂k,in
An+1

⌋
+ 1

Uk,in+1+

⌊
L̂k,in
An+1

⌋
≤ L̂k,in

An+1

,

(b) Resampled Weight: Lk,in = An+1

4. Non-resample Case: If L̂k,in + Vk,in+1 ∈ (anAn+1, bnAn+1) then

Lk,in = L̂k,in , Nk,in+1 = 1

5. Combine: X̂k,jn $ Xk,in , Lk,jn+1 $ Lk,in for j ∈
{
Nk,i−1n+1 + 1, ...,Nk,in+1

}
, where

Nk,in+1 =

i∑
m=1

Nk,mn+1. (5.3)

6. Evolve Independently: Xk,jn+1 = Zk,j,X̂
k,j
n

n+1 for all j ∈
{
Nk,i−1n+1 + 1, ...,Nk,in+1

}
7. Estimate: Bkn+1 =

Nkn+1∑
j=1

Lk,jn+1δXk,jn+1
, where Nkn+1 = Nk,1n+1 + · · ·+ Nk,N

k
n

n+1 .
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Remark 5.1. For the index change in Step 5, we re-use the parent operator

pn+1(j) = i such that j ∈ {Nk,i−1n+1 + 1, ...,Nk,in+1}, (5.4)

defined now in terms of Nk,in+1 instead of N k,i

n+1. The context will make it clear for which system pn is
operating on.

Remark 5.2. The distinguishing feature between the Residual Branching and reduced particle filters is the
resampling events. The resample sets for these systems are respectively

Hk,im =

{
L̂k,im−1+Vk,im

AmNm
/∈ (am−1, bm−1)

}
, (5.5)

Hk,im =

{
L̂k,im−1+Vk,im
σm(1)

/∈ (am−1, bm−1)

}
. (5.6)

The conditionally expected effective weight of resampled filter particle Xin after resampling is:

EY
[
Lk,in Nk,in+1

∣∣∣FUX
n ∨ FV

n+1

]
= L̂k,in ,

which is the weight before resampling so the system is unbiased. Moreover, noting L̂k,in ∈ FUVX
n−1 , one finds

as in (4.7-4.8) that

EY [Bkn(f)
∣∣FUVX
n−1 ] = Bkn−1(Anf) subject to Bk0(f) = f(χk). (5.7)

Using (5.7) recursively with (3.2) and (3.4), one finds that

EY [Bkn(f)] = σn(f) and Bkn (f)− σn (f) = MBk
n (f) , (5.8)

with

MBk
n (f) =

n∑
l=0

[
Bkl (Al+1,nf)− EY

[
Bkl (Al+1,nf)

∣∣FUVX
l−1

]]
(5.9)

=

n∑
l=0

[
Bkl (Al+1,nf)− Bkl−1 (Al,nf)

]
if Bk−1 = π0.

Hence, EY [MBk
n (f)] = 0 by (5.9). Moreover, {MBk

n (f) , n = 0, 1, ...} is a {FUVX
n }-martingale with respect

to QY . Averaging over the first N ancestrial branches, one finds that

EY [SNn (f)
∣∣FUVX
n−1 ] = SNn−1(Anf) subject to SN0 (f) =

1

N

N∑
k=1

f(χk) (5.10)

EY [SNn (f)] = σn(f) (5.11)

SNn (f) = σn (f) + MN
n (f) (5.12)
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with

MN
n (f) =

1

N

N∑
k=1

MBk
n (5.13)

=

n∑
l=0

[
SNl (Al+1,nf)− EY

[
SNl (Al+1,nf)

∣∣FUVX
l−1

]]
.

This leads to our main result, laws of large numbers and a quenched clt for our Residual Branching
particle filter.

Theorem 5.1. Suppose mN ≥ N ; h and fV are bounded; and g is strictly positive and continuous. Then,
for any n ∈ N and Q-almost all Y , the Residual Branching particle filter satisfies:

slln: SNn ⇒ σn (i.e. weak convergence) a.s. [QY ];

Mlln:
∣∣SNn (f)− σn (f)

∣∣ N� N−β a.s. [QY ] ∀f ∈ C(E)+, 0 ≤ β < 1
2 ;

clt:
√
N
(
SNn (f)− σn (f)

)
⇒ N

(
0,
√
γPn (f)

)
∀f ∈ C(E)+ if N

mN
→ 0.

Remark 5.3. The Lp rate results of Theorem 4.1 were not transferred here due to a missing bound. The
proof of these Lp bounds might follow a similar line as our Mlln proof, which breaks the estimates over a
“large” good set DNn (defined in Theorem 5.3 below) and “small” bad set (DNn )C . Indeed, we do provide Lp

bounds on DNn but only (fast decaying) probability bounds on its complement. This is fine for our Mlln but
not immediately good enough for Lp rates.

Remark 5.4. 1) This clt requires exactly the same “extra particle” condition N
mN
→ 0 as the clt for

exchangeable random variables in Theorem 2.1. 2) γPn (f) = γWn (f), given in (4.30), when there is no
resampling and γPn (f) = γRn (f), given in (4.34), when there is full resampling.

We use the following theorem to prove Theorem 5.1.

Theorem 5.2. Suppose ρ ∈ [0, 1], N0 ∈ N, mN ≥ N + Nρ − 1 for all N ≥ N0 and {ψN,k}mNk=1 are
exchangeable random variables such that: i) N1−ρE

[
ψ2
N,1

]
→ 0, and ii) NE [ψN,1ψN,2] → 0. Then,

1√
N

N∑
k=1

ψN,k →P 0.

Proof. Define FN,i = σ

{
ψN,1, ..., ψN,i,

mN∑
j=i+1

ψN,j

}
and let ΘN,i = ψN,i −E

[
ψN,mN

∣∣FN,i−1]. Then, using

the exchangeability, one has that

lim
N→∞

E

∣∣∣∣∣ 1√
N

N∑
i=1

ΘN,i

∣∣∣∣∣
2

= lim
N→∞

1

N

N∑
i=1

E
[
Θ2
N,i

]
(5.14)

= lim
N→∞

1

N

N∑
i=1

E
[
ψ2
N,i

]
− lim

N→∞

1

N

N∑
i=1

E
[
E2
[
ψN,i

∣∣FN,i−1]]
≤ lim

N→∞
E
[
ψ2
N,1

]
= 0 by i).
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By exhangeability, linearity and the definition of FN,i, we find that

E
[
ψN,mN

∣∣FN,i−1] =
1

mN − i+ 1

mN∑
j=i

E
[
ψN,j

∣∣FN,i−1] (5.15)

= (mN − i+ 1)−1
mN∑
j=i

ψN,j .

Therefore, it follows by Jensen’s inequality that

lim
N→∞

E

∣∣∣∣∣ 1√
N

N∑
i=1

E
[
ψN,mN

∣∣FN,i−1]
∣∣∣∣∣ (5.16)

≤ lim
N→∞

N∑
i=1

√√√√√mN∑
j=i

E
[
ψ2
N,j

]
+

mN∑
j 6=k=i

E [ψN,jψN,k]

N (mN − i+ 1)
2

≤ lim
N→∞

√
N

mN −N + 1
E
[
ψ2
N,1

]
+NE [ψN,1ψN,2] = 0

by i) and ii). �
As noted in Remark 2.3, our resampled filter can degenerate to few particles or grossly uneven weights.

The following bounds, used to prove Theorem 5.1, ensure the risk of such system irregularity decreases
exponentially in the initial number of particles.

Theorem 5.3. Suppose n ∈ N; {mN}∞N=1 satisfies m1 ≥ 2, mN ↗ ∞; h ∈ B(Rd); fV ∈ B(R); and

g ∈ C++(Rd). Then, there are εn > 0, Cn > 1 and DNn ∈ σ

{
mN∑
k=1

Nkl , l ≤ n

}
such that DNn+1 ⊂ DNn for all

n = 0, 1, 2...; QY
(
DNn
)
≥ 1− 2ne−εnmN for N ≥ 1; and

Nkl , max
i∈{1,...,Nkl }

Lk,il ,AmNl ≤ Cn ∀k ∈ {1, ...,mN}, l ∈ {0, ..., n} on DNn−1.

Remark 5.5. This result says that the algorithms are well behaved up until at least one step in the future
on DNn , which allows comparsion of the Residual and reduced branching filters on DNn .

Remark 5.6. g ∈ C++(Rd) still allows quite general noise, including Gaussian, Cauchy, Laplace etc.

Proof. Initial Setup: Let Wk,i
l = αl(Xk,il−1). Since

0 < inf
x∈E

g(Yl − h(x))

g(Yl)
, sup
x∈E

g(Yl − h(x))

g(Yl)
<∞

there is a C = C(Y1, ..., Yn) > 1 such that

1

C
≤Wk,i

l ≤ C ∀1 ≤ i ≤ N
k
l−1; 1 ≤ l ≤ n; 1 ≤ k ≤ mN ;N ≥ 1. (5.17)
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For l ≥ 1, we define υC(l), τC(l),DNl recursively by

υC(l) = CυC(l − 1)τC(l − 1), subject to υC(0) = 1, (5.18)

τC(l) = 2τC(l − 1)(CυC(l)υC(l − 1) + 1) subject to τC(0) = 1, (5.19)

DNl =

{
1

τC(l)
≤ 1

mN

mN∑
k=1

Nkl ≤ τC(l)

}
∩ DNl−1 subject to DN0 = Ω. (5.20)

Clearly, DNl ∈ FXUV
l . Now, recall from (5.2) and the Residual Branching algorithm that

AmNl+1 =
1

mN

mN∑
k=1

Nkl∑
i=1

Wk,i
l+1L

k,i
l (5.21)

AmNl+1 ∧ Wk,pl+1(j)
l+1 Lk,pl+1(j)

l ≤ Lk,jl+1 ≤ AmNl+1 ∨Wk,pl+1(j)
l+1 Lk,pl+1(j)

l (5.22)

Nkl+1 =

Nkl∑
il=1

Nk,ill+1 ≤
Nk1∑
i1=1

Nk,i12∑
i2=Nk,i1−1

2 +1

· · ·
N
k,il−1
l∑

il=N
k,il−1−1

l +1

[
Lk,ill Wk,il

l+1

AmNl+1

+ 1

]
(5.23)

for j = 1, ..., Nk
l+1; k = 1, 2, ...,mN . These imply that

1

υC(l + 1)
≤ AmNl+1 ≤ υC(l + 1) (5.24)

1

υC(l + 1)
≤ Lk,il+1 ≤ υC(l + 1) ∀k ∈ {1, 2, ...,mN}, i ∈ {1, ...,Nkl+1} (5.25)

1

CυC(l)
≤Wk,i

l+1L
k,i
l ≤ CυC(l) ∀k ∈ {1, 2, ...,mN}, i ∈ {1, ...,Nkl+1} (5.26)

Nkl+1 ≤
l∏
i=0

(υC(i+ 1)υC(i)C + 1) $MC(l + 1) ∀k ∈ {1, 2, ...,mN} (5.27)

on DNl for all l = 0, 1, 2..., n by induction and (5.17).

Base Case: {Nk1} are bounded by MC(1) (since DN0 = Ω) and conditionally independent so Hoeffding’s
inequality applies to find

QY

(∣∣∣∣∣ 1

mN

mN∑
k=1

[
Nk1 −

[
Wk,1

1

AmN1

1Hk,11
+ 1(Hk,11 )C

]]∣∣∣∣∣ > t

∣∣∣∣FX0 ∨ FV1
)

(5.28)

≤ 2 exp

(
−2mN t

2

M2
C(1)

)
a.s.,
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where resample set Hk,i1 is defined in (5.5). Next, by (5.17), (5.24), (5.18), (5.19) and (5.28)

QY

({
1

τC(1)
≤ 1

mN

mN∑
k=1

Nk1 ≤ τC(1)

})
(5.29)

≥ QY

({
2

τC(1)
≤ 1

mN

mN∑
k=1

[
Wk,1

1

AmN1

1Hk,11
+ 1(Hk,11 )C

]
≤ τC(1)

2

})

− EY

[
QY

(∣∣∣∣∣
mN∑
k=1

[
Nk1 −

[
Wk,1

1

AmN1

1Hk,11
+ 1(Hk,11 )C

]]∣∣∣∣∣ > mN

τC(1)

∣∣∣∣FX
0 ∨ FV

1

)]

≥ 1− 2 exp

(
− 2mN

M2
C(1)τ2C(1)

)
.

Inductive Step: Suppose that

QY (DNl ) ≥ 1− 2l exp

(
− 2mN

M2
C(l)τ2C(l)

)
, (5.30)

which is true when l = 1, and let

ρk,il =
Wk,i
l+1L

k,i
l

AmNl+1

1Hk,il+1
+ 1(Hk,il+1)

C . (5.31)

Then, it follows by (5.26), (5.24) (5.19) and (5.18) that

QY

({
1

τC(l + 1)
≤ 1

mN

mN∑
k=1

Nkl+1 ≤ τC(l + 1)

}
∩ DNl

)
(5.32)

≥ QY

 2

τC(l + 1)
≤ 1

mN

mN∑
k=1

Nkl∑
i=1

ρk,il ≤
τC(l + 1)

2

 ∩ DNl


− QY


∣∣∣∣∣∣ 1

mN

mN∑
k=1

Nkl+1 −
Nkl∑
i=1

ρk,il

∣∣∣∣∣∣ > 1

τC(l + 1)

 ∩ DNl


≥ QY

(
DNl
)
−QY


∣∣∣∣∣∣ 1

mN

mN∑
k=1

Nkl+1 −
Nkl∑
i=1

ρk,il

∣∣∣∣∣∣ > 1

τC(l + 1)

 ∩ DNl

 .

However, we have by the independence of the U ’s, (5.27) and Hoeffding’s inequality that

QY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

Nkl+1 −
Nkl∑
i=1

ρk,il

∣∣∣∣∣∣ > t

∣∣∣∣FX,V
∞ ∨ FU

l

 (5.33)

≤ 2 exp

(
− 2mN t

2

M2
C(l + 1)

)
on DNl ,



M. A. Kouritzin/Branching Particle Filters 21

where resample set Hk,il is defined in (5.5), so by (5.32), (5.30) and (5.33) with t = 1
τC(l+1)

QY

({
τC(l + 1) ≤ 1

mN

mN∑
k=1

Nkl+1 ≤ τC(l + 1)

}
∩ DNl

)
(5.34)

≥ 1− 2(l + 1) exp

(
− 2mN

M2
C(l + 1)τ2C(l + 1)

)
.

Conclusion: The result follows by induction, (5.20), (5.24) and (5.25). �
The proof of Theorem 5.1 also relies on a coupling of our systems as well as tracking systems that run

as weighted particle filters but signal the resampling events for the Residual and reduced branching filters.

6. Tracking Systems

For analytical reasons, we define tracking systems corresponding to the Residual and reduced systems.
These systems do not resample but do track where resampling would occur (at least initially). They are
used in Appendix 2 to establish the “closeness” of the Residual and weighted filter total masses. However,
they are introduced now in order that we can couple these tracking systems with the Residual and reduced
systems on the same probability space.

The reduced tracking system is defined as follows:

Initialize: X k0 = χk and Lk0 = 1 for k = 1, 2, ...,mN ;

Repeat: for n = 0, 1, 2, ... do

For k = 1, 2, ...,mN do:

L̂
k

n = αn+1(X kn)Lkn (6.1)

Lkn+1 =

{
σn+1(1), L̂

k

n + Vk,1n+1 /∈ (anσn+1(1), bnσn+1(1))

L̂
k

n, L̂
k

n + Vk,1n+1 ∈ (anσn+1(1), bnσn+1(1))
(6.2)

X kn+1 = Zk,1,X
k
n

n+1 (6.3)

while the Residual tracking system is:

Initialize: Xk0 = χk and Lk0 = 1 for k = 1, 2, ...,mN ;

Repeat: for n = 0, 1, 2, ... do

For k = 1, 2, ...,mN do:

L̂
k

n = αn+1(Xkn)Lkn (6.4)

Lkn+1 =

{
An+1, L̂

k

n + Vk,1n+1 /∈ (anAn+1, bnAn+1)

L̂
k

n, L̂
k

n + Vk,1n+1 ∈ (anAn+1, bnAn+1)
(6.5)

Xkn+1 = Zk,1,X
k
n

n+1 . (6.6)

In the above algorithms, {Vk,1n ;n, k = 1, 2, ...} and {Zk,1,xn ;n, k = 1, 2, ..., x ∈ E} are the random variables
used in the Residual system while {Vk,1n ;n, k = 1, 2, ...} and {Zk,1,xn ;n, k = 1, 2, ..., x ∈ E} are the random
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variables used in the reduced system. {An, n = 0, 1, 2, ...} is also from the Residual system. Hence, the
Residual and reduced tracking systems have been defined on the same probability space as the Residual
and reduced particle filters respectively.

One would never implement these tracking systems. Roughly speaking, they run as weighted filters but
indicate (at least initially) where resampling for the reduced and Residual particle filter would have taken
place. Their importance is solely to ease the analysis by facilitating a break up of the weighted and Residual
particle filters over certain resampling events. In particular, the resample sets of the tracking systems:

Hkm =

 L̂
k

m−1+Vk,1m
AmNm

/∈ (am−1, bm−1)

 , (6.7)

Hkm =

 L̂
k

m−1+Vk,1m

σm(1)
/∈ (am−1, bm−1)

 (6.8)

are important to break up the weighted and reduced particle systems into comparable pieces once we have
coupled all systems together on the same probability space.

7. Coupling

To obtain “nearness” estimates between the resampled, tracking and reduced filters, we couple them through

an infinite particle system. Suppose N0 = {∅}, M =
∞
∪
n=0

Nn, |κ| = n if multi-index κ ∈ Nn and we enlarge

(Ω,F , Q) to support the following random variables:

1.
{
χk
}∞
k=1

are independent samples from π0,

2.
{
Zk;xκ : κ ∈

∞
∪
n=1

Nn, k ∈ N;x ∈ E
}

are independent, distribution K(x, ·),

3. {Ukκ : κ ∈
∞
∪
n=1

Nn, k ∈ N} are independent and Uniform[0, 1],

4. {V kκ : κ ∈
∞
∪
n=1

Nn, k ∈ N} are independent and zero mean with common pdf fV ,

which are mutually independent and independent of X, Y . Then, at time n, there is a particle Xk
κ corre-

sponding to each initial particle k and multi-index κ with |κ| = n that satisfies:

Xk
∅ = χk, Xk

(κ,i) = Z
k;Xkκ
(κ,i) ∀κ ∈M; k, i ∈ N. (7.1)



M. A. Kouritzin/Branching Particle Filters 23

(Nkκ,Lkκ)κ∈M,k∈N, (N k
κ ,Lkκ)κ∈M,k∈N, (Lkκ)κ∈M,k∈N and (Lkκ)κ∈M,k∈N then extend the notion of offspring num-

bers and likelihood for the finite systems to the infinite system, where

(Nk∅,L
k
∅) = (N k

∅ ,L
k
∅) = (1, 1), Lk∅ = Lk∅ = 1 (7.2)

(Nk(κ,i),L
k
(κ,i)) =


(
LUk(κ,i),An+1

)
,

L̂kκ+V
k
(κ,i)

An+1
/∈ (an, bn) , i ≤ Nkκ

(1, L̂kκ),
L̂kκ+V

k
(κ,i)

An+1
∈ (an, bn) , i ≤ Nkκ

(0, 0), i > Nkκ

(7.3)

(N k
(κ,i),L

k
(κ,i)) =


(
LUk(κ,i), σn+1(1)

)
,
L̂kκ+V

k
(κ,i)

σn+1(1)
/∈ (an, bn) , i ≤ N k

κ

(1, L̂kκ),
L̂kκ+V

k
(κ,i)

σn+1(1)
∈ (an, bn) , i ≤ N k

κ

(0, 0), i > N k
κ

(7.4)

Lk(κ,i) =


An+1,

L̂kκ+V
k
(κ,i)

An+1
/∈ (an, bn) , i = 1

L̂
k

κ,
L̂kκ+V

k
(κ,i)

An+1
∈ (an, bn) , i = 1

0, i > 1

(7.5)

Lk(κ,i) =


σn+1(1),

L̂kκ+V
k
(κ,i)

σn+1(1)
/∈ (an, bn) , i = 1

L̂
k

κ,
L̂kκ+V

k
(κ,i)

σn+1(1)
∈ (an, bn) , i = 1

0, i > 1

(7.6)

for all k, i ∈ N, |κ| = n, n = 0, 1, 2, .... Here,

LUk(κ,i) =

⌊
L̂kκ

An+1

⌋
+1

Uk
(κ,i)

+

⌊
L̂kκ

An+1

⌋
≤ L̂kκ

An+1

(7.7)

LUk(κ,i) =

⌊
L̂kκ

σn+1(1)

⌋
+1

Uk
(κ,i)

+

⌊
L̂kκ

σn+1(1)

⌋
≤ L̂kκ
σn+1(1)

(7.8)

An+1 =
1

mN

mN∑
k=1

∑
κ:|κ|=n

L̂kκ for n = 0, 1, ...;A0 = 1; (7.9)

L̂kκ = α|κ|+1(Xk
κ)Lkκ, L̂kκ = α|κ|+1(Xk

κ)Lkκ, (7.10)

L̂
k

κ = α|κ|+1(Xk
κ)Lkκ and L̂

k

κ = α|κ|+1(Xk
κ)Lkκ for κ ∈M, k ∈ N. (7.11)

Next, we introduce a partial order on M: κ ≺ κ̂ if |κ| = |κ̂| and min{i : κi < κ̂i} < min{i : κ̂i < κi}. To
make room for live particles from all finite systems, we let

Nk
κ = Nkκ ∨N k

κ ∨ 1 ∀k ∈ N, κ ∈M (7.12)

and define the subset of alive multi-indices MA by κ ∈MA if κ ∈M and either

κ = ∅ or κ = (κ1, ..., κn) with κl ∈ {1, ..., Nk
(κ1,...,κl−1)

} ∀l = 1, ..., n, (7.13)
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so particles Xk
(κ1,...,κn)

with (n ≥ 1 and) some κl > Nk
(κ1,...,κl−1)

are not in any finite system. To recover

the finite systems, we drop explicit reference to the ancesteral chain and set:

Xk,j
n = Xk

κ , U
k,j
n = Ukκ , V

k,j
n = V kκ , Z

k,j,x
n = Zk;xκ , (7.14)

Kk,jn = Lkκ, Kk,jn = Lkκ, K̂k,jn = L̂kκ, K̂k,jn = L̂kκ, (7.15)

Nk,j
n = Nk

κ , N
k,i

l =

i∑
m=1

Nk,m
l and Nk

l =

Nkl−1∑
m=1

Nk,m
l with Nk

0 = 1, (7.16)

where κ is the unique alive multi-index such that |κ| = n and

j = η(κ) $ #{κ̂ ∈MA : κ̂ ≺ κ}+ 1. (7.17)

(Many K, K could be zero.) For the tracking systems, we define

Kkn = Lkκ, K
k
n = Lkκ, K̂

k

n = L̂
k

κ, K̂
k

n = L̂
k

κ, (7.18)

for κ = (1, 1, ..., 1) with |κ| = n. Now, it follows by (7.9), (7.3), (7.12), (7.10), (7.1) and (7.14-7.16) that

An+1 =
1

mN

mN∑
k=1

∑
κ:|κ|=n

L̂kκ =
1

mN

mN∑
k=1

Nkn∑
j=1

K̂k,jn and (7.19)

Xk,j
n = Z

k,j,Xk,in−1
n for j ∈ {Nk,i−1

n + 1, ..., N
k,i

n }. (7.20)

For convenience, let Ikn = {i : Kk,in 6= 0} and Ikn = {i : Kk,in 6= 0} be the Residual and reduced particles at
time n that started from the kth inital particle and |Ikn| denote the cardinality of Ikn. Redefine the resample
and non-resample sets (previously defined in (5.5,5.6,6.7, 6.8))

Rk,im =

{
K̂k,im−1+V k,im

AmNm
/∈ (am−1, bm−1) , i ∈ Ikm−1

}
, (7.21)

Sk,im = {i ∈ Ikm−1} \ Rk,im , (7.22)

Rk,im =

{
K̂k,im−1+V k,im

σm(1)
/∈ (am−1, bm−1) , i ∈ Ikm−1

}
, (7.23)

Sk,im = {i ∈ Ikm−1} \ Rk,im , (7.24)

Rkm =

 K̂
k

m−1+V k,1m

AmNm
/∈ (am−1, bm−1)

 , (7.25)

Rkm =

 K̂
k

m−1+V k,1m

σm(1)
/∈ (am−1, bm−1)

 . (7.26)

The following combinations of resample and non-resample events will be useful in comparing our Residual
particle filter total mass to the weighted total mass in Appendix 2:

RSIk,il−1,il,...,in
l,n = Rk,il−1

l ∩ Sk,ill+1 ∩· · · ∩ Sk,in−1
n ∩ {in ∈ Ikn}, (7.27)

RSIk,il−1,il,...,in
l,n = Rk,il−1

l ∩ Sk,ill+1 ∩· · · ∩ S
k,in−1
n ∩ {in ∈ Ikn}. (7.28)
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Our coupling of the finite systems on common probability space (Ω,F , QY ) is complete. We use this
coupling to transfer the bounds of Theorem 5.3 to the infinite particle system, to prove Theorem 5.1 and
to ease notation about (9.14) of Appendix 2. For these uses, we need the following result.

Theorem 7.1. Suppose Bkn, Bkn are the Residual, reduced Markov branching processes defined in (5.1),
(4.1) and Nkn, N k

n are the corresponding particle numbers. Then,

{
Nkn,Bkn

}
1≤k≤mN ,n∈N0,N∈N

D
=

|Ikn|,
Nkn∑
i=1

Kk,in δXk,in


1≤k≤mN ,n∈N0,N∈N

(7.29)

{
N k
n ,Bkn

}
1≤k≤mN ,n∈N0,N∈N

D
=

|Ikn|,
Nkn∑
i=1

Kk,in δXk,in


1≤k≤mN ,n∈N0,N∈N

(7.30)

and 
Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

W k,il,...,in
l+1,n+1 σl(1)1

RSI
k,il−1,il,...,in

l,n


l,k,n,N

(7.31)

D
=


Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

Wk,il,...,in
l+1,n+1 σl(1)1

H
k,il−1
l

(
Hk,ill+1

)C
···
(
H
k,in−1
n

)C

l,k,n,N

where

W k,il,...,in
l+1,n+1 = W k,in

n+1 · · ·W
k,il+1

l+2 W k,il
l+1 (7.32)

Wk,il,...,in
l+1,n+1 =Wk,in

n+1· · ·W
k,il+1

l+2 Wk,il
l+1 (7.33)

W k,i
l = αl(X

k,i
l−1) and Wk,i

l = αl(X k,il−1). (7.34)

Moreover, there are εn, Cn > 0 and DNn ∈ σ

{
mN∑
k=1

|Ikl |, l ≤ n

}
, such that DNn+1 ⊂ DNn ,

QY (DNn ) ≥ 1− 2ne−εnmN (7.35)

max
i∈{1,...,Nkl }

Kk,il ∨ |I
k
l | ∨ Al ≤ Cn ∀1 ≤ k ≤ mN ; 0 ≤ l ≤ n on DNn−1, (7.36)

max
i∈{1,...,Nkl }

Kk,il ∨ |I
k
l | ≤ Cn ∀1 ≤ k ≤ mN ; 0 ≤ l ≤ n on Ω (7.37)

for all n = 0, 1, 2...

Note: For notational simplicity, we take DN−1 = Ω in the sequel.

Proof. Suppose (temporarily) the alive multi-indices MA were κ ∈MA if κ ∈M and either

κ = ∅ or κ = (κ1, ..., κn) with κl ∈ {1, ...,Nk(κ1,...,κl−1)
} ∀l = 1, ..., n, (7.38)
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replacing Nk
(κ1,...,κl−1)

with Nk(κ1,...,κl−1)
in (7.13), and we defined

Xk,jn = Xk
κ , Uk,jn = Ukκ , Vk,jn = V kκ , (7.39)

Zk,j,xn = Zk;xκ , Lk,jn = Lkκ, L̂k,jn = L̂kκ, (7.40)

Nk,jn = Nkκ, N
k,i

l =

i∑
m=1

Nk,ml and Nkl =

Nkl−1∑
m=1

Nk,ml with Nk0 = 1, (7.41)

where κ is the unique alive multi-index such that |κ| = n and

j = η(κ) $ #{κ̂ ∈MA : κ̂ ≺ κ}+ 1. (7.42)

Then, the Residual particle system algorithm is recovered by (7.1-7.3), (7.9), (7.10) with these definitions.
Moreover, the process distribution of the Residual estimates Bkn and particle numbers Nkn do not change
if we select from the (independent)

{
Zk;xκ

}
, {Ukκ} and {V kκ } differently nor if we add in zero weights and

zero offspring numbers. Therefore, examining the equations (7.1-7.42) and concentrating on this Residual
particle algorithm, we find

{
Nkn,Bkn

}
k,n,N

D
=

|Ikn|,
Nkn∑
i=1

Kk,in δXk,in


k,n,N

. (7.43)

(7.30,7.31) are handled similarly. (7.35-7.37) now follow from Lemma 4.1, Theorem 5.3 and (7.29,7.30). �
For notational convenience, we define the (exchangeable random) signed measures {BN,kn }mNk=1 and the
parent operators (with respect to κ and η defined in (7.42) but with MA reset to (7.13)) by:

BN,kn = 1DNn−1

Nkn∑
i=1

Kk,i
n δXk,in with Kk,i

n = Kk,in −Kk,in (7.44)

pl(i) = η(κ1, ..., κl−1) when i = η(κ1, ..., κl) (7.45)

pl,m(i) =

{
pl(· · · pm−1(pm(i))) for l ≤ m
i for l > m

(7.46)

(so i ∈ {Nk,pl(i)−1
l + 1, ..., N

k,pl(i)

l }). Finally, by the argument in (5.17) there is a c > 1 so that

W k,i
l ≤ c ∀i, k, l ∈ N. (7.47)

Now that we have redefined the algorithms on the same (infinite particle system and) probability space
(Ω,F , QY ) (for each fixed Y ), we can compare their particle systems.

Theorem 7.2. Suppose p ∈ N as well as the conditions and setting of Theorem 7.1 with all algorithms



M. A. Kouritzin/Branching Particle Filters 27

defined on (Ω,F , QY ). Then, there are Cn = Cp,Yn > 0 such that

EY
[
|AmNn − σn(1)|p1DNn−1

]
≤ Cnm

− p2
N , (7.48)

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikn∪Ikn

|Kk,in −Kk,in |

∣∣∣∣∣∣
p

1DNn−1

 ≤ Cnm− p2N (7.49)

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikn∪Ikn

|K̂k,in − K̂k,in |

∣∣∣∣∣∣
p

1DNn−1

 ≤ Cnm− p2N and (7.50)

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

|K̂
k

n− K̂
k

n|

∣∣∣∣∣
p

1DNn−1

]
≤ Cnm

− p2
N (7.51)

for all mN = p+ 1, p+ 2, ... and n = 1, 2..., where DNn−1 is as in Theorem 7.1.

As these are bounds in N , we highlighted the previously-suppressed N -dependence in AmNn .
The following lemma is used (with induction) to prove (7.50) implies (7.48) in Theorem 7.2.

Lemma 7.1. Suppose n ∈ N0 and EY
[
|AmNl − σl(1)|p1DNl−1

]
N
� m

− p2
N for all l ≤ n. Then,

EY
[
|AmNn+1 − σn+1(1)|p1DNn

] N
�

n−1∑
j=1

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

|K̂
k

j − K̂
k

j |

∣∣∣∣∣
p

1DNj−1

]

+ m
− p2
N +

n−1∑
j=1

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikj∪Ikj

|K̂k,ij − K̂
k,i
j |

∣∣∣∣∣∣
p

1DNj−1

 .
The proof of this lemma is involved and hence delayed to Appendix 2.

Proof of Theorem 7.2. Set Up: Using the independence of the V ’s, letting

Glk = σ{V j,im : i, j ∈ N,m 6= l} ∨ σ{V j,il : j ≤ k, i ∈ N} ∨ FUZ∞ , (7.52)
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noting the boundedness of fV and considering −∞ ≤ al ≤ bl ≤ ∞, one has by (7.21,7.23,7.25) that

EY

 ∑
i∈Ikl−1∪I

k
l−1

1Rk,il 4R
k,i
l

∣∣Glk−1
 (7.53)

≤
∑

i∈Ikl−1∪I
k
l−1

[∣∣∣∣∣
∫ al−1σl(1)−K̂k,il−1

al−1A
mN
l −K̂k,il−1

fV (v)dv

∣∣∣∣∣+

∣∣∣∣∣
∫ bl−1σl(1)−K̂k,il−1

bl−1A
mN
l −K̂k,il−1

fV (v)dv

∣∣∣∣∣
]

N
� 1(DNl−1)

C + |AmNl − σl(1)|1DNl−1
+

∑
i∈Ikl−1∪I

k
l−1

|K̂k,il−1 − K̂k,il−1|1DNl−1

EY

 ∑
i∈Ikl−1∪I

k
l−1

1Sk,il 4S
k,i
l

∣∣Glk−1
 (7.54)

N
� 1(DNl−1)

C + |AmNl − σl(1)|1DNl−1
+

∑
i∈Ikl−1∪I

k
l−1

|K̂k,il−1 − K̂k,il−1|1DNl−1

EY
[
1Rkl4Rkl

∣∣Gl0] (7.55)

N
� 1(DNl−1)

C + |AmNl − σl(1)|1DNl−1
+ |K̂

k

l−1 − K̂
k

l−1|1DNl−1

EY
[
1Skl4Skl

∣∣Gl0] (7.56)

N
� 1(DNl−1)

C + |AmNl − σl(1)|1DNl−1
+ |K̂

k

l−1 − K̂
k

l−1|1DNl−1

almost surely for all l = 1, 2, ... Now, set Sk,jl = Sk,jl ∩ Sk,jl , with Sk,jl , Sk,jl defined in (7.22,7.24). If
i ∈ Ikn∪Ikn, then either i ∈ Ikn4Ikn so there is a time l ≥ 1 when only one algorithm ancestor was resampled
or i ∈ IknIkn so the Residual and reduced particles have the same ancestorial chains. Hence, by (7.45,7.46)

|Kk,in −Kk,in | ≤
n∑
l=1

∣∣∣∣{|Kk,in |+ |Kk,in |} 1
R
k,pl,n(i)

l 4R
k,pl,n(i)

l

+ (7.57)

1
S
k,pn,n(i)
n S

k,pn−1,n(i)

n−1 ···S
k,pl+1,n(i)

l+1

∣∣∣∣∣∣
n∏

j=l+1

W
k,pj,n(i)
j [AmNl − σl(1)]

∣∣∣∣∣∣ 1Rk,pl,n(i)

l R
k,pl,n(i)

l

∣∣∣∣∣∣ ,
|K̂k,in − K̂k,in | ≤

n∑
l=1

∣∣∣∣{|K̂k,in |+ |K̂k,in |} 1
R
k,pl,n(i)

l 4R
k,pl,n(i)

l

+ (7.58)

1
S
k,pn,n(i)
n S

k,pn−1,n(i)

n−1 ···S
k,pl+1,n(i)

l+1

∣∣∣∣∣∣
n+1∏
j=l+1

W
k,pj,n(i)
j [AmNl − σl(1)]

∣∣∣∣∣∣ 1Rk,pl,n(i)

l R
k,pl,n(i)

l

∣∣∣∣∣∣ .
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For the tracking systems, we let Skl = (Rkl )C ∩ (Rkl )C and find by (7.5,7.6,7.11,7.18) that

|K̂
k

n − K̂
k

n| ≤
n∑
l=1

{
|K̂
k

n|+ |K̂
k

n|
}

1Rkl4Rkl (7.59)

+

n∑
l=1

1SknSkn−1···Skl+1

∣∣∣∣∣∣
n+1∏
j=l+1

W k,1
j [AmNl − σl(1)]

∣∣∣∣∣∣ 1RklRkl .
Base Case: Clearly, (7.48-7.51) hold with n = 0 and C0 = 0, even though this trivial case is not claimed
in the theorem statement.
Inductive Step: Suppose

EY
[
|AmNl − σl(1)|p1DNl−1

]
N
� m

− p2
N (7.60)

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikl ∪I

k
l

|Kk,il −K
k,i
l |

∣∣∣∣∣∣
p

1DNl−1

 N
� m

− p2
N (7.61)

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikl ∪I

k
l

|K̂k,il − K̂
k,i
l |

∣∣∣∣∣∣
p

1DNl−1

 N
� m

− p2
N (7.62)

and

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

|K̂
k

l − K̂
k

l |

∣∣∣∣∣
p

1DNl−1

]
N
� m

− p2
N (7.63)

hold for all l ≤ n, which are true when n = 0. Then, it follows by Lemma 7.1 that

EY
[
|AmNl − σl(1)|p1DNl−1

]
N
� m

− p2
N ∀ l ≤ n+ 1. (7.64)
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Recalling (7.58), noting (7.36), (7.37), (7.47), (7.64) and using exchangeability, one finds that

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikn+1∪Ikn+1

|K̂k,in+1− K̂
k,i
n+1|

∣∣∣∣∣∣
p

1DNn

 (7.65)

N
� EY

∣∣∣∣∣∣
n+1∑
j=1

|Aj − σj(1)|+ 1

mN

mN∑
k=1

∑
i∈IIkn+1

1
R
k,pj,n+1(i)

j 4R
k,pj,n+1(i)

j


∣∣∣∣∣∣
p

1DNn


N
�

n+1∑
j=1

EY[|Aj − σj(1)|p1DNj−1

]
+ EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈IIkj−1

1Rk,ij 4R
k,i
j

∣∣∣∣∣∣
p

1DNj−1



N
� m

− p2
N +

∑
k1 6=k2 6=···6=kq

q≤p

n+1∑
j=1

EY

∑
i1

1RRk1,i1j

∑
i2

1RRk2,i2j
· · ·
∑
iq

1RRkq,iqj

1DNj−1


mp
N

N
� m

− p2
N +

p∑
q=1

n+1∑
j=1

EY

 ∑
i1∈II1j−1

1RR1,i1
j

∑
i2∈II2j−1

1RR2,i2
j
· · ·

∑
iq∈IIqj−1

1RRq,iqj

1DNj−1


mp−q
N

,

where

IIqj−1 = Iqj−1 ∪ I
q
j−1 and RRk,ij = Rk,ij 4R

k,i
j . (7.66)

In exactly the same way, we also get from (7.57), (7.36,7.37), (7.47) and (7.64)

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikn+1∪Ikn+1

|Kk,in+1−K
k,i
n+1|

∣∣∣∣∣∣
p

1DNn

 (7.67)

N
� m

− p2
N +

p∑
q=1

n+1∑
j=1

EY

 ∑
i1∈II1j−1

1RR1,i1
j

∑
i2∈II2j−1

1RR2,i2
j
· · ·

∑
iq∈IIqj−1

1RRq,iqj

1DNj−1


mp−q
N

and from (7.59,7.47) and (7.64)

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

|K̂
k

n+1 − K̂
k

n+1|

∣∣∣∣∣
p

1DNn

]
(7.68)

N
� m

− p2
N +

p∑
q=1

n+1∑
j=1

EY
[
1RR1

j
1RR2

j
· · · 1RRqj 1DNj−1

]
mp−q
N
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where

RRkj = Rkj 4R
k
j . (7.69)

However, letting K̂K̂k,ij = |K̂k,ij − K̂
k,i
j |, we find by (7.53,7.36,7.37), exchangeability and (7.64) that

EY

 ∑
i1∈I1j−1∪I1j−1

1RR1,i1
j

∑
i2∈I2j−1∪I2j−1

1RR2,i2
j
· · ·

∑
iq∈Iqj−1∪I

q
j−1

1RRq,iqj

1DNj−1

 (7.70)

N
� EY

(|Aj − σj(1)|+
∑
i1

K̂K̂1,i1
j−1

)
· · ·

|Aj − σj(1)|+
∑
iq

K̂K̂q,iqj−1

1DNj−1


N
�

q∑
r=0

EY

[
|Aj − σj(1)|q−r

∑
i1

K̂K̂1,i1
j−1

∑
i2

K̂K̂2,i2
j−1 · · ·

∑
ir

K̂K̂r,irj−1 1DNj−1

]

N
�

q∑
r=0

EY

|Aj − σj(1)|q−r
∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikj−1∪Ikj−1

K̂K̂k,ij−1

∣∣∣∣∣∣
r

1DNj−1


N
� m

− q2
N + EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikj−1∪Ikj−1

|K̂k,ij−1 − K̂
k,i
j−1|

∣∣∣∣∣∣
q

1DNj−1

 .
Substituting (7.70,7.62) into (7.65) and using Hölder’s inequality, we find

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikn+1∪Ikn+1

|K̂k,in+1− K̂
k,i
n+1|

∣∣∣∣∣∣
p

1DNn

 (7.71)

N
� m

− p2
N +

p∑
q=1

n+1∑
j=1

m
− q2
N +

(
EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i

|K̂k,ij−1 − K̂
k,i
j−1|

∣∣∣∣∣
p

1DNj−2

]) q
p

mp−q
N

N
� m

− p2
N

so

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikl ∪I

k
l

|K̂k,il − K̂
k,i
l |

∣∣∣∣∣∣
p

1DNl−1

 N
� m

− p2
N ∀l ≤ n+ 1. (7.72)

Similarly, replacing (7.65) with (7.67), we have

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikl ∪I

k
l

|Kk,il −K
k,i
l |

∣∣∣∣∣∣
p

1DNl−1

 N
� m

− p2
N ∀l ≤ n+ 1. (7.73)
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Turning to the tracking system and following (7.70), we find by (7.55,7.64) and exchangeability that

EY
[
1RR1

j
1RR2

j
· · · 1RRqj 1DNj−1

]
(7.74)

N
� m

− q2
N + EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i

|K̂
k

j−1 − K̂
k

j−1|

∣∣∣∣∣
q

1DNj−1

]

so by (7.68) and the method of (7.71-7.72) one has that

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

|K̂
k

l − K̂
k

l |

∣∣∣∣∣
p

1DNl−1

]
N
� m

− p2
N ∀l ≤ n+ 1. (7.75)

�
With this coupling and prior preliminary results, we can establish our main result.

Proof of Theorem 5.1.
We can work directly on the coupled algorithms by (7.29,7.30).
Mllns: Taking p > 2

1−2β , we then find by (7.44), Theorem 7.2 and Fubini’s theorem that

EY

[ ∞∑
N=1

∣∣∣∣∣Nβ

mN

mN∑
k=1

BN,kn (f)

∣∣∣∣∣
p]

(7.76)

�
∞∑
N=1

EY

[∣∣∣∣∣Nβ

mN

mN∑
k=1

∑
i

|Kk,in −Kk,in |

∣∣∣∣∣
p

1DNn−1

]

�
∞∑
N=1

Npβm
− p2
N �

∞∑
N=1

N (β− 1
2 )p <∞

and it follows by N th-term divergence that

∞∑
N=1

∣∣∣∣∣Nβ

mN

mN∑
k=1

BN,kn (f)

∣∣∣∣∣
p

<∞⇒ Nβ

mN

mN∑
k=1

BN,kn (f)→ 0 a.s. [QY ]. (7.77)

Moreover, by Borel-Cantelli and (7.35)

∞∑
N=1

Q((DNn−1)C) ≤
∞∑
N=1

2(n− 1)e−εn−1mN <∞ (7.78)

⇒ Q((DNn−1)C i.o.) = 0.

Finally, we know

1

mN

mN∑
k=1

Kk,in f(X k,in )
N
� N−β a.s. [QY ]. (7.79)

by (4.1) as well as Theorems 4.1 and 7.1 so this part follows by (7.44).
slln: This part follows from the Mllns, using the same {fi} ⊂ C(E) as in the proof of Theorem 4.1.
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Establish i),ii) of Theorem 5.2: It follows by (7.44) and (7.36,7.37) that

EY|BN,1n (f)|2
N
� EY

 ∑
i∈I1n∪I1n

|K1,i
n −K1,i

n |21DNn−1

 (7.80)

N
� EY

 ∑
i∈I1n∪I1n

|K1,i
n −K1,i

n |1DNn−1


for f ∈ C(E)+. Hence, by (7.80), exchangeability and (7.49) with p = 1

N
1
2EY |BN,1n (f)|2

N
�
(
N

mN

) 1
2

→ 0. (7.81)

and Theorem 5.2 i) is true with ρ = 1
2 and ψN,k = BN,kn (f).

It follows by (7.44) and (7.49) with p = 2 that

NEY |BN,1n (f)BN,2n (f)| (7.82)

≤ N |f |2∞EY
∣∣∣∣∣∣
∑

i∈I1n∪I1n

∑
j∈I2n∪I2n

|K1,i
n −K1,i

n ||K2,j
n −K2,j

n |1DNn−1

∣∣∣∣∣∣
≤ N

mN (mN − 1)
|f |2∞EY


∣∣∣∣∣∣
mN∑
k=1

∑
i∈Ikn∪Ikn

|Kk,in −Kk,in |

∣∣∣∣∣∣
2

1DNn−1


N
� N

mN
→ 0.

Apply Exchangeability Result, Reduced System clt:

1

N
1
2

N∑
k=1

BN,kn (f)→P 0 by (7.82), (7.81) and Theorem 5.2 with ρ = 1
2 , with E = EY and ψN,k = BN,kn (f).

Therefore, it follows by (7.44), (7.35) that for any ε > 0

QY(N−
1
2

N∑
k=1

∑
i

(Kk,in f(Xk,i
n )−Kk,in f(Xk,i

n )) > ε) (7.83)

≤ QY(N−
1
2

N∑
k=1

BN,kn (f) > ε) +QY((DNn−1)C)→ 0.

The clt in Theorem 5.1 now follows from the clt in Theorem 4.1 and Theorem 7.1. �

8. Appendix I: Proof of Proposition 4.1, variance calculation

Abbreviating Mk
n = MB

k

n (f), one notes from (4.11) and (4.8) that

Mk
n =

n∑
l=0

[
Bkl (Al+1,nf)− Bkl−1 (Al,nf)

]
, (8.1)



M. A. Kouritzin/Branching Particle Filters 34

where Bk−1 = π0. The variance of the ‘l = 0’ term is

EY
∣∣Bk0 (A1,nf)− Bk−1(A0,nf)

∣∣2 = EY
∣∣(A1,nf(χk))− π0(A1,nf)

∣∣2 (8.2)

= π0
(
(A1,nf)2

)
− (π0(A1,nf))

2
.

The martingale differences for l ≥ 1 are by (4.1), (4.4), (4.2), (3.2), Step 4 of the reduced algorithm and
(4.7)

Bkl (Al+1,nf)− Bkl−1(Al,nf) (8.3)

=

Nkl−1∑
i=1


Nk,il∑

j=Nk,i−1
l +1

Lk,jl Al+1,nf(X k,jl )− L̂k,il−1KAl+1,nf(X k,il−1)


=

Nkl−1∑
i=1

Lk,il−1


Nk,il∑

j=Nk,i−1
l +1

Al+1,nf(X k,jl )

−EY

 Nk,il∑
j=Nk,i−1

l +1

Al+1,nf(X k,jl )
∣∣FUXl−1 ∨ FVl


 .

Therefore, by the independence of the {U ,V,Z}

EY
[
(Bkl (Al+1,nf)− Bkl−1(Al,nf))2

∣∣FUXl−1 ∨ FVl ] (8.4)

=

Nkl−1∑
i1,i2=1

Lk,i1l−1L
k,i2
l−1EY

 Nk,i1l∑
j1=N

k,i1−1

l +1

Al+1,nf(X k,j1l )

Nk,i2l∑
j2=N

k,i2−1

l +1

Al+1,nf(X k,j2l )

∣∣∣∣FUXl−1 ∨ FVl


− EY

 Nk,i1l∑
j1=N

k,i1−1

l +1

Al+1,nf(X k,j1l )

∣∣∣∣FUXl−1 ∨ FVl


× EY

 Nk,i2l∑
j2=N

k,i2−1

l +1

Al+1,nf(X k,j2l )

∣∣∣∣FUXl−1 ∨ FVl



=

Nkl−1∑
i=1

∣∣∣Lk,il−1∣∣∣2
EY


∣∣∣∣∣∣∣

Nk,il∑
j=Nk,i−1

l +1

Al+1,nf(X k,jl )

∣∣∣∣∣∣∣
2 ∣∣∣∣FUXl−1 ∨ FVl



−

∣∣∣∣∣∣∣EY
 Nk,il∑
j=Nk,i−1

l +1

Al+1,nf(X k,jl )

∣∣∣∣FUXl−1 ∨ FVl

∣∣∣∣∣∣∣
2 .
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However, by the independence of the {U ,V,Z} again as well as (4.6)

EY


 Nk,il∑
j=Nk,i−1

l +1

Al+1,nf(X k,jl )


2 ∣∣FUXl−1 ∨ FVl

 (8.5)

= EY
[
N k,i
l

{
K(Al+1,nf)2(X k,il−1)− (KAl+1,nf)2(X k,il−1)

}
+

(
N k,i
l KAl+1,nf

)2
(X k,il−1)

∣∣FUXl−1 ∨ FVl ]
=
L̂k,il−1
Lk,il−1

{
K(Al+1,nf)2(X k,il−1)− (KAl+1,nf)2(X k,il−1)

}

+


∣∣∣∣∣ L̂

k,i
l−1

Lk,il−1

∣∣∣∣∣
2

+
L̂k,il−1
Lk,il−1

−

⌊
L̂k,il−1
Lk,il−1

⌋
−

∣∣∣∣∣ L̂
k,i
l−1

Lk,il−1
−

⌊
L̂k,il−1
Lk,il−1

⌋∣∣∣∣∣
2
 (KAl+1,nf)2(X k,il−1),

since

EY
[
|N k,i

l |
2
∣∣FUXl−1 ∨ FVl ] =

⌊
L̂k,il−1
Lk,il−1

⌋2

+

∣∣∣∣∣2
⌊
L̂k,il−1
Lk,il−1

⌋
+ 1

∣∣∣∣∣QY
(
Uk,il ≤

L̂k,il−1
Lk,il−1

−

⌊
L̂k,il−1
Lk,il−1

⌋)
,

and ∣∣∣∣∣∣∣EY
 Nk,il∑
j=Nk,i−1

l +1

Al+1,nf(X k,jl )
∣∣FUXl−1 ∨ FVl


∣∣∣∣∣∣∣
2

(8.6)

=
∣∣∣EY [N k,i

l KAl+1,nf(X k,il−1)
∣∣FUXl−1 ∨ FVl ]∣∣∣2

=

∣∣∣∣∣ L̂
k,i
l−1

Lk,il−1

∣∣∣∣∣
2

(KAl+1,nf)2(X k,il−1).
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Combining the last three equations, letting fl,n = Al(Al+1,nf)2−αl(KAl+1,nf)2, breaking over the resample

and non-resample cases, and averaging over the Vk,il , one finds by (4.17,4.18,4.2,4.3) that

EY
[
(Bkl (Al+1,nf)− Bkl−1(Al,nf))2

∣∣FUVXl−1
]

(8.7)

= EY

[Nkl−1∑
i=1

Lk,il−1L̂
k,i
l−1

{
K(Al+1,nf)2(X k,il−1)− (KAl+1,nf)2(X k,il−1)

}

+

Nkl−1∑
i=1

(
Lk,il−1

)2
r

(
L̂k,il−1
Lk,il−1

)
(KAl+1,nf)2(X k,il−1)

∣∣FUVXl−1

]

= σl(1)

Nkl−1∑
i=1

Lk,il−1νl(αl(X
k,i
l−1)Lk,il−1)

{
fl,n(X k,il−1)

}

+ σ2
l (1)

Nkl−1∑
i=1

νl(αl(X k,il−1)Lk,il−1)r

(
L̂k,il−1
σl(1)

)
(KAl+1,nf)2(X k,il−1)

+

Nkl−1∑
i=1

(
Lk,il−1

)2
αl(X k,il−1)νl(αl(X k,il−1)Lk,il−1)

{
fl,n(X k,il−1)

}

since r

(
L̂k,il−1

L̂k,il−1

)
= 0. Now, in the case ‘l = 1’ we have Lk,il−1 = 1 = N k

l−1 and

EY
[
(Bk1 (A2,nf)− Bk0 (Al,nf))2

]
(8.8)

= σ1(1)EY [ν1(α1(χk))
{
A1(A2,nf)2(χk)− α1(χk)(KA2,nf)2(χk)

}
]

+ σ2
1(1)EY [ν1(α1(χk))r

(
α1(χk)

σ1(1)

)
(KA2,nf)2(χk)]

+ EY [α1(χk)ν1(α1(χk))
{
A1(A2,nf)2(χk)− α1(χk)(KA2,nf)2(χk)

}
].
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Moreover, for any l ≥ 2, m ∈ {1, 2, ..., l − 1} and bounded function φm, we have by (4.4), (4.6), (3.1),
independence and division over resampled and non-resampled cases that

EY

Nkm∑
i=1

Lk,im φm(X k,im ,Lk,im )

∣∣∣∣FUVXm−1

 (8.9)

=

Nkm−1∑
j=1

EY

 Nk,jm∑
i=Nk,j−1

m +1

Lk,jm−1φm(X k,im ,Lk,jm−1)

∣∣∣∣FUVXm−1


=

Nkm−1∑
j=1

EY

 Nk,jm∑
i=Nk,j−1

m +1

Lk,jm−1Kφm(X k,jm−1,L
k,j

m−1)

∣∣∣∣FUVXm−1


=

Nkm−1∑
j=1

EY
[
L̂k,jm−1Kφm(X k,jm−1,L

k,j

m−1)

∣∣∣∣FUVXm−1

]

=

Nkm−1∑
j=1

Lk,jm−1EY
[
Amφm(X k,jm−1,L

k,j

m−1)

∣∣∣∣FUVXm−1

]

=

Nkm−1∑
j=1

Lk,jm−1φm−1(X k,jm−1,L
k,j
m−1),

where

φm−1(X ,L) (8.10)

= Amφm(X , σm(1)) νm(αm(X )L) +Amφm(X , L)

∣∣∣∣
L=αm(X )L

νm(αm(X )L).

(8.9) implies that

EY

Nk1∑
i=1

Lk,i1 φ1(X k,i1 ,Lk,i1 )

 (8.11)

= π0 [A1φ1(·, σ1(1))ν1(α1(·)) +A1φ1(·, α1(·))ν1(α1(·))] .

Now, recall (4.23) and suppose that

EY

Nkm−1∑
i=1

Lk,im−1φm−1(X k,im−1,L
k,i
m−1)

 (8.12)

=

m−1∑
j=0

∑
1≤i1<i2<···<ij≤m−1

π0[A1,m−1φm−1(·, αij ,m−1)νij ,m−1νi1,i2,...,ij ]
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for some m ∈ {2, ..., l − 1}, which is known when m = 2 by (8.11) and (4.19,4.20,4.21). (For clarity, the
“j = 0” term on the right of (8.12) is simply π0[A1,m−1φm−1(·, α0,m−1)ν0,m−1].) Then, it follows from
(8.9,8.10,8.12) and (4.19,4.20,4.21) by letting r = j + 1 that

EY

Nkm∑
i=1

Lk,im φm(X k,im ,Lk,im )

 (8.13)

=

m−1∑
j=0

∑
1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, σm(1))νij ,mνij ,m−1νi1,i2,...,ij ]

+

m−1∑
j=0

∑
1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij ]

=
m∑
r=1

∑
1≤i1<i2<···<ir≤m

ir=m

π0[A1,mφm(·, αir,m)νir,mνi1,i2,...,ir ]

+

m−1∑
j=0

∑
1≤i1<i2<···<ij≤m−1

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij ]

=

m∑
j=0

∑
1≤i1<i2<···<ij≤m

π0[A1,mφm(·, αij ,m)νij ,mνi1,i2,...,ij ].

Hence, (8.13) holds for all m = 1, ..., l − 1 by induction and (4.22) follows by (8.1), (8.2), (8.7) and (8.13),
considering the three cases:

φl−1(X ,L) = {fl,n(X )} νl(αl(X )L) (8.14)

φl−1(X ,L) = Lαl(X ) {fl,n(X )} νl(αl(X )L) (8.15)

φl−1(X ,L) =
1

L
νl(αl(X )L)r

(
αl(X )L
σl(1)

)
(KAl+1,nf)2(X ), (8.16)

where fl,n = Al(Al+1,nf)2− αl(KAl+1,nf)2. �

9. Appendix 2: Proof of Lemma 7.1

Essentially, we observe that this result would hold trivially for the weighted particle system and then use
induction and the coupling to show the necessary differences between the Residual and weighted systems
converge appropriately.

Proof. Recall AmN0 = 1 so AmN0 = σ0(1). It follows from (7.19,7.10,7.14,7.15) that for all n ≥ 0

AmNn+1 =
1

mN

mN∑
k=1

∑
i∈Ikn

αn+1(Xk,i
n )Kk,in . (9.1)
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Base Case: For notational reasons we consider the case n = 0 separately. One then finds by (7.1,7.2) that
(9.1) reduces to

AmN1 =
1

mN

mN∑
k=1

α1(χk), (9.2)

where {α1(χk)}∞k=1 are i.i.d., bounded and mean σ1(1) with respect to QY . Hence, by the Marcinkiewicz-
Zygmund and Jensen inequalities there is a constant Cp > 0 such that

EY |AmN1 − σ1(1)|p ≤ Cp
mp
N

EY

∣∣∣∣∣
mN∑
k=1

(
α1(χk)− σ1(1)

)2∣∣∣∣∣
p
2

(9.3)

≤ Cp

m
p
2

N

1

mN

mN∑
k=1

EY
∣∣α1(χk)− σ1(1)

∣∣p N
� m

− p2
N

for any p ≥ 1.
Case n ≥ 1: It follows from (7.3,7.2,7.15,7.21,7.22,7.45) that Kk,10 = 1 and

Kk,ij = AmNj 1
R
k,pj(i)

j

+W
k,pj(i)
j Kk,pj(i)j−1 1

S
k,pj(i)

j

∀i ∈ Ikj , j ∈ N. (9.4)

Using (9.1,7.34) and (9.4) recursively, one has

AmNn+1 (9.5)

=
1

mN

mN∑
k=1

Nkn−1∑
in−1=1

N
k,in−1
n∑

in=N
k,in−1−1
n +1

W k,in
n+1A

mN
n 1

RSI
k,in−1,in
n,n

+
1

mN

mN∑
k=1

Nkn−2∑
in−2=1

N
k,in−2
n−1∑

in−1=N
k,in−2−1

n−1 +1

W k,in
n+1W

k,in−1
n AmNn−11

RSI
k,in−2,in−1,in
n−1,n

+
1

mN

mN∑
k=1

Nkn−3∑
in−3=1

N
k,in−3
n−2∑

in−2=N
k,in−3−1

n−2 +1

W k,in
n+1W

k,in−1
n W

k,in−2

n−1 AmNn−21
RSI

k,in−3,...,in
n−2,n

+ · · ·+

+
1

mN

mN∑
k=1

Nk1∑
i1=1

W k,in
n+1W

k,in−1
n · · ·W k,i2

3 W k,i1
2 AmN1 1RSIk,i0,...,in1,n

+
1

mN

mN∑
k=1

W k,1
n+1W

k,1
n · · ·W k,1

3 W k,1
2 W k,1

1 1RSIk,1,...,10,n
,

where the non-summed indices satisfy i0 = 1, il = N
k,il−1−1
l + 1 (since no resampling). For clarity, here and

below RSIk,1,...,10,n = Sk,11 Sk,12 · · · Sk,1n {1 ∈ Ikn}. Noting Sk,11 Sk,12 · · · Sk,1n {1 ∈ Ikn} = (Rk1)C(Rk2)C · · · (Rkn)C (by
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(7.21, 7.25, 7.2, 7.3, 7.5, 7.15, 7.18)) and letting

W k,1
1,n+1 $ W k,1

n+1W
k,1
n · · ·W k,1

2 W k,1
1 (9.6)

= W k,1
1,n+11RSIk,1,...,10,n

+W k,1
1,n+11Rk1 (Rk2 )C ···(Rkn−1)

C(Rkn)C + · · ·

+ W k,1
1,n+11Rkn−2(Rkn−1)

C(Rkn)C +W k,1
1,n+11Rkn−1(Rkn)C +W k,1

1,n+11Rkn ,

we have by (9.5-9.6) that

mNAmNn+1 − σn+1(1) (9.7)

=

mN∑
k=1

∣∣∣W k,1
1,n+1 − σn+1(1)

∣∣∣
+

mN∑
k=1

∣∣∣∣∣∣∣
Nkn−1∑
in−1=1

N
k,in−1
n∑

in=N
k,in−1−1
n +1

W k,in
n+1A

mN
n 1

RSI
k,in−1,in
n,n

−W k,1
1,n+11Rkn

∣∣∣∣∣∣∣
+

mN∑
k=1

∣∣∣∣∣
Nkn−2∑
in−2=1

N
k,in−2
n−1∑

in−1=N
k,in−2−1

n−1 +1

W k,in
n+1W

k,in−1
n AmNn−11

RSI
k,in−2,in−1,in
n−1,n

−W k,1
1,n+11Rkn−1(Rkn)C

∣∣∣∣∣
+

mN∑
k=1

∣∣∣∣∣
Nkn−3∑
in−3=1

N
k,in−3
n−2∑

in−2=N
k,in−3−1

n−2 +1

W k,in
n+1W

k,in−1
n W

k,in−2

n−1 AmNn−21
RSI

k,in−3,...,in
n−2,n

−W k,1
1,n+11Rkn−2(Rkn−1)

C(Rkn)C

∣∣∣∣∣
+ · · ·+

+

mN∑
k=1

∣∣∣∣∣
Nk1∑
i1=1

W k,in
n+1W

k,in−1
n · · ·W k,i2

3 W k,i1
2 AmN1 1RSIk,i0,...,in1,n

−W k,1
1,n+11Rk1 (Rk2 )C···(Rkn)C

∣∣∣∣∣.
Now, {W k,1

1,n+1 − σn+1(1)}mNk=1 are i.i.d., zero mean and bounded with respect to QY . Therefore, it follows
as above by the Marcinkiewicz-Zygmund and Jensen inequalities that

EY

∣∣∣∣∣ 1

mN

mN∑
k=1

W k,1
1,n+1 − σn+1(1)

∣∣∣∣∣
p
N
� m

− p2
N (9.8)
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for any p ≥ 1. Next, we consider a typical (non-first) term in (9.7) in terms of l ∈ {1, ..., n}

Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

W k,in
n+1 · · ·W

k,il+1

l+2 W k,il
l+1A

mN
l 1

RSI
k,il−1,...,in

l,n

(9.9)

−W k,1
1,n+11Rkl (Rkl+1)

C···(Rkn)C = Tk1 + Tk2 + Tk3 + Tk4 ,

where

Tk1 =

Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

W k,in
n+1 · · ·W

k,il+1

l+2 W k,il
l+1 σl(1)1

RSI
k,il−1,...,in

l,n

(9.10)

−W k,1
1,n+11Rkl (Rkl+1)

C···(Rkn)C

Tk2 = (9.11)

Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

W k,in
n+1 · · ·W

k,il+1

l+2 W k,il
l+1 (AmNl − σl(1)) 1

RSI
k,il−1,...,in

l,n

Tk3 =

Nkl−1∑
il−1=1

N
k,il−1
l∑

il=N
k,il−1−1

l +1

W k,in
n+1 · · ·W

k,il+1

l+2 W k,il
l+1 σl(1) (9.12)

×
(

1
RSI

k,il−1,...,in

l,n

− 1
RSI

k,il−1,...,in

l,n

)
and

Tk4 = W k,1
1,n+11Rkl (Rkl+1)

C ···(Rkn)C −W
k,1
1,n+11Rkl (Rkl+1)

C ···(Rkn)C . (9.13)

Bound T1: The sums in T1 only involve the reduced system so by Theorem 7.1 we can just work in the
original (prior to coupling) reduced system setting. Now, recalling νl, αi,m, νi,m from (4.18,4.19,4.21) and

using (7.33), one has by (7.34,5.5), independence, the fact σl(1)1
H
k,il−1
l

= Lk,il−1

l−1 1
H
k,il−1
l

, (4.6), (4.4) and
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(4.1) that

EY
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 (9.14)

=
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l+11

H
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H
k,in−2
n−1

)C
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]
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=

Nkl−1∑
il−1=1

L̂k,il−1

l−1 EY
[
Γkl,n+1(X k,ill )1

H
k,il−1
l

∣∣∣∣FUVXl−1

]

=

Nkl−1∑
il−1=1

Lk,il−1

l−1
(
αlνl ◦ αlKΓkl,n+1

)
(X k,il−1

l−1 )

= Bkl−1
(
αlνl ◦ αlKΓkl,n+1

)
and by (7.34), (7.26, 7.18, 7.11, 7.6), (4.18,4.19,4.21) that

EY
[
W k,1

1,n+11Rkl (Rkl+1)
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C

∣∣∣∣FUVXl−1

]
(9.15)
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(
νl ◦ αlKΓkl,n+1

)
(Xk,1

l−1)

=

l∏
m=1

αm(Xk,1
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(
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)
(Xk,1
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for l = 1, ..., n, where

Γkl,n+1(xl) (9.16)

= (αl+1νl+1 ◦ αl,l+1K (αl+2νl+2 ◦ αl,l+2 · · ·K (αnνn ◦ αl,nKαn+1))) (xl).

Hence, by (7.31), (9.14), (4.1), (4.9), (1.1), (1.2) and (9.15)

EY
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N
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RSI
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 (9.17)

= σl−1(αlνl ◦ αlKΓkl,n+1)

= EY
[
W k,1

1,n+11Rkl (Rkl+1)
C ···(Rkn)

C

]
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and {Tk1}
mN
k=1, the first terms of (9.9), are i.i.d., bounded (w.r.t. EY ) and zero mean. Therefore, it follows

as above by the Marcinkiewicz-Zygmund and Jensen inequalities that

EY

∣∣∣∣∣ 1

mN

mN∑
k=1

Tk1

∣∣∣∣∣
p
N
� m

− p2
N (9.18)

for any p ≥ 1.
Bound T2: One has by the induction hypothesis, (7.47,7.36,7.37) and Jensen’s inequality that for any
p ≥ 1

EY
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N
� m
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N . (9.19)

Bound T3: One finds by (7.47) that∣∣∣∣∣
mN∑
k=1

Tk3

∣∣∣∣∣ 1DNn (9.20)
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j−1 S4S
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j S
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1
R4R
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,

where

S4Sk,ij−1

j = Sk,ij−1

j 4Sk,ij−1

j and R4Rk,ij−1

j = Rk,ij−1

j 4Rk,ij−1

j . (9.21)

Recalling Gjk from (7.52), one has that
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(9.22)
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for j = l, ..., n, where

∆k
j = (9.23)

Nkl−1∑
il−1=1

N
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n DNl−1
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j−1 S4S
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∣∣∣∣Gjk−1


are bounded {Gjk}-martingale differences (in k). Therefore, it follows by the Burkholder-Gundy-Davis in-
equality and Jensen’s inequality as well as exchangeability that
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for p ≥ 2. Now, by Hölder’s inequality we can take p to be an integer. Moreover, by (7.36,7.37)∑
il−1

∑
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and one has by (7.54) that
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so by (9.22), (9.24), (9.25), (9.26) and (7.35)
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Similarly to (9.22-9.27), one finds that
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Therefore, one has by (9.20), (9.27), (9.28) and the lemma hypothesis that

EY

[∣∣∣∣∣ 1

mN

mN∑
k=1

Tk3

∣∣∣∣∣
p

1DNn

]
(9.29)

N
� m

− p2
N +

n∑
j=l

EY

∣∣∣∣∣∣ 1

mN

mN∑
k=1

∑
i∈Ikj−1∪Ikj−1

|K̂k,ij−1 − K̂k,ij−1|

∣∣∣∣∣∣
p

1DNj−1


for any p ≥ 1.
Bound T4: We find by (7.47) and analogous to (9.20-9.25) that
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Hence, by (7.56,7.55) and the lemma hypothesis
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for any p ≥ 1. �
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