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1 Introduction

Suppose that {Pn} and P are Borel probability measures on a topological

space E. Then, it is often desirable to deduce that Pn converges weakly to P

by merely showing
∫
E fdPn converges to

∫
E fdP for each f in a small subset

of the bounded real-valued functions on E. For example, to show convergence

of martingale problem solutions, one may wish to use functions selected from

a common domain of the operators associated with the martingale problems.

To specify minimal conditions on such a subset of functions, Ethier and Kurtz

[6] defined a subset of bounded, continuous functions that strongly separate

points. Furthermore, when E is Polish they showed that any subset M of the

continuous, bounded functions that strongly separates points and is also an

algebra is convergence determining on the set of Borel probability measures

(see Theorem 3.4.5 (b) of [6]). This means that
∫
E fdPn →

∫
E fdP for all

f ∈ M implies weak convergence of the Borel probability measures Pn ⇒ P .

In the case that E is merely a separable metric space, they also showed that

the uniformly continuous functions with bounded support is still convergence

determining as are the continuous functions with compact support provided

E is also locally compact (see Proposition 3.4.4 of [6]). Such convergence

determining results can also be used to establish important convergence results

for Skorokhod spaces, like Theorem 12.6 of Billingsley [3] and Corollary 3.9.2

of Ethier and Kurtz [6]. However, even the basic convergence determining

result, Theorem 3.4.5 (b) of [6], is not general enough to handle such things

as Lusin spaces or nuclear space duals, neither of which are Polish yet are
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critically important for probability theory.

Another essential problem is the separation of probability measures: One wants

conditions on a class of functionsM such that
∫
E fdQ =

∫
E fdP for all f ∈M

implies that Q = P . This can be important, for example, to show that a

martingale problem is well posed or to identify a limit point of relatively

compact family of probability measures. In this regard, Ethier and Kurtz [6]

define such separating classes of functions M in terms of the separating points

property. They show (see Theorem 3.4.5 (a) of [6]) that the separation of

probability measures holds on Polish spaces if M separates points and is also

an algebra of continuous, bounded functions. Moreover, in Theorem 2.1.4 of

[7], Kallianpur and Xiong establish separation of Radon probability measures

on completely regular topological spaces using all the continuous, bounded

functions as the separating class M. Neither of these results handle such cases

as general probabilities on Lusin spaces.

The purpose of this note is to extend and generalize all the results mentioned

in the previous two paragraphs. Motivated in part by the work of Bhatt and

Karandikar [1], we use homeomorphism methods to capture the notion of

strongly separating points and to transfer convergence determining problems

from a metric space, or more generally a topological space, onto a precompact

subset of RM, where we have additional structure.
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3 Notation and Background

In the sequel, (E, T ) or just E will denote a topological space, B(E) or B(T )

will be the Borel sets, and M(E), B(E), C(E), C(E) will denote the Borel

measurable, bounded measurable, continuous, and continuous bounded R-

valued functions on E respectively. Our product spaces will always be given

the product topology and |·| will always denote Euclidean distance or absolute

value.

First, we will define the strongly separating points property as Ethier and

Kurtz [6] page 113 did, then we will give a little theory related to this property

and finally, we will provide a simple example of such a class of functions on a

metric space or, more generally, a completely regular topological space.

Definition 1 Let (E, T ) be a topological space and M⊂ M(E). Then, i) M

separates points (s.p.) if for x 6= y ∈ E there is a g ∈M with g(x) 6= g(y) and

ii) M strongly separates points (s.s.p.) if, for every x ∈ E and neighborhood

Ox of x, there is a finite collection
{
g1, ..., gk

}
⊂M such that

inf
y/∈Ox

max
1≤l≤k

|gl(y)− gl(x)| > 0.

Hence, if M s.s.p., then for any x and neighborhood Ox there are ε > 0 and{
g1, ..., gk

}
⊂M such that

{
y ∈ E : max

1≤l≤k
|gl(y)− gl(x)| < ε

}
⊂ Ox.

Thus, M s.s.p. implies M s.p. (in a Hausdorff space) and defines a topology
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T M through the basis

BM $ {{y ∈ E : max
1≤l≤k

|gl(y)− gl(x)| < ε}, g1, ..., gk ∈M, ε > 0, x ∈ E, k ∈ N}(1)

on E that is finer than the original topology. This yields the following simple

lemma:

Lemma 1 Let (E, T ) be a Hausdorff space,M⊂ M(E) and Γ(x) $ (g(x))g∈M.

Then, Γ has a continuous inverse Γ−1 : Γ(E) ⊂ RM → E if and only if M

s.s.p. In particular, Γ is an imbedding of E in RM if and only if M ⊂ C(E)

and M s.s.p.

Proof. If M s.s.p., then M s.p. so Γ−1 exists. Moreover, T ⊂ T M so Γ−1 is

continuous. 2

Given a collection M ⊂ M(E) that does not necessarily s.s.p., one can still

define a topology T M through the basis BM and find that (E, T M) may differ

from (E, T ). In particular, if M = {gk}∞k=0 ⊂ M(E) is countable we define a

single pseudometric

ρ(x, y) =
∞∑

k=0

2−k (|gk(x)− gk(y)| ∧ 1) , (2)

which generates T M. (See Dudley [4] p. 20 for the definition of a pseudomet-

ric.) If, in addition, {gk}∞k=0 s.p., then (2) becomes a metric and {gk}∞k=0 s.s.p.

on (E, T M).

The following lemma establishes when it is possible to assume a strongly

separating collection is countable with no loss of generality.

Lemma 2 If (E, T ) has a countable basis and M ⊂ C(E) s.s.p., then there
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is a countable collection {gk}∞k=0 ⊂ M that s.s.p. Moreover, {gk}∞k=0 can be

taken closed under either multiplication or addition if M is.

Proof. We have by the homeomorphism of Lemma 1 that BM, defined in (1),

forms a basis for T . However, any basis contains a countable basis by [10], Ex

4-1.5 so we only need a countable number of g’s, which we denote {gk}∞k=0. 2

If M does not s.s.p. or is not a subset of the continuous functions, then T M

may be coarser or finer than T . However, the Borel σ-fields generated by T M

and T may still be the same as the following result establishes. Part a) follows

from Kuratowski’s remarkable result.

Lemma 3 Suppose (E, T ) is a topological space, M $ {gk}∞k=0 ⊂ M(E) s.p.

and ρ is as defined in (2). Then, the Borel σ-fields of (E, T ) and (E, ρ) are

equal if either a) T is generated from a Polish space (E, d), or b) {gk}∞k=0 s.s.p.

Proof. a) By Kuratowski’s theorem (see Parthasarathy [11] Corollary I.3.3)

G(A) ⊂ R∞ is Borel for any measurable A ⊂ E and G−1 : G(E) → (E, d)

is Borel measurable, where G(x)
.
= (g0(x), g1(x), ...): (E, d) → G(E). On the

other hand, G: (E, ρ) → G(E) ⊂ R∞ has a continuous inverse. For both, the

Borel sets are

{
G−1(Γ) : Γ ∈ B(R∞)

}
.

b) It follows by the definition of s.s.p. that T M ⊃ T so B(E, ρ) ⊃ B(T ).

Conversely, BM ⊂ B(T ) and T M consists of countable unions of elements

of BM since (E, ρ) is homeomorphic to a subset of R∞ and therefore has a

countable basis. Hence, B(E, ρ) = B(T M) ⊂ B(T ). 2

For our results on convergence determining classes, it will be helpful to look
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at the s.s.p. property from another angle.

Lemma 4 Suppose (E, T ) is a Hausdorff space and M ⊂ M(E). Then, M

s.s.p. if and only if for any net {xi}i∈I ⊂ E and point x ∈ E, one has that

g(xi) → g(x) for all g ∈M implies that xi → x in E.

Proof. Suppose M s.s.p., and there are {xi}i∈I , x such that xi 9 x. Then,

there exists a neighborhood Ox, an ε > 0, and finite
{
g1, ..., gk

}
⊂ M such

that for any j ∈ I we have an i � j satisfying xi /∈ Ox and

max
1≤l≤k

|gl(xi)− gl(x)| ≥ ε > 0

so there is some g ∈ M such that g(xi) 9 g(x). On the other hand, suppose

that for any net {xi}i∈I ⊂ E and point x ∈ E, one has that g(xi) → g(x) for

all g ∈M implies that xi → x in E. Then, by Lemma 1 one has that

G = {{y ∈ E : max
1≤l≤k

|gl(y)− gl(x)| < ε} : x ∈ E, ε > 0, g1, ..., gk ∈M, k ∈ N}(3)

is a basis for a topology finer than T so given x, Ox there are ε > 0 and

g1, ..., gk ∈ M such that {y ∈ E : max1≤l≤k |gl(y) − gl(x)| < ε} ⊂ Ox.

Therefore,

inf
y/∈Ox

max
1≤l≤k

|gl(y)− gl(x)| ≥ ε

and M s.s.p. 2

This lemma provides a useful means to establish that classes of functions s.s.p.

For example, if (E, d) is a metric space, then the non-negative, uniformly

continuous functions

{gy,k(·) $ (1− kd(·, y)) ∨ 0 : y ∈ E, k ∈ N} (4)
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s.s.p. Moreover, they have bounded support in general and compact support

on locally compact spaces since gy,k(·) is zero off of the ball with center y and

radius 1/k.

Lusin spaces include Polish spaces and are very important in probability theory

(see for example Meyer and Zheng [8]). A Hausdorff space E is Lusin if it is

the image of a Polish space under a continuous bijection. The well-known fact

that the continuous bijection can be taken to be a Borel-isomorphism can be

used to show there is a countable collection of bounded functions that s.s.p.

Indeed, suppose that S is Polish and J : S → E is this continuous bijection.

Then, a collection of continuous, bounded functions that s.s.p. on S can be

found, for example by Equation (4), and turned into a countable collection

{gk}∞k=0 by Lemma 2. It follows by Lemma 4 and the continuity of J that

{gk ◦ J−1}∞k=0 s.s.p. on E. In general, these composite functions will not be

continuous as J−1 need not be.

In the case E is the dual of a nuclear space or just a completely regular

topological space with collection of pseudometrics D, the class of functions

defined in (4) can be extended to a s.s.p. class on E by letting d range over D

as well.

For a metric space (E, d), we define DE[0,∞) to be the space of all E-

valued functions on [0,∞) that are right continuous and have left hand limits.

DE[0,∞) is a metric space with metric

d̃(x, y) $ inf
λ∈Λ

esssup
t≥0

| log λ′(t)| ∨
∞∫
0

e−u sup
t≥0

(d(x(λ(t) ∧ u), y(t ∧ u)) ∧ 1)du



for all x, y ∈ DE[0,∞), where Λ is the collections of strictly increasing Lips-

chitz continuous functions from [0,∞) onto itself. See also Section 3.5 of [6]
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for more details. Suppose S is another metric space and f : E → S is con-

tinuous. Then, we define f̃ : DE[0,∞) → DS[0,∞) by f̃(x)(t) = f(x(t)) for

t ≥ 0. Now, we list a basic result that will be used in the sequel. It follows

from Problems 3.11.22 and 3.11.23 of Ethier and Kurtz [6] or, alternatively,

the proofs of Theorems 1.7 and 4.3 ii) of [5].

Theorem 5 Let S be a metric space, H1 ⊂ C(S) s.s.p., H2 $ {f + g : f, g ∈

H1}, and H = H1 ∪H2. Then, Ĝ : DS[0,∞) → (DR[0,∞))H is an imbedding,

where Ĝ(x) = (g̃(x))g∈H for x ∈ DS[0,∞).

In the sequel, P(S) will denote the Borel probability measures on any topo-

logical space S and βk will be the projection mapping onto the kth component

of R∞.

4 Weak Convergence and Separation Results

We first consider general spaces and establish conditions on E and M under

which {ĝ(P ) $
∫
E gdP}g∈M s.s.p. on (P(E),T W ), where T W is the topology

of weak convergence of probability measures. One can see through Lemma 4

that our result is an extension of the probability measure convergence result

in Theorem 3.4.5 b) of Ethier and Kurtz [6]. Due to the definition of weak

convergence of probability measures as well as the desired use of compactness,

we now work with bounded functions. Still, given a class M of functions that

s.s.p. one can create a class of positive, bounded functions that s.s.p. For

example,
{

eg

1+eg : g ∈M
}

is one such class.

Theorem 6 Suppose (E, T ) is a topological space, {Pn}∪{P} ⊂ P(E), M⊂
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B(E) s.s.p. and is closed under multiplication, and

∫
E

gdPn →
∫
E

gdP ∀g ∈M.

a) If E has a countable basis and M ⊂ C(E), then Pn ⇒ P on (E, T ). b) If

M is countable, then Pn ⇒ P on (E, ρ) and (E, T ), where ρ is defined in (2)

with {gk}∞k=0 = M.

Remark 1 The extensions of Theorem 6 over Ethier and Kurtz [6] Theorem

3.4.5 b) are due to the facts that we do not require the space to be Polish nor

even continuity of {gk}∞k=0 in the case of b). These extensions are important in

the sense that they allow us to handle the case where E is Lusin and the class

that s.s.p. is constructed from the (pre-image) Polish space as explained in the

previous section. Our theorem also handles completely regular spaces like the

tempered distributions and path spaces of same (see for example the important

works of Mitoma [9] and Chapter 2 of Kallianpur and Xiong [7]), which are

important in probability. Still, a central argument in our proof is motivated by

the development of [6] Theorem 3.4.5 b).

Remark 2 Since C(E, ρ) ⊃ C(E, T ) when {gk}∞k=0 $ M ⊂ B(E) s.s.p., b)

gives convergence on a possibly larger collection of functions than a).

Proof. a) By Lemma 2 we can assume M = {gk}∞k=0 is countable and define

the homeomorphism G : E → G(E) ⊂ R∞, where G(x)
.
= (g0(x), g1(x), ...)

and G(E) has the subspace topology. We set Q = PG−1, Qn = PnG
−1 on

B(G(E)) and let G be the σ-field of subsets of R∞ of the form A = B ∪ B′

where B ∈ B(G(E)) and B′ ∩G(E) = ∅. Then, we note that B(R∞) ⊂ G and

define Q̂(A) = Q(B) with Q̂n being defined similarly. Letting K(E) = G(E)

be the compact closure of G(E) in R∞, one finds that Q̂ and Q̂n also define,
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by restriction, probabilities on B(K(E)) ⊂ K(E) ∩ G $ {K(E) ∩A : A ∈ G},

which are equal to Q and Qn respectively on B(G(E)) ⊂ K(E) ∩ G. Noting

Q̂(G(E)) = Q̂n(G(E)) = 1 and using our assumptions, one has that

∫
K(E)

f ◦ (β0, ..., βk)dQ̂n →
∫

K(E)

f ◦ (β0, ..., βk)dQ̂

for polynomials f . Since K(E) is compact Stone-Weierstrass gives Q̂n(β0, ..., βk)
−1 ⇒

Q̂(β0, ..., βk)
−1 on Rk for each k. Noting

{
Q̂n

}
are tight and applying the

tightness and consistency argument and the Lemma 3 found on pages 38-39 of

Billingsley [2], we obtain Q̂n ⇒ Q̂ on R∞ and then on K(E) by the Portman-

teau theorem. Any uniformly continuous function on G(E) extends continu-

ously to K(E) and we obtain Qn = Q̂n ⇒ Q̂ = Q on G(E). G−1-continuity

and the continuous mapping theorem yield Pn ⇒ P .

b) By Lemma 3b), {Pn}∪{P} are probabilities on (E, ρ), and M = {gk}∞k=0 ⊂

C(E, ρ) s.s.p. on (E, ρ). Thus, b) follows from a) applied to (E, ρ) and the

fact that (E, T ) has a coarser topology than (E, ρ), which implies C(E, ρ) ⊃

C(E, T ). 2

Now, we can recover Proposition 3.4.4 of [6] in an elementary manner. Indeed,

the following corollaries follow from Theorem 6 a) by taking M to be the

space of uniformly continuous functions with bounded support and the space

of continuous functions with compact support respectively. Both classes are

clearly algebras that s.s.p. since they contain the functions defined in (4).

Corollary 7 Suppose that E is a separable metric space. Then, the space

M of uniformly continuous functions with bounded support is convergence

determining.
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Corollary 8 Suppose that E is a separable, locally compact metric space.

Then, the space of continuous functions with compact support is convergence

determining.

Next, Theorem 6 b) can be used to generalize Theorem 12.6 p. 136 of Billings-

ley [3] from finite to infinite intervals and to not-necessarily complete metric

spaces.

Theorem 9 Let (E, d) be a separable metric space, βt1,t2,...,tk
(x) $ (x(t1), x(t2), ..., x(tk))

for all 0 ≤ t1 < t2 < · · · < tk, x ∈ DE[0,∞) be the projection function,

{Pn}∞n=1, P ∈ P(DE[0,∞)), and R be a countable, dense subset of [0,∞).

Suppose that S is a Borel subset of DE[0,∞) satisfying Pn(S) = P (S) = 1

as well as the property that xn, x ∈ S and xn(t) → x(t) for all t ∈ R implies

xn → x in DE[0,∞). Then, Pn ⇒ P on DE[0,∞) if Pnβ
−1
t1,t2,...,tk

⇒ Pβ−1
t1,t2,...,tk

for all t1, ..., tk ∈ R.

Proof. If {hk}∞k=0 ⊂ C(E) s.s.p. and is closed under multiplication, then

M = {gk}∞k=0 $ {(h1 ◦ βt1) × · · · × (hj ◦ βtj) : hi ∈ {hk}∞k=0, t
i ∈ R, j ∈ N}

⊂ B(DE[0,∞)) s.s.p. on S (by Lemma 4) and is closed under multiplication.

Moreover, by hypothesis
∫

gdPn →
∫

gdP for all g ∈ M so by Theorem 6

b) Pn ⇒ P on (S, d̃). Finally, O ∩ S is open in (S, d̃) for any open O ⊂

(DE[0,∞), d̃) so lim inf
n→∞

Pn(O) = lim inf
n→∞

Pn(O ∩ S) ≥ P (O ∩ S) = P (O) by

Portmanteau and weak convergence holds. 2

Next, we extend Corollary 3.9.2 of Ethier and Kurtz [6] to the separable metric

space case using Theorem 6 a). In the following proof, we use the fact (see [6],

Theorem 3.5.6) that (DE[0,∞), d̃) is separable if (E, d) is.

Theorem 10 Suppose (E, d) is a separable metric space, M ⊂ C(E) s.s.p.,
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{Xn} , X ∈ DE[0,∞), and (g1, ..., gk) ◦Xn ⇒ (g1, ..., gk) ◦X in DRk [0,∞) for

each k ∈ N, g1, ..., gk ∈M. Then, Xn ⇒ X in DE[0,∞).

Proof. Let Pn $ L(Xn), P $ L(X) be the laws of Xn, X; M′ ⊂ C(E) be

the collection of finite sums of functions in M; and {hk}∞k=0 ⊂ C(DR[0,∞))

s.s.p. Then, it follows by Theorem 5 that the collection {hk ◦ g̃}k∈N,g∈M′ s.s.p.

on DE[0,∞) and by hypothesis that

∫
DE [0,∞)

m∏
i=1

hi(g̃i(x))Pn(dx) →
∫

DE [0,∞)

m∏
i=1

hi(g̃i(x))P (dx)

for all gi ∈M′, hi ∈ {hk}∞k=0, and m ∈ N. Therefore, it follows by Theorem 6

a) that Xn ⇒ X on DE[0,∞). 2

Clearly, the use of the homeomorphism in Theorem 6 simplified the develop-

ment of Theorem 10 compared to Ethier and Kurtz [6] Theorem 3.9.1 and

Corollary 3.9.2, which uses compactness techniques and requires complete-

ness. We also got around their boundedness assumption in assuming only

that M⊂ C(E) instead of M⊂ C(E).

Remark 3 An alternative, direct proof of Theorem 10 may be of interest.

Suppose we choose {gk}∞k=0 ⊂M that s.s.p., set G(x) = (g0(x), g1(x), ...) and

let

Y n = G(Xn), Y = G(X)

Y n,k = (g0(X
n), ..., gk(X

n), 0, 0, ...)

Y k = (g0(X), ..., gk(X), 0, 0, ...).

Then, for fixed k, Y n,k ⇒ Y k in DR∞ [0,∞) by assumption. Next, letting

r(x, y) =
∑∞

k=0
|xk−yk|∧1

2k be the metric on R∞, one finds that

sup
n∈N

sup
t≥0

r(Y n,k
t , Y n

t ) and sup
t≥0

r(Y k
t , Yt)
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converge to zero in probability as k →∞. It follows by Theorem 4.2 of [2] that

Y n ⇒ Y in DR∞ [0,∞) and in DG(E)[0,∞) with the relative topology by the

Portmanteau theorem and the fact that P (Y n ∈ DG(E)[0,∞) ∩O)) = P (Y n ∈

O)) for all open O ⊂ DR∞ [0,∞). Thus, Xn = G−1(Y n) ⇒ G−1(Y ) = X.

Now, we can use Theorem 6 a) to generalize and simplify the development of

[6] Theorem 3.4.5 a) as well as Kallianpur and Xiong [7] Theorem 2.1.4. We

note that b) of the following theorem applies when M is a countable collection

of measurable functions whilst e) accommodates an uncountable collection but

the collection must be continuous.

Theorem 11 Let (E, T ) be a topological space; P, Q be Borel probability mea-

sures; M⊂ B(E) be closed under multiplication; and

∫
E

gdQ =
∫
E

gdP ∀g ∈M.

Then,

a) Q = P on B(T M), where T M is the topology with basis BM is defined as

in (1);

b) Q = P if (E, T ) is consistent with a Polish space, M s.p. and M is

countable;

c) Q = P if M s.s.p. and is countable;

d) Q = P if P, Q are regular and M ⊂ C(E) s.p.; and

e) Q = P if (E, T ) is consistent with a Polish space and M⊂ C(E) s.p.

Remark 4 To be precise, we follow Dudley [4] p. 174 for our definition of

regularity.
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Proof. Suppose N $ {gk}∞k=0 s.p. and ρ is defined as in (2). Then, we find by

an identity-map change of variables that

∫
(E,ρ)

gdQ =
∫

(E,ρ)

gdP ∀g ∈ N

and N s.s.p. on (E, ρ) so Q = P on the Borel sets of (E, T N ) by Theorem 6

b), where T N is defined as in the sentence containing Equation (1). Therefore,

for a), we take N $ {gk}∞k=0 ⊂M, turn ρN as defined as in (2) into a metric

on the equivalence classes Ê of points in E, set Q̂ = QÎ−1, where Î maps a

point into its equivalence class, and find Q = P on B(E, ρN ) $ T ({{y ∈ E :

ρN (x, y) < ε} : x ∈ E, ε > 0}) for pseudometric ρN . Since N was arbitrary we

have that Q = P on BM hence on B(T M). Now, b) and c) follow respectively

by Lemma 3 a) and b).

Next, for d) the fact that C(E) s.p. implies (E, T M) is Hausdorff so compacts

are closed. We let K ⊂ E be any compact, take ε > 0 and note by regularity

that there is a compact K̂ ⊂ Kc such that P (K̂) > P (Kc) − ε. Since Kc is

open in T M we can find Gx ∈ BM such that x ∈ Gx ⊂ Kc for each x ∈ K̂. By

compactness there is a finite collection {Gxi
}n

i=1 such that K̂ ⊂
n⋃

i=1
Gxi

⊂ Kc.

Thus, using a), one finds that

P (K) = 1− P (Kc) > 1− P (K̂)− ε

≥ 1− P (
n⋃

i=1

Gxi
)− ε

= 1−Q(
n⋃

i=1

Gxi
)− ε

≥ 1−Q(Kc)− ε

and P (K) ≥ Q(K). d) follows by symmetry. Finally, e) follows from d) and

Ulam’s theorem on regularity of probability measures on Polish spaces. 2
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Our generalization of [6] Theorem 3.4.5 a) was from Polish to topological

spaces. While we did require that M be countable in c) this is no restriction

when T has a countable basis. Part d) of our result also generalizes Kallianpur

and Xiong [7] Theorem 2.1.4 since M $ {d(x, ·) ∧ 1 : d ∈ D} are continuous,

bounded functions that s.p. for any class of pseudometrics D that generate

the topology and their notion of a Radon probability measure is handled by

our use of regularity. Moreover, we can extend parts b) and e) to the context

of Lusin spaces.

Corollary 12 Let E be a Lusin space; P, Q be Borel probability measures;

and

∫
E

gdQ =
∫
E

gdP ∀g ∈M,

where M ⊂ B(E) be closed under multiplication and s.p. Then, Q = P if

a)M is countable, or b) M⊂ C(E).

Proof. Suppose that S is a Polish space and J : S → E is a continuous

bijection such that J−1 is measurable. Then, we have that {g ◦ J : g ∈ M}

s.p. on S so by a change of variables

∫
E

g(x)Q(dx) =
∫
S

g(J(u))QJ(du),
∫
E

g(x)P (dx) =
∫
S

g(J(u))PJ(du)

and either part b) or e) of Theorem 11

Q(J(A)) = P (J(A)) ∀ A ∈ B(S).

However, this implies that Q = P on E since J is a Borel isomorphism. 2
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While the theory of probability measures on Lusin spaces is very important, it

is quite a difficult area. Our corollary here and our earlier result for weak con-

vergence on Lusin spaces will hopefully make some problems on these spaces

slightly easier.

Remark 5 Apropos of the separability type requirement in Theorem 11, Billings-

ley [2] notes in his Appendix III that it is unknown if there are metric space

probabilities having nonseparable support. If this is impossible, then separabil-

ity isn’t required in Alternative b) of Theorem 11. Otherwise, there would be

distinct P, Q (at least one non-Radon) on a nonseparable metric space E such

that
∫
E gdQ =

∫
E gdP for all g in a strongly separating class M. Indeed, by

the proof of Theorem 2 in Appendix III of [2] the existence of a probability with

nonseparable support implies the existence of a probability on a discrete space

that has no point masses. Now, suppose that P1, P2 are two such probabilities

on disjoint discrete spaces A1, A2; E = A1∪ A2 and

P $


P1 on A1

0 on A2

and Q $


0 on A1

P2 on A2

.

Letting M ⊂ C(E) be the algebra generated by the indicator functions of

singletons, one finds that small enough open balls give rise to the singletons and

M s.s.p. However, P 6= Q and neither have point masses in E so
∫
E gdQ =∫

E gdP = 0 for g ∈M.
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