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A B S T R A C T

A new continuous-time Markov chain rate change formula is proven. This theorem is used to derive existence
and uniqueness of novel filtering equations akin to the Duncan–Mortensen–Zakai equation and the Fujisaki–
Kallianpur–Kunita equation but for Markov signals with general continuous-time Markov chain observations.
The equations in this second theorem have the unique feature of being driven by both the observations and
the process counting the observation transitions. A direct method of solving these filtering equations is also
derived. Most results apply as special cases to the continuous-time Hidden Markov Models (CTHMM), which
have become important in applications like disease progression tracking, The corresponding CTHMM results
are stated as corollaries. Finally, application of our general theorems to Markov chain importance sampling,
rejection sampling and branching particle filtering algorithms is also explained and these are illustrated by
way of disease tracking simulations.

1. Introduction

Importance sampling (IS), introduced by Kloek and van Dijk [1], is an important statistical variance reduction technique that is vital in problems
like Monte Carlo simulation (see e.g. [2,3]). From an alternative viewpoint, it is a general technique for estimating properties of a particular
distribution, while only having samples generated from a different distribution. Indeed, IS can also be important in rejection resampling and in
developing filtering equations, which will be further demonstrated herein. A method to extend IS to Markov chains (with possibly time and/or
hidden-state dependent rates) will be introduced in this paper. Consider a process 𝑌 (which will later be the observations) with finite or countable
state space 𝑂 that is Markov. Let it have a potentially time-dependent rate 𝛾𝑖→𝑗 (𝑠) of going from 𝑖 ∈ 𝑂 to 𝑗 ∈ 𝑂 at time 𝑠. Then, its generator is

L𝑠𝑔(𝑖) =
∑

𝑗≠𝑖,𝑗∈𝑂
𝛾𝑖→𝑗 (𝑠)[𝑔(𝑗) − 𝑔(𝑖)],

and 𝑌 solves a well-posed martingale problem with L𝑠 on a filtered probability space (𝛺, , {𝑡}𝑡≥0, 𝑃 ) such that 𝑌
𝑡 ≐ 𝜎{𝑌𝑠, 𝑠 ≤ 𝑡} ⊂ 𝑡 for all 𝑡 ≥ 0

under sufficient regularity. But, rather than simulating this chain directly, one samples 𝑌 with respect to a reference measure 𝑄 from a simpler
chain with generator:

L𝑔(𝑖) =
∑

𝑗≠𝑖,𝑗∈𝑂
𝛾 𝑖→𝑗 [𝑔(𝑗) − 𝑔(𝑖)], (1)

where the rates {𝛾 𝑖→𝑗}𝑖≠𝑗 may, for example, not depend upon time or be more balanced. Let 𝑁 count 𝑌 ’s state changes and 𝛾 𝑖→ =
∑

𝑗≠𝑖 𝛾 𝑖→𝑗 ,
𝛾𝑖→(𝑠) =

∑

𝑗≠𝑖 𝛾𝑖→𝑗 (𝑠) be the rates of leaving state 𝑖. Then, we will prove, under regularity conditions, that the likelihood ratio process

𝐴𝑡 = exp
(

∫

𝑡

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→ (𝑠) 𝑑𝑠

)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠 (𝑠)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

(2)

is a
{

𝑌
𝑡
}

-martingale under 𝑄. Moreover, under a Girsanov-type measure change

𝑑𝑃
𝑑𝑄

|

|

|

|𝑡
= 𝐴𝑡,
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𝑌 has the desired generator L𝑠, hence desired process distribution, under 𝑃 . This importance sampling result has applications in simulation, model
selection/verification, particle filters, parameter estimation, filtering theory and expanding the theory of Hidden Markov models to Markov chain
observations. For example, we can simulate a Markov chain with (simple) proposal rates {𝛾 𝑖→𝑗} and use rejection sampling to create a Markov
chain with (elaborate, possibly time-dependent) target rates {𝛾𝑖→𝑗 (𝑠)}.

Hidden Markov models (HMMs) were introduced in a series of papers by Baum and collaborators [4,5]. Traditional HMMs have enjoyed
tremendous success in applications like computational finance [6], single-molecule kinetic analysis [7], speech recognition, and protein folding [8].
In such applications, the unobservable hidden states 𝑋 are a discrete-time or continuous-time Markov chain and the observations process 𝑌 is some
distorted, corrupted partial measurement of the current state of 𝑋 satisfying the condition

𝑃
(

𝑌𝑡 ∈ 𝐴||
|

𝑋𝑠, 𝑠 ≤ 𝑡
)

= 𝑃
(

𝑌𝑡 ∈ 𝐴||
|

𝑋𝑡

)

at update or observation times 𝑡. These probabilities 𝑃
(

𝑌𝑡 ∈ 𝐴||
|

𝑋𝑡

)

are called the emission probabilities. In the case of a Continuous Time HMM

(CTHMM), the times {𝑡𝑖} that the observations change are also random. We consider the observations to be held constant in a cadlag manner until
a new update occurs. In this way, our results herein apply to CTHMM as corollaries. CTHMM have been used successfully in applications like
network performance evaluation (see [9]) and disease progression (see [10]).

CTHMM’s observations are independent given the hidden state but this is limiting. Consider observing weather conditions 𝑌 based upon hidden
climate state 𝑋. Wind, precipitation and temperature are not independent random samples but rather time evolutions, depending upon the climate
state. In other words, they depend upon their past values in addition to the current hidden state contradicting the Hidden Markov Model assumption.
A simple correction to the CTHMM is to allow observation dependence only on the immediate past as well as the hidden state and insist that the
measurements only take a finite or countable number of possibilities. Then, the observations become a Markov chain, whose transition probabilities
depend upon the hidden states. For generality of the hidden process, we can just assume:

(C0) the hidden state 𝑋 is a strong Markov process on a separable metric space 𝐸 that is the unique solution to a (𝐿, 𝜇)-martingale problem (m.p.):

𝑀𝑓
𝑡 = 𝑓

(

𝑋𝑡
)

− ∫

𝑡

0
𝐿𝑓

(

𝑋𝑠
)

𝑑𝑠

is a martingale for each 𝑓 ∈ 𝐷𝐿 and 
(

𝑋0
)

= 𝜇, where 𝐿 is a linear operator with domain 𝐷𝐿 ⊂ 𝐶(𝐸) of bounded, continuous 𝑓 ∶ 𝐸 → R such
that 𝐿𝑓 ∈ 𝐶(𝐸).


(

𝑋0
)

denotes the law of 𝑋0. Now, let �̂�𝐿 = 𝐷𝐿 × 𝐶(𝑂) for convenience. When 𝑋 is a Markov chain, the generator 𝐿 has the form
𝐿𝑓 (𝑥) =

∑

𝑗≠𝑥 𝜆𝑥→𝑗 [𝑓 (𝑗) − 𝑓 (𝑥)] for 𝑥 ∈ 𝐸, where 𝜆𝑥→𝑗 is the rate of 𝑋 going from state 𝑥 to 𝑗.

Remark 1.1. See Ethier & Kurtz [11], especially Theorem 4.4.2, for motivation, information about the m.p. and Markov processes. We avoid most
of this theory but note 𝐿1 = 0 for Markov generators and well-posedness of m.p.s is a standard way of defining processes.

The observations are modelled naturally as a Markov chain depending upon the hidden state. (In reality they may evolve as a Markov process,
fine approximated by a Markov chain.) For example, given the hidden state of the climate, the observed wind, temperature etc. evolve as a Markov
chain depending on climate. Hence, the observation rates depend on the hidden state and the observations satisfy a m.p. with an operator that
depends on the signal:

𝑚𝑔𝑡 = 𝑔
(

𝑌𝑡
)

− ∫

𝑡

0
L
(

𝑋𝑠
)

𝑔
(

𝑌𝑠
)

𝑑𝑠 (3)

is a martingale for all 𝑔 ∈ 𝐶(𝑂). Here, L(𝑥)𝑔 (𝑦) = ∑

𝑗≠𝑦 𝛾𝑦→𝑗 (𝑥) [𝑔 (𝑗) − 𝑔 (𝑦)], where {𝛾𝑖→𝑗 (𝑥)}𝑖,𝑗∈𝑂,𝑖≠𝑗 are the rates from state 𝑖 to state 𝑗 when the
hidden state is 𝑥. (This setting not only includes the nonlinear filtering setup but also things like common stochastic volatility models, both in the
general Markov chain setting.) If the observation noise is independent of the hidden state’s, then the role of independence gives us the combined
m.p. for the hidden state and observations:

𝑀𝑃
𝑡 =𝑀𝑃

𝑡 (𝑓, 𝑔) = 𝑓
(

𝑋𝑡
)

𝑔
(

𝑌𝑡
)

−∫

𝑡

0
𝑔
(

𝑌𝑠
)

𝐿𝑓
(

𝑋𝑠
)

𝑑𝑠 −∫

𝑡

0
𝑓
(

𝑋𝑠
)

L
(

𝑋𝑠
)

𝑔
(

𝑌𝑠
)

𝑑𝑠 (4)

is a martingale for all (𝑓, 𝑔) ∈ �̂�𝐿. For clarity, we will refer to the model of a hidden Markov signal 𝑋 (whether it is a chain or a general process)
observed through a continuous-time Markov chain 𝑌 as a continuous Markov observation model (CMOM). It subsumes the popular CTHMM and
can be studied through joint m.p. (4).

A key observation for learning about the hidden state is that we can construct this model from a reference probability 𝑄 using importance
sampling. Motivated by the development of the Duncan–Mortensen–Zakai equation (see [12,13]), we can first consider simple, fake observations
𝑌 with some reference probability 𝑄 that do not depend upon the hidden state at all. In particular, they could have rates {𝛾 𝑖→𝑗}𝑖≠𝑗 (that do not
depend upon 𝑥) as above and be constructed to have the combined m.p.:

𝑀𝑄
𝑡 = 𝑓

(

𝑋𝑡
)

𝑔
(

𝑌𝑡
)

− ∫

𝑡

0
𝑔
(

𝑌𝑠
)

𝐿𝑓
(

𝑋𝑠
)

𝑑𝑠 − ∫

𝑡

0
𝑓
(

𝑋𝑠
)

L𝑔
(

𝑌𝑠
)

𝑑𝑠 (5)

is a martingale for all (𝑓, 𝑔) ∈ �̂�𝐿, where L𝑔 (𝑦) =
∑

𝑗≠𝑦 𝛾𝑦→𝑗 [𝑔 (𝑗) − 𝑔 (𝑦)]. Then, adjusting likelihood ratio 𝐴 from (2) to account for the hidden
tate, one has that

𝐴𝑡 = exp
(

∫

𝑡

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

𝑑𝑠
)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

(6)

is a
{

𝑌
𝑡
}

-martingale under 𝑄 that converts 𝑄 into a new probability 𝑃 , where the hidden state and observations (𝑋, 𝑌 ) solve the desired joint
m.p. (4).
2
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The filter 𝜋𝑡 (𝐵) = 𝑃
(

𝑋𝑡 ∈ 𝐵||
|

𝑌
𝑡

)

, for Borel subsets 𝐵 of 𝐸, provides information on the hidden state based upon the model and the back

observations for both CTHMMs and CMOMs. {𝜋𝑡, 𝑡 ≥ 0} is a probability measure-valued process. The unnormalized filter 𝜎𝑡 (𝐵) = 𝐸𝑄
(

𝐴𝑡1𝑋𝑡∈𝐵
|

|

|

𝑌
𝑡

)

,
with 𝐴 as defined in (6), is a (finite, not-necessarily-probability) measure-valued process that provides the filter through Bayes rule

𝜋𝑡 (𝑓 ) =
𝜎𝑡 (𝑓 )
𝜎𝑡 (1)

(7)

for (at least) all bounded, measurable functions 𝑓 , where 𝜋𝑡 (𝑓 ) = ∫𝐸 𝑓𝑑𝜋𝑡. However, the unnormalized filter provides more than a means to compute
the filter. Rather as explained in [14], 𝜎𝑡 (1) = 𝜎𝑡 (𝐸) also provides the model rating Bayes factor (i.e. integrated Likelihood) of the model under
consideration over the reference model. This is an overall rating of both overall structure and model parameters, including those in the hidden
state component of the model. If we have two sets of parameters, then we can form two models 𝑀1,𝑀2 and produce two Bayes factors 𝜎1𝑡 (1), 𝜎2𝑡 (1).
We can compare these models on real data by evaluating 𝐵1|2(𝑡) = 𝜎1𝑡 (1)

𝜎2𝑡 (1)
. These models’ signals can be singular to each other, even of different

imensions, so Bayes’ factor methods are very general and effective. One could even test if there is value in having a hidden state. Hence, it is
ften more useful to produce a direct or particle filter approximation to the unnormalized filter than the (normalized) filter.

Particle filters that give Bayes factor information can be considered model rating particle filters. Let
{

𝑋𝑖}∞
𝑖=1 be independent copies of the signal,

alled particles, recall the likelihood 𝐴 that was used to convert 𝑄 into 𝑃 , let

𝐴𝑖𝑡 = exp
(

∫

𝑡

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑖
𝑠
)

𝑑𝑠
)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑖
𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

,

hich is like 𝐴 in (6) except the hidden state is replaced with the particle, and form

𝜎𝑁𝑡 (𝑓 ) = 1
𝑁

𝑁
∑

𝑖=1
𝐴𝑖𝑡𝑓

(

𝑋𝑖
𝑡
)

.

Then, by the independence of 𝑌 and {𝑋𝑖}∞𝑖=1 under 𝑄, we can fix the path 𝑌 and find that

1
𝑁

𝑁
∑

𝑖=1
𝐴𝑖𝑡𝑓

(

𝑋𝑖
𝑡
)

→ 𝐸𝑄
[

𝐴𝑡𝑓
(

𝑋𝑡
)

|

|

|

𝑌
𝑡

]

(8)

i.e. 𝜎𝑁𝑡 (𝑓 ) → 𝜎𝑡 (𝑓 ) a.s. [𝑄] for each 𝑓 by the strong law of large numbers. By selecting a countable collection of 𝑓 that is closed under multiplication
and strongly separate points, one can show a.s. convergence as measures i.e. 𝜎𝑁𝑡 (⋅) ⇒ 𝜎𝑡 (⋅) a.s. [𝑄] (see Lemma 2 of [15] and Lemma 7 of [16]).
We refer to 𝜎𝑁𝑡 as the weighted particle filter. It approximates the unnormalized filter. Notice that the real observations are used with each particle
𝑋𝑖 in 𝐴𝑖.

The weighted particle filter problem is particles drift away from the signal (except when living on small compact sets) and do not contribute
to the conditional distributional. To maintain enough effective particles, we develop a branching method analogous to that of [17].

The Fujisaki–Kallianpur–Kunita (FKK) [18] and Duncan–Mortensen–Zakai (DMZ) [12] equations were major breakthroughs in the classical
nonlinear filtering problem yielding the evolution of the filter and unnormalized filter. They are now the bases of many computational methods
of solving filters on real problems. However, they are only known for the classical observation setting as well as certain specific signal-dependent
noise structures (see [19]) and not for general Markov chain observations. As a final theoretical contribution we prove the FKK and DMZ equations
for the CMOM filtering problem, i.e. for Markov signals and continuous-time Markov chain observations. In particular, for the setting described
above, we show that the unnormalized filter is the unique strong 𝐷𝑓 (𝐸)[0,∞)-valued solution to:

𝜎𝑡(𝑓 (⋅)) = 𝜎0(𝑓 (⋅)) + ∫

𝑡

0
𝜎𝑠(𝐿𝑓 (⋅))𝑑𝑠 + ∫

𝑡

0
𝜎𝑠(𝑓 (⋅)(𝛾𝑌𝑠→ − 𝛾𝑌𝑠→ (⋅)) 𝑑𝑠 (9)

+∫

𝑡

0
𝜎𝑠−

([

𝑓 (⋅)
𝛾𝑌𝑠−→𝑌𝑠 (⋅)

𝛾𝑌𝑠−→𝑌𝑠
− 𝑓 (⋅)

])

𝑑𝑁𝑠, 𝑠.𝑡. 𝜎0 = (𝑋0).

or all 𝑓 ∈ 𝐷𝐿, where 𝑁 counts the state transitions of 𝑌 . More generally, we establish:

𝜎𝑡(𝑓 (⋅, 𝑌𝑡)) (10)

= 𝜎0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜎𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠 + ∫

𝑡

0
𝜎𝑠(𝑓 (⋅, 𝑌𝑠)(𝛾𝑌𝑠→ − 𝛾𝑌𝑠→ (⋅)) 𝑑𝑠

+∫

𝑡

0
𝜎𝑠−

([

𝑓 (⋅, 𝑌𝑠)
𝛾𝑌𝑠−→𝑌𝑠 (⋅)

𝛾𝑌𝑠−→𝑌𝑠
− 𝑓 (⋅, 𝑌𝑠−)

])

𝑑𝑁𝑠

for all 𝑓 ∈ �̂�𝐿. Moreover, the probability measure-valued filter 𝜋 solves

𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) = 𝜋0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜋𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠 (11)

− ∫

𝑡

0
𝜋𝑠(𝑓 (⋅, 𝑌𝑠)𝛾𝑌𝑠→ (⋅)) − 𝜋𝑠(𝑓 (⋅, 𝑌𝑠))𝜋𝑠(𝛾𝑌𝑠→ (⋅))𝑑𝑠

+∫

𝑡

0

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
) 𝑑𝑁𝑠,

for all 𝑓 ∈ �̂�𝐿 subject to 𝜋0 = (𝑋0). In the CTHMM case, the observation rates do not depend the current observation. Instead, we have a rate
for updates 𝛾(𝑥) that can depend upon the hidden state and an emission probability 𝑞 (𝑥) = 𝑃 (𝑌 = 𝑦′|𝑋 = 𝑥,𝑊 = 𝑡) for all 𝑡 > 0, where 𝑊 is
3

𝑦′ 𝑡 𝑡 𝑛 𝑛
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𝛾

2

W

i

the time of the 𝑛th emission so 𝛾 𝑖→𝑗 , 𝛾𝑖→𝑗 (𝑥) become 𝛾 𝑞𝑗 , 𝛾(𝑥)𝑞𝑗 (𝑥), where 𝛾 and 𝑞𝑗 are some canonical update rate and emission probability mass
function that do not depend upon the hidden state 𝑥. In this CTHMM case, (5), (4) and (9) become

𝑀𝑄
𝑡 = 𝑓

(

𝑋𝑡, 𝑌𝑡
)

− ∫

𝑡

0
𝐿𝑓

(

𝑋𝑠, 𝑌𝑠
)

𝑑𝑠 − ∫

𝑡

0

∑

𝑗
𝛾 𝑞𝑗 [𝑓

(

𝑋𝑠, 𝑗
)

− 𝑓
(

𝑋𝑠, 𝑌𝑠
)

]𝑑𝑠, (12)

𝑀𝑃
𝑡 = 𝑓

(

𝑋𝑡, 𝑌𝑡
)

−∫

𝑡

0
𝐿𝑓

(

𝑋𝑠, 𝑌𝑠
)

𝑑𝑠 −∫

𝑡

0

∑

𝑗
𝛾(𝑋𝑠) 𝑞𝑗(𝑋𝑠)[𝑓 (𝑋𝑠, 𝑗) − 𝑓 (𝑋𝑠, 𝑌𝑠)]𝑑𝑠 (13)

for all 𝑓 ∈ �̂�𝐿, where 𝐿 operates only on the first variable, and

𝜎𝑡(𝑓 (⋅)) = 𝜎0(𝑓 (⋅)) + ∫

𝑡

0
𝜎𝑠(𝐿𝑓 (⋅))𝑑𝑠 + ∫

𝑡

0
𝜎𝑠(𝑓 (⋅)(𝛾 − 𝛾 (⋅)) 𝑑𝑠 (14)

+∫

𝑡

0
𝜎𝑠−

([

𝑓 (⋅)
𝛾(⋅)𝑞𝑌𝑠 (⋅)

𝛾 𝑞𝑌𝑠
− 𝑓 (⋅)

])

𝑑𝑁𝑠, 𝑠.𝑡. 𝜎0 = (𝑋0).

or all 𝑓 ∈ 𝐷𝐿. (10), (11) also simplify accordingly (see below). (14) can be used for filtering, model selection and as a basis for parameter
stimation in CTHMM.

Finally, we develop a direct solution approach solving (9) (or (14)) that is being used in current work to estimate trends and volatility in
inancial models based upon tick-by-tick data. Naturally, there are many other potential applications for our results.

.1. Layout

The next section is a proof of our rate-change Girsanov’s theorem. Section 3 has our applications to resampling Markov chains, Monte Carlo
imulation and particle filtering with Markov chain observations. A simulation study demonstrating the applicability of our results to data generation
nd to disease transmission is spread over this section. Section 4 contains a new development for filtering problems with Markov chain observations,
stablishing FKK and DMZ type equations for these filtering problems. It also contains our direct solutions to these filtering equations. Finally, our
onclusions and highlights are in Section 5.

.2. Notation

Let 𝐵(𝑆), 𝐶(𝑆) and 𝐶(𝑆) be the bounded, continuous and continuous bounded real functionals respectively and 𝑀(𝑆, 𝑆) be the measurable
functions from 𝑆 to 𝑆 with the topology of pointwise convergence on any Polish space 𝑆. Further, we let 𝑓 (𝑆) be the space of finite (non-
negative) Borel measures with the topology of weak convergence i.e. the notion that 𝜈𝑛 ⇒ 𝜈 if and only if 𝜈𝑛(𝑓 ) → 𝜈(𝑓 ) for all 𝑓 ∈ 𝐶(𝑆), and
(𝑆) ⊂ 𝑓 (𝑆) be the probability measures. Finally, we let 𝐷𝑆 [0,∞) denote the space cadlag path from [0,∞) to 𝑆 equipped with the Skorokhod

metric.
For 𝑧 > 0, ⌊𝑧⌋ is the greatest integer not more than 𝑧 and {𝑧} = 𝑧 − ⌊𝑧⌋.
𝜆𝑖→𝑗 denotes the rate of a hidden Markov chain going from state 𝑖 to state 𝑗 and 𝜆𝑖→ =

∑

𝑗≠𝑖 𝜆𝑖→𝑗 denotes the rate of leaving state 𝑖. Similarly,
𝑖→𝑗 denotes the rate of an observed Markov chain going from state 𝑖 to state 𝑗 and 𝛾𝑖→ =

∑

𝑗≠𝑖 𝛾𝑖→𝑗 .

𝑎𝑖,𝑘
𝑖
≪ 𝑏𝑖,𝑘 means ∀𝑘, ∃𝑐𝑘 > 0 not depending on i s.t. |𝑎𝑖,𝑘| ≤ 𝑐𝑘|𝑏𝑖,𝑘| ∀𝑖, 𝑘.

𝐿 will be used for a generator, a linear operator 𝐶 (𝑆) → 𝐶 (𝑆). Here, 𝑆 will either be the hidden state space 𝐸 or the observation state space
𝑂.

𝐴,𝐴𝑖 will be used for likelihood, particle weight processes respectively.
 (𝑍) will be used to denote the law or distribution of random variable 𝑍.
[𝑊 ,𝑍] will denote quadratic covariation of two stochastic processes 𝑊 and 𝑍.
𝛿𝑥 will be used for Dirac delta measure at point 𝑥.
(𝑆) will denote the Borel sets on metric space 𝑆.

. Rate change formula

In this section, we derive a rate-change Girsanov-type theorem for Markov chains and hidden Markov signals with Markov chain observations.
e use the notation of the later application as one can just take 𝑋𝑠 = 𝑠 and 𝐸 = [0, 𝑇 ] for the former.
The following conditions will be imposed in our first main result to follow:

(C1) The observation state space 𝑂 is a finite or countable metric space and sup𝑖∈𝑂 𝛾 𝑖→ <∞.
(C2) sup𝑥∈𝐸,𝑖∈𝑂

𝛾𝑖→(𝑥)
𝛾 𝑖→

<∞.

(C3) There are no cemetery states, meaning 𝛾𝑖→(𝑥), 𝛾 𝑖→ > 0 for all 𝑖 ∈ 𝑂, 𝑥 ∈ 𝐸.
(C4) 𝜓 is a probability measure on (𝑂,(𝑂)).

Operator L, defined in (1), is bounded by (C1) and there is a unique solution to the m.p.:

𝑔(𝑌𝑡) − ∫

𝑡

0
L𝑔(𝑌𝑠)𝑑𝑠

s a martingale for all 𝑔 ∈ 𝐶(𝑂) and (𝑌0) = 𝜓 . The solution can be constructed and simulated in the following manner. On our reference measure 𝑄,
let

{

𝑇 𝑖→𝑛
}

𝑛∈N,𝑖∈𝑂 be independent exponential random variables with rates
{

𝛾 𝑖→
}

𝑖∈𝑂, let
{

𝜉𝑖𝑛, 𝑛 ∈ N0
}

𝑖∈𝑂 be independent discrete random variables

such that 𝑃
(

𝜉𝑖𝑛 = 𝑗
)

= 𝜆𝑖→𝑗
𝜆𝑖→

for 𝑗 ≠ 𝑖 ∈ 𝑂 and let 𝜃0 be a random sample from (𝑌0). Take all these to be independent of each other and of the
hidden state 𝑋. Then, 𝑌 could be constructed under 𝑄 in three steps starting from some 𝑌 = 𝜃 , 𝑊 = 0:
4

0 0 0
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(1) 𝜃𝑛 = 𝜉𝜃𝑛−1𝑛−1 for 𝑛 ∈ N (gets the transitions as a discrete chain)
(2) 𝑊𝑛 = 𝑊𝑛−1 + 𝑇

𝜃𝑛−1→
𝑛 for 𝑛 ∈ N (get the transition times)

(3) 𝑌𝑡 = 𝜃𝑛 for 𝑡 ∈
[

𝑊𝑛,𝑊𝑛+1
)

𝑛 ∈ N0 (create continuous time chain).
Notice that the quadratic variation [𝑓 (𝑋) , 𝑔 (𝑌 )] = 0 for all 𝑓, 𝑔 by the 𝑋, 𝑌 independence under 𝑄 so [𝑓 (𝑋) , 𝑁] = 0, where 𝑁 counts the

ransitions in 𝑌 , for all 𝑓 .
Now, we have our first main result, which is a Girsanov change-of-measure result changing Markov chains by weighting.

heorem 2.1. Suppose (C1, C2, C3) hold and (𝑋, 𝑌 ) satisfies the (5) martingale problem starting from some initial law (𝑋0, 𝑌0) = 𝜈 under 𝑄. Then,

𝐴𝑡 = exp
(

∫

𝑡

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

𝑑𝑠
)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

(15)

s a
{

𝑌
𝑡
}

-martingale under 𝑄, where 𝑁 counts the transitions of 𝑌 . Moreover, if we define a new probability measure via 𝑑𝑃
𝑑𝑄

|

|

|𝑡
= 𝐴𝑡, ∀𝑡 ≥ 0, then (𝑋, 𝑌 )

atisfies the (4) m.p. starting from (𝑋0, 𝑌0) = 𝜈 under 𝑃 .

Note:
[

1 +
(

𝛾𝑌𝑠−→𝑌𝑠 (𝑋𝑠)
𝛾𝑌𝑠−→𝑌𝑠

− 1
)

𝛥𝑁𝑠

]

is 𝛾𝑌𝑠−→𝑌𝑠 (𝑋𝑠)
𝛾𝑌𝑠−→𝑌𝑠

at transition times 𝑠 or else 1.

roof. By our construction, 𝑁 counts the transitions of 𝑌 and the {𝜉𝑘𝑖 } determine the actual transitions. Let 𝑡 ≐ 𝜎{𝑁𝑠, 𝜉𝑘𝑖 , 𝑋𝑢 ∶ 𝑖 ≤ 𝑁𝑠, 𝑘 ∈ 𝑂, 𝑠 ≤

, 𝑢 ∈ [0,∞)}, 𝑞𝑖→𝑗 =
𝜆𝑖→𝑗
𝜆𝑖→

and 𝑞𝑖→𝑗 (𝑥) =
𝜆𝑖→𝑗 (𝑥)
𝜆𝑖→(𝑥) . Under 𝑄, the combined chain (𝑌 ,𝑁) satisfies the m.p.

𝑔
(

𝑌𝑡, 𝑁𝑡
)

− ∫

𝑡

0
L
𝑁
𝑔
(

𝑌𝑠, 𝑁𝑠
)

𝑑𝑠 (16)

is a {𝑡}-martingale, where L
𝑁
𝑔 (𝑦, 𝑛) =

∑

𝑗≠𝑦 𝛾𝑦→𝑗 [𝑔 (𝑗, 𝑛 + 1) − 𝑔 (𝑦, 𝑛)]. In particular, taking 𝑔 (𝑦, 𝑛) = 𝑛

𝑀𝑁
𝑡 = 𝑁𝑡 − ∫

𝑡

0
𝛾𝑌𝑠→𝑑𝑠 (17)

nd so

∫

𝑡

0
𝐴1
𝑠−

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
− 1

)

𝑑𝑀𝑁
𝑠 (18)

=∫

𝑡

0
𝐴1
𝑠−

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
− 1

)

𝑑𝑁𝑠 − ∫

𝑡

0
𝐴1
𝑠−

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
− 1

)

𝛾𝑌𝑠→𝑑𝑠,

with 𝐴1
𝑡 defined below, are 𝑄-local martingale. We break the weight 𝐴 from (15) into two factors 𝐴1 and 𝐴2 defined by 𝐴1

0 = 𝐴2
0 = 1 and

𝑑𝐴1
𝑡 = 𝐴1

𝑡−

[(

𝛾𝑌𝑡−→
(

𝑋𝑡
)

𝛾𝑌𝑡−→
− 1

)

𝑑𝑁𝑡 +
[

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→
(

𝑋𝑡
)

]

𝑑𝑡

]

(19)

𝑑𝐴2
𝑡 = 𝐴2

𝑡−

(

𝑞𝑌𝑡−→𝑌𝑡
(

𝑋𝑡
)

𝑞𝑌𝑡−→𝑌𝑡
− 1

)

𝑑𝑁𝑡. (20)

o show this, we use integration by parts with 𝛼 = 𝐴1𝐴2

𝑑𝛼𝑡 = 𝛼𝑡−

[(

𝛾𝑌𝑡−→
(

𝑋𝑡
)

𝛾𝑌𝑡−→
− 1

)

𝑑𝑁𝑡 +
[

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→
(

𝑋𝑡
)

]

𝑑𝑡

]

(21)

+ 𝛼𝑡−

(

𝑞𝑌𝑡−→𝑌𝑡
(

𝑋𝑡
)

𝑞𝑌𝑡−→𝑌𝑡
− 1

)

𝑑𝑁𝑡 + 𝛼𝑡−

(

𝛾𝑌𝑡−→
(

𝑋𝑡
)

𝛾𝑌𝑡−→
− 1

)(

𝑞𝑌𝑡−→𝑌𝑡
(

𝑋𝑡
)

𝑞𝑌𝑡−→𝑌𝑡
− 1

)

𝑑𝑁𝑡

= 𝛼𝑡−

(

𝛾𝑌𝑡−→
(

𝑋𝑡
)

𝛾𝑌𝑡−→

𝑞𝑌𝑡−→𝑌𝑡
(

𝑋𝑡
)

𝑞𝑌𝑡−→𝑌𝑡
− 1

)

𝑑𝑁𝑡 + 𝛼𝑡−
[

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→
(

𝑋𝑡
)

]

𝑑𝑡

= 𝛼𝑡−

(

𝛾𝑌𝑡−→𝑌𝑡
(

𝑋𝑡
)

𝛾𝑌𝑡−→𝑌𝑡
− 1

)

𝑑𝑁𝑡 + 𝛼𝑡−
[

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→
(

𝑋𝑡
)

]

𝑑𝑡.

ut, this stochastic exponential equation has unique solution (see Protter [20, Theorem II.36])

𝛼𝑡 = exp
(

∫

𝑡

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

𝑑𝑠
)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

= 𝐴𝑡

o 𝐴𝑡 = 𝐴1
𝑡𝐴

2
𝑡 . Moreover, by Ito’s formula (see Theorem II.36 of Protter) again

𝐴2
𝑡 =

∏

0<𝑠≤𝑡

[

1 +

(

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

(22)

and

𝐴1
𝑡 = exp

(

∫

𝑡
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

𝑑𝑠
)

∏

[

1 +

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

− 1

)

𝛥𝑁𝑠

]

(23)
5
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= exp

(

∫

𝑡

0

[

𝛾𝑌𝑠→ − 𝛾𝑌𝑠→
(

𝑋𝑠
)

𝑑𝑠 + ln

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→

)

𝑑𝑁𝑠

])

.

(Show 𝐴1 is a martingale) By (18), (19) 𝐴1 is a 𝑄 local martingale. Under (C1, C2), it is a martingale by (23). Let 𝑃 1 be defined by

𝑑𝑃 1

𝑑𝑄
|

|

|

|𝑡
= 𝐴1

𝑡 , ∀𝑡 ≥ 0.

Apply Girsanov–Meyer) It follows by (5) with 𝑓 ≡ 1 and Theorem III.20 of Protter that

𝑀𝑡 = 𝑔(𝑌𝑡) − 𝑔(𝑌0) − ∫

𝑡

0
L𝑔(𝑌𝑠)𝑑𝑠 − ∫

𝑡

0

1
𝐴1
𝑠
𝑑[𝐴1,𝑀𝑄]𝑠 (24)

is a local martingale under 𝑃 1. However, by (5) with 𝑓 ≡ 1 again, (19), (23)
[

𝐴1,𝑀𝑄]
𝑡 =

[

𝐴1, 𝑔(𝑌 )
]

𝑡 (25)

∫

𝑡

0

1
𝐴1
𝑠
𝑑[𝐴1,𝑀𝑄]𝑠 = ∫

𝑡

0

𝐴1
𝑠−

𝐴1
𝑠

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
− 1

)

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

𝑑𝑁𝑠 (26)

= ∫

𝑡

0

𝛾𝑌𝑠−→
𝛾𝑌𝑠−→

(

𝑋𝑠
)

(

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
− 1

)

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

𝑑𝑁𝑠.

Putting (24), (26) together, we have that

𝑀𝑡 = ∫

𝑡

0

𝛾𝑌𝑠−→
𝛾𝑌𝑠−→

(

𝑋𝑠
)

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

𝑑𝑁𝑠 − ∫

𝑡

0
L𝑔(𝑌𝑠)𝑑𝑠

and so

∫

𝑡

0

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
𝑑𝑀𝑠 = 𝑔

(

𝑌𝑡
)

− 𝑔
(

𝑌0
)

− ∫

𝑡

0

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝛾𝑌𝑠−→
L𝑔(𝑌𝑠)𝑑𝑠 (27)

s a 𝑃 1-local martingale.
(New 𝑌 m.p.) Rewriting (27) and using (C1-C3) as well as 𝑔 ∈ 𝐶(𝑂), we have that

𝑔
(

𝑌𝑡
)

− 𝑔
(

𝑌0
)

− ∫

𝑡

0
𝛾𝑌𝑠→

(

𝑋𝑠
)
∑

𝑗≠𝑌𝑠

𝑞𝑌𝑠→𝑗 [𝑔(𝑗) − 𝑔(𝑌𝑠)]𝑑𝑠 (28)

is a 𝑃 1 martingale and following (16), (17) that

𝑁𝑡 − ∫

𝑡

0
𝛾𝑌𝑠−→

(

𝑋𝑠
)

𝑑𝑠 (29)

is a 𝑃 1-local martingale.
(Show 𝐴2 is a 𝑃 1-martingale) Under (C1, C2), L(𝑥)𝑔(𝑦) ≐ 𝛾𝑦→(𝑥)

∑

𝑗≠𝑦 𝑞𝑦→𝑗 [𝑔(𝑗) − 𝑔(𝑦)] are uniformly (in 𝑥) bounded operators and for a given
𝑋𝑡, 𝑡 ≥ 0}, the L(𝑋𝑡) m.p. is well posed. The solution can be constructed using the same 3 step procedure given above except in (2) the distribution
f 𝑇𝑛 is determined by 𝑃 (𝑇 𝜃𝑛−1𝑛 > 𝑡) = 𝑒− ∫ 𝑊𝑛+𝑡𝑊𝑛

𝛾𝜃𝑛−1→(𝑋𝑠)𝑑𝑠 for 𝑡 ≥ 0. Hence, we still use independent {𝜉𝑘𝑛 } such that 𝑃 1 (𝜉𝑘𝑛 = 𝑗
)

= 𝑄
(

𝜉𝑘𝑛 = 𝑗
)

= 𝑞𝑘→𝑗
nd

𝑌𝑠 =

{

𝜉𝑌𝑠−𝑁𝑠−
𝛥𝑁𝑠 = 1

𝑌𝑠− 𝛥𝑁𝑠 = 0
.

herefore, by independence and our representation

𝐸𝑃
1

[

∏

𝑢<𝑠≤𝑡

[

1 +

(

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

|

|

|

𝑢

]

(30)

= 𝐸𝑃
1

[

∏

𝑢<𝑠≤𝑡

[

1 +

(

∑

𝑗
𝑞𝑌𝑠−→𝑗

(

𝑋𝑠
)

− 1

)

𝛥𝑁𝑠

]

|

|

|

𝑢

]

= 1

nd 𝐴2 is a 𝑃 1-martingale.
Use new m.p.) (28) is our intermediate m.p. We know that

𝑔
(

𝑌𝑡
)

− 𝑔
(

𝑌0
)

= ∫

𝑡

0

[

𝑔
(

𝑌𝑠
)

− 𝑔
(

𝑌𝑠−
)]

𝑑𝑁𝑠 (31)

= ∫

𝑡

0

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

𝑑𝑁𝑠

= ∫

𝑡

0

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝑑𝑠 +𝑡

and  is a local 𝑃 1-martingale since it is the sum of the following two terms, the first

∫

𝑡
[

∑

𝑞𝑌𝑠−→𝑗 𝑔 (𝑗) − 𝑔
(

𝑌𝑠−
)

]

[𝑑𝑁𝑠 − 𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝑑𝑠]
6

0 𝑗
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would clearly be a local martingale by (29) and the second

𝐸𝑃
1

[

∫

𝑡

𝑢

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

−
∑

𝑗
𝑞𝑌𝑠−→𝑗𝑔 (𝑗)

]

[𝑑𝑁𝑠 − 𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝑑𝑠]||
|

𝑢

]

= 0

y the independence (from everything) and distribution of the {𝜉𝑘𝑛 } under 𝑃 1.
Now, by (29), (31)

∫

𝑡

0

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠 −∫

𝑡

0

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔(𝑌𝑠−)
]

𝛾𝑌𝑠−→
(

𝑋𝑠
)

𝑑𝑠

=𝑀𝑁
𝑡

s a 𝑃 1-local martingale. Furthermore, if 𝑠 = 𝜎{𝑌𝑣 ∶ 𝑣 ≤ 𝑠} ∨ 𝑢 for 𝑠 > 𝑢, then for 𝑡 > 𝑢

𝐸
⎡

⎢

⎢

⎣

∫

𝑡

𝑢

𝛾
𝑌𝑠−→𝜉

𝑌𝑠−
𝑁𝑠−

(𝑋𝑠)

𝑞
𝑌𝑠−→𝜉

𝑌𝑠−
𝑁𝑠−

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

−
∑

𝑗

[

𝑔 (𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

𝑑𝑠||
|

𝑢
⎤

⎥

⎥

⎦

=∫

𝑡

𝑢
𝐸
⎡

⎢

⎢

⎣

𝐸
⎡

⎢

⎢

⎣

𝛾
𝑌𝑠−→𝜉

𝑌𝑠−
𝑁𝑠−

(𝑋𝑠)

𝑞
𝑌𝑠−→𝜉

𝑌𝑠−
𝑁𝑠−

[

𝑔
(

𝜉𝑌𝑠−𝑁𝑠−

)

− 𝑔
(

𝑌𝑠−
)

]

−
∑

𝑗

[

𝑔(𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

|

|

|

𝑠−
⎤

⎥

⎥

⎦

|

|

|

𝑢
⎤

⎥

⎥

⎦

𝑑𝑠

= 0.

Consequently,

𝑀𝑁
𝑡 = ∫

𝑡

0

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠 −∫

𝑡

0

∑

𝑗

[

𝑔(𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

𝑑𝑠 (32)

is a 𝑃 1-local martingale.
(Apply Girsanov–Meyer) By (32), Theorem III.20 of Protter and the fact that 𝐴2 is pure jump, one has that

�̌�𝑁
𝑡 =∫

𝑡

0

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠 −∫

𝑡

0

∑

𝑗

[

𝑔(𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

𝑑𝑠 (33)

−∫

𝑡

0

1
𝐴2
𝑠
𝑑[𝐴2,∫

⋅

0

𝑞𝑌𝑢−→𝑌𝑢
(

𝑋𝑢
)

𝑞𝑌𝑢−→𝑌𝑢
(𝑔(𝑌𝑢) − 𝑔(𝑌𝑢−)) 𝑑𝑁𝑢]𝑠

s a local martingale under 𝑃 . However, by (20) and (31)
[

𝐴2,∫
𝑞𝑌𝑢−→𝑌𝑢

(

𝑋𝑢
)

𝑞𝑌𝑢−→𝑌𝑢
(𝑔(𝑌𝑢) − 𝑔(𝑌𝑢−)) 𝑑𝑁𝑢

]

𝑡

(34)

=
∑

0<𝑠≤𝑡

[

𝐴2
𝑠−

(

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
− 1

)

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−))

]

𝛥𝑁𝑠

so by (22)

∫

𝑡

0

1
𝐴2
𝑠
𝑑

[

𝐴2,∫
𝑞𝑌𝑢−→𝑌𝑢

(

𝑋𝑢
)

𝑞𝑌𝑢−→𝑌𝑢
(𝑔(𝑌𝑢) − 𝑔(𝑌𝑢−)) 𝑑𝑁𝑢

]

𝑠

(35)

=∫

𝑡

0

𝐴2
𝑠−

𝐴2
𝑠

(

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
− 1

)

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠

=∫

𝑡

0

𝑞𝑌𝑠−→𝑌𝑠
𝑞𝑌𝑠−→𝑌𝑠

(

𝑋𝑠
)

(

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
− 1

)

𝑞𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝑞𝑌𝑠−→𝑌𝑠
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠.

ubstituting (35) into (33) and using bounded 𝑔, one has that

�̌�𝑁
𝑡 = ∫

𝑡

0
(𝑔(𝑌𝑠) − 𝑔(𝑌𝑠−)) 𝑑𝑁𝑠 − ∫

𝑡

0

∑

𝑗

[

𝑔(𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

𝑑𝑠 (36)

= 𝑔(𝑌𝑡) − 𝑔(𝑌0) − ∫

𝑡

0

∑

𝑗

[

𝑔(𝑗) − 𝑔
(

𝑌𝑠−
)]

𝛾𝑌𝑠−→𝑗
(

𝑋𝑠
)

𝑑𝑠

is a martingale under 𝑃 .
(Work on 𝑋) A third application of the Girsanov–Meyer theorem with [𝑓 (𝑋), 𝑁] = 0 shows

𝑚𝑓𝑡 = 𝑓
(

𝑋𝑡
)

− ∫

𝑡

0
𝐿𝑓

(

𝑋𝑠
)

𝑑𝑠 (37)

is also a 𝑃 local martingale. One now obtains from boundedness, integration by parts, (36), the fact
[

𝑚𝑓 , 𝑁
]

= 0 and (37) that

𝑓
(

𝑋𝑡
)

𝑔
(

𝑌𝑡
)

− 𝑓
(

𝑋0
)

𝑔
(

𝑌0
)

− ∫

𝑡

0
𝑔(𝑌𝑠)𝐿𝑓 (𝑋𝑠) + 𝑓 (𝑋𝑠)L(𝑋𝑠)𝑔(𝑌𝑠)𝑑𝑠 (38)

is a 𝑃 martingale for continuous, bounded 𝑔 and 𝑓 ∈ 𝐷(𝐿). □
7
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As mentioned previously, CTHMM is a special case of our CMOM model. (C1-C3) are modified for the CTHMM model as follow:

(A1) The observation state space 𝑂 is a finite or countable space.
(A2) sup𝑥∈𝐸 𝛾(𝑥) <∞.
(A3) 𝛾(𝑥) > 0 for all 𝑥 ∈ 𝐸.

ow, the following result is an immediate corollary of Theorem 2.1.

orollary 2.2. Suppose (A1, A2, A3) hold and (𝑋, 𝑌 ) satisfies the (12) m.p. starting from some initial law (𝑋0, 𝑌0) = 𝜈 under 𝑄. Then,

𝐴𝑡 = exp
(

∫

𝑡

0
𝛾 − 𝛾

(

𝑋𝑠
)

𝑑𝑠
)

∏

0<𝑠≤𝑡

[

1 +

(

𝛾(𝑋𝑠)𝑞𝑌𝑠 (𝑋𝑠)

𝛾 𝑞𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

(39)

is a
{

𝑌
𝑡
}

-martingale under 𝑄, where 𝑁 counts the transitions of 𝑌 . Moreover, if 𝑃 satisfies 𝑑𝑃
𝑑𝑄

|

|

|𝑡
= 𝐴𝑡, ∀𝑡 ≥ 0, then (𝑋, 𝑌 ) solves the (13) m.p. starting

rom (𝑋0, 𝑌0) = 𝜈 under 𝑃 .

. Simulation and model testing

.1. Rejection sampling

Theorem 2.1 was partially motivated by the desire to change the rates of Markov chains. We start with a (simple Markov chain say) m.p. under
he reference probability measure 𝑄 as the proposal process 𝑌 satisfying:

𝑚𝑄𝑡 = 𝑔
(

𝑌𝑡
)

− ∫

𝑡

0
L𝑔

(

𝑌𝑠
)

𝑑𝑠 (40)

s a martingale for all 𝑔, with L defined in (1). This can be expanded to the m.p.

𝑀𝑄
𝑡 = 𝑓 (𝑡) 𝑔

(

𝑌𝑡
)

− ∫

𝑡

0
𝑔
(

𝑌𝑠
) 𝑑
𝑑𝑠
𝑓 (𝑠) 𝑑𝑠 − ∫

𝑡

0
𝑓 (𝑠)L𝑔

(

𝑌𝑠
)

𝑑𝑠, (41)

is a martingale for all 𝑓, 𝑔 by integration by parts, which is just (5) with 𝑋𝑠 = 𝑠 and 𝐸 = [0,∞). Take 𝐷𝐿 to be the bounded, one-time continuously
differentiable functions with bounded derivative, where the derivative at 0 is from the right. (41) is then turned into target m.p. (4) by Theorem 2.1
with 𝑋𝑠 = 𝑠:

𝑀𝑃
𝑡 =𝑀𝑃

𝑡 (𝑓, 𝑔) = 𝑓 (𝑡) 𝑔
(

𝑌𝑡
)

−∫

𝑡

0
𝑔
(

𝑌𝑠
) 𝑑
𝑑𝑠
𝑓 (𝑠) 𝑑𝑠 −∫

𝑡

0
𝑓 (𝑠)L𝑠𝑔

(

𝑌𝑠
)

𝑑𝑠 (42)

is a martingale for all (𝑓, 𝑔) ∈ �̂�𝐿 under the new measure 𝑃 , where

L𝑠𝑔(𝑖) =
∑

𝑗≠𝑖,𝑗∈𝑂
𝛾𝑖→𝑗 (𝑠)[𝑔(𝑗) − 𝑔(𝑖)]. (43)

The likelihood ratio martingale for this change is then given by (2) by Theorem 2.1.
In summary, we

1. Simulate Markov chain 𝑌 under the (simple) proposal process distribution. We think of this as being done on the reference probability space
(𝛺, , 𝑄).

2. Reweight the simulation by 𝐴 so that the combined effect is like it came from the target distribution with a different probability 𝑃 .

It is natural to wonder if there is some way to stay on the simulation space (with 𝑄) and get rid of the weight. Notice we use sample 𝑌 dependence
of the likelihood ratio weight:

𝐴 = 𝐴𝑇 (𝑌 ) = exp
(

∫

𝑇

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→(𝑠)𝑑𝑠

)

∏

0<𝑠≤𝑇

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠 (𝑠)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

, (44)

where 𝑁 counts the transitions of 𝑌 , to convert proposal Markov chain simulations as target ones. In fact, the weight 𝐴 tells us how good a proposal
sample would be as a sample from the target m.p. Now, von Neumann’s Acceptance–Rejection algorithm:
(Step 1) Simulate 𝑌 𝑄 with proposal m.p. and a [0, 𝐶]-Uniform 𝑈 independent of 𝑌 𝑄.
(Step 2) If 𝑈 ≤ 𝐴𝑇

(

𝑌 𝑄
)

, then accept by setting 𝑌 = 𝑌 𝑄 and quitting the algorithm. Otherwise, reject by returning to Step 1.
(with independence implied between iterations of the algorithm) will allow us to create a target sample without requiring the likelihood ratio
weight. We constrain 𝐴 to be bounded (for now) in order to show the algorithm works.
The following conditions will be imposed in our simulation result:

(C2′) sup𝑠∈[0,𝑇 ],𝑖∈𝑂
𝛾𝑖→(𝑠)
𝛾 𝑖→

<∞.

(C3′) There are no cemetery states, meaning 𝛾𝑖→(𝑠), 𝛾 𝑖→ > 0 for all 𝑖 ∈ 𝑂, 𝑠 ∈ [0, 𝑇 ].
(Good 𝐴) There is a 𝐶 > 1 such that 𝐴 = 𝐴𝑇 (𝑌 ) ∈ [0, 𝐶] for all 𝑌 and 𝐸𝑄 [𝐴] = 1.

Proposition 3.1. Suppose (C1, C2’, C3’, C4, Good 𝐴) hold, 𝐴 is defined in (44) and {(𝑌 𝑄𝑛 , 𝑈𝑛)}∞𝑛=1 are the independent samples produced by Step 1 of
the rejection algorithm. Then, the rejection algorithm output 𝑌 has the target distribution on 𝑄.

For clarity, the theorem says one can simulate on a computer with rates {𝛾 𝑖→𝑗} apply rejection resampling and get a Markov chain with rates
{𝛾 (𝑠)} at times 𝑠.
8
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Proof. Let 𝑓 ∶ R𝑇 → R be continuous and bounded. By the algorithm’s acceptance criterion and independence one has (with 𝐴𝑛 = 𝐴𝑇 (𝑌
𝑄
𝑛 )) that

𝐸𝑄[𝑓 (𝑌 )] =
∞
∑

𝑛=1
𝐸𝑄

[

𝑓
(

𝑌 𝑄𝑛
)

1𝑈1>𝐴1 ,… , 1𝑈𝑛−1>𝐴𝑛−1 , 1𝑈𝑛≤𝐴𝑛
]

(45)

=
∞
∑

𝑛=1
𝐸𝑄

[

𝑓
(

𝑌 𝑄𝑛
)

, 1𝑈𝑛≤𝐴𝑛
]

𝑄
(

𝑈1 > 𝐴
1,… , 𝑈𝑛−1 > 𝐴

𝑛−1)

=
∞
∑

𝑛=1

𝐸𝑄
[

𝑓
(

𝑌 𝑄𝑛
)

𝐴𝑛
]

𝐶
𝑄
(

𝑈1 > 𝐴
1)⋯𝑄

(

𝑈𝑛−1 > 𝐴
𝑛−1)

=
∞
∑

𝑛=1

𝐸𝑄
[

𝑓
(

𝑌 𝑄1
)

𝐴1
]

𝐶
𝑄
(

𝑈1 > 𝐴
1)𝑛−1

= 𝐸𝑄
[

𝑓
(

𝑌 𝑄1
)

𝐴1
] 1
𝐶𝑄

(

𝑈1 ≤ 𝐴1
)

= 𝐸𝑃
[

𝑓
(

𝑌 𝑄1
)] 1

𝐶𝑄
(

𝑈1 ≤ 𝐴1
) .

Substituting 𝑓 = 1, one finds that 1 = 1
𝐶𝑄(𝑈1≤𝐴1) so 𝑄

(

𝑈1 ≤ 𝐴1) = 1
𝐶 . □

The acceptance rate decreases as 𝐶 increases. Unfortunately, there is no absolute bound on the number of transitions 𝑁 . If
{

𝛾𝑖→𝑗
}

are chosen
so that 𝛾𝑌𝑠−→𝑌𝑠 (𝑠)

𝛾𝑌𝑠−→𝑌𝑠
≤ 1 for all samples 𝑌 and all 𝑠, then we can use the rejection method as above without stopping times since

𝐴 = exp
(

∫

𝑇

0
𝛾𝑌𝑠→ − 𝛾𝑌𝑠→ (𝑠) 𝑑𝑠

)

∏

0<𝑠≤𝑇

[

1 +

(

𝛾𝑌𝑠−→𝑌𝑠 (𝑠)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠

]

can be bounded. (This can be either impossible or else force a very inefficient simulation.) Otherwise, we use the algorithm multiple times with
stopping times.

Let 𝑊𝑛 be the time of the 𝑛th jump of 𝑁 , which is the 𝑛th transition of 𝑌 and assume (Bounded transitions) Suppose there is a 𝑐 > 0 such that
sup𝑖 ||𝛾 𝑖→|

|

≤ 𝑐 and sup𝑖,𝑗
|

|

|

|

𝛾𝑖→𝑗 (𝑠)
𝛾 𝑖→𝑗

|

|

|

|

≤ 𝑐.

Now, the following lemma is trivial:

emma 3.2. Suppose (Bounded transitions) holds, 𝑇 > 0 and 𝑛 ∈ N. Then, 𝐴𝑇∧𝑊𝑛
satisfies (good 𝐴).

Indeed, it can be a good idea to simulate a fixed number of transitions at a time based upon the following formula. 𝑌 only changes when 𝑁
umps and 𝑁 only jumps by 1 and we can consider our explicit formula along the jump times

{

𝑊𝑛
}

of 𝑁 . In which case we get:

𝐴𝑊𝑛
= 𝐴𝑊𝑛−1

exp

(

∫

𝑊𝑛

𝑊𝑛−1

(

𝛾𝑌𝑊𝑛−1→ − 𝛾𝑌𝑊𝑛−1→ (𝑠)
)

𝑑𝑠

)

⎛

⎜

⎜

⎝

𝛾𝑌𝑊𝑛−1→𝑌𝑊𝑛
(

𝑊𝑛
)

𝛾𝑌𝑊𝑛−1→𝑌𝑊𝑛

⎞

⎟

⎟

⎠

hich shows how the explicit solution weight updates at jump times. Here, we have that 𝑊0 = 0 and 𝐴0 = 1. In this way, we can resample a few
ump times at a time under (Bounded transitions), provided we do not exceed some fixed time 𝑇 > 0.

We begin our simulation study of disease spread by explaining how rejection sampling can be used to reduce the computation cost of generating
amples.

xample. Tracking and forecasting infectious disease spread using mathematical models to assist policy creation has become increasingly important
ince the COVID-19 pandemic. Traditionally, deterministic, non-spatial models based on compartmental differential equations or cellular automata
ere used. More recently, stochastic models (see e.g. [21]) and methods to handle spatial interactions (see e.g. [22], [23]) have been employed.
owever, these references do not use filtering to estimate and track actual infections from point-of-care tests. We will explain how this could be
one while illustrating some of our results in our three examples.

We consider a contact process disease spread model over 𝑆 = {1,… ,𝑀}2 with 𝑀 = 20 up to time 𝑇 = 10 days, which is meant to represent
spread within individuals in some isolated town. In particular, we include the outskirts in 𝑆 = {0, 1,… ,𝑀,𝑀 + 1}2 but insist there are no people
hence disease in 𝑆∖𝑆 and model the disease spread by a contact process on 𝑆 with radius 𝑟 = 1, infection rate 𝑏 and recovery rate 𝑑. We need to
break with the general notation of this paper momentarily and consider what will later be the hidden state 𝑋 observable so we can apply rejection
sampling and create possible hidden state and particle simulations. Each 𝑋𝑡(𝜔) maps 𝑆 to {0, 1}, with 1 representing infected and 0 representing
ealthy. However, the boundary conditions are set as follows:

𝑋𝑡((0, 𝑗), 𝜔) = 𝑋𝑡((𝑖, 0), 𝜔) = 𝑋𝑡((𝑀 + 1, 𝑗), 𝜔) = 𝑋𝑡((𝑖,𝑀 + 1), 𝜔) = 0 (46)

or all 𝑖, 𝑗 ∈ {0,… ,𝑀 + 1} and 𝑡, 𝜔 and

{𝑋0(𝑖, 𝑗)}𝑀𝑖,𝑗=1 are independent 𝑝 = 1
20

-Bernoulli.

hen, 𝑋 evolves as a Markov chain with rates at each site (𝑖, 𝑗) ∈ 𝑆

𝜆1→0 = 𝑑 and 𝜆0→1 = 𝑏{𝑥(𝑖 − 1, 𝑗) + 𝑥(𝑖 + 1, 𝑗) + 𝑥(𝑖, 𝑗 − 1) + 𝑥(𝑖, 𝑗 + 1)}.

Hence, there is a constant rate of an individual becoming healthy and the rate she gets infected is proportional to how many of her direct (since
𝑟 = 1) neighbours are infected. In this example, we assume there are two choices for each of 𝑑 and 𝑏, 𝑑 = 0.0999 or 𝑑 = 0.1001 and 𝑏 = 0.0499
9



Signal Processing 225 (2024) 109613M.A. Kouritzin

a

c

T

Table 1
Data reuse by rejection sampling.
𝑏 𝑑 𝐶𝑏,𝑑 Number accepted 1000

samples

0.0499 0.0999 1.075 957
0.0499 0.1001 1.075 948
0.0501 0.0999 1.075 908
0.0501 0.1001 1.075 891

or 𝑏 = 0.0501 to test. Having the goal of saving simulation time, we just produce 1000 simulations with midpoint (𝑏, 𝑑) = (0.05, 0.1) and then use
acceptance rejection to accept these simulations as (𝑏, 𝑑) = (0.0499, 0.0999), (0.0501, 0.0999), (0.0499, 0.1001) and (0.0501, 0.1001). The details are as
follows: The likelihood weights became

𝐴 = exp

(

∫

1

0
(0.3 − 𝑑 − 4𝑏)𝑋𝑠 − (0.05 − 𝑏)𝑋𝑠 𝑑𝑠

)

(47)

×
∏

0<𝑠≤1

[

1 +
( 𝑑
0.1

1𝑋𝑠<𝑋𝑠− + 𝑏
0.05

1𝑋𝑠>𝑋𝑠− − 1
)

𝛥𝑁𝑠

]

,

for each of our choices (𝑏, 𝑑) = (0.0499, 0.0999), (0.0501, 0.0999), (0.0499, 0.1001) and (0.0501, 0.1001), where 𝑁 counted the jumps of 𝑋,

𝑋𝑠 =
𝑀
∑

𝑖,𝑗=1
𝑋𝑠(𝑖, 𝑗) and 𝑋𝑠 =

𝑀
∑

𝑘=1
{𝑋𝑠(𝑘, 1) +𝑋𝑠(𝑘,𝑀) +𝑋𝑠(1, 𝑘) +𝑋𝑠(𝑀,𝑘)}.

Based upon these specifics, we decided to take 𝐶 = 1.075 regardless of 𝑏, 𝑑 for simplicity and just test that 𝐴 never exceeded 𝐶 in our simulations.
It did not. This value of 𝐶 translates into an acceptance probability of 0.9302, meaning we expect 930.2 samples for each of the four possibilities,
a total of 3721, to be accepted. Indeed, we ran von Neumann’s rejection algorithm (with four independent [0, 𝐶]-uniforms for the different 𝑏, 𝑑
combinations), and reported the results Table 1. Since the total accepted samples far exceeds the simulated ones we reduced the simulation cost
of producing samples. Clearly, some samples were used in different parameter groups. If the goal was to produce 800 samples of each type, then
we would be done. Otherwise, we could simulate more. While this particular example is modest, it is easy imagine situations where the method
in this example could be a huge savings.

3.2. Monte Carlo simulation

Very often, we are not after just one sample but rather an ensemble of samples to form a distribution. We are really after some probabilities,
expectations or conditional expectations, which we can approximate by independent proposal particles on the reference probability space (𝛺, , 𝑄)
weighted by likelihood martingale weights. In particular, suppose {𝑌 𝑚}𝑀𝑚=1 are independent proposal particles on (𝛺, , 𝑄) with rates

{

𝛾 𝑖→𝑗
}

say
nd we weight the 𝑚th particle with likelihood weight

𝐴𝑚 = 𝐴𝑚𝑇 = exp
(

∫

𝑇

0
𝛾𝑌 𝑚𝑠 → − 𝛾𝑌 𝑚𝑠 → (𝑠) 𝑑𝑠

)

∏

0<𝑠≤𝑇

[

1 +

(

𝛾𝑌 𝑚𝑠−→𝑌 𝑚𝑠 (𝑠)

𝛾𝑌 𝑚𝑠−→𝑌 𝑚𝑠
− 1

)

𝛥𝑁𝑚
𝑠

]

,

where 𝑁𝑚 counts 𝑌 𝑚’s jumps. Then, it follows by the strong law of large numbers that

1
𝑀

𝑀
∑

𝑚=1
𝐴𝑚𝑇 𝑓

(

𝑌 𝑚𝑠 , 𝑠 ∈ [0, 𝑇 ]
)

→ 𝐸𝑄
[

𝐴𝑇 𝑓
(

𝑌𝑠, 𝑠 ∈ [0, 𝑇 ]
)]

= 𝐸𝑃
[

𝑓
(

𝑌𝑠, 𝑠 ∈ [0, 𝑇 ]
)]

.

Hence, any target distribution expectation can be estimated without (rejection) resampling.
We continue our disease spread simulation by using Monte Carlo to estimate probabilities.

Example. Consider the contact process disease spread model of the prior example with 𝑀 = 20 and final time 𝑇 = 500 days. Using the same four
choices of 𝑏 and 𝑑 but still only simulating the average one where 𝑏 = 0.05 and 𝑑 = 0.1, we will estimate the probability 𝑃 (𝑋𝑇 ≤ 10). We will now
use 10,000 samples but, instead of resampling, we just weight. The particle locations are independent copies {𝑋𝑚} of the proposal 𝑏 = 0.05, 𝑑 = 0.1
ontact process 𝑋 and adapting the likelihood from (47), we have four different likelihood weights

𝐴𝑚𝑡 (𝑏, 𝑑) = exp
(

∫

𝑡

0
(0.3 − 𝑑 − 4𝑏)𝑋

𝑚
𝑠 − (0.05 − 𝑏)𝑋𝑚

𝑠 𝑑𝑠
)

(48)

×
∏

0<𝑠≤𝑡

[

1 +
( 𝑑
0.1

1𝑋𝑚𝑠 <𝑋
𝑚
𝑠−

+ 𝑏
0.05

1𝑋𝑚𝑠 >𝑋
𝑚
𝑠−

− 1
)

𝛥𝑁
𝑚
𝑠

]

,

for each of our choices (𝑏, 𝑑) = (0.0499, 0.0999), (0.0501, 0.0999), (0.0499, 0.1001) and (0.0501, 0.1001), where 𝑁
𝑚

counts the jumps of 𝑋
𝑚

,

𝑋
𝑚
𝑠 =

𝑀
∑

𝑖,𝑗=1
𝑋𝑚
𝑠 (𝑖, 𝑗) and 𝑋𝑚

𝑠 =
𝑀
∑

𝑘=1
{𝑋𝑚

𝑠 (𝑘, 1) +𝑋
𝑚
𝑠 (𝑘,𝑀) +𝑋𝑚

𝑠 (1, 𝑘) +𝑋
𝑚
𝑠 (𝑀,𝑘)}.

he results, recorded in Table 2, are computed by

1
10000

10000
∑

𝑚=1
𝐴𝑚𝑡 (𝑏, 𝑑)1𝑋𝑚𝑇 ≤10

≈ 𝑃 (𝑋𝑇 ≤ 10 ∣ 𝑏, 𝑑).
10
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Table 2
Probability estimation by Monte Carlo.
𝑏 𝑑 𝑃 (𝑋𝑇 ≤ 10)

0.0499 0.0999 0.0082
0.0499 0.1001 0.0081
0.0501 0.0999 0.0036
0.0501 0.1001 0.0035

3.3. Particle filtering and model selection

Particle filters use Monte Carlo methods to approximate filters. Branching particle filters are often among the best performers and have the
advantages of readily providing Bayes factor and facilitating maximum likelihood estimation (see [24]). The idea of these particle filters is to start
with the weighted particle filter (8) but then, as mentioned in the introduction, branch in an unbiased way so as to keep the weights somewhat
uniform while still keeping the number of particles relatively constant. The following algorithm is an adaptation to our setting of the simple residual
algorithm introduced and explained in [17]. The other algorithms given in [17] could also be employed to improve performance.

Algorithm Setting: Let {𝑡𝑛}∞𝑛=1 be the random transition times of the observations and set 𝑡0 = 0. Let 𝑟 ∈ (1,∞) and
{

𝑉 𝑚
𝑛
}∞
𝑛,𝑚=1,

{

𝑈𝑚
𝑛
}∞
𝑛,𝑚=1 be

ndependent [−0.1, 0.1]-uniform, [0, 1]-uniform random variables. 𝑟 is a branching parameter.
{

𝑉 𝑚
𝑛
}

are smoothing random variable’s to ensure we
an show convergence. They can be tighter than [−0.1, 0.1].

All particles evolve independently of each other between observations and interact weakly (i.e. through their empirical measure) at observation
imes.

et:
{

𝑋𝑚
0
}𝑁
𝑚=1 be independent, (𝑋𝑚

0 ) = 𝜇; 𝑁𝑚
0 = 𝐴𝑚0 = 1, 𝑚 = 1,… , 𝑁 ; 𝑁𝑛 = 0, 𝑛 ∈ N.

epeat: for 𝑛 = 1, 2,… do
Repeat: for 𝑚 = 1,… , 𝑁𝑛−1 do

1. Evolve Particle Behaviour Independently: Simulate each 𝑋𝑚 on (𝑡𝑛−1, 𝑡𝑛] independently according to the signal’s generator. Call final point
𝑋𝑚
𝑡𝑛

.
2. Get observation 𝑌𝑡𝑛 , which also gives the value of 𝑌𝑠 on [𝑡𝑛, 𝑡𝑛+1).

3. Weight Particles: 𝐴𝑚𝑡𝑛 = 𝐴𝑚𝑡𝑛−1 exp
(

∫ 𝑡𝑛𝑡𝑛−1 𝛾𝑌𝑠→ − 𝛾𝑌𝑠→
(

𝑋𝑚
𝑠
)

𝑑𝑠
) 𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛

(

𝑋𝑚𝑡𝑛

)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛

4. Resample Decision: Let 𝐴𝑡𝑛 = 1
𝑁

∑𝑁𝑛
𝑚=1 𝐴

𝑚
𝑡𝑛

. If 𝐴𝑚𝑡𝑛 + 𝑉 𝑚
𝑛 ∉

(

𝐴𝑡𝑛
𝑟 , 𝑟𝐴𝑡𝑛

)

then the Offspring Number, Weight are: 𝑁 𝑖
𝑛 =

⌊

𝐴𝑚𝑡𝑛
𝐴𝑡𝑛

⌋

+ 1
𝑈𝑚𝑛 ≤

{

𝐴𝑚𝑡𝑛
𝐴𝑡𝑛

},

𝐴𝑚𝑡𝑛 = 𝐴𝑡𝑛 ; or else the Offspring Number, Weight are: 𝑁𝑚
𝑛 = 1, 𝐴𝑚𝑡𝑛 = 𝐴𝑚𝑡𝑛 .

5. Resample: 𝐴𝑁𝑛+𝑗𝑡𝑛
= 𝐴𝑚𝑡𝑛 , 𝑋

𝑁𝑛+𝑗
𝑡𝑛

= 𝑋𝑚
𝑡𝑛

for 𝑗 = 1,… , 𝑁𝑚
𝑛

6. Add Offspring Number: 𝑁𝑛 = 𝑁𝑛 +𝑁𝑚
𝑛

The branching particle filter approximations of 𝜎𝑡𝑛 are then

𝑆𝑁𝑡𝑛 (𝑓 ) = 1
𝑁

𝑁𝑛
∑

𝑚=1
𝐴𝑚𝑡𝑛𝑓

(

𝑋𝑚
𝑡𝑛

)

.

otice compared to regular Monte Carlo we only have one observable process 𝑌 but many hidden processes {𝑋𝑚}𝑁𝑚=1, called particles. Compared
o the weighted particle filter, the particles are adjusted so they are more effective and a better approximation is achieved with the same number of
articles. Branching particle filters continue to be an active area of research (see e.g. [25,26]). Based upon [27], the following results are expected.

onjecture 3.3. Under general regularity conditions, for any 𝑛 ∈ N, the above Residual Branching particle filter satisfies:

lln 𝑆𝑁𝑡𝑛 ⇒ 𝜎𝑡𝑛 (i.e. weak convergence) as 𝑁 → ∞ a.s. [𝑄𝑌 ];

lln |

|

|

𝑆𝑁𝑡𝑛 (𝑓 ) − 𝜎𝑡𝑛 (𝑓 )
|

|

|

𝑁
≪ 𝑁−𝛽 a.s. [𝑄𝑌 ] ∀𝑓 ∈ 𝐶(𝐸)+, 0 ≤ 𝛽 < 1

2 .

For related background in nonlinear filtering and sequential Monte Carlo, the reader is referred to the books [28,29] as well as the vast literature,
ncluding [12,13,18,30–35] and their references and citations.

emark 3.4. For the CTHMM particle filter, we need only change Step 3 to:

Weight Particles: 𝐴𝑚𝑡𝑛 = 𝐴𝑚𝑡𝑛−1 exp
(

∫ 𝑡𝑛𝑡𝑛−1 𝛾 − 𝛾
(

𝑋𝑚
𝑠
)

𝑑𝑠
) 𝛾(𝑋𝑚𝑡𝑛 )𝑞𝑌𝑡𝑛

(𝑋𝑚𝑡𝑛 )

𝛾 𝑞𝑌𝑡𝑛
.

The rest of the algorithm is unchanged.

We finish our simulation study of disease spread by adding observation testing. We refer the reader to [36] as well as its citations and references
or the importance and difficulty of inferring general population health from point of care testing.

xample. [37] uses filtering in some sense to track disease transmission. However, our results can make this process far easier. Consider the same
ontact process disease spread model as the prior examples with 𝑀 = 10 and 𝑇 = 100 days. Now, we just have one population 𝑋 with 𝑏 = 0.05
nd 𝑑 = 0.1 that we cannot observe but rather only see testing data constructed as follows: 𝑡0 = 0 and the times between tests {𝑡𝑘 − 𝑡𝑘−1}∞𝑘=1
re independent 100-exponential random variables so we would expect 10,000 tests over the 100 days. At each test time 𝑡 , 𝑘 ≥ 1 an individual
11
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Fig. 1. Error of infections with branching particle filter (Initial Particles: 30,000, Branching Number: 𝑟 = 5).

(𝑖𝑘, 𝑗𝑘) ∈ 𝑆2 is equally likely tested independent of all prior selections. Her location (𝑖𝑘, 𝑗𝑘) is part of the observation as is her test result 𝑌𝑡𝑘 (𝑖𝑘, 𝑗𝑘).
However, there is a chance of false positives and negatives, resulting in a confusion matrix with the real probability 𝑃 : If this individual is infected,
i.e. 𝑋𝑡𝑘 (𝑖𝑘, 𝑗𝑘) = 1, then 𝑃 (𝑌𝑡𝑘 (𝑖𝑘, 𝑗𝑘) = 1) = 0.80 but, if this individual is healthy, then 𝑃 (𝑌𝑡𝑘 (𝑖𝑘, 𝑗𝑘) = 0) = 0.95. This implies an observation rate of
𝛾(𝑥) = 100 and emission probabilities:

𝑞𝑦(𝑥(𝑖𝑘, 𝑗𝑘)) =

{

0.95𝛿0(𝑦) + 0.05𝛿1(𝑦), 𝑥(𝑖𝑘, 𝑗𝑘) = 0

0.8𝛿1(𝑦) + 0.2𝛿0(𝑦), 𝑥(𝑖𝑘, 𝑗𝑘) = 1
.

On the other hand, under the reference probability 𝑄, we just take 𝛾 = 100 and 𝑞𝑦 =
1
2 𝛿0(𝑦) +

1
2 𝛿1(𝑦). Substituting these into the CTHMM weights,

one finds

𝐴𝑚𝑡𝑛 = 𝐴𝑚𝑡𝑛−1
𝑞𝑌𝑡𝑛 (𝑖𝑛 ,𝑗𝑛)(𝑋

𝑚
𝑡𝑛
(𝑖𝑛, 𝑗𝑛))

𝑞𝑌𝑡𝑛 (𝑖𝑛 ,𝑗𝑛)
= 𝐴𝑚𝑡𝑛−12𝑞𝑌𝑡𝑛 (𝑖𝑛 ,𝑗𝑛)(𝑋

𝑚
𝑡𝑛
(𝑖𝑛, 𝑗𝑛))

in Step 3 of the particle filter algorithm. The branching particle algorithm was run using these 𝐴’s in Step 3 and the unnormalized filter
approximation

𝑆𝑁𝑡𝑛 (𝑓 ) = 1
𝑁

𝑁𝑛
∑

𝑚=1
𝐴𝑚𝑡𝑛𝑓

(

𝑋𝑚
𝑡𝑛

)

was computed. This gives us a computer approximation of the optimal filter for the disease spread based only upon the observations. The whole
conditional distribution of 𝑋 over all of 𝑆 given the back observations is available. However, due to space limitations, we only plot the error estimate
of number of the infections averaged over the whole grid. We start the signal and particles with independent 1

3 -Bernoulli random variables (instead

of 1
20 in the previous examples), so the expected initial error is

(

1
3

)2 2
3 +

(

2
3

)2 1
3 = 0.222. The branching particle filter based upon our results

then locates and tracks the infections throughout the population as shown in Fig. 1. Indeed, we see that the mean-square error estimate of the
infections over the whole city grid continually improves from the expected start of 0.22 down to a low point of 0.03, which appears to be very
good performance for a proof-of-concept type study.

4. Filtering equations

In addition to immediate, practical applications like those in the prior section, our main measure-change result for Markov chains, Theorem 2.1,
can be used to establish other important theory. In particular in this section, we use this theorem to establish filtering equations akin to the Duncan–
Mortensen–Zakai and the Fujisaki–Kallianpur–Kunita equations. The form and well-posedness of these new filtering equations for Markov signals
with Markov chain observations represents our second main result. At the end of this section, we establish a direct solution method for these
equations that can used in applications.

Our filtering equation approach uses the reference probability 𝑄 and related unnormalized filter process 𝜎. 𝑃 restricted to 𝑡 is absolutely
continuous with respect to 𝑄 restricted to 𝑡 for 𝑡 ≥ 0 and the observation process 𝑌 is independent of the hidden state 𝑋 under 𝑄. Let 𝐸𝑄[⋅]
denote expectation with respect to 𝑄, and consider the additional regularity condition:

(U) 𝑋 is a Markov chain with state space 𝐸 ⊂ N.

Some additional regularity is required to establish uniqueness of (9). We chose to restrict 𝑋 to be a Markov chain, which is immediately verifiable
and built into the CTHMM model.

The observations 𝑌 are much simpler under 𝑄 so our strategy is to work under the reference probability and first derive an equation for 𝜎𝑡.
Then, apply Itô’s formula to obtain the equation for the desired conditional distribution given by Bayes’ formula

𝜋𝑡(𝑓 ) = 𝜎𝑡(𝑓 )∕𝜎𝑡(1).

Now, we can state our second main result, which is on the filtering equations.
12
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(

Theorem 4.1. Suppose (C0, C1, C2, C3) hold, (𝑋, 𝑌 ) satisfies the (5) martingale problem starting from some initial law (𝑋0, 𝑌0) = 𝜈 under 𝑄 and

𝑑𝑃
𝑑𝑄

|

|

|

|𝑡
= 𝐴𝑡, ∀𝑡 ≥ 0,

where 𝐴 is defined in (15). Then, 𝜎, defined by 𝜎𝑡 (𝐵) = 𝐸𝑄
(

𝐴𝑡1𝑋𝑡∈𝐵
|

|

|

𝑌
𝑡

)

, solves (10) and 𝜋, defined by 𝜋𝑡 (𝐵) = 𝑃
(

𝑋𝑡 ∈ 𝐵||
|

𝑌
𝑡

)

, for Borel subsets 𝐵 of
𝐸, solves (11). Moreover, if (U) also holds, then 𝜎 is the unique strong 𝐷𝑓 (𝐸)[0,∞)-valued solution to (9).

Remark 4.2. We have the ideal situation of existence in the more general setting (10) but uniqueness holding already in the narrow setting (9)
for 𝜎.

Remark 4.3. In the case that 𝑓 only depends upon 𝑋, one has that

𝜋𝑡(𝑓 ) = 𝜋0(𝑓 ) + ∫

𝑡

0
𝜋𝑠(𝐿𝑓 )𝑑𝑠 − ∫

𝑡

0
𝜋𝑠(𝑓𝛾𝑌𝑠→) − 𝜋𝑠(𝑓 )𝜋𝑠(𝛾𝑌𝑠→)𝑑𝑠 (49)

+ ∫

𝑡

0

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠𝑓
)

− 𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠
)

𝜋𝑠−(𝑓 )

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠
) 𝑑𝑁𝑠, ∀ 𝑓 ∈ 𝐷𝐿.

Proof 𝜎 satisfies (10). One notes by 𝑄-independence, our representation 𝑌𝑠 = 𝜉𝑌𝑠−𝑁𝑠−
and integration by parts that for 𝑓 = ℎ × 𝑔 ∈ �̂�𝐿

𝑓 (𝑋𝑡, 𝑌𝑡) − 𝑓 (𝑋0, 𝑌0) (50)

=∫

𝑡

0
𝐿𝑓 (𝑋𝑠, 𝑌𝑠)𝑑𝑠 + 𝑚𝑡(𝑓 ) +∫

𝑡

0
[𝑓 (𝑋𝑠−, 𝜉

𝑌𝑠−
𝑁𝑠−

) − 𝑓 (𝑋𝑠−, 𝑌𝑠−)] 𝑑𝑁𝑠,

where 𝑚𝑡(𝑓 ) = ∫ 𝑡0 𝑔(𝑌𝑠−)𝑑𝑀
ℎ
𝑠 and 𝑀ℎ is defined in (C0), so by (50) and (21) (with 𝛼 = 𝐴) as well as independence

[𝑓 (𝑋, 𝑌 ), 𝐴]𝑡 = ∫

𝑡

0
𝐴𝑠−[𝑓 (𝑋𝑠−, 𝜉

𝑌𝑠−
𝑁𝑠−

) − 𝑓 (𝑋𝑠−, 𝑌𝑠−)]

[

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

]

𝑑𝑁𝑠. (51)

𝐿 only operates on the first variable of 𝑓 in (50) and below.) Utilizing integration by parts, (50), (21) and (51), one finds that

𝑓 (𝑋𝑡, 𝑌𝑡)𝐴𝑡 − 𝑓 (𝑋0, 𝑌0) (52)

= ∫

𝑡

0
𝐴𝑠−𝑑𝑓 (𝑋𝑠, 𝑌𝑠) + ∫

𝑡

0
𝑓 (𝑋𝑠−, 𝑌𝑠−)𝑑𝐴𝑠 + [𝑓 (𝑋, 𝑌 ), 𝐴]𝑡

= ∫

𝑡

0
𝐴𝑠𝐿𝑓 (𝑋𝑠, 𝑌𝑠)𝑑𝑠 + ∫

𝑡

0
𝐴𝑠−𝑑𝑚𝑠(𝑓 )

+ ∫

𝑡

0
𝐴𝑠−𝑓 (𝑋𝑠−, 𝑌𝑠−)

(

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝑑𝑁𝑠

+ ∫

𝑡

0
𝐴𝑠𝑓 (𝑋𝑠, 𝑌𝑠)( 𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

)𝑑𝑠

+ ∫

𝑡

0
𝐴𝑠−[𝑓 (𝑋𝑠−, 𝑌𝑠) − 𝑓 (𝑋𝑠−, 𝑌𝑠−)]

𝛾𝑌𝑠−→𝑌𝑠
(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
𝑑𝑁𝑠

= ∫

𝑡

0
𝐴𝑠𝐿𝑓 (𝑋𝑠, 𝑌𝑠)𝑑𝑠 + ∫

𝑡

0
𝐴𝑠−𝑑𝑚𝑠(𝑓 ) + ∫

𝑡

0
𝐴𝑠𝑓 (𝑋𝑠, 𝑌𝑠)( 𝛾𝑌𝑠→ − 𝛾𝑌𝑠→

(

𝑋𝑠
)

)𝑑𝑠

+ ∫

𝑡

0
𝐴𝑠−

[

𝑓 (𝑋𝑠−, 𝑌𝑠)
𝛾𝑌𝑠−→𝑌𝑠

(

𝑋𝑠
)

𝛾𝑌𝑠−→𝑌𝑠
− 𝑓 (𝑋𝑠−, 𝑌𝑠−)

]

𝑑𝑁𝑠.

Next, we show 𝐸𝑄[∫ 𝑡0 𝐴𝑠−𝑑𝑚𝑠(𝑓 )|
𝑌
𝑡 ] = 0. For each 𝑛 ∈ N, let 𝑡𝑛0 = 0 and

{

𝑡𝑛𝑖
}∞
𝑖=1 be a refining partition of stopping times that include the transition

times of 𝑌 such that

𝐴𝑛𝑠− ≐ 1{0}(𝑠) +
𝑛
∑

𝑖=0
𝐴𝑡𝑛𝑖 1(𝑡𝑛𝑖 ,𝑡𝑛𝑖+1](𝑠)

satisfies

sup
0≤𝑠≤𝑡

|𝐴𝑠− − 𝐴𝑛𝑠−| → 0 in probability for any 𝑡 > 0.

Then, ∫ 𝑡0 𝐴
𝑛
𝑠−𝑑𝑚𝑠(𝑓 ) → ∫ 𝑡0 𝐴𝑠−𝑑𝑚𝑠(𝑓 ) in probability and

𝐸𝑄||
|∫

𝑡
𝐴𝑛𝑠−𝑑𝑚𝑠(𝑓 ) − ∫

𝑡
𝐴𝑠−𝑑𝑚𝑠(𝑓 )

|

|

|

→ 0 (53)
13
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t

f

by the boundedness of 𝑚(𝑓 ) and Condition (C1). Moreover, it follows by the tower property, independence and Doob’s Optional Stopping that

𝐸𝑄
[

∫

𝑡

0
𝐴𝑛𝑠−𝑑𝑚𝑠(𝑓 )

|

|

|

𝑌
𝑡

]

=
∑

𝑖
𝐸𝑄

[

𝐸𝑄
[

𝐴𝑡𝑛𝑖 (𝑚𝑡𝑛𝑖+1 (𝑓 ) − 𝑚𝑡𝑛𝑖 (𝑓 ))
|

|

|

𝑋
𝑡𝑛𝑖

∨ 𝑌
𝑡

]

|

|

|

𝑌
𝑡

]

(54)

=
∑

𝑖
𝐸𝑄

[

𝐴𝑡𝑛𝑖 𝐸
𝑄
[

(𝑚𝑡𝑛𝑖+1 (𝑓 ) − 𝑚𝑡𝑛𝑖 (𝑓 ))
|

|

|

𝑋
𝑡𝑛𝑖

]

|

|

|

𝑌
𝑡

]

= 0 𝑎.𝑠.

Thus, it follows by (53), (54) and Jensen’s inequality that

𝐸𝑄
|

|

|

|

𝐸𝑄
[

∫

𝑡

0
𝐴𝑠−𝑑𝑚𝑠(𝑓 )

|

|

|

𝑌
𝑡

]

|

|

|

|

= lim
𝑛→∞

𝐸𝑄
|

|

|

|

𝐸𝑄
[

∫

𝑡

0
𝐴𝑠−𝑑𝑚𝑠(𝑓 ) − ∫

𝑡

0
𝐴𝑛𝑠−𝑑𝑚𝑠(𝑓 )

|

|

|

𝑌
𝑡

]

|

|

|

|

(55)

≤ lim
𝑛→∞

𝐸𝑄
[

|

|

|

|

|

∫

𝑡

0
𝐴𝑠−𝑑𝑚𝑠(𝑓 ) − ∫

𝑡

0
𝐴𝑛𝑠−𝑑𝑚𝑠(𝑓 )

|

|

|

|

|

]

= 0.

Letting 𝐸∗ denote 𝑄-expectation with respect to 𝑋 only, and setting

𝜎𝑡(𝑓 ) ≡ 𝐸𝑄[𝑓 (𝑋𝑡, 𝑌𝑡)𝐴𝑡|𝑌
𝑡 ] = 𝐸∗[𝑓 (𝑋𝑡, 𝑌𝑡)𝐿𝑡],

we find by (52) that the Zakai-type equation for 𝜎𝑡(𝑓 ) becomes

𝜎𝑡(𝑓 (⋅, 𝑌𝑡)) = 𝜎0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜎𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠 + ∫

𝑡

0
𝜎𝑠(𝑓 (⋅, 𝑌𝑠)( 𝛾𝑌𝑠→ − 𝛾𝑌𝑠→ (⋅)) 𝑑𝑠

+∫

𝑡

0
𝜎𝑠−

([

𝑓 (⋅, 𝑌𝑠)
𝛾𝑌𝑠−→𝑌𝑠 (⋅)

𝛾𝑌𝑠−→𝑌𝑠
− 𝑓 (⋅, 𝑌𝑠−)

])

𝑑𝑁𝑠.

Proof of (9) uniqueness. For ease of notation, we take 𝐸 = N and 𝑡0 = 0. Let
{

𝑡𝑙
}∞
𝑙=1 be the random transition times (in order) for 𝑌 and

𝐿𝑓 (𝑖) =
∑

𝑗≠𝑖 𝜆𝑖→𝑗 [𝑓 (𝑗) − 𝑓 (𝑖)] be 𝑋’s generator. Then, the adjoint operator 𝐿∗𝑝(𝑗) satisfies

𝐿∗𝑝 (𝑗) =
∑

𝑖

[

𝜆𝑖→𝑗𝑝 (𝑖) − 𝜆𝑗→𝑖 𝑝 (𝑗)
]

= [𝐿∗]𝑝(𝑗),
[

𝐿∗] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜆1→ 𝜆2→1 𝜆3→1 ⋯

𝜆1→2 −𝜆2→ 𝜆3→2 ⋯

𝜆1→3 𝜆2→3 −𝜆3→ ⋯

⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Now, if we let 𝜎𝑖𝑡 = 𝜎𝑡(𝛿𝑖) for 𝑖 = 1, 2,…, then we will discover that (9) gives us the closed system of linear differential equations parameterized by
the observations:

𝑑

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→(1) − 𝜆1→ 𝜆2→1 ⋯

𝜆1→2 𝛾𝑌𝑡→ − 𝛾𝑌𝑡→(2) − 𝜆2→ ⋯

⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

⎤

⎥

⎥

⎥

⎦

𝑑𝑡 (56)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡−→𝑌𝑡 (1)
𝛾𝑌𝑡−→𝑌𝑡

− 1 0 ⋯

0
𝛾𝑌𝑡−→𝑌𝑡 (2)
𝛾𝑌𝑡−→𝑌𝑡

− 1 ⋯

⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡−
𝜎2𝑡−
⋮

⎤

⎥

⎥

⎥

⎦

𝑑𝑁𝑡.

sing the mild solution and Trotter product, we can write the solution explicitly between observation times. Let 𝑃𝑡(𝑖 → 𝑗), 𝑖, 𝑗 ∈ {1, 2,… , 𝑚} be the
ransition function for the hidden Markov chain 𝑋. Then, the unnormalized filter is 𝜎𝑡(⋅) =

∑

𝑖∈𝐸 𝜎
𝑖
𝑡𝛿𝑖(⋅), where

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

⎤

⎥

⎥

⎥

⎦

=
[

𝑇 𝑛𝑡−𝑡𝑛−1

]

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛−1
𝜎2𝑡𝑛−1
⋮

⎤

⎥

⎥

⎥

⎦

(57)

or all 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛) with 𝑇 𝑛𝑡 = lim𝑁→∞

[

𝑆𝑛𝑡−𝑡𝑛−1
𝑁

]𝑁
and Trotter product factor

𝑆𝑛𝑡 =

⎡

⎢

⎢

⎢

⎣

𝑃𝑡(1 → 1) 𝑃𝑡(2 → 1) ⋯

𝑃𝑡(1 → 2) 𝑃𝑡(2 → 2) ⋯

⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑒
𝑡(𝛾𝑌𝑡𝑛−1→

−𝛾𝑌𝑡𝑛−1→
(1))

0 ⋯

0 𝑒
𝑡(𝛾𝑌𝑡𝑛−1→

−𝛾𝑌𝑡𝑛−1→
(2))

⋯

⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎥

⎦

. (58)
14
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s

w

Each 𝑇 𝑛 behaves as a semi-group on [0, 𝑡𝑛 − 𝑡𝑛−1). Then,

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛
𝜎2𝑡𝑛
⋮

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(1)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎1𝑡𝑛−

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(2)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎2𝑡𝑛−

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (59)

and the equations start at
⎡

⎢

⎢

⎢

⎣

𝜎1𝑡0
𝜎2𝑡0
⋮

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑃 (𝑋0 = 1)

𝑃 (𝑋0 = 2)

⋮

⎤

⎥

⎥

⎥

⎦

.

Now, suppose 𝜎, 𝜎 are 𝐷𝑓 (𝐸)[0,∞)-valued solutions to (9) and 𝜎 = 𝜎 on
[

0, 𝑡𝑛−1
]

. Then,

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

⎤

⎥

⎥

⎥

⎦

= 𝑇 𝑛𝑡−𝑡𝑛−1

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛−1
𝜎2𝑡𝑛−1
⋮

⎤

⎥

⎥

⎥

⎦

= 𝑇 𝑛𝑡−𝑡𝑛−1

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛−1
𝜎2𝑡𝑛−1
⋮

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

⎤

⎥

⎥

⎥

⎦

for 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛) so 𝜎𝑡(⋅) =
∑

𝑖∈𝐸 𝜎
𝑖
𝑡𝛿𝑖(⋅) =

∑

𝑖∈𝐸 𝜎
𝑖
𝑡𝛿𝑖(⋅) = 𝜎𝑡(⋅) and uniqueness holds on [0, 𝑡𝑛). Finally, (59) yields

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛
𝜎2𝑡𝑛
⋮

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(1)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎1𝑡𝑛−

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(2)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎2𝑡𝑛−

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(1)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎1𝑡𝑛−

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(2)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎2𝑡𝑛−

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛
𝜎2𝑡𝑛
⋮

⎤

⎥

⎥

⎥

⎦

, (60)

so (9) (strong) uniqueness holds on [0, 𝑡𝑛] and on [0,∞) by induction.

Proof of (11). It follows by (10) that

𝜎𝑠(𝑓 (⋅, 𝑌𝑠))=𝜎𝑠−(𝑓 (⋅, 𝑌𝑠−)) + 𝜎𝑠−

([

𝑓 (⋅, 𝑌𝑠)
𝛾𝑌𝑠−→𝑌𝑠 (⋅)

𝛾𝑌𝑠−→𝑌𝑠
− 𝑓 (⋅, 𝑌𝑠−)

])

𝛥𝑁𝑠 (61)

o

𝜎𝑠(1)
𝜎𝑠−(1)

= 1 + 𝜋𝑠−

(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)

𝛾𝑌𝑠−→𝑌𝑠
− 1

)

𝛥𝑁𝑠 . (62)

Next, recalling 𝜋𝑡(𝑓 ) =
𝜎𝑡(𝑓 )
𝜎𝑡(1)

and using (61) twice then (62), one has that

𝜋𝑠(𝑓 (⋅, 𝑌𝑠)) − 𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−)) (63)

=
𝜎𝑠(𝑓 (⋅, 𝑌𝑠)) − 𝜎𝑠−(𝑓 (⋅, 𝑌𝑠−)) − (𝜎𝑠(1) − 𝜎𝑠−(1))𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜎𝑠(1)

=
𝜎𝑠−

(

𝛾𝑌𝑠−→𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜎𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜎𝑠(1)𝛾𝑌𝑠−→𝑌𝑠
𝛥𝑁𝑠

=
𝜋𝑠−

(

𝛾𝑌𝑠−→𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜋𝑠−

(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
𝛾𝑌𝑠−→𝑌𝑠

)

𝛾𝑌𝑠−→𝑌𝑠

𝛥𝑁𝑠

=
𝜋𝑠−

(

𝛾𝑌𝑠−→𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
) 𝛥𝑁𝑠.

Ito’s formula on 𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) =
𝜎𝑡(𝑓 (⋅,𝑌𝑡))
𝜎𝑡(1)

gives

𝑑𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) =
𝑑𝜎𝑐𝑡 (𝑓 (⋅, 𝑌𝑡))

𝜎𝑡(1)
− 𝜋𝑡(𝑓 (⋅, 𝑌𝑡))

𝑑𝜎𝑐𝑡 (1)
𝜎𝑡(1)

+ 𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) − 𝜋𝑡−(𝑓 (⋅, 𝑌𝑡)), (64)

here 𝑐 indicates the continuous part. Hence, using (10), (64) and (63), one has

𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) = 𝜋0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜋𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠

− ∫

𝑡

0
𝜋𝑠(𝑓 (⋅, 𝑌𝑠)(𝛾𝑌𝑠→ (⋅) − 𝛾𝑌𝑠→)) − 𝜋𝑠(𝑓 (⋅, 𝑌𝑠))𝜋𝑠(𝛾𝑌𝑠→ (⋅) − 𝛾𝑌𝑠→)𝑑𝑠

+ ∫

𝑡

0

𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜋𝑠−
(

𝛾𝑌𝑠−→𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜋
(

𝛾 (⋅)
) 𝑑𝑁𝑠 . □
15
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T

We state the filtering equations result for the popular CTHMM, as an immediate corollary. However, to do this we have to first give the CTHMM
versions of (11) and (10), which are:

𝜎𝑡(𝑓 (⋅, 𝑌𝑡)) = 𝜎0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜎𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠 + ∫

𝑡

0
𝜎𝑠(𝑓 (⋅, 𝑌𝑠)(𝛾 − 𝛾 (⋅)) 𝑑𝑠 (65)

+∫

𝑡

0
𝜎𝑠−

([

𝑓 (⋅, 𝑌𝑠)
𝛾(⋅)𝑞𝑌𝑠 (⋅)

𝛾 𝑞𝑌𝑠
− 𝑓 (⋅, 𝑌𝑠−)

])

𝑑𝑁𝑠

for all 𝑓 ∈ �̂�𝐿 subject to 𝜎0 = (𝑋0) and

𝜋𝑡(𝑓 (⋅, 𝑌𝑡)) = 𝜋0(𝑓 (⋅, 𝑌0)) + ∫

𝑡

0
𝜋𝑠(𝐿𝑓 (⋅, 𝑌𝑠))𝑑𝑠 (66)

− ∫

𝑡

0
𝜋𝑠(𝑓 (⋅, 𝑌𝑠)𝛾 (⋅)) − 𝜋𝑠(𝑓 (⋅, 𝑌𝑠))𝜋𝑠(𝛾 (⋅))𝑑𝑠

+∫

𝑡

0

𝜋𝑠−
(

𝛾 (⋅) 𝑞𝑌𝑠 (⋅) 𝑓 (⋅, 𝑌𝑠)
)

− 𝜋𝑠−
(

𝛾 (⋅) 𝑞𝑌𝑠 (⋅)
)

𝜋𝑠−(𝑓 (⋅, 𝑌𝑠−))

𝜋𝑠−
(

𝛾 (⋅) 𝑞𝑌𝑠 (⋅)
) 𝑑𝑁𝑠,

for all 𝑓 ∈ �̂�𝐿 subject to 𝜋0 = (𝑋0). Now, the CTHMM corollary is:

Corollary 4.4. Suppose (C0, A1, A2, A3) hold, (𝑋, 𝑌 ) satisfies the (12) martingale problem starting from some initial law (𝑋0, 𝑌0) = 𝜈 under 𝑄
and 𝑑𝑃

𝑑𝑄
|

|

|𝑡
= 𝐴𝑡, ∀𝑡 ≥ 0, where 𝐴 is defined in (39). Then, 𝜎 solves (65) and 𝜋 solves (66). Moreover, if (U) also holds, then 𝜎 is the unique strong

𝐷𝑓 (𝐸)[0,∞)-valued solution to (14).

4.1. Direct solution

An effective computer workable solution to many real filtering problems can constructed from the DMZ equation based on uniqueness
technique above. Consider the case where 𝑋 is (or has been approximate by) a Markov chain on a finite space 𝐸 = {1, 2,… , 𝑚} with generator
𝐿𝑓 (𝑖) =

∑

𝑗≠𝑖 𝜆𝑖→𝑗 [𝑓 (𝑗) − 𝑓 (𝑖)] for 𝑖 ∈ {1, 2,… , 𝑚}. Now, if 𝜎𝑖𝑡 = 𝜎𝑡(𝛿𝑖) for 𝑖 = 1, 2,… , 𝑚, then (9) gives us the system of equations:

𝑑

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

𝜎𝑚𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡→ − 𝛾𝑌𝑡→(1) − 𝜆1→ 𝜆2→1 ⋯ 𝜆𝑚→1

𝜆1→2 𝛾𝑌𝑡→ − 𝛾𝑌𝑡→(2) − 𝜆2→ ⋯ 𝜆𝑚→2

⋮ ⋮ ⋱ ⋮

𝜆1→𝑚 𝜆2→𝑚 ⋯ 𝛾𝑌𝑡→ − 𝛾𝑌𝑡→(𝑚) − 𝜆𝑚→

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1𝑡
𝜎2𝑡
⋮

𝜎𝑚𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑑𝑡

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡−→𝑌𝑡 (1)
𝛾𝑌𝑡−→𝑌𝑡

− 1 0 ⋯ 0

0
𝛾𝑌𝑡−→𝑌𝑡 (2)
𝛾𝑌𝑡−→𝑌𝑡

− 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0
𝛾𝑌𝑡−→𝑌𝑡 (𝑚)
𝛾𝑌𝑡−→𝑌𝑡

− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1𝑡−
𝜎2𝑡−
⋮

𝜎𝑚𝑡−

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑑𝑁𝑡.

Let {𝑡𝑛}∞𝑛=1 be the random transition times of the observations, 𝑡0 = 0, 𝑃𝑡(𝑖 → 𝑗), 𝑖, 𝑗 ∈ {1, 2,… , 𝑚} be the transition function for the hidden-state
arkov chain 𝑋 and

𝑆𝑛𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃𝑡(1 → 1) 𝑃𝑡(2 → 1) ⋯ 𝑃𝑡(𝑚 → 1)

𝑃𝑡(1 → 2) 𝑃𝑡(2 → 2) ⋯ 𝑃𝑡(𝑚 → 2)

⋮ ⋮ ⋱ ⋮

𝑃𝑡(1 → 𝑚) 𝑃𝑡(2 → 𝑚) ⋯ 𝑃𝑡(𝑚 → 𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(67)

∗

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑒
𝑡(𝛾𝑌𝑡𝑛−1→

−𝛾𝑌𝑡𝑛−1→
(1))

0 ⋯ 0

0 𝑒
𝑡(𝛾𝑌𝑡𝑛−1→

−𝛾𝑌𝑡𝑛−1→
(2))

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑒
𝑡(𝛾𝑌𝑡𝑛−1→

−𝛾𝑌𝑡𝑛−1→
(𝑚))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

hen, the solution is approximated recursively by: (i) weighted evolution

⎡

⎢

⎢

⎢

⎢

⎢

𝜎1𝑡
𝜎2𝑡
⋮
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

=
[

𝑆𝑛𝑡−𝑡𝑛−1
𝑁

]𝑁

⎡

⎢

⎢

⎢

⎢

⎢

𝜎1𝑡𝑛−1
𝜎2𝑡𝑛−1
⋮
𝑚

⎤

⎥

⎥

⎥

⎥

⎥

(68)
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for large 𝑁 (Trotter product approximation) and all 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛). (ii) observation update

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1𝑡𝑛
𝜎2𝑡𝑛
⋮

𝜎𝑚𝑡𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(1)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎1𝑡𝑛−

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
(2)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎2𝑡𝑛−

⋮
𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛

(𝑚)

𝛾𝑌𝑡𝑛−1→𝑌𝑡𝑛
𝜎𝑚𝑡𝑛−

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑛 ≥ 1; s.t.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎1𝑡0
𝜎2𝑡0
⋮
𝜎𝑚𝑡0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑃 (𝑋0 = 1)

𝑃 (𝑋0 = 2)

⋮

𝑃 (𝑋0 = 𝑚)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (69)

The unnormalized filter is then 𝜎𝑡(⋅) =
𝑚
∑

𝑖=1
𝜎𝑖𝑡𝛿𝑖(⋅).

5. Conclusions and highlights

• We developed methods to change continuous-time Markov chains, add time dependence or even add hidden states. Importance sampling,
rejection sampling, and Monte Carlo simulation methods were developed. Parameter estimation and model learning are future applications.

• We provided a Bayes’ factor model selection approach to Continuous-time Hidden Markov Chains, both through particle and direct methods.
Filtering equations for both the unnormalized and normalized filter were developed and solved.

• We introduced the Continuous-time Markov Observation Models (CMOM). and proved all our results in this more general context. All
applications and solutions discussed apply to CMOM.

• Our explicit measure-change formula for Markov chains is new. Our introduction of the transition count processes into any measure change
and filtering equations is believed to be new.

• Our branching particle filter approach to infectious disease monitoring is novel and extendable to a stochastic Susceptible–Infected–Recovered
(SIR) hidden models with point-of-care observations. Our CMOM model allows the amount of testing to increase with the amount of infection.

6. Configuration

All simulations were implemented in Julia version 1.9.4 and executed on a Windows Subsystem for Linux (WSL) virtual machine on a Windows
11 PC equipped with an Intel 13th Gen i5-13400F processor and 16 GB of RAM.
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