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Partially observed microstructure models, containing stochastic volatility, dynamic trading noise, and short-term inertia, are
introduced to address the following questions: (1) Do the observed prices exhibit statistically significant inertia? (2) Is stochastic
volatility (SV) still evident in the presence of dynamical trading noise? (3) If stochastic volatility and trading noise are present,
which SVmodel matches the observed price data best? Bayes factor methods are used to answer these questions with real data and
this allows us to consider volatility models with very different structures. Nonlinear filtering techniques are utilized to compute the
Bayes factor on tick-by-tick data and to estimate the unknown parameters. It is shown that our price data sets all exhibit strong
evidence of both inertia and Heston-type stochastic volatility.

1. Introduction

Financial analysts list speculation, finiteness of assets, interest
rates, tick size, price inertia, price clustering, belief het-
erogeneity, asymmetric information, greed and fear, and so
forth as causes for price fluctuations over time. Yet, popular
models like geometric Brownian motion (GBM) (e.g., Black
and Scholes [1], Merton [2]) or the Cox-Ross-Rubinstein
model [3] try to handle all these factors in an overly
simple framework, resulting in unnatural phenomena like
the volatility smile. Consequently, stochastic volatility, which
has been observed in real prices, is often added to the price
value evolution (e.g., Heston [4], Jachwerth and Rubinstein
[5], Hull andWhite [6], andNelson [7]) to avoid the volatility
smile. However, which stochastic volatility model fits the
market data best?

Nowadays, many authors talk about the misspecification
of stochastic price-volatility models (including the Heston
model which we show favorably herein) so much. It leads us
to wonder whether there aremissing ingredients to these very
simple models. Even combined stochastic value-volatility
models do not address tick size, price inertia, price clustering,
hidden liquidity, and fear-greed cycles that traders, especially
high frequency traders, must deal with. To handle these

issues, one is drawn to tick-by-tick microstructure models
and left with the perplex question: How should one model
price inertia in continuous time? We are using the term
price inertia instead of the related term price momentum
because we are not weighting transaction prices by volume.
Fractional Brownian motion (FBM), best known for its long
memory properties, exhibits inertia and has been used to
model markets (Mandelbrot [8], Shiryaev [9]) even though
these models allow arbitrage strategies. We speculate that
FBM’s success inmodeling observed data is more attributable
to inertia than long memory. However, we introduce an
alternative inertia process and show that this new process
better satisfies the desired properties of inertia than FBM.
We then show strong statistical evidence of price inertia that
lasts for hours or days using Bayes estimates and Bayes factor
on real price data. We do not consider the possibility of
arbitrage nor determine derivative prices for our models but
rather leave these interesting mathematical finance questions
to the experts. (See Capinski and Zastawniak [10] for an
excellent introduction to these types of questions and to
mathematical finance in general.) Also, we leave the difficult
task of obtaining theoretical error bounds for our particle
filter methods to other works. (See, e.g., Kouritzin and Zeng
[11] and Del Moral et al. [12] for related work on approximate
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filters.) Our focus is solely on modeling observed stock price
data and the methodology of determining which of a class of
models best fits the observed data.

High frequency data contains complete market-
participant trading activities (Engle [13]) and is modeled
using microstructure (Black [14], Chan and Lakonishok
[15], Hasbrouck [16, 17], Engle and Russell [18], Engle [13],
and Bandi and Russell [19]). Unlike the macrostructure
market, the trading noise in the microstructure market is
not negligible; thus, the intrinsic asset value is not readily
discernable. In this paper, we introduce a class of dynamic
microstructure models, where the transaction price is
formulated as a distorted and color-noise corrupted variant
of the intrinsic asset value with the intrinsic asset value being
a traditional stochastic value-volatility process. Indeed, we
view the transaction price data as random counting-measure
observations of intrinsic value corrupted by microstructure
trading noise with such things as inertia and fear-greed cycles
built in. However, trading noise sources themselves introduce
volatility to transaction prices. This raises the question, “Do
we need to model stochastic volatility explicitly in the
presence of dynamic microstructure trading noise?” We will
give strong evidence of the presence of stochastic volatility
through Bayes factor methods and stochastic filtering theory.
Moreover, we also utilize model selection to provide strong
evidence of Heston-type volatility over competing stochastic
volatility models based on the observed transaction data in
a microstructure market. This suggests that the common
viewpoint of the Heston model being highly misspecified
might be better stated as overly simplistic macrostructure-
only models are underspecified. Bayes factor (see, e.g., Kass
and Raftery [20]) is our preferred model selection method
since it provides statistical comparisons in real time as to
which model best fits the market data while allowing the
stochastic value-volatility (signal) models to be singular to
one another. Indeed, to use the Bayes factor method, we need
only to be able to transform all microstructure asset-price
observation models of interest into the same canonical
process via Girsanov-type measure change.

Previously, Zeng [21] studied a filtering equation for infer-
ring the intrinsic value process in a microstructure model
while Xiong and Zeng [22] proposed a branching particle
approximation to this equation. Kouritzin and Zeng [23]
derived a Bayes factor equation and discussed the Bayesian
model selection problem to determinewhether financial data,
such as stock prices, display jump-type stochastic volatility.
However, all theseworks are based on a restrictedmicrostruc-
ture model and thus cannot be applied to our general setting.
Moreover, our problems of showing statistical evidence of
inertia and determining which of the classical stochastic
volatility models best represents real data in the presence of
microstructure noise were not considered. We also propose a
new inertia process, explain its role in modeling prices, and
show its statistical significance with real tick-by-tick data.

Section 2 is devoted to explaining our model. First, our
five standard value-volatility models (GBM, Hull-White, Log
Ornstein-Uhlenbeck, continuous GARCH, and Simplified
Heston) are given followed by our microstructure inertia
process and its properties and then the other components

of our dynamic microstructure model. Together the value-
volatility and microstructure components form our price
evolutionmodel, which, at the end of Section 2, is interpreted
as a filtering model. In Section 3, we discuss model calibra-
tion and fair price/value estimation through Bayesian filter
estimation. A filtering equation and a branching particle filter
approximation algorithm are first given and explained.Then,
their use to identify parameters and come up with initial state
estimates is discussed. Finally, numeric parameter and initial
state estimates for each model are given. As a byproduct,
it is demonstrated that proper modeling and estimation of
fair price (as is done herein) can provide information about
overbought conditions and help avoid financial loss (see
Figure 4). Section 4 is dedicated to Bayesian model selection.
We first motivate the use of Bayes factor for model selection
and explain how to estimate Bayes factor from unnormalized
particle filters.Then,we establish strong statistical evidence of
inertia andHeston-type volatility in all our price data through
model selection using the Bayes factor method to test which
fair price-volatility model and what amount of inertia best fit
the observed price data.

2. The Partially Observed Market Model

In this section, we build our stochastic model that has
macrostructure and microstructure components and inter-
pret this model in terms of a signal that needs to be estimated
in real time and observations which are used to form the
signal estimates. The macrostructure model consists of fair
price, volatility, and related parameters and will be denoted
by (𝑋, 𝜃) in the sequel, with 𝑋 = (𝑆, 𝑉) being price
and volatility and 𝜃 being the parameters for this model.
Unlike macrostructure models, we do not assume access to
(𝑋, 𝜃), but rather we take it to be part of the signal to be
estimated. Indeed, a model would be judged to be better if
the macrostructure price 𝑆 (which represents a “fair” price)
is quite different than the observed price and we can use
filtering to determine overbought and oversold situations.

The microstructure price construction converts the
macrostructure model into the observed price. Such things
as inertia (or momentum), fear-greed cycles, and whole-
price clustering (or rounding), which are not part of the
fair price, are incorporated into the microstructure model.
A distinguishing feature in our microstructure is dynamic
state: To allow the microstructure to influence price over
a period of time so that the observed microstructure price
can differ from fair price significantly, one needs to add and
then estimatemicrostructure state𝑍. In particular, the inertia
process, characterized by a parameter ℎ, is introduced to
capture price inertia thatmight be caused by hidden liquidity;
various reaction and access times to information as well as
momentum traders themselves. This inertia process is not
Markov, so we will have to consider the historical version 𝑍ℎ
of this state. Further,𝑍ℎ is also unobservable and hence must
be added to the signal along with microstructure parameters
𝜗 and all must be estimated as nuisance parameters.

Thenondynamic part of themicrostructure noise consists
of rounding and clustering noise. It is widely observed in
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markets that more trades occur at more even prices like
whole nickel or whole dollar levels. Therefore, to match
observed prices well, we should have a mechanism to con-
vert evenly distributed raw prices into whole-price-biased
observed prices. This is done by binning raw prices into sets
𝐷1,𝐷2,𝐷3,𝐷4, and𝐷5 depending on how even they are and
then randomlymoving rawprices in the less even bins to close
prices in the more even bins in order to match the observed
prices.

The observations then become the marked counting
process of the number of trades that occur at the various
prices. We will later use these observations to select and
calibrate models and to estimate the augmented signal:

(𝑋, 𝜃, 𝜗, 𝑍
ℎ
) . (1)

The whole point of the microstructure is to allow the
macrostructure price to distinguish itself from the observa-
tions and rather to represent fair value. We then use filtering
on asset prices to estimate implied value (hereafter called fair
price) and thereby judge whether an asset is overbought or
oversold.

2.1. General Notation. Let [0, 𝑇] be a fixed time period and let
(Ω,F, (F𝑡)0≤𝑡≤𝑇,P) be a complete filtered probability space.
For any stochastic process 𝜌, its natural filtration, defined as
F

𝜌

𝑡
≐ 𝜎{𝜌𝑢 : 0 ≤ 𝑢 ≤ 𝑡}, represents the information in 𝜌 up

to time 𝑡. N0 denotes the set of nonnegative integers and, for
any Polish space 𝐸, 𝐵(𝐸) is the set of all bounded measurable
R-valued functions on 𝐸.

2.2. Common Macrostructure State Models. We use a
macrostructure model 𝑀 = (𝑋, 𝜃) for the unobservable
fair price together with its volatility and parameters. Here,
𝑋 ∈ R𝑛

𝑥 is the macrostructure financial state (fair price plus
volatility) with macrostructure parameter 𝜃 ∈ R𝑛

𝜃 for some
𝑛𝑥, 𝑛𝜃 ∈ N0. We let 𝜇 be a probability distribution on R𝑛

𝑥
+𝑛
𝜃 ,

takeA to be a generator with domainD(A) ⊂ 𝐵(R𝑛
𝑥
+𝑛
𝜃), and

assume (𝑋, 𝜃) satisfies the martingale problem.

Definition 1. (𝑋, 𝜃) is the unique solution of the R𝑛
𝑥
+𝑛
𝜃-

valued martingale problem for A with initial distribution 𝜇.
That is,

(i) 𝜇 = P ∘ (𝑋0, 𝜃)
−1
,

(ii) 𝑀𝑓

𝑡
= 𝑓 (𝑋𝑡, 𝜃) − 𝑓 (𝑋0, 𝜃) − ∫

𝑡

0

A𝑓 (𝑋𝑠, 𝜃) 𝑑𝑠

(2)

is {F𝑋,𝜃

𝑡
}-martingale for each 𝑓 ∈ D(A).Moreover, if (𝑋, 𝜃)

also satisfies (i) and (ii), then (𝑋, 𝜃) and (𝑋, 𝜃) have the same
finite dimensional distributions.

Remark 2. While 𝜃 does not vary in time, we include it in
our macrostructure model to be estimated because it is still
unknown. Nevertheless, the operator A does not act on the
variable 𝜃 since 𝑑𝜃𝑡/𝑑𝑡 = 0 for our fixed parameters.

Themartingale problem formulation (2) (see Stroock and
Varadhan [24], Ethier and Kurtz [25] for more details) is

general enough to cover most interesting financial models.
In this paper, the macrostructure state 𝑋 consists of two
components: the fair price 𝑆 and the stochastic volatility 𝑉
(if any). The most common example of (𝑆, 𝑉, 𝜃) in finance is
the “geometric Brownianmotion” (GBM) utilized in the clas-
sical Black-Scholes option pricing formula. Throughout this
section, 𝑊 and 𝐵 are two independent standard Brownian
motions and (𝑠, V, 𝜃) ∈ R𝑛

𝑥
+𝑛
𝜃 .

Example 3 (GBM model; see Black and Scholes [1], Merton
[2]). We have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡, (3)

with parameters 𝜃 = (𝜇, 𝜎), corresponds to our martingale
problem with the generator

A(1)
𝑓 =

1

2
𝜎
2
𝑠
2 𝑑

2𝑓

𝑑𝑠2
+ 𝜇𝑠

𝑑𝑓

𝑑𝑠
. (4)

In GBM model, the volatility 𝜎 is a constant. To account
for the “volatility smile” commonly observed in market
option prices (see Jackwerth and Rubinstein [5] for a detailed
survey), the GBMmodel is generalized to stochastic volatility
(SV) models, where 𝜎 itself is replaced by a stochastic process
{𝑉

1/2

𝑡
, 𝑡 ≥ 0}. Some of the popular SV models include the

following.

Example 4 (Hull-White model; see Hull and White [6]).
Consider

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡

𝑉𝑡
= ]𝑑𝑡 + 𝜅𝑑𝐵𝑡,

(5)

with parameters 𝜃 = (𝜇, ], 𝜅) and generator

A(2)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2
+ ]V

𝜕𝑓

𝜕V
. (6)

Example 5 (Logarithmic Ornstein-Uhlenbeck model; see
Scott [26]). We have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉1/2

𝑡

𝑉
1/2

𝑡

= (
1

2
]2 −  (ln𝑉1/2

𝑡
− 𝜛)) 𝑑𝑡 + 𝜅𝑑𝐵𝑡,

(7)

with parameters 𝜃 = (𝜇, ], , 𝜛, 𝜅) and generator

A(3)
𝑓 =

1

2
V2𝑠2

𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2

+ V (
1

2
]2 −  (ln V − 𝜛))

𝜕𝑓

𝜕V
.

(8)
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Example 6 (continuous GARCH model; see Nelson [7]). We
have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡 = (] − 𝑉𝑡) 𝑑𝑡 + 𝜅𝑉𝑡𝑑𝐵𝑡,
(9)

with parameters 𝜃 = (𝜇, ], , 𝜅) and generator

A(4)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V2

𝜕2𝑓

𝜕V2

+ (] − V)
𝜕𝑓

𝜕V
.

(10)

Example 7 (simplified Heston model; see Heston [4]). We
have that

𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑑𝑡 + 𝑉

1/2

𝑡
𝑑𝑊𝑡,

𝑑𝑉𝑡 = (] − 𝑉𝑡) 𝑑𝑡 + 𝜅𝑉
1/2

𝑡
𝑑𝐵𝑡,

(11)

with parameters 𝜃 = (𝜇, ], , 𝜅) and generator

A(5)
𝑓 =

1

2
V𝑠2
𝜕2𝑓

𝜕𝑠2
+ 𝜇𝑠

𝜕𝑓

𝜕𝑠
+
1

2
𝜅
2V
𝜕2𝑓

𝜕V2
+ (] − V)

𝜕𝑓

𝜕V
. (12)

We label this example as simplified because we do not
allow 𝐵 and 𝑊 to be correlated as Heston did. There is
no mathematical issue by including this correlation, but
it would add a parameter to the model, which increases
computation time. The Heston model already performed
the best without this parameter. GBM (with microstructure)
plays a special role in our study as it is our no stochastic
volatility model. We will compare our other models against
it on real data to determine whether stochastic volatility is
present. In summary, refer to Table 1.

Remark 8. ThecontinuousGARCHmodel is the continuous-
time limit of many classical GARCH-type discrete-time
processes (Nelson [7], Drost and Werker [27]). We did not
consider jumping stochastic volatility models (e.g., Elliott
et al. [28], Kouritzin and Zeng [23], Duffie et al. [29], Eraker
et al. [30], and Eraker [31]) or models where 𝑊, 𝐵 are
correlated, due to our need to dedicate our limited com-
puter resources to handling our complicated (non-Markov)
microstructure with inertia. Still, we want to emphasize that
the computational complexitywe experienced is fundamental
to the fact that we are using non-Markov (inertia)models and
has little to dowith our particularmethods. Indeed, our Bayes
factor filtering methods are what makes the computations
possible on an inexpensive contemporary desktop computer.

2.3. Construction of Microstructure Price. The fair price-
volatility models account for the random variances of the
intrinsic asset value; thus, the selection of proper SV model
is crucial for investing, derivative pricing, and hedging. On
the other hand, microstructure noise (see Black [14], Hansen
and Lunde [32], Duan and Fulop [33], etc.) causes random

Table 1

Name Model Macrostate Macroparameter Generator
GBM 𝑀(1) 𝑆 (𝜇, 𝜎) A(1)

Hull-White 𝑀
(2)

(𝑆, 𝑉) (𝜇, ], 𝜅) A(2)

Log O-U 𝑀(3) (𝑆, 𝑉) (𝜇, ], , 𝜛, 𝜅) A(3)

GARCH 𝑀(4) (𝑆, 𝑉) (𝜇, ], , 𝜅) A(4)

Heston 𝑀
(5)

(𝑆, 𝑉) (𝜇, ], , 𝜅) A(5)

perturbations of transaction price from its intrinsic value and
the disregard of such trading noise introduces severe bias into
stochastic volatility estimation (seeDuan and Fulop [33]).We
incorporate microstructure trading noise into traditional fair
price-volatility models and use statistical filtering to reveal
such things as short-term inertia in the trading noise and
stochastic volatility in the intrinsic value.

In microstructure markets, the price changes occur only
at irregularly spaced transaction times 𝑡1, 𝑡2, . . . with total
trading intensity 𝑎(𝑡) (see Engle [13]). Here, we assume 𝑎(𝑡)
is just a time-varying measurable function as the empirical
analysis illustrates that there is no need to consider more
general structures. At each transaction time 𝑡𝑖, the transaction
price 𝑌𝑡

𝑖

is formulated as

𝑌𝑡
𝑖

= 𝐹 (𝑋𝑡
𝑖

, 𝑡𝑖) , (13)

where𝐹 is some nonlinear randomfieldmodeling the trading
noise. Formulation (13) is similar to that of Hasbrouck [16],
where 𝑋 is the intrinsic and permanent component while 𝐹
introduces the transitory component.

The empirical evidence reported by Hansen and Lunde
[32] suggests strongly that the trading noise is serially
correlated. Similar results can be found in Aı̈t-Sahalia et
al. [34]. Indeed, there exist situations in which the trading
noise variance estimate is zero if the trading noise is simply
assumed to be independent (see Duan and Fulop [33]).
This does not mean there is no trading noise but rather
that the trading noise is autocorrelated. To characterize this
correlation, Hansen and Lunde [32] assume the trading
noise to be some Gaussian random sequence with stationary
covariance and finite dependence. However, this model is
most suitable for the low-frequency data and ignores many
crucial microstructure effects. We build correlation into
our microstructure information noise through inertia and
mean-reversion while utilizing microstructure rounding and
clustering noise to explain the discreteness and whole-price
biasing.

2.3.1. Inertia. The idea ofmomentumor inertia has been used
in many studies (see Jegadeesh and Titman [35], Moskowitz
and Grinblatt [36], Grundy and Martin [37], Grundy et al.
[38], etc.). Basically, there is the tendency for a stock to
continue tomove in one direction. To illustrate our approach,
we introduce the following definition.
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Definition 9. A process (𝑍𝑡) is said to have stochastic inertia
at time 𝑡 if

𝐼
𝑍

𝑡
≐ lim

𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝑍𝑢𝑍𝑡] ∈ (0,∞] . (14)

𝐼𝑍
𝑡
is called the inertia function.

The idea behindour definition is that for inertiawe should
expect𝑍𝑢+𝑟−𝑍𝑢 and𝑍𝑡−𝑍𝑡−𝑘 to have the same sign for 𝑢 > 𝑡,
but close to 𝑡 and 𝑟, 𝑘 > 0 small. We strengthen this condition
to

lim
𝑢↘𝑡

lim
𝑘→0

lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) (𝑍𝑡 − 𝑍𝑡−𝑘)]

𝑟𝑘
> 0

⇐⇒ lim
𝑢↘𝑡

lim
𝑘→0

[ lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) 𝑍𝑡]

𝑟𝑘

− lim
𝑟→0

𝐸 [(𝑍𝑢+𝑟 − 𝑍𝑢) 𝑍𝑡−𝑘]

𝑟𝑘
] > 0

⇐⇒ lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
𝐸 [𝑍𝑢𝑍𝑡] > 0.

(15)

Many processes have inertia. However, to model the stock
price effect of the information reaching all market partici-
pants, wewant the following five properties: (1)𝑍𝑡 is Gaussian
and driftless and Var(𝑍𝑡) is proportional to 𝑡 so 𝑍 resembles
Brownian motion; (2) 𝐼𝑍

𝑡
is finite, not infinite, indicating that

the influence of past values on immediate future is not too
strong; (3) 𝑍𝑡 makes sense from informational and hidden
liquidity points of view; more precisely, it can explain well
the price effects due to the reactions of all market participants
to information and rumor being diffused and simulated over
a period of time as well as due to the purchases or sales of
an agent spreading out a large change in his/her position
over time; (4) 𝑍 is easy to simulate using, for example, the
Gaussian property; (5) 𝑍 is easy to analyze.

Neither a Brownianmotion𝐵normore generally a square
integrablemartingale has inertia. Brownianmotionwith drift
𝑍𝑡 = 𝑍0 +∫

𝑡

0
𝑚(𝑍𝑠)𝑑𝑠 + 𝐵𝑡 has inertia 𝐼

𝑍

𝑡
= 𝐸[𝑚2(𝑍𝑡)] but we

do not want drift. For fractional Brownianmotion (FBM) 𝐵ℎ,

E [𝐵
ℎ

𝑡
𝐵
ℎ

𝑢
] =

1

2
(|𝑡|

2ℎ
+ |𝑢|

2ℎ
− |𝑢 − 𝑡|

2ℎ
) , (16)

where ℎ ∈ (0, 1) is the Hurst parameter. Therefore,

lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝐵

ℎ

𝑡
𝐵
ℎ

𝑢
] = lim

𝑢↘𝑡
((2ℎ − 1) ℎ (𝑢 − 𝑡)

2ℎ−2
) = ∞

if ℎ > 1
2
.

(17)

Thus, the inertia function of 𝐵ℎ is infinity for all 𝑡 if ℎ >

1/2 (and is −∞ if ℎ < 1/2). Neither case satisfies our five
properties. Still, standard representations of FBM motivate
the creation of driftless inertia by convolving a Brownian
motion with the desired impulse response for information
dissemination. With this in mind, we consider the following
inertia process.

Definition 10. Our stochastic inertia process is

𝜉
ℎ

𝑡
= √ℎ∫

𝑡

0

tanh((𝑡 − 𝑠)
Δ

) 𝑑𝐵
𝜉

𝑠
+ √1 − ℎ𝑊

𝜉

𝑡
, (18)

where (𝐵𝜉,𝑊𝜉) is a 2-dimensional standard Brownian
motion, Δ > 0, and 0 ≤ ℎ ≤ 1.

Remark 11. 𝜉ℎ
𝑡
is a weighted average of the historical infor-

mation (the first term) and fundamental information (the
second term). In fact, tanh(𝑡/Δ) can be viewed as the impulse
response on price created by market participants receiving
and simulating the “information” 𝑑𝐵𝜉

𝑡
and Δ determines the

diffusion speed in the market. This formulation captures the
idea that news or rumor and its ramifications require time
to be fully disseminated and understood. When ℎ = 1, it
represents the case of only historical information resulting in
the strongest inertia in prices. Alternatively, we can use inertia
to explain “hidden liquidity.” If everybody knew that an agent
was going to make a big change in a position, then the price
would immediately jump. However, if the agent breaks up
the desired change into small transactions, then it takes time
for this extra buying or selling pressure to be recognized in
the market. In this case, ℎ = 1 represents the case, where
all changes in position are done over a period of time and Δ
represents the time to effect 58% of the positional change.

Note that 𝜉ℎ
𝑡
is a centered Gaussian process such that the

autocovariance

E [𝜉
ℎ

𝑡
𝜉
ℎ

𝑢
] = ℎ∫

𝑡

0

tanh((𝑡 − 𝑠)
Δ

) tanh((𝑢 − 𝑠)
Δ

) 𝑑𝑠

+ (1 − ℎ) 𝑡

(19)

is positive for any 𝑢 ≥ 𝑡. In particular,

Var (𝜉ℎ
𝑡
)

𝑡
=
ℎ

𝑡
∫
𝑡

0

tanh2 ((𝑡 − 𝑠)
Δ

) 𝑑𝑠 + (1 − ℎ)

= 1 − ℎΔ
tanh (𝑡/Δ)

𝑡
.

(20)

Thus, Var(𝜉ℎ
𝑡
)/𝑡 converges to 1 as 𝑡 → ∞ with speed

determined byΔ. (Hence, informational noise increases at the
same asymptotic rate as Brownian motion.) Moreover,

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝜉

ℎ

𝑡
𝜉
ℎ

𝑢
]

=
ℎ

Δ2
∫
𝑡

0

sech2 ((𝑡 − 𝑠)
Δ

) sech2 ((𝑢 − 𝑠)
Δ

) 𝑑𝑠

(21)

and, using standard antiderivatives,

lim
𝑢↘𝑡

𝜕

𝜕𝑡

𝜕

𝜕𝑢
E [𝜉

ℎ

𝑡
𝜉
ℎ

𝑢
] =

ℎ

Δ2
∫
𝑡

0

sech4 ( 𝑠
Δ
) 𝑑𝑠

=
ℎ

Δ
[tanh( 𝑡

Δ
) −

tanh3 (𝑡/Δ)
3

] .

(22)
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Thus, the inertia function of our inertia process is 𝐼𝜉
ℎ

𝑡
=

(ℎ/Δ)[tanh(𝑡/Δ) − tanh3(𝑡/Δ)/3], the steady-state inertia is

lim
𝑡→∞

ℎ

Δ
[tanh( 𝑡

Δ
) −

tanh3 (𝑡/Δ)
3

] =
2ℎ

3Δ
, (23)

and this happens quickly for small Δ. We can thus verify that
𝜉ℎ, defined in (18), satisfies our five desired properties. One
can also look upon Δ as the time for new information to be
disseminated to fifty-eight percent of the market. Below, we
consider three different dissemination times:Δ = 40minutes,
Δ = 2 hours, and Δ = 1/2 day on real stock data. Finally, the
fact that 𝜉ℎ is Gaussian eases its simulation greatly.

2.3.2. Information Noise and Augmented State. Hitherto, we
have focused on constructing inertia processes. Now, we
include all informational noise into asset prices. Information
noise is introduced to represent trading noises due to things
like inertia, fear-greed cycles, belief heterogeneity, and asym-
metric information. For the 𝑖th-transaction occurring at 𝑡𝑖,
the raw priceY𝑡

𝑖

is defined by

lnY𝑡
𝑖

=
{

{

{

ln 𝑆𝑡
𝑖

+ 𝑍ℎ,Δ
𝑡
𝑖

+ 𝜖𝜁𝑖, dynamical microstructure,

ln 𝑆𝑡
𝑖

+ 𝜖𝜁𝑖, nondynamical,

(24)

𝑑𝑍
ℎ,Δ

𝑡
= −𝜙𝑍

ℎ

𝑡
𝑑𝑡 + 𝑑𝜉

ℎ

𝑡
, 𝑍

ℎ,Δ

0
= 𝑧0, (25)

where 𝑍ℎ,Δ is the dynamical part of the microstructure
through which inertia is introduced (with our inertia process
𝜉ℎ) and 𝑋 = (𝑆, 𝑉). The case 𝑍ℎ,Δ ≡ 0 is of particular
importance in the sequel as it represents the nondynamical
microstructure case and is used as a calibration model.

The information noise consists of two parts: 𝜁 = {𝜁𝑖}
∞

𝑖=1

is a sequence of independent standard Gaussian random
variables, 𝜖 > 0; 𝑍ℎ is Ornstein-Uhlenbeck- (O-U-) like
inertia velocity process with mean-reverting parameter 𝜙 >
0. Here, 𝜉ℎ, 𝜁, and 𝑋 are independent and 𝑧0 is a constant.
𝑍ℎ provides an intuitive continuous-time model that accom-
modates the joint presence of the inertia andmean-reversion.
Our information noise is more reasonable than that of Zeng
[21] in that (1) we preclude the possibility of negative prices by
using multiplicative noise; (2) the stochastic inertia process
𝜉
ℎ captures the empirical feature of the inertia observed in
transaction prices (e.g., Jegadeesh and Titman [35]); (3) the
mean-reverting structure of 𝑍ℎ when combined with the
inertia captures the cyclic property of prices (e.g., Black [14]).
𝑍ℎ is not a Markov process, so we introduce its historical
process as

𝑍
ℎ

𝑡
(𝜏) ≐ 𝑍

ℎ

𝑡∧𝜏
, (26)

which is Markovian. Moreover, 𝑍ℎ
𝑡
∈ 𝐶[0, 𝑇], the space of

all continuous functions on [0, 𝑇], since the paths of 𝑍ℎ are
continuous. Consequently, we augment the state vector to be

(𝑋, 𝜃, 𝜗, 𝑍
ℎ
) , (27)
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Figure 1: Clustering for 3 stocks in April 2010.

where 𝜗 = (𝜖, 𝜙) is the microstructure noise parameter set.
The advantage of this formulation is that we can estimate
𝑍ℎ and thus 𝑍ℎ jointly with other components using particle
filtering methods. The generalized state incorporates fair
price, volatility, parameters, and the historical trading noise
𝑍ℎ while keeping the tractability of a Markovian framework.

Remark 12. We include neither ℎ nor Δ into the model
parameters but rather consider different models correspond-
ing to different values of ℎ andΔ aswell as different SVmodels
1–5. Indeed, we will provide evidence of inertia in the sequel
by usingBayesianmethods to select amodelwith a large value
of ℎ based upon tick-by-tick stock data.

2.3.3. Rounding and Clustering Noise. Our final modeling
goal is to convert uniform raw price into observed whole-
price-biased price. While raw price Y𝑡

𝑖

can take any value,
the trading price 𝑌𝑡

𝑖

is restricted to multiples of the tick,
{𝑦0 = 0, 𝑦1 = 1/𝑀, . . . ,𝑦𝑗 = 𝑗/𝑀, . . .}, for some positive
integer𝑀. The tick size in New York Stock Exchange (NYSE)
was switched to $1/16 from $1/8 in June 24, 1997, and then
further to $0.01 from January 29, 2001. The empirical studies
suggest that the tick size 1/𝑀 plays an important role in
microstructure market analysis (e.g., Huang and Stoll [39]).
Since we are concerned with price clustering for decimal
pricing in stock markets, we let𝑀 = 100.

It is well documented that there is price clustering tomore
whole prices. To quantify this price clustering, we examine
the price behavior for three NYSE-listed stocks over April
2010 (Figure 1 and Table 2). (In a larger study, we considered
eight NYSE stocks in different sectors. However, we only
report on three here to conserve space. The results for the
other five were similar in nature.)

The transaction data of these stocks shows there ismodest
clustering at multiples of 5 cents as shown in Figure 1, plotted
in terms of pennies. Supposing the raw price Y𝑡

𝑖

falls in
the interval [𝑦𝑗 − 1/2𝑀, 𝑦𝑗 + 1/2𝑀), then if there was no
clustering noise, the trading price 𝑌𝑡

𝑖

would just be 𝑦𝑗. Thus,
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Table 2

NYSE stock Ticker symbol
Goldman Sachs GS
International Business Machines Corporation IBM
PepsiCo Inc. PEP

the probability of trading at 𝑦𝑗 with no clustering noise given
𝑋𝑡
𝑖

= 𝑥, 𝑍𝑡
𝑖

= 𝑧 would be

𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) ≐ 𝑃 (Y𝑡
𝑖

= 𝑦𝑗 | 𝑋𝑡
𝑖

= 𝑥, 𝑍𝑡
𝑖

= 𝑧, 𝜗)

=

{{{{

{{{{

{

∫
ln((𝑦
𝑗
+1/2𝑀)/(𝑥⋅𝑒

𝑧

))

ln((𝑦
𝑗
−1/2𝑀)/(𝑥⋅𝑒𝑧))

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢 dynamic microstructure

∫
ln((𝑦
𝑗
+1/2𝑀)/𝑥)

ln((𝑦
𝑗
−1/2𝑀)/𝑥)

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢 nondynamical.

(28)

Equivalently, we can write 𝑅 in terms of the historical process
as

𝑅 (𝑦𝑗 | 𝑋𝑡
𝑖

, Π𝑡
𝑖

𝑍
ℎ

𝑡
𝑖

, 𝜗)

= ∫
ln((𝑦
𝑗
+1/2𝑀)/𝑋

𝑡
𝑖

𝑒
Π
𝑡
𝑖
𝑍
ℎ

𝑡
𝑖 )

ln((𝑦
𝑗
−1/2𝑀)/𝑋

𝑡
𝑖

𝑒
Π
𝑡
𝑖
𝑍
ℎ

𝑡
𝑖 )

1

√2𝜋𝜖
𝑒
−𝑢
2

/2𝜖
2

𝑑𝑢,

(29)

where Π𝑡
𝑖

is the projection onto time 𝑡𝑖; that is,

Π𝑡
𝑖

𝑍
ℎ

𝑡
𝑖

= 𝑍
ℎ

𝑡
𝑖

(𝑡𝑖) = 𝑍
ℎ

𝑡
𝑖
∧𝑡
𝑖

= 𝑍
ℎ

𝑡
𝑖

. (30)

Clearly, 𝑅(𝑦𝑗 | 𝑥, 𝑧, 𝜗) is a smooth function of (𝑥, 𝑧, 𝜗) for
each fixed 𝑦𝑗.

To build the observed whole-price bias into our model,
we introduce the following sets:

𝐷1 = {The integers in (0, 100]

that are not multiples of 5} ,

𝐷2 = {The integers in (0, 100]

that are multiples of 5 but not of 25} ,

𝐷3 = {25, 75} ,

𝐷4 = {50} ,

𝐷5 = {100} .

(31)

While the raw price will be uniformly distributed over 𝐷1 ∪

𝐷2∪𝐷3∪𝐷4∪𝐷5 (or rather the continuous interval (0, 100]),
the observed price model must bias 𝐷2 over 𝐷1, 𝐷3 over
either𝐷2 or𝐷1, and so forth.Wedistribute the observed price
randomly over 𝐷1 ∪ 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5 based upon the raw
price in a biased manner favoring the more whole-price ticks
in 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5. In particular, if the fractional part
of the raw price 𝑦 rounded to the nearest cent is in 𝐷1, then
the observed value will stay at the same price with probability
1 − 𝛼 or move to the closest multiple of 5 cents, that is, the
closest tick level in 𝐷2 ∪ 𝐷3 ∪ 𝐷4 ∪ 𝐷5 with probability 𝛼.
Then, if the fractional part of the price 𝑦 is in 𝐷2, it will stay
in the same level with probability 1−𝛽 or move to the closest

tick level in 𝐷3 ∪ 𝐷4 ∪ 𝐷5 with probability 𝛽. Finally, if the
fractional part of the price 𝑦 is in 𝐷3, then it will stay in the
same level with probability 1 − 𝛾1 − 𝛾2 or move to the closest
tick level in𝐷4 with probability 𝛾1 and the closest tick level in
𝐷5 with probability 𝛾2. In summary, the transition probability
function is obtained iteratively by the following.

Case 1. If the fractional part of 𝑦𝑗 belongs to𝐷1,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛼) . (32)

Case 2. If the fractional part of 𝑦𝑗 belongs to𝐷2,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛽) , (33)

where
𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

≐ 𝑅 (𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛼 (𝑅 (𝑦𝑗−1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦𝑗−2 | 𝑥, 𝑧, 𝜗))

+ 𝛼 (𝑅 (𝑦𝑗+1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦𝑗+2 | 𝑥, 𝑧, 𝜗)) .

(34)

Case 3. If the fractional part of 𝑦𝑗 belongs to𝐷3,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗) (1 − 𝛾1 − 𝛾2) , (35)

where
𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

≐ 𝑅
∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛽 (𝑅
∗
(𝑦𝑗−5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦𝑗−10 | 𝑥, 𝑧, 𝜗))

+ 𝛽 (𝑅
∗
(𝑦𝑗+5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦𝑗+10 | 𝑥, 𝑧, 𝜗)) .

(36)

Case 4. If the fractional part of 𝑦𝑗 belongs to𝐷4,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛾1 (𝑅
∗∗
(𝑦𝑗−25 | 𝑥, 𝑧, 𝜗) + 𝑅

∗∗
(𝑦𝑗+25 | 𝑥, 𝑧, 𝜗)) .

(37)

Case 5. If the fractional part of 𝑦𝑗 belongs to𝐷5,

𝑝 (𝑦𝑗 | 𝑥, 𝑧, 𝜗) = 𝑅
∗∗
(𝑦𝑗 | 𝑥, 𝑧, 𝜗)

+ 𝛾2 (𝑅
∗∗
(𝑦𝑗−25 | 𝑥, 𝑧, 𝜗) + 𝑅

∗∗
(𝑦𝑗+25 | 𝑥, 𝑧, 𝜗)) .

(38)

Moreover, we have to handle the case 𝑗 = 0 separately to avoid
negative prices.

Case 6. For 𝑗 = 0,

𝑝 (𝑦0 | 𝑥, 𝑧, 𝜗)

= 𝑅 (𝑦0 | 𝑥, 𝑧, 𝜗)

+ 𝛼 (𝑅 (𝑦1 | 𝑥, 𝑧, 𝜗) + 𝑅 (𝑦2 | 𝑥, 𝑧, 𝜗))

+ 𝛽 (𝑅
∗
(𝑦5 | 𝑥, 𝑧, 𝜗) + 𝑅

∗
(𝑦10 | 𝑥, 𝑧, 𝜗))

+ 𝛾2𝑅
∗∗
(𝑦25 | 𝑥, 𝑧, 𝜗) .

(39)
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Table 3

Clustering parameters Estimate
𝛼 0.060475
𝛽 0.046883
𝛾1 0.03883
𝛾2 0.16525

Remark 13. Our clustering setup is designed to work well for
intrinsic prices over $1. For real penny stocks, our setupwould
introduce positive bias and should be modified slightly.

Using relative frequency analysis on the aggregate of our
three stocks, we found the values presented in Table 3.

The large degree of clustering exhibited, especially to
the whole dollar, might be considered surprising. However,
earlier studies of Huang and Stoll [39], Chung et al. [40],
and Chung et al. [41] also showed significant clustering.
Moreover, the degree of price clustering in NYSE is weaker
than that of NASDAQ. For example, Barclay [42] examined
472 stocks from NASDAQ before and after their listing in
NYSE or American Stock Exchange (AMEX): before the
listing, the average fraction of even-eighths (0, 1/4, 1/2, 3/4)
is 78% while thereafter it drops to about 56%.

2.4. Nonlinear Filtering Model. Our price process can be
formulated as a marked point process �⃗�: a sequence of
random vectors �⃗� = (𝑡𝑖, 𝑌𝑡

𝑖

, 𝑖 ≥ 1), where 𝑡𝑖 ∈ [0, 𝑇] denotes
the time of 𝑖th-trade and 𝑌𝑡

𝑖

the corresponding trading price.
Accordingly, the mark space of �⃗� is (𝐸,E), where 𝐸 = N0 and
E is all its subsets. Here, 𝑗 ∈ 𝐸 corresponds to the 𝑗th-tick
level 𝑗/𝑀. For each𝐴 ∈ E, we associate the counting process

𝑌𝑡 (𝐴) ≐ ∑
𝑖≥1

1{𝑌
𝑡
𝑖

∈𝐴}1{𝑡
𝑖
≤𝑡} (40)

to count the trades in tick level set𝐴up to time 𝑡. In particular,
for 𝑗 ∈ 𝐸,

𝑌𝑗 (𝑡) ≐ 𝑌𝑡 ({𝑗}) = ∑
𝑖≥1

1{𝑌
𝑡
𝑖

=𝑗}1{𝑡
𝑖
≤𝑡} (41)

denotes the total trades at 𝑗th-tick level 𝑗/𝑀 until time 𝑡.
Equivalently, we can introduce the random countingmeasure
𝑌(𝑑𝑧 × 𝑑𝑡) on E ⊗B[0, 𝑇] by

𝑌 (𝜔, 𝐴 × (𝑠, 𝑡]) ≐ 𝑌𝑡 (𝜔, 𝐴) − 𝑌𝑠 (𝜔, 𝐴) ,

∀𝜔 ∈ Ω, 𝑠 ≤ 𝑡 ∈ [0, 𝑇] , 𝐴 ∈ E.
(42)

The natural filtration, that is, information content, of 𝑌 is

F
𝑌

𝑡
≐ 𝜎 (𝑌𝑠 (𝐴) , 0 ≤ 𝑠 ≤ 𝑡, 𝐴 ∈E) . (43)

Now, we assume the following.
(C1)The total trade process𝑌𝑡 = 𝑌𝑡(𝐸) admits an intensity

𝑎(𝑡) for some positive measurable function 𝑎.
Therefore, using the conditional probabilities defined in

the previous subsection, we find that 𝑌𝑗(𝑡) has intensity

𝜆𝑗 (𝑋𝑡, 𝑍
ℎ

𝑡
, 𝜗, 𝑡) = 𝑎 (𝑡) ⋅ 𝑝 (𝑦𝑗 | 𝑋𝑡, 𝑍

ℎ

𝑡
, 𝜗) . (44)

To simplify the notation, we rewrite (44) as 𝜆𝑗 = 𝑎 ⋅ 𝑝𝑗.
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Figure 2: Intertrade duration in seconds.

For our present work, we estimated total intensity func-
tion 𝑎(𝑡) from intertrade data allowing for intraday variation.
Figure 2 is the intertrade duration histogram of our 3 NYSE-
listed stocks averaged over all times of the day.We divided the
intertrade data into half-hour periods over the course of the
day and took 𝑎 to be constant over these half-hour periods:

𝑎 (𝑡) =
Average number of trades in period

1800 seconds
(45)

for 𝑡 in that daily period.
(C2) There exist some positive constants 𝛿, 𝐶 such that

𝛿 ≤ 𝑎(𝑡) ≤ 𝐶 for all 𝑡.
Based on representation (40), (44), (𝑋, 𝜃, 𝜗, 𝑍ℎ; 𝑌) is

framed by a partial-observation model, where (𝑋, 𝜃, 𝜗, 𝑍ℎ)
is the state (signal), which is partially observed through the
infinite dimensional counting process 𝑌. One difficulty in
calibrating these models is that their transition probability
functions are usually unknown in closed form, so maximum
likelihood estimation (MLE) methods are difficult to use (see
Aı̈t-Sahalia and Kimmel [43] for further details). Instead,
we use Bayesian filtering because (1) Bayes estimates do not
require the availability or regularity of the full likelihood
functions; (2) Bayes estimates can be computed recursively
for our tick-by-tick data; (3) Bayesian hypothesis tests can
be conducted through Bayes factor, which is the ratio of
marginal likelihoods and is easily computed even when the
signals are of different dimension or, more generally, singular
to each other.

3. Model Calibration

Our foremost goal is to contribute to the process of model
building for financial markets both by suggesting elements
to be included in the models and proposing methods to
select models based on real observation data. To be able to
do this effectively, we need to be able to tune each possible
model effectively to get good prior (probability distribution)
estimates for the complete signal (𝑋, 𝜃, 𝜗, 𝑍ℎ) before the
test period. We do this through nonlinear filtering and in
particular through particle filtering. In this section, we first
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introduce the filtering equations for our problem. Then,
we introduce a branching particle filter algorithm that is
an approximation to the unnormalized filter and can be
implemented on a computer. Next, we explain how we did
the calibration (i.e., came up with this prior distribution) and
finally we give the results for the models of interest herein.

3.1. Nonlinear Filtering Equations. The available information
about (𝑋𝑡, 𝜃, 𝜗, 𝑍

ℎ

𝑡
) is the observation filtration F𝑌

𝑡
⊂ F𝑡,

defined in (43), and the primary goal of nonlinear filtering
is to characterize the conditional distribution

𝜋𝑡 (⋅) = P [(𝑋𝑡, 𝜃, 𝜗, 𝑍
ℎ

𝑡
) ∈ ⋅ | F

𝑌

𝑡
] (46)

or, equivalently,

𝜋𝑡 (𝑓) = E [𝑓 (𝑋𝑡, 𝜃, 𝜗, 𝑍
ℎ

𝑡
) | F

𝑌

𝑡
] (47)

for 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 × 𝐶[0, 𝑇]). Here, 𝜗 = (𝜖, 𝜙), 𝑍ℎ is the

long memory portion of our information noise and (𝑋, 𝜃) is
the state and parameter of our fair price-volatility martingale
problem.

Remark 14. Actually, we often only want to estimate
P[(𝑋𝑡, 𝜃) ∈ ⋅ | F

𝑌

𝑡
], but there is no simple recursive formula

for this marginal. The filter is naturally model dependent, so
we can produce different filtering processes for each model,
that is, for each SV choice (1–5), each value of Δ, and each
value of ℎ in our inertia process.

Suppose 𝜅𝑧 is a positive constant for each 𝑧 ∈ N0 such
that 𝜅 ≐ ∑

∞

𝑧=0
𝜅𝑧 < ∞, and consider the continuous-time

likelihood function

𝐿 𝑡 = 𝐿 𝑡 (𝑋, 𝜗, 𝑍
ℎ
)

= exp(∫
𝑡

0

∫
𝐸

ln


𝜆𝑧 (𝑋𝑠, 𝜗, 𝑍
ℎ

𝑠
, 𝑠)

𝜅𝑧



𝑌 (𝑑𝑧, 𝑑𝑠)

− ∫
𝑡

0

(𝑎 (𝑠) − 𝜅) 𝑑𝑠) .

(48)

𝐿 𝑡 is a martingale under Condition (C2) andQ, defined by

𝑑Q

𝑑P

F
𝑇

= 𝐿
−1

𝑇
(i.e. Q (𝐴) = ∫

𝐴

𝐿
−1

𝑇
𝑑P for 𝐴 ∈F𝑇) ,

(49)

is called the reference measure. Under Q, the observations
are just a Poisson measure, independent of the state vector
(𝑋, 𝜃, 𝜗, 𝑍ℎ), with mean measure 𝜂(𝐴 × (0, 𝑡]) = ∑

𝑧∈𝐴
𝜅𝑧 ×

(0, 𝑡]. To make the likelihoods more manageable in the
particle filters to follow, we choose 𝜅 to be a long time average
value (1/𝑇) ∫𝑇

0
𝑎(𝑠)𝑑𝑠 of 𝑎(𝑠) and 𝑧 → 𝜅𝑧 to be highest

where the trades will be more concentrated. Bayes Theorem

(see Bremaud [44], p. 165) then links the desired (real-world)
conditional distribution 𝜋𝑡 with the unnormalized filter 𝜎𝑡 by

𝜋𝑡 (𝑓) =
𝜎𝑡 (𝑓)

𝜎𝑡 (1)
, (50)

where the unnormalized filter 𝜎𝑡 is defined by

𝜎𝑡 (𝑓) ≐ E
Q
[𝑓 (𝑋𝑡, 𝜃, 𝜗, 𝑍

ℎ

𝑡
) 𝐿 𝑡 | F

𝑌

𝑡
] (51)

for all 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 ⊗ 𝐶[0, 𝑇]). Now, we can give the

evolution equation for 𝜎𝑡.

Theorem 15. Under (C1) and (C2), the unnormalized filter 𝜎𝑡
is the unique measure-valued solution of the stochastic filtering
equation

𝜎𝑡 (𝑓) = 𝜎0 (𝑓) + ∫
𝑡

0

𝜎𝑠 ((A − 𝑎 (𝑠) + 𝜅) 𝑓) 𝑑𝑠

+ ∫
𝑡

0

∫
𝐸

𝜎𝑠− ((
𝜆𝑧 (𝑠−)

𝜅𝑧
− 1)𝑓)𝑌 (𝑑𝑧, 𝑑𝑠) ,

(52)

for 𝑡 > 0 and 𝑓 ∈ D(A).

This theorem is a modest generalization of prior results
and can be obtained in much the same manner as results in
Kouritzin and Zeng [23] and Xiong and Zeng [22]. Here,A is
the generator of the joint martingale problem to (𝑋, 𝜃, 𝜗, 𝑍ℎ)
obtained from A, the generator of state (𝑋, 𝜃) and A𝑍, the
generator of the historical process 𝑍ℎ. We do not need an
explicit formula for A. Instead, we can use particle filters to
approximate 𝜎𝑡.

Henceforth, it is convenient to think of the reference
measure Q as the standard measure from which we can
construct the measure P𝑘,𝜃,𝜗,ℎ,Δ corresponding to model
𝑘 ∈ {1, . . . , 5} with parameters 𝜃 and microstructure with
parameters 𝜗, ℎ, and Δ.

3.2. Particle Filter. Theweighted filter is the simplest of parti-
cle filters. The idea behind the weighted filter is that, by the
independence of signal (𝑋, 𝜃, 𝜗, 𝑍ℎ) from the observations
𝑌 under Q, we can create an infinite collection of particles
{𝑃

𝑘}
𝑁

𝑘=1
= {(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}

𝑁

𝑘=1
, each having the same law

as (𝑋, 𝜃, 𝜗, 𝑍ℎ) that are also independent of the observations.
Then, it follows from the law of large numbers that for Q-
almost all 𝑌we have the weak convergence of finite measures

𝜎
𝑁,𝑊

𝑡
≐
1

𝑁

𝑁

∑
𝑘=1

𝐿 𝑡 (𝑋
𝑘
, 𝜗

𝑘
, 𝑍

ℎ,𝑘
) 𝛿

(𝑋𝑘
𝑡
,𝜃𝑘,𝜗𝑘 ,𝑍

ℎ,𝑘

𝑡
)
⇒ 𝜎𝑡. (53)

Unfortunately, it is well known that theweighted particle filter
may not work well for a fixed number of particles𝑁. Roughly
speaking, most of the particles diffuse away, do not track the
signal well, are assigned low likelihoods, and do not really
affect the average 𝜎𝑁,𝑊

𝑡
. Meanwhile, very few particles do

match the observations better and have likelihoods that are
orders of magnitude higher than of the majority of particles.
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𝜎𝑁,𝑊
𝑡

essentially becomes an average over too few particles to
reflect 𝜎𝑡 well.

To fix the weighted filter particle spread problem, we add
particle resampling, resulting in following novel particle filter.
(See Gordon et al. [45], Del Moral et al. [46], Del Moral
et al. [12], and Ballantyne et al. [47] for earlier algorithms.)
For some large 𝑁 ∈ N0, the particle system {𝑃𝑘}

𝑁

𝑘=1
=

{(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}
𝑁

𝑘=1
is constructed as follows.

3.2.1. Initialization. At the initial time 𝑡0 = 0, we generate
independent particles {𝑃𝑘

0
}
𝑁

𝑘=1
from the joint prior distribu-

tion 𝜋0(⋅) of (𝑋0, 𝜃, 𝜗, 𝑍
ℎ

0
) ∈ R𝑛

𝑥
+𝑛
𝜃
+2 ×𝐶[0, 𝑇]. The empirical

measure at 𝑡0 is

𝜎
𝑁

0
=
1

𝑁

𝑁

∑
𝑘=1

𝛿
𝑃𝑘
0

(⋅) , (54)

where 𝛿𝑥(⋅) is the Dirac measure at 𝑥. By the strong law of
large numbers,

lim
𝑁→∞

(𝜎
𝑁

0
, 𝑓) = 𝜎0 (𝑓)

∀𝑓 ∈ 𝐵 (R
𝑛
𝑥
+𝑛
𝜃
+2
⊗ 𝐶 [0, 𝑇]) ,

(55)

so 𝜎𝑁
0
⇒ 𝜎0 for almost all 𝑌. Here, (𝜇, 𝑓) ≐ ∫𝑓(𝑦)𝜇(𝑑𝑦) for

measures 𝜇 so

(𝜎
𝑁

0
, 𝑓) =

1

𝑁

𝑁

∑
𝑘=1

𝑓 (𝑃
𝑘

0
) . (56)

Remark 16. When 𝐿0 = 1, 𝜋0(𝑓) = 𝜎0(𝑓). Note that 𝑍
ℎ

0
is a

constant function defined on [0, 𝑇]. Whereas most particle
filters approximate the filter 𝜋𝑡, we will approximate the
unnormalized filter 𝜎𝑡 to facilitate Bayesian model selection
without the storage of prior filter estimates.

We also initialize the number of particles to N0 = 𝑁 and
particle likelihoods all to A0 = 1.

3.2.2. Evolution. Between observations at 𝑡𝑖−1 and 𝑡𝑖, the par-
ticles, {(𝑋𝑘, 𝜃𝑘, 𝜗𝑘, 𝑍ℎ,𝑘)}

N
𝑖−1

𝑘=1
, move independently as samples

from the transition probability of (𝑋, 𝜃, 𝜗, 𝑍ℎ). In particular,
we use the Euler scheme (see, e.g., Kloeden andPlaten [48]) to
evolve the dynamics, Examples 3–7 and (25).We let �̂�𝑡

𝑖

denote
the evolved version of 𝑃𝑡

𝑖−1

.

3.2.3. ParticleWeights andAverageWeight. Wesimulate using
the referencemeasureQ andwe incorporate the observations

based upon (48). At the 𝑖th observation (𝑡𝑖, 𝑌𝑡
𝑖

), the 𝑘th
particle’s weight is multiplied by

𝜔
𝑘

𝑖
≐ exp(∫

𝑡
𝑖

𝑡
𝑖−1

∫
𝐸

ln
𝜆𝑧 (𝑋

𝑘

𝑠
, 𝜗𝑘, 𝑍ℎ,𝑘

𝑠
, 𝑠)

𝜅𝑧
𝑌 (𝑑𝑧, 𝑑𝑠)

− ∫
𝑡
𝑖

𝑡
𝑖−1

(𝑎 (𝑠) − 𝜅) 𝑑𝑠)

= exp(ln
𝜆𝑧
𝑖

(𝑋𝑘

𝑡
𝑖

, 𝜗𝑘, 𝑍ℎ,𝑘
𝑡
𝑖

, 𝑡𝑖)

𝜅𝑧
𝑖

− ∫
𝑡
𝑖

𝑡
𝑖−1

(𝑎 (𝑠) − 𝜅) 𝑑𝑠) ≗ 𝛼𝑖 (�̂�
𝑘

𝑡
𝑖

, 𝑡𝑖, 𝑡𝑖−1) ,

(57)

where 𝑧𝑖 = 𝑌𝑡
𝑖

. Hence, the 𝑘th particle’s weight becomes

L̂
𝑘

𝑖
= 𝜔

𝑘

𝑖
A𝑖−1

(58)

and the average weight is

A𝑖 =
1

𝑁

N
𝑖−1

∑
𝑘=1

L̂
𝑘

𝑖
. (59)

Note that (𝑋𝑘

𝑡
𝑖
−
, 𝑍ℎ,𝑘

𝑡
𝑖
−
, 𝑡𝑖−) = (𝑋𝑘

𝑡
𝑖

, 𝑍ℎ,𝑘
𝑡
𝑖

, 𝑡𝑖) in (57) by contin-
uous paths. Here, 𝜔𝑘

𝑖
depends on the observation 𝑌 and the

increment of likelihood ratio of measure P over measure Q
defined by (48) given the simulated particle path realized
on the interval [𝑡𝑖−1, 𝑡𝑖). These weights do not depend upon
the parameters 𝜃 directly. This is common and is why the
observations are often called partial observations. We still
can estimate 𝜃 and include these parameters as part of the
particles’ states since they do affect stock price 𝑆, which is
observed in the presence of noise and distortion.The weights
are stored along with the states of particles before resampling.

3.2.4. Resampling. After weighting, we resample the particles
pruning the unlikely ones and duplicating the better ones
in an unbiased manner. In particular, we let 𝜌𝑘

𝑖
be (L̂𝑘

𝑖
/A𝑖 −

⌊L̂𝑘
𝑖
/A𝑖⌋)-Bernoulli random variable independent of every-

thing and produce ⌊L̂𝑘
𝑖
/A𝑖⌋ + 𝜌

𝑘

𝑖
particles at location �̂�𝑘

𝑡
𝑖

. We
then give all the particles weight 𝐴 𝑖 and let

N𝑖 ≐

N
𝑖−1

∑
𝑘=1

{⌊
L̂𝑘
𝑖

A𝑖

⌋ + 𝜌
𝑘

𝑖
} . (60)

3.2.5. Unnormalized Filter. Now, we can estimate the unnor-
malized filter at the 𝑖th observation time, 𝜎𝑡

𝑖

, by

𝜎
𝑁

𝑡
𝑖

= 𝐴 𝑖

N
𝑖

∑
𝑘=1

𝛿
𝑃𝑘
𝑡
𝑖

. (61)

The actual algorithm that was implemented is as follows.

Initialize. {𝑃𝑘
0
}𝑁
𝑘=1

are independent samples of 𝜋0, N0 = 𝑁,
N𝑛 = 0, for all 𝑛 ∈ N, and L𝑘

0
= 1 for 𝑘 = 1, . . . , 𝑁.
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Repeat. For 𝑛 = 0, 1, 2, . . ., do

(1) evolve 𝑃𝑘
𝑡
𝑛

to �̂�𝑘
𝑡
𝑛+1

independently of other particles;

(2) weight by observation: L̂𝑘
𝑛+1

= 𝛼𝑛+1(�̂�
𝑘

𝑡
𝑛+1

, 𝑡𝑛+1, 𝑡𝑛)A𝑛

for 𝑘 = 1, 2, . . . ,N𝑛;

(3) estimate 𝜎𝑡
𝑛+1

by 𝜎𝑁
𝑡
𝑛+1

=
1

𝑁
∑

N
𝑛

𝑘=1
L̂𝑘
𝑛+1
𝛿
�̂�𝑘
𝑡
𝑛+1

;

(4) average weight: A𝑛+1 = 𝜎
𝑁

𝑡
𝑛+1

(1);

(5) repeat: for 𝑘 = 1, 2, . . . ,N𝑛 do

(a) offspring number: N𝑘

𝑛+1
= ⌊L̂𝑘

𝑛+1
/A𝑛+1⌋ + 𝜌

𝑘

𝑛
,

with 𝜌𝑘
𝑛
being ((L̂𝑘

𝑛+1
/A𝑛+1) − ⌊L̂𝑘

𝑛+1
/A𝑛+1⌋)-

Bernoulli independent of everything;
(b) resample: 𝑃N

𝑛+1
+𝑗

𝑡
𝑛+1

= �̂�𝑘
𝑡
𝑛+1

for 𝑗 = 1, . . . ,N𝑘

𝑛+1
;

(c) add offspring number: N𝑛+1 = N𝑛+1 + N𝑘

𝑛+1
.

Remark 17. (i) We extract our estimate before resampling to
avoid excess noise. (ii) The key step is (5) that determines
the new number of particles N𝑛+1 and weights L𝑘

𝑛+1
in

an unbiased manner. The result is zero or more particles
all having the average weight at the same location as the
parent. (iii) The particle evolution would typically be done
via Newton’s or Milstein’s method.

Since the above algorithm produces unbiased resampling
of the weighted particle filter, it is quite reasonable to believe
the following result.

Theorem 18. Under (C1) and (C2), 𝜎𝑁
𝑡
𝑖

⇒ 𝜎𝑡
𝑖

for any 𝑖 and
almost all observation paths.

The technicality of this result’s proof would detract from
our applications so it is omitted.

3.2.6. Bayesian Estimation. By Bayes rule (50), the particle
approximation of the normalized filter 𝜋(⋅) is

𝜋
𝑁

𝑡
𝑖

(𝑓) =
𝜎𝑁
𝑡
𝑖

(𝑓)

𝜎𝑁
𝑡
𝑖

(1)
(62)

for all 𝑓 ∈ 𝐵(R𝑛
𝑥
+𝑛
𝜃
+2 × 𝐶[0, 𝑇]). To get our parameter

estimates, we can just set 𝑓(𝑋, 𝜃, 𝜗, 𝑍ℎ) to one component of
these parameters, that is, 𝜃𝑖 or 𝜗𝑗.

3.3. Calibration and Historical Training. To keep the problem
size manageable, we just used the clustering parameter
estimates of 𝛼, 𝛽, 𝛾1, and 𝛾2 given above as the actual values
throughout our simulations.

One is often faced with the problem of estimating initial
distributions for fair price, volatility, and the parameters prior
to filtering over the time interval of interest (April 2010 here).
Our approach was to make arbitrary assignments very far
in the past (January 3, 2000, to be precise) and then do an
excessive amount of prior particle filtering, relying on the
ability of the filter to forget its starting point and to produce
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Figure 3: Long-term value estimation of PEP.

reasonable distributions at a much later point, April 1, 2010.
(See, e.g., Ocone and Pardoux [49], Delyon and Zeitouni
[50], and Atar [51] for mathematical results regarding this
phenomenon.) This had to be done for every model, namely,
every combination of our three stocks, five SV models,
andmultiple microstructure models, characterized by inertia
parameters. Our main purpose in this historical training was
to get a starting joint distribution for (𝑋, 𝜃, 𝜗, 𝑍ℎ) as of April
1, 2010, under each model combination. Due to the large
number of cases this produced, we first display and discuss
two models: the nondynamical microstructure Heston case
and the median inertia dynamical case where ℎ = 1/2 and
Δ = 7200 s (i.e., 2 hrs) in the inertia microstructure model.
Also, to ensure that 𝜃 and 𝜗 did not converge to a single value,
we made them vary slightly in a random manner; that is, we
replaced the equation 𝑑𝜃 = 0 with 𝑑𝜃𝑡 = 𝑑V𝑡 for a very low
variance Brownian motion V.

In Figure 3, we illustrate our prior filtering of PepsiCo.
The choppiest curve is the actual stock price while the
smoothest curve is the filter’s fair price estimate 𝐸[𝑆𝑡 | F

𝑌

𝑡
]

using the Heston SV model with (median) microstructure
inertia. The middle curve is the filter’s fair price estimate
𝐸[𝑆𝑡 | F

𝑌

𝑡
] using the Heston SV model without dynamics in

the microstructure; that is, 𝑍ℎ = 0. These curves go beyond
April 1, 2010. However, the required initial distributions were
taken from the filter at that point.

Notice from Figure 3 that the implied fair price process
estimate is far less volatile in the presence of dynamical
microstructure than without. This lower volatility for fair
price is highly desirable. It does not make sense that the
fair price of a stock should fluctuate dramatically from day
to day or within a day in the absence of an event, but
rather these short-term fluctuations are better explained by
trading noise. Moreover, fair price is a mathematically more
optimal version of moving averages, which are used to judge
value and momentum from, and so fair price estimates
should inherit the smooth nature of such moving averages.
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Table 4

PEP GBM HW LOU Nelson Heston
𝜇 1.51𝐸 − 06 1.47𝐸 − 06 1.52𝐸 − 06 1.44𝐸 − 06 1.49𝐸 − 06

] 𝜎 = 2.86𝐸 − 06 1.17𝐸 − 09 9.55𝐸 − 06 1.06𝐸 − 10 1.07𝐸 − 11

𝜅 — 1.59𝐸 − 03 1.80𝐸 − 03 1.94𝐸 − 03 2.58𝐸 − 07

 — — 4.75𝐸 − 03 6.51𝐸 − 03 6.02𝐸 − 03

𝜛 — — 4.84𝐸 − 06 — —

Table 5

PEP GBM HW LOU Nelson Heston
𝜇 1.05𝐸 − 06 1.02𝐸 − 06 9.92𝐸 − 07 1.03𝐸 − 06 1.01𝐸 − 06

] 𝜎 = 2.21𝐸 − 06 5.50𝐸 − 10 5.13𝐸 − 06 6.32𝐸 − 11 5.94𝐸 − 12

𝜅 — 2.18𝐸 − 03 1.87𝐸 − 03 2.12𝐸 − 03 2.26𝐸 − 07

 — — 2.25𝐸 − 03 2.90𝐸 − 03 3.23𝐸 − 03

𝜛 — — 2.60𝐸 − 06 — —
𝜖 2.43𝐸 − 09 2.05𝐸 − 09 2.33𝐸 − 09 2.31𝐸 − 09 2.46𝐸 − 09

𝜙 2.13𝐸 − 09 2.31𝐸 − 09 2.23𝐸 − 09 2.33𝐸 − 09 2.31𝐸 − 09

From a modeling perspective, this fair price smoothness
indicates that dynamical microstructure (with inertia) can
replace much of what stochastic volatility tries to do and
leads to one of our central questions addressed below. Is
stochastic volatility necessary in the presence of dynamical
microstructure?

3.4. Numerical Results. The data is one month (April 2010) of
transaction prices of our three NYSE-listed stocks. Our filter
produces Bayes estimates to the macro- and microparameter
vectors 𝜃 and 𝜗, respectively. These estimates in the nondy-
namical microstructure case (i.e., using the simpler form in
(24)) for PepsiCo are as shown in Table 4.

All parameters are estimated using time in seconds. Our
PepsiCo Bayes estimates in the median inertia case are as
shown in Table 5.

While it is difficult to read much from these numbers,
we can see that the main volatility parameters ], 𝜅, and  are
mostly smaller when dynamics is included in themicrostruc-
ture. This further justifies our conjecture that at least some
stochastic volatility is better replaced by microstructure with
dynamics.

Figures 4 and 5 show the conditional expectation fair
price estimation for Goldman Sachs and PepsiCo, respec-
tively, in the cases of no dynamics andmedian inertia dynam-
ics for each of our SV models. There are a total of eleven
curves in both figures. The most volatile curve is the stock
price itself over this month. The smoothest curves somewhat
separated from the stock price are the fair price estimates
using the five SV models with (median inertia) dynamical
microstructure.The remaining five curves (that hug the stock
price in Figures 4 and 5) are our fair price estimates for
our five SV models with nondynamical microstructure. In
this last case, the microstructure does not have the power
to separate the fair price and actual stock price to any large
degree.
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Figure 4: Value estimation of GS, April 2010.
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Figure 5: Value estimation of PEP, April 2010.

It is important to realize that these pictures are really just
a one-month snapshot of a much bigger multiyear filtering
process. This explains why many of the fair price processes
are significantly different than the actual stock price on April
1, 2010: The filter is estimating that the difference is due to
the microstructure. It is apparent that adding dynamics to
the microstructure allows the estimated fair price process
to differ significantly from the stock price. Indeed, there is
a significant correction of all three stock prices (especially
Goldman Sachs) towards estimated fair price of the models
with (median inertia) dynamical microstructure. This pro-
duces a compelling reason to usemodels withmicrostructure
dynamics. You would be estimating that the stocks were
significantly overvalued before the correction if you used
the model with microstructure dynamics and this could be
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Table 6: Volatility estimation, April 2010.

Without dynamics With dynamics
PEP (2 hrs, ℎ = 0.6) 1.58416𝐸 − 09 1.01312𝐸 − 11

GS (1/2 day, ℎ = 0.4) 4.14645𝐸 − 08 4.3005𝐸 − 10

IBM (1/2 day, ℎ = 1) 8.21731𝐸 − 10 4.03211𝐸 − 11

used as a warning to lessen ones exposure. You have no
such warning when the microstructure does not contain
(inertia) dynamics as the estimated fair price is very close
to the observed price. It is interesting to ponder what this
possible discrepancy would mean to option prices.

The filters provide conditional distributions and esti-
mates for more than just fair price and parameters. Table 6
shows the average volatility estimates without microstruc-
ture dynamics (see (24)) and with (the best performing)
microstructure inertia using the simplifiedHeston SVmodel.
We only highlighted Heston here because (1) we will show
evidence below that Heston performs the best and (2) the
volatility estimates of the other SV models behave similarly.
The amount of stochastic volatility estimated when there is
(median inertia) dynamics in the microstructure shrank to a
couple of percent of what it was without.This really suggested
that by far the primary use of stochastic volatility is as a
proxy for microstructure with dynamics and further raises
the question about the need for stochastic volatility in the
presence of microstructure dynamics.

The final and most difficult quantity the filter estimates
(in the dynamical microstructure case) is the historical noise.
For practical purposes, we can not let the historical path go
back all the way to year 2000, but we found that there is
not much loss if we just update discrete samples over the
previous three years, which is still a tremendous amount of
data. Also, we can not plot these historical paths so we just
plot the projection onto the current time; that is, we just plot
𝑍
ℎ

𝑡
even though we must propagate the Markov process 𝑍ℎ

𝑡

in the filter. Figure 6 shows the noise estimate for PepsiCo. In
this graph, we look at the effect of inertia. The curves where
ℎ = 0 represent the no-inertia case, so 𝑍0

𝑡
is just an Ornstein-

Uhlenbeck process. Conversely, the case ℎ = 1 represents the
one hundred percent inertia case and 𝑍1

𝑡
is not Markov. We

see from these graphs that the amount of estimated noise is
very similar indicating that the amount of inertia modeled
might not be that significant. However, the noise processes
where ℎ = 1 are far smoother due to the inertia. Below, we
will produce strong evidence that inertia is important and
find that the best ℎ is in the range [0.4, 1], depending upon
the stock.We compare the behavior of ourmodels in terms of
the SV models and the inertia parameters ℎ and Δ within the
Bayesianmodel selection framework in the following section.

4. Evidence for Inertia and
Stochastic Volatility

The main objective of this section is to use Bayes factor to
investigate the model selection in microstructure markets.
To use the Bayes factor method, we need only to be able to
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Figure 6: Noise process estimation of PEP, April 2010.

transform all observation models of interest into the same
canonical process via Girsanov measure change. The signal
models can be singular to one another. Kouritzin and Zeng
[23] discuss the Bayesian model selection problem. However,
their equations do not apply to our models.

4.1. Model Selection and Bayes Factor. Consider our five SV
macrostructure fair price-volatility models

𝑀
(𝑘)
≐ (𝑋

(𝑘)
, 𝜃

(𝑘)
) ∈ R

𝑛
(𝑘)

𝑥
+𝑛
(𝑘)

𝜃 , (63)

where the generators of the martingale problem to𝑀(𝑘) are,
respectively, A(𝑘) for 𝑘 = 1, 2, 3, 4, 5. Normally, we would
have to consider a multitude of parameters 𝜃 resulting in a
plethora of models. However, by our calibration process we
have reduced the setting to one parameter set per martingale
problem so we have a base of five models. However, we
still have to consider the various choices for our inertia. For
simplicity, we restrict ourselves to three distinct values for Δ,
eleven choices for ℎ, and we use the calibration process to
estimate the other microstructure parameters 𝜗. Therefore,
we have a total of 5 × 3 × 11 = 165models to test.

The likelihood of 𝑌 being produced by model (𝑘, ℎ, Δ) up
until time 𝑡 is

𝐿
(𝑘,ℎ,Δ)

𝑡
= 1 + ∫

𝑡

0

∫
𝐸

(
𝜆𝑧 (𝑋

(𝑘)

𝑠
, 𝑍ℎ,Δ

𝑠
, 𝜗, 𝑠)

𝜅𝑧
− 1)

⋅ 𝐿
(𝑘,ℎ,Δ)

𝑠−
(𝑌 (𝑑𝑧, 𝑑𝑠) − 𝜅𝑧𝑚(𝑑𝑧) 𝑑𝑠) .

(64)

Here,𝑚(𝑑𝑧) is the countingmeasure on 𝐸 = N0 and the same
observations and observation rate information are used for
all models. One can think of 𝐿(𝑘,ℎ,Δ)

𝑡
as the likelihood ratio of

the model𝑀(𝑘,ℎ,Δ) with distribution P(𝑘,ℎ,Δ) characterized by
(𝑘, ℎ, Δ) to the simple (or null) model 𝑀0 with distribution
Q where the observation prices just arrive according to a
Poisson measure with intensity measure 𝜇(𝐴) = ∫

𝐴
𝑘𝑧𝑚(𝑑𝑧),

that is, with rate independent of any macrostructure model
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and independent of any microstructure state. In other words,
(𝐿(𝑘,ℎ,Δ)

𝑡
)
−1
= (𝑑Q/𝑑P(𝑘,ℎ,Δ))|F

𝑡

then transforms the observa-
tions into the same Poisson measure with intensity measure
𝜇(𝐴) = ∫

𝐴
𝑘𝑧𝑚(𝑑𝑧) regardless of (𝑘, ℎ, Δ). Unfortunately,

𝐿(𝑘,ℎ,Δ)
𝑡

depends upon 𝑋(𝑘)

𝑠
, 𝑍ℎ,Δ

𝑠
, which are unknown so we

can not select models via the likelihood.

4.2. Bayes Factor. The available information in microstruc-
ture market is the observation process 𝑌, which represents
the cumulative transaction records throughout all tick price
levels.The normalized filter 𝜋(𝑘,ℎ,Δ)

𝑡
, 𝑘 = 1, 2, 3, 4, 5, ℎ ∈ [0, 1],

Δ > 0, satisfies

𝜋
(𝑘,ℎ,Δ)

𝑡
(𝑓𝑘) =

𝜎(𝑘,ℎ,Δ)
𝑡

(𝑓𝑘)

𝜎
(𝑘,ℎ,Δ)

𝑡 (1)
, (65)

where 𝑓𝑘 ∈ 𝐵(R
𝑛
(𝑘)

𝑥
+𝑛
(𝑘)

𝜃
+2 ⊗ 𝐶[0, 𝑇]) for 𝑘 = 1, 2, 3, 4, 5, the

unnormalized filter 𝜎(𝑘,ℎ,Δ)
𝑡

is

𝜎
(𝑘,ℎ,Δ)

𝑡
(𝑓𝑘)

≐ E
Q
[𝑓𝑘 (𝑋

(𝑘)

𝑡
, 𝜃

(𝑘)
, 𝜗, 𝑍

ℎ,Δ

𝑡
) 𝐿

(𝑘,ℎ,Δ)

𝑡
| F

𝑌

𝑡
] ,

(66)

and 𝜎(𝑘,ℎ,Δ)
𝑡

(1) is the integrated (or marginal) likelihood of 𝑌
for model (𝑘, ℎ, Δ).

Now, we use Bayes factor to compare models. The Bayes
factor determines which model best fits this observed data by
doing pairwise comparisons.We define Bayes factor ofmodel
𝑀

(𝑘,ℎ,Δ) to the null model by the conditional likelihood:

E
Q
[
𝑑P(𝑘,ℎ,Δ)

𝑑Q
| F

𝑌

𝑡
] = 𝜎

(𝑘,ℎ,Δ)

𝑡
(1) , (67)

which is consistent with more basic definitions of Bayes
factor. It then follows that the Bayes factors for two models,
characterized by (𝑘1, ℎ1, Δ 1) and (𝑘2, ℎ2, Δ 2), are the ratios

𝐵12 (𝑡) =
𝜎1
𝑡
(1)

𝜎2
𝑡 (1)

,

𝐵21 (𝑡) =
𝜎
2

𝑡
(1)

𝜎1
𝑡 (1)

,

(68)

with the integrated likelihoods 𝜎1
𝑡
(1) = 𝜎

(𝑘
1
,ℎ
1
,Δ
1
)

𝑡
(1), 𝜎2

𝑡
(1) =

𝜎
(𝑘
2
,ℎ
2
,Δ
2
)

𝑡
(1) that can be approximated using the algorithm

of Section 3.2.5. Kass and Raftery [20] demonstrate how to
interpret Bayes factor shown in Table 7.

4.3. Numerical Results on Stochastic Volatility. First, we con-
sider the problem of selecting the best of our five fair price-
volatility models,

𝑀
(𝑘)
≐ (𝑋

(𝑘)
, 𝜃

(𝑘)
) , (69)

and the resulting partially observed market models,

(𝑋
(𝑘)
, 𝑍

ℎ,Δ
, 𝜃

(𝑘,ℎ,Δ)
, 𝜗; 𝑌) . (70)

Table 7

𝐵12 Evidence against Model 2
1–3 Barely mentionable
3–12 Positive
12–150 Strong
>150 Decisive
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Figure 7: Bayes factor for PEP SVmodel determination, April 2010.

Table 8: Bayes factor for model determination, April 2010.

Heston GARCH Log O-U HW GBM
PEP (2 hrs, ℎ = 0.6) 27.30 25.23 21.31 17.04 6.08
GS (1/2 day, ℎ = 0.4) 19.14 18.91 18.77 18.59 10.18
IBM (1/2 day, ℎ = 1) 49.94 45.43 40.75 37.07 16.16
PEP∗ (2 hrs, ℎ = 0.6) 1.08 1.07 1.06 1.04 1.00
GS∗ (1/2 day, ℎ = 0.4) 1.06 1.04 1.06 1.06 1.00
IBM∗ (1/2 day, ℎ = 1) 1.06 1.04 1.06 1.03 1.00
∗Without dynamics.

We compare these five models to determine which can
best represent the market data. More precisely, we run all
unnormalized filters as explained in Section 3.2 with the
optimal parameters discovered and reported earlier. Then,
we choose Model 𝑖 if 𝜎(𝑖,ℎ,Δ)

𝑇
is the largest. Naturally, this

corresponds to the model whose Bayes factor ends up greater
than one when compared to any other model. While we have
five basic models, we also consider different market ingestion
times Δ and inertia magnitude parameters ℎ for each model.

Using GBM with nondynamic microstructure (i.e., 𝑍ℎ =
0) as the benchmark, we determine which combination of
SV model and inertia parameters outperforms GBM most.
We first focus on the candidate models (Examples 3–7). In
each case, we pick the inertia parameters from the sets Δ ∈

{30mins, 2 hrs, 1/2 day} and ℎ ∈ {0, 0.1, 0.2, . . . , 0.9, 1} that
would yield the highest Bayes factor against the calibration
model.The data is the transaction price of PepsiCo, IBM, and
Goldman Sachs, April 2010. Figure 7 and Table 8 summarize
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Figure 8: Bayes factor for PEP ingestion time determination, April
2010.

Table 9: Bayes factor for ingestion time determination, April 2010.

Heston∗ 40mins 2 hrs 1/2 day
GS (ℎ = 0.4) 1.000 15.083 17.578 18.100
PEP (ℎ = 0.6) 1.000 19.066 25.259 24.187
IBM (ℎ = 1) 1.00 31.152 42.744 46.988
∗Without dynamics.

the Bayes factor performance. The Bayes factors computed
in this table give strong evidence (based upon the Kass and
Raftery criterion mentioned before) for the Heston model
based on a full month of real tick-by-tick stock price data.
Indeed, as we will see below, there would still be strong
evidence supporting Heston if we used different values of
ℎ and Δ. It is also interesting that the order of the models
did not change over our three stock selections, with Heston
always being preferred and GBM always performing the
worst. Recall that all models are tuned to have their best
parameters 𝜃 and 𝜗.

4.4. Numerical Results on Inertia. Next, we look at the
ingestion time Δ using nondynamic microstructure Hes-
ton as the calibration model. Figure 8 and Table 9 show
the effect of varying Δ over {30mins, 2 hrs, 1/2 day} for
ℎ ∈ {0, 0.1, 0.2, . . . , 0.9, 1} fixed to give the highest Bayes
factor. There is a drop in the Bayes factor values from
the model determination experiment which is entirely
due to the change of calibration model from GBM with
nondynamic microstructure to Heston with nondynamic
microstructure. Our results show that the best ingestion
times for Goldman Sachs, PepsiCo, and International Busi-
ness Machines stocks are, respectively, 1/2 day, 2 hours,
and 1/2 day. The fact that the data supports long-time
ingestion might add merit to the case of the momentum
trader.
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Figure 9: Bayes factor for PEP inertia determination, April 2010.

Table 10: Bayes factor for inertia determination, April 2010.

ℎ ∗ 0 0.1 0.2 0.3 0.4

PEP (2 hrs) 1.00 3.745 5.875 6.950 11.693 16.733
GS (1/2 day) 1.00 11.578 13.507 16.194 17.746 18.100
IBM (1/2 day) 1.00 3.822 7.100 8.816 10.927 13.522
ℎ 0.5 0.6 0.7 0.8 0.9 1.0

PEP (2 hrs) 23.524 25.259 24.386 22.322 19.347 17.548
GS (1/2 day) 17.878 17.184 16.515 16.225 16.008 15.612
IBM (1/2 day) 16.707 20.611 25.388 31.225 38.345 46.988
∗Without dynamics.

Finally, we investigate the optimal amount of iner-
tia. Figure 9 and Table 10 show the effect of varying the
amount of inertia ℎ over {0, 0.1, 0.2, . . . , 0.9, 1} for Δ ∈

{30mins, 2 hrs, 1/2 day} fixed to give the highest Bayes factor.
The table shows that inertia is important. In fact, the best ℎ
was always at least ℎ = 0.4 and was even ℎ = 1 in the case of
IBM so all microstructure dynamics should be driven by the
inertia process.

5. Conclusions

Herein, we considered five popular SV models to represent
intrinsic or fair price and stochastic volatility of this price.
These SV models are free of inertia or momentum. We then
addedmicrostructure noise with possible dynamics and iner-
tia to these SV models to accommodate trading noise, trend
following, information dispersion, and the slow unwinding
of big positions. We used Bayesian model selection tech-
niques to determine which of these combined models fits
real NYSE data best. In the process of selecting the best
model we also investigated characteristics likemicrostructure
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dynamics, inertia, and stochastic volatility. For the stock data
considered, we can conclude the following:

(1) Bayesian model selection through particle filtering
provides a computationally effectivemeans to identify
the best finance models on real tick-by-tick data.

(2) The SV and inertia components of the financial mod-
els compared can be singular to each other as long
as the microstructure can be changed into the same
canonical Poisson measure process for all models
considered.

(3) There is strong evidence of dynamicalmicrostructure
noise.

(4) Adding dynamics to the microstructure allowed
much greater deviations of price from intrinsic value,
which can be detected by filtering and used as a
warning sign to investors and traders.

(5) The simplified Heston stochastic volatility model
with microstructure dynamics and significant inertia
performed the best in all cases.

(6) There is strong statistical evidence that such sim-
plified Heston stochastic volatility models with
microstructure dynamics and inertia match the
data better than the classical geometrical Brownian
motion.

(7) The amount of inertia ℎ and the time it lastedΔ varied
a little from stock to stock but in all cases there was
significant inertia that lasted for hours.

More complicated SV models can be investigated in our
future work. One could also postulate more complicated
microstructure dynamics and consider additional real data
analysis.
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