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Abstract — A branching particle-based filter is used to
detect and track multiple simulated maneuvering ships in
a region of water. The ship trajectories exhibit nonlinear
dynamics and interact in a nonlinear manner so that the
ships do not collide. There is no a priori knowledge of
the number of ships in the region. Observations model a
sensor tracking the ships from above the region as in a
low observable problem.

The branching filter simulates particles, each of which
is a sample from the domain of possible combinations of
ship number and the state of those ships, and each of
which is evolved independently using the stochastic law
of the signal between observations. The branching filter
employs these particles to provide the approximated con-
ditional distribution of the signal in the combined domain,
given all observations. Quantitative results recording the
capacity of the branching filter to determine the number
of ships in the region and the location of each ship are
presented.

Keywords: Tracking, particle-based filtering, multiple
target, branching filter.

1 Introduction

Properly designed adaptive particle systems provide
versatile yet under-exploited methods for asymptotic so-
lutions to filtering problems. Hitherto, most practical
models have concentrated on the single target scenario.
However, the merits of particle systems may be best il-
lustrated in the perennially problematic multiple-target
problems. Del Moral and Salut[3] describe the adap-
tive particle system approach to filtering; our branching
method was introduced by Kouritzin and first discussed
in Ballantyne, Chan, and Kouritzin [1]; and Salmond and
Gordon(8] and Hue, Le Cadre, and Pérez[5] have used
particle systems in multiple target problems. Our ap-
proach is different than that of Hue et. al. in that the fil-
ter is constructed directly by expanding the domain of
the signal, rather than introducing Gibbs sampling, and
can thus readily handle cases in which the initial number
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of targets is unknown and that number may change over
time.

It can be critical in applications to determine how many,
if any, targets are located in a region of space based upon a
noisy, corrupted sequence of observations. In this paper,
we address this problem for multiple interacting targets
diffusing in a plane and spatial observations with high
noise intensity. For example, Figure 1 depicts our particle
system filter trying to detect and track possible targets (in
the top left frame) based upon observations corrupted by
extreme noise (as shown in the top middle frame). The
estimated locations of the targets given that there are one,
two, or three targets to track are displayed in the lower
left, middle, and right frames, and a greater length of a
bar along the bottom of each of these frames indicates a
greater estimated probability that the signal contains that
number of targets. Any or all of the target locations may
not closely represent an actual target, but rather be an ar-
tifact of the observation noise.
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Figure 1: Example multi-target filter

How does one best decide how many targets really ex-
ist in the viewing area? In the case that the targets act
independently or interact weakly, this question can be an-
swered by imbedding the targets into a measure-valued
Markov process. Since we are filtering measures rather



than a single target we quickly review the theory of filter-
ing for signals in Polish spaces.

1.1 Filtering continuous Markov signals

Suppose (£, F, P) is a probability space, S is a com-
plete, separable metric space, and B(S) is the set of
bounded, measurable functions on S. Then, X is a cad-
lag homogeneous (L, Po)-Markov process on S if: t —
X, (w) is right continuous with left hand limits for each w,
P(Xo € B) = Py(B) forall B € B(S) (the Borel o-field
of S), P(X¢4s € Blo{Xy,u < t}) = P(Xi4s € B|Xy)
for sets B € B(S), and

t

B = B (o)l + [ BILFGE)ds (1)

0

for all bounded measurable functions f € D(L) C B(9),
the (weak) domain of L. Suppose further that this signal
cannot be measured directly, but rather only through an
imperfect sensor. In particular, it is common to assume
that the observations occur at times tg and take the form

Yk = Hk(xtkavk)> Vk = 1’23 ey (2)

where {Vi, k = 1,2,...} is an independent vector-valued
noise sequence.

Then, the conditional distribution p}’ of X; given
Y, t < tis solved by Bayes’ rule

pY (f) = B(f(X| Yeys - Vi)
_n
i (1)
where (under some mild assumptions on H, and V}) the
unnormalized conditional distribution Py is the unique

solution to

vfeD(L),

t
B () - () - / Y (Lf)ds = My(f) as. (4)

for all f € D(L). Here, for each f € D(L), Mi(f) is
a martingale with respect to the filtration o {Yy,, ti < t}
that depends on the Hg, ¢k, and Y. Branching particle
methods approximate the solution to Equation (4).

2 Signal description

Suppose N is a non-negative integer-valued random
variable, (So,do) is some complete, separable metric
space, and B be the Borel o-field for Sy. For example,
So = RS x {1,2,3} with Euclidean distance |-| in the fol-
lowing. We let S denote the space of finite, non-negative
measures yon Sp, metrized by the extended Prohorov dis-
tance

d(p,v) = inf{e > 0: p(B) < v(B®) +¢,

v(B) < u(B°) +e VB e B}, ()

where B¢ = {z € So : do(z,y) < € forsomey € B}.
Then, (S, d) is also a complete, separable metric space.

Our signal measure is a homogeneous Markov process
X on S constructed as

Ny
X (B) = Z 6x:(B) = Number of targets in B,  (6)
i=1

where N, is the random number of targets depending on
t. Inasmuch as it is vital that X is a Markov process, we
consider the case in which N; is decreasing through the
removal of targets to a cemetery state when they leave a
bounded portion of the target domain, and we limit possi-
ble target interactions to weak interactions, meaning those
that can be represented in terms of X; itself. In this case,
X is a (Pp, £)-Markov process, where P, is the initial
signal measure and the operator L describes the proba-
bilistic evolution of the signal. The weak interactions are
designed to repel nearby targets in order to avoid colli-
sions and to attract distant targets. This is enforced in-
directly by increasing the probability that the orientation
change of a target is away from other close targets, and
increasing the probability that the orientation change of a
target is towards other distant targets. Our model thereby
reflects loose coordination of the targets.

2.1 Target models with interactions

We assume that there is a random number N of tar-
gets, where V; € {0,1,2, 3} . Each target has seven state

variables: (zi, y}) and (z}, ¥,) denote the current pla-
nar location and velocity, respectively, of the ith target;

g¢ and 9: are the orientation and angular velocity; and
x} denotes the current maneuver type from the possible
set of {drifting, rowing, motoring}. We use the notation
Xi = (zi, 1,08, 55,91, ji, i) for the state of target ¢ and
X:() = Ziv_,fl 8x;:(+) for the signal measure. In order to
write the stochastic equations for these variables we let
(Bia, B# B¢}, be independent standard Brownian
motions with dimension three, two, and two. Also, we
define the following attraction-repulsion field:

0 §1 = 82
K(s1,82) = {2((;9016331 _ 4m(5382)”€) s £’ (7
and
oo, o) = ”(31’32)&%@ ©)
for all ships s1, s2 € So = R® x {1,2,3}, where
(sy,82) = \/!:z(31)—-1rz(32)12 F Trnten—rs (o)
(10)



and 7, m, denote projection onto the z and y compo-
nents. The effect of this field, when incorporated into the
stochastic Itd equations that describe the motion of the
individual targets, is to draw a target slightly towards the
pack if it is distant and to repel it from any one other target
to which it becomes too close. The value ¢ = 13 repre-
sents the closest distance that two targets should come to
each other. We define the following variables to enact this
attraction-repulsion:

¢ = \//l’ﬁ(zaXti)JQXt(dz)a an

and

qbf’i = a.rctan(/ Ky (2, X1) Xy (d2),
[ e xix@sn, a2

which represent the strength and orientation of the deflect-
ing force, and both of which decompose into sums over
the finite set of targets.

2.2 Maneuver type

The target state variable ! is a Markov chain with state
space {1, 2, 3}, representing adrift, rowing, and motoring
respectively. The rates are given by:

NT3XL X)) = NP3 (X)L X)) = 100977, (13)

. 1 i 3
N (XX = NN XD = 5, (4
and
‘ ; 1
MNTUUX] X)) = MB7AXL X)) = —— 15
Jt ( t t) R ( t t) 200(13:” (15)

Since the attraction-repulsion field only affects the motion
of a target if it is motorized, a strong field increases the
likelihood that the target will switch into, or stay in, the
motorized maneuver.

The differential equations describing the motion of tar-
get 7 depend on the maneuver type x!, as follows:

1. Adrift (xi = 1) In this case,

alif| = | Soehui.6) | at
9; 39(35;7:%6%79;)
10 0]
+10 1 0]dB¥*, (16
0 0 05

2. Rowing (xi = 2)

3. Motorized (Xi = 3)

where B;® is a three-dimensional standard Brown-
ian motion mentioned previously. To make the sim-
ulation more realistic, friction F(+) is included in the
equation. The calculation of this friction is similar
for each motion type and is described below.

In this case,
S ft' cos 6
M B [ff sind | 4

where ft‘ represents scalar velocity in the forward
direction, with

d[f;}: (3.5 — fi + 3 (a9, 0D) | .
% 4= -3 0]
0 0.4

(18)

where BZ’b is a two-dimensional standard Brownian
motion.

In this case,
] _ ft’ cos Hq 19
L):] [f; sin;] )

where ft’ represents scalar velocity in the forward
direction, with

i1~ (o0 — 6D)e)" + (5, 9k, 01, 609)

. {\/(10 ~f)i-9) 0
0 0.4

dB}*,

(20)

where B;’¢ is a two-dimensional standard Brownian
motion.

Friction is calculated according to the following model:

i/d2 442 . ,
Sild,9,0) = ”?%%'ff lfﬂ?#O,y#O,
0 ft=9g=0
2
jy/E 242 s .
Sy(2,9,0) = _%%'ff lfﬂf#O,y#O,
0 ifi=79=0

(22)



(ai:-cos@—%—g)—sine)2

r ‘9 .79 = y 23
§:(8:5.0) +%-(y-cosé—:i:-sin9)2 @9

and
(,9,60,0) = —0fs, (25)

where f; and fy are constant parameters indicating
the magnitude of the planar velocity and change-in-
orientation frictions, and are equal to 0.25 and 2 respec-
tively. These formulae have the effect of increasing the
planar velocity friction when the ship velocity vector lies
in a direction towards the sides of the ship, and decreasing
this friction as the velocity vector is more aligned with or
directly opposite the forward orientation of the ship.

2.3 Initial signal distribution

At the start of a simulation, a random number of tar-
gets is selected from among the possibilities zero, one,
two, and three with probabilities 0.1, 0.2, 0.3, and 0.4 re-
spectively. Each target is positioned at a random location
in the observation area according to a two-dimensional
Gaussian random variable with standard deviation 19.2
(which is the width of the z and y coordinates in the sig-
nal domain divided by ten). If two targets are located
less than € distance from each other then one is randomly
repositioned. Each target is given a uniform random ori-
entation. It has a one third probability to be exhibiting
each motion type and the initial velocity is randomly de-
termined based on this motion type. The initial change in
orientation is zero for all targets.

3 Observation model

The observations consist of a discrete sequence Y}, of
images, each of which is a two-dimensional raster of pix-
els in a 192 by 192 square. These images are constructed
by superimposing figures based on a projection of each
target state, X/ , onto the raster R = {(¢,m)} and adding
noise by the formula

yiEm = / W™ ()X, (d2) + VO™, (26)
where Vk“’m) is pixel-by-pixel zero-mean independent
Gaussian noise with variance 4 - (¢ — tx—1). Here,

BEm) () = {o if (¢,m) ¢ A

temea, )

Ty — th—1
for all s € Sy, where A, is the set of points contained in
the filled polygon representation defined by the compo-

nent projections 7, (s), my(s), and mg(s) of s. The shape
Ay is described precisely as follows:

¢ Place a box with sides of length 8 perpendicu-
lar to the raster grid and centered at the point

(m2(8), 7y (5))-

e Add a triangle of height 4 to the right side of the box
so that the base of the triangle is the side of the box.

o Rotate the resulting polygon by the angle mp(s)
about (74 (s), my(s)).

The value for € is chosen to ensure that no two such poly-
gons will overlap in the same observation. This procedure
creates target sizes that average 80 pixels. The time period
for the observations is set to a constant {t —t;—1) = 0.05
time units, and thus the variance of the Gaussian noise is
0.2. Note that the standard deviation of the noise is ap-
proximately 0.447, about 8.944 times the size of the dif-
ference in intensity of target versus non-target h values,
giving the problem a pixel-by-pixel SNR (signal-to-noise
ratio) of ~19.031 dB. The observations are not prepro-
cessed; the information from the raster pixels is used di-
rectly by the filter algorithm.

4 Filter algorithm

Here we describe the particle-based method by which
we solve this nonlinear filtering problem. Our branch-
ing particle filter[1, 6] does this, as other particle-based
filters[3, 4, 7] do, by approximating the conditional dis-
tribution of the signal, given the observations, by a finite
sum of measures. In this case, rather than a single Dirac
measure being associated with each particle X7, a mea-
sure process on (S, d) that, for each time ¢, is composed
of a sum of N} Dirac measures, one for each target X,/
within the measure of X7, is associated with each parti-
cle. This construction of each particle is identical in form
to that of the signal as shown in Equation (6), and at any
time ¢ each particle X represents a measure in the range
of the signal Markov process X;.

For each new observation, all particles are evolved for-
ward to account for the stochastic dynamics of the signal
and then the set of particles is adjusted to account for the
information from the observation. In this manner, the par-
ticles function as an adaptive Monte-Carlo method for the
filtering problem.

The set of particles then approximates the full data of
the distribution of the signal conditioned on the set of all
back observations. The approximated conditional proba-
bility that the signal lies within a given set in the signal
domain is computed by dividing the number of particles
in that set by the total number of particles.

Particle-based filters require an appropriate algorithm
for the adjustment phase such that the filters provably con-
verge to the conditional distribution as the number of par-
ticles approaches infinity. In the branching particle-based
filter, particles are branched (duplicated or removed) to



form child particles at each observation, with each child
particle having the same state in the signal domain as its
parent has at the time of the observation. The number
of child particles generated (zero, one, or more) is deter-
mined by an equation that incorporates the likelihood of
the state of each particle given the current observation.
The method is initialized with M particles {X3},
sampled by the same distribution in the domain of X as
that of the signal, as described in Subsection 2.3. At each
observation, the method progresses through the follow-
ing stages: evolution of the particles, particle branching,
and the approximation of the conditional distribution of
the signal state. The evolution stage may be amended to
incorporate extra particle diffusion, as explained below.

4.1 Evolution

In the evolution stage, each of the particles is evolved
independently for the time period between observations
(ty — tx—1) according to the Itd equation of the signal,

X{, _, = X{ , as described in Section 2.

4.2 Particle adjustment

After evolving each particle, the particles are then
branched to account for the information from the observa-
tion. A value labeled & = £(X?, ) is calculated for a given
particle X{ . inresponse to the observation at time t;. The
value of ¢ is a function that depends on several different
parameters, although for a fixed time ¢, these parameters
are fixed for all particles. The value of ¢ depends, for
each particle, upon the observation Y}, at time g, the dis-
tribution of the noise of the observation (V}, as defined in
Equation (26)), and the relationship between the the ob-
servation and the function hy from Equation (26). The
formula is constructed specifically so that the branching
method will provably converge to the optimal filter as the
number of particles is increased.

Once ¢ is calculated for each particle, each ¢ is renor-
malized to ensure that the expected number of child parti-
cles which will be generated, given this particular obser-
vation, is equal to the initial number of particles M. Using
these renormalized £ values, each particle is duplicated to
form a new particle X = Xﬁk a number of times equal
to L(ﬁ{c)*] , and then a uniform-(0, 1) random variable U,Z
is generated and

o if (] — [(€])*) > U}), an additional particle X},
with current state value identical to X/ . is added,

o if (g,’g < —U,Z), X{k is removed, or,
¢ otherwise, the particle is not branched further.

Intuitively we can interpret fi as a measure of the
“goodness of fit” of X{ , relative to the other particles, to
the hypothesis “X] matches the observation Y} ”. If this

measure is large we duplicate Xik because it is a “good
fit” to Y}, relative to the other particles. If it is near —1
then X/ . 1s a poor fit relative to the other particles, and
we delete the particle. Otherwise, when Xy, is near 0,
the relative “goodness” of the fit is unclear, and we let the
particle evolve, hoping for more definitive information in
the future.

4.3 Estimation
As discussed in the forthcoming paper by Kouritzin[6],

M
-]\l? Zng (B) Mo /sz/ (x)dz (28)

j=1
for Borel subsets B within the signal state space S, where
pi (z) is the conditional distribution of the signal X,
given the observations Yi, ... , Y. Thus, the probability
that the signal X, is within the set B at time t;, condi-
tioned on the observations Y1,... , Yy, is approximated
by the number of particles that are within the set divided
by the total number of particles. Such a set B must de-
scribe the number of ships (or the set of possible numbers
of ships) and the subset of the ship domain that each may
occupy.

4.4 Additional particle diffusion

While the branching particle filter approaches the opti-
mal filter as the number of particles increases, for any fi-
nite number M of particles the filter may have no particle
that matches very well with the signal state. In this case,
it is possible that the calculations based on the observa-
tions will not cause the filter to generate enough offspring
in the correct region of the domain such that one or more
child particles diffuse to more closely align with the sig-
nal. That is, while the filter is optimal in the limit, the a
priori distribution of a finite number of particles may be
too sparse near the signal state for the diffusion inherent in
the evolution stage to draw any particle near to the signal.
In this case, the filter does not detect the signal, and will
have a poor track which does not properly incorporate all
information from the observations.

This problem is particularly acute in multiple target
scenarios, in which the signal is composed of multiple ob-
jects. Here, the dimensional expansion in the size of the
signal domain decreases the likelihood that any one par-
ticle will be “close” to the signal in the sense that obser-
vation data can usefully adapt particles towards the signal
state. If, further, the number of targets is unknown, then a
particle can nearly exactly match the signal state for some
number of targets but contain too few or too many total
targets. In these cases a large number of particles may
be required to detect and track the signal, necessitating a
commensurate increase in computation.

To somewhat ameliorate this problem it is possible to
introduce extra diffusion into the stochastic dynamics that



describe the particle evolution. The idea is described in
Ballantyne, Hoffman, and Kouritzin[2] and is similar in
approach to simulated annealing. For the ships in the
current case, we can perturb each of the z, y, and 8 co-
ordinates of each ship by the Gaussian random variable
N(0, exp{—20ty, - (tx — tg—1)}) during the evolution as-
sociated with an observation at time t;. Note that the extra
diffusion is damped in time so that the filter is still asymp-
totically optimal.

We simulate the filter both with and without the extra
diffusion in order to compare the results obtained.

5 Evaluation

Since no exact optimal filter is constructed, the filter
is compared to the simulated signal measure X; at each
observation time. To calculate a value representing the
distance of the filter measure from the actual signal mea-
sure at time ¢y, we first consider only the set of particles
S = {X], : N{, = Ny}, thatis, those which have the
same number of targets as the signal. For each of these
particles, in the case in which there is a postive number of
targets, its distance to the signal measure is computed as
follows:

Ny,

XX
Ntk}Ntk ZH b

iz=l

%o, X )= min X0,

(29)

where for two ships s1,s2 € Sy we define ||s1, s2|| =
(s, s2) as in Equation (10), that is, the distance be-
tween two ships is taken as the distance in the plane of
their (z,y) locations. Here, Xy, () s the ith target under
the permutation o of the j* particle at time ty. This for-
mula calculates the average distance between each ship in
the signal and its associated ship in the particle under the
best possible association.

The value used to represent the distance from the signal
of the filter measure is then calculated as

Z Hth’X Hv

i
X kES

1+ log (30)

=

5] IS !
where S is the set defined above of particles with the cor-
rect number of targets, and the norm ||Xy, , X] || above is
taken to be 1 for zero-target particles. This introduces a
bias to penalize filter estimates that indicate the incorrect
number of targets.

The resulting distances are averaged at each time over
400 trials for the filter without extra particle diffusion and
400 trials for the filter with extra diffusion, where the tri-
als complete after 5 time units, which is 100 observa-
tions. For each trial, the initial number of particles My
is 400000.

6 Results

Figures 2-5 display the penalized average filter posi-
tional error for particle evolution simulated with no extra
diffusion. The data are broken down to include, for each
graph, only the trials in which the signal is initialized with
the given number of targets.
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Figure 2: Error in position for zero targets
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Figure 3: Error in position for one target
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Figure 5: Error in position for three targets



Figures 6-9 display the proportion of particles in the
filter that exhibit the correct number of targets, in the case
with no extra diffusion, broken down by the initial number
of signal targets.
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Figure 6: Target number determination for zero targets
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Figure 7: Target number determination for one target
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Figure 8: Target number determination for two targets
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Figure 9: Target number determination for three targets

Figures 10-13 display the penalized average filter po-
sitional error for particle evolution simulated with extra
diffusion, broken down by the initial number of signal tar-
gets.
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Figure 10: Error in position for zero targets
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Figure 11: Error in position for one target
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Figure 12: Error in position for two targets
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Figure 13: Error in position for three targets



Figures 14-17 display the proportion of particles in the
filter that exhibit the correct number of targets, in the case
with extra diffusion, broken down by the initial number
of signal targets.
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Figure 14: Target number determination for zero targets
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Figure 15: Target number determination for one target
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Figure 16: Target number determination for two targets
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Figure 17: Target number determination for three targets

7 Conclusion

The branching particle-based filter has been found to be
effective when extended to estimate the conditional distri-
bution of multi-target signals for unknown, varying, but
small numbers of targets. However, the computational re-
sources required to obtain useful results can be large. In
the figures above, the standard filter without extra diffu-
sion in the particle evolution exhibited mediocre results
in the case of two initial targets and poor results for three
initial targets. Simulations with extra particle diffusion
indicate a much more successful filter. Therefore, we see
that tricks to ameliorate the difficulties inherent in discrete
approximations can aid greatly in reducing the computa-
tional expense.
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